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Abstract. Geelen, Gerards, and Whittle have announced that
there are no infinite sets of binary matroids none of which is iso-
morphic to a minor of another. In this paper, we use this result to
determine precisely when a minor-closed class of matroids with a
single excluded minor does not contain such an infinite antichain.

1. Introduction

The matroid terminology used here will follow Oxley [9]. For a ma-
troid N , let EX(N) denote the class of matroids having no minor iso-
morphic to N . Tutte [12] proved that EX(U2,4) is the class of binary
matroids. Robertson and Seymour [11] proved a conjecture of Wagner
that there are no infinite antichains of graphs. They also conjectured,
though apparently not in print [4, 5], that, for all prime powers q, this
theorem can be extended to the class of matroids representable over
GF (q). Geelen, Gerards, and Whittle [6] have announced that they
have proved this conjecture for q = 2; that is, under the minor or-
dering, EX(U2,4) does not contain an infinite antichain. This theorem
prompts the question as to precisely when EX(N) does not contain an
infinite antichain. The purpose of this note is to answer this question.
The following theorem is our main result.

Theorem 1.1. Under the minor ordering, EX(N) does not contain

an infinite antichain if and only if N is a minor of U2,4 ⊕2 U1,3 or

U2,4 ⊕2 U2,3.

2. Infinite Antichains

The proof that certain classes EX(N) contain infinite antichains will
use three examples of such antichains.
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Example 2.1. For all n ≥ 3, let Pn be the rank-3 matroid con-
sisting of a ring of n three-point lines, that is, Pn has ground set
{x1, x2, . . . , xn, y1, y2, . . . , yn} and its only non-spanning circuits are
{x1, y1, x2}, {x2, y2, x3}, . . . , {xn, yn, x1}. The set {Pn : n ≥ 3} is an
infinite antichain [2, p. 155].

Example 2.2. For all k ≥ 2, let Tk be the matroid that is obtained
by taking the direct sum of two k-element circuits and truncating this
to rank k. Oxley, Prendergast, and Row [10] proved that the set {Tk :
k ≥ 2} is an infinite antichain.

Example 2.3. For all r ≥ 2, let Nr be the tipless binary spike of rank
2r, that is, the vector matroid of the matrix [I2r|J2r − I2r] over GF (2)
where J2r is the 2r×2r matrix of all ones. Let Mr be a matroid obtained
from Nr by relaxing a pair of complementary circuit-hyperplanes. Kahn
(in [9, p. 471]) proved that the set {Mr : r ≥ 2} is an infinite antichain
no member of which has a U2,5- or U3,5-minor.

A binary relation ≤ on a set Q is a quasi-order if it is reflexive
and transitive. A well-quasi-order is a quasi-order such that, for every
infinite sequence q1, q2, . . . of members of Q, there are indices i and
j such that i < j and qi ≤ qj . For example, the set N of natural
numbers under the usual ordering is a well-quasi-order. If M is a class
of matroids that is closed under isomorphism and minors, then M is
a quasi-order under the minor relation ≤m. It is well-known, and we
shall give examples below to show this, that, when M is the class of all
matroids, (M,≤m) is not a well-quasi-order. This paper determines
precisely when (EX(N),≤m) is a well-quasi-order.

For a quasi-order (Q,≤), let Q<w be the set of all finite sequences of
members of Q. For (p1, p2, . . . , pm) and (q1, q2, . . . , qn) in Q<w, define
(p1, p2, . . . , pm) ≤<w (q1, q2, . . . qn) if there are indices i1, i2, . . . im with
1 ≤ i1 < i2 < · · · < im ≤ n such that pj ≤ qij for all j in {1, 2, . . . , m}.
Higman [7] proved the following fundamental result.

Lemma 2.4. If (Q,≤) is a well-quasi-order, then (Q<w,≤<w) is a

well-quasi-order.

Let (Q1,≤1), (Q2,≤2), . . . (Qk,≤k) be quasi-orders. For (p1, p2, . . . pk)
and (q1, q2, . . . qk) in Q1 × Q2 × · · · × Qk, define (p1, p2, . . . , pk) ≤
(q1, q2, . . . , qk) if pj ≤j qj for all j in {1, 2, . . . , k}. As noted, for exam-
ple, in [3], the following is a well-known consequence of Lemma 2.4.

Corollary 2.5. If (Qi,≤i) is a well-quasi-order for all i in {1, 2, . . . , k},
then (Q1 × Q2 × . . . Qk,≤1 × ≤2 × · · ·× ≤k) is a well-quasi-order.
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Let M be a uniform matroid with ground set {x1, x2, . . . , xn}. Re-
place each element xi by ki parallel elements for some ki ≥ 1 where
if r(M) = 0, each ki = 1. We call the resulting matroid a parallel

extension of a uniform matroid. Its dual is a series extension of a uni-

form matroid. Note that this terminology differs from Oxley [9] where
parallel and series extensions require the addition of a single element.

Lemma 2.6. There are no infinite antichains of series extensions of

uniform matroids.

Proof. Associate the pair (r, s− r) and the s-tuple (k1, k2, . . . , ks) with
k1 ≤ k2 ≤ · · · ≤ ks to each series extension of a non-empty uniform
matroid Ur,s. From above, N

2 × N
<w is a well-quasi-order. Thus the

class of series extensions of uniform matroids is a well-quasi-order. �

3. EX(N)

In the next lemma, W3 denotes the rank-3 whirl, while Q6 and P6

are obtained from W3 by relaxing one and two circuit-hyperplanes,
respectively.

Lemma 3.1. The class EX(U2,4 ⊕2 U1,3) consists of direct sums of

binary matroids and series extensions of uniform matroids.

Proof. Let M ∈ EX(U2,4 ⊕2 U1,3). Assume M is 3-connected. Observe
that M ∈ EX(W3, Q6, P6). Thus, by [8, Theorem 1.5], M is binary
or uniform. Now assume M is connected, but not 3-connected. Then
M = M1 ⊕2 M2 for some connected matroids M1 and M2. Suppose
M is non-binary. Then, without loss of generality, M1 is non-binary.
Hence, M1 has a U2,4-minor. Furthermore, Bixby [1] proved that every
element of M1, so, in particular, the basepoint p of the 2-sum, is in a
U2,4-minor of M1. Thus, no cocircuit of M2 containing p has more than
two elements. Hence, M2 is a circuit. Thus, every 2-sum decomposition
of M has a circuit as one part. It follows without difficulty that M

is a series extension of a uniform matroid, and it is straightforward to
complete the proof of the lemma. �

Corollary 3.2. The classes EX(U2,4 ⊕2 U1,3) and EX(U2,4 ⊕2 U2,3) do

not contain infinite antichains.

Proof. By duality, it suffices to prove the result for EX(U2,4 ⊕2 U1,3).
If M ∈ EX(U2,4 ⊕2 U1,3), then, by the previous lemma, we can write
M as M0⊕M1⊕· · ·⊕Mk for some k ≥ 0 where M0 is binary and every
other Mi is a series extension of a uniform matroid. Note that we shall
allow M0 to be U0,0. Let QB denote the class of binary matroids and
let QS denote the class of series extensions of uniform matroids. By [6]
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and Lemma 2.6, neither QB nor QS contains any infinite antichains.
By Lemma 2.4 and Corollary 2.5, QB×Q<w

S is a well-quasi-order. Thus
EX(U2,4 ⊕2 U1,3) is a well-quasi-order. �

We now prove the main theorem.

Proof of Theorem 1.1. Assume EX(N) contains an infinite antichain.
Then, by Corollary 3.2, N is not a minor of U2,4 ⊕2 U1,3 or U2,4 ⊕2 U2,3.

Assume N is not a minor of U2,4⊕2U1,3 or U2,4⊕2U2,3, so |E(N)| ≥ 3.
If r(N) ≥ 4 or r(N∗) ≥ 4, then EX(N) contains {Pn : n ≥ 3} or
{P ∗

n : n ≥ 3}, respectively. Hence, r(N) ≤ 3 and r(N∗) ≤ 3. Thus
|E(N)| ≤ 6. Observe that EX(U0,2⊕U1,1) and EX(U2,2⊕U0,1) contain
{Pn : n ≥ 3} and {P ∗

n : n ≥ 3}, respectively; both EX(U1,2 ⊕U1,2) and
EX(U2,4 ⊕2 U2,4) contain {Tk : k ≥ 4}; and EX(U3,5) and EX(U2,5)
contain {Mr : r ≥ 2} and {M∗

r : r ≥ 2}, respectively. Hence we may
assume that N has no minor isomorphic to U0,2 ⊕ U1,1, U2,2 ⊕ U0,1,
U1,2 ⊕ U1,2, U2,5, U3,5, or U2,4 ⊕2 U2,4. It is not difficult to check that
this leaves no remaining choices for N . �
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