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Infinite Matroids

JAMES OXLEY

The many different axiom systems for finite matroids given in Chapter 2 of
White (1986) offer numerous possibilities when one is attempting to generalize
the theory to structures over infinite sets. Some axiom systems that are
equivalent when one has a finite ground set are no longer so when an infinite
ground set is allowed. For this reason, there is no single class of structures
that one calls infinite matroids. Rather, various authors with differmg
motivations have studied a variety of classes of matroid-like structures on
infinite sets. Several of these classes differ quite markedly in the properties
possessed by their members and, in some cases, the precise relationship
between particular classes is still not known.

The purpose of this chapter is to discuss the main lines taken by research
into infinite matroids and to indicate the links between several of the more
frequently studied classes of infinite matroids.

There have been three main approaches to the study of infinite matroids,
each of these being closely related to a particular definition of finite matroids.
This chapter will discuss primarily the independent-set approach. Some
details of the closure-operator approach will also be needed, but a far more
complete treatment of this has been given by Klee (1971) and by Higgs
(1969a, b, ). The third approach, via lattices, will not be considered here.
This approach is taken by Maeda & Maeda (1970) and they develop it in
considerable detail.

Throughout this chapter, the Axiom of Choice will be assumed.

3.1. Pre-independence Spaces and Independence Spaces

The first class of infinite matroids that we consider is obtained essentially
by deleting the references to finite sets in the independence axioms (i1)+i3)
of Chapter 2 of White (1986). We note, however, that the finiteness of I, and
I,in (i3), whichis implicit when S is finite, is made explicit when S| is unrestricted.
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A pre-independence space M,(S) is a set S together with a collection .# of
subsets of § (called independent sets) such that

i) F#£g.
- {i2) A subset of an independent set is independent.
(i3') (Finiteaugmentation)If I, and I, are finite members of .# with |I,| > |I,},
then there exists x mm [, — I, such that I, uxe .

Generalizing the terminology of finite matroid theory, we cail a subset X
of S dependent if X ¢.4. A circuir of Mp(S) is a minimal dependent set, and
a basis of M,(S)is a maximal independent set. The notation ¥ << X indicates
that Y is a finite subset of X.

Although pre-independence spaces seem to be natural objects for study,
they have received little attention in their own right primarily because they
fail to possess many of the fundamental properties of finite matroids.

3.1.1. Example. Let § =R, the set of real numbers, and .# be the set of all
countable subsets of S. Then .# is the collection of independent sets of a
pre-independence space Mp(S). However, M(S) has no circuits and no bases.

In the face of such examples, it is natural to strengthen one’s axiom system.
As with finite matroids, a principal example of a pre-independence space is
obtained from a vector space V. In this case, we let S be an arbitrary subset
of ¥, and .# be the collection of subsets of S that are linearly independent in
V. Such a pre-independence space satisfies the following additional condition.

(I4) (Finitecharacter)If X < § and every finite subset of X isin .#, then X isin .#.

Much of the work done on infinite matroids has been algebraically
motivated and for this reason (il), (i2), and (i3') have frequently been
augmented by (I4). We shall call a pre-independence space satisfying (14) an
independence space. Such structures are also commonly referred to as finitary
matroids (Bean, 1976; Higgs, 1969a; Klee, 1971). In this section we examine
the properties of independence spaces. In the next section we shall add
different conditions to (i1}, (i2), and (i3") with different consequences.

3.1.2, Example. It is easy to extend the relevant arguments from Chapter 4
of White (1987) to show that the set of partial transversals of an arbitrary
family of subsets of a set § is the set of independent sets of a pre-independence
space on §. However, this pre-independence space need not be an independence
space. For instance, if = (X, X,, X5, ... and X, = {1, i + 1} for all i, then
every finite subset of Z™ is a partial transversal of 4, yet Z* itself is not.

Two immediate consequences of (I4) are that every dependent set in an
independence space contains a circuit and that this circuit is finite. Thus an
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independence space is uniquely determined by its collection of circuits. We
leave it to the reader to show that the independence axioms, (il), (12), (13'), -
and (I4), are cryptomorphic to each of the circuit axioms, the strong circuit
axioms, and the basis axioms stated below.

3.1.3. Circuit axioms for independence spaces. An independence space M(S)
is a set S together with a collection € of subsets {called circuits) such that €
satisfies (c1)Hc3) (Chapter 2 of White, 1986) together with

(C4) Every circuit is finite.

3.1.4. Strong circuit axioms for independence spaces. These are the same as
3.1.3, except that (c3) is replaced by (c3.1) of Chapter 2 of White (1986).

The bases of an independence space also behave similarly to their
counterparts in a finite matroid. Indeed, an easy consequence of Zorn’s.
Lemma is that every independent subset of an independence space is contained
in a basis. Hence every independence space is determined by its collection
of bases. To obtain a definition of an independence space in terms of bases,
one augments the basis axioms (b1)}(b3) of Chapter 2 of White (1986) by
the following form of the finite character condition.

(B4) If X is not contained in a basis, then some finite subset of X is not
contained in a basis.

It is not difficult to extend the axioms (cl1)}+{cl4) of White (1986) to give a
closure-operator definition for independence spaces. We leave the reader to
check the details of this (see Exercise 3.1).

3.1.5. Example. Let S be the set of edges of a graph I" and let €(I") be the
collection of edge-sets of cycles of I'. It was noted in Chapters 1 and 6 of
White (1986) that, when T is finite, ¥(I') is the set of circuits of a (finite)
matroid on S. Since every cycle in an infinite graph is finite, we can extend
this immediately to get that (') is the set of circuits of an independence
space M(S) regardless of whether I is finite or infinite.

If M(S) is an independence space having .# as its collection of independent
sets, then for X = 8, let #|X be defined, as for finite matroids, by

FlX={Y=X: Ye s} (3.1)

Clearly .#| X is the collection of independent sets of an independence space
M(X) on X. We call M(X) the restriction of M(S) to X. One can also define
the operation of contraction for independence spaces in the same way as for
finite matroids. However, in order to establish that this operation is well
defined and that it gives an independence space, we shall require three lemmas.
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3.1.6. Lemma. Let B, and B, be bases of an independence space M(S) and
suppose that x€ B, — B,. Then there is an element y of B, — B, such that
(B — x)wy is a basis of M(S).

Proof. This result is an easy consequence of the proof of Proposition 2.1.1
of White (1986). O

3.1.7. Lemma. Suppose that M(S) is an independence space and Y= X < 8.
If B, and B, are bases of M(S — X), then B, w Y& # if and only if B, u Ye 4.

Proof. Suppose B, U Ye.#, but B,uY¢ # Consider M((S— X)uY). This is
an independence space having B, U 'Y as a basis. Moreover, M((S — X)u Y)
has a basis B such that B,SB=B,uY. Now B=B,uY where Y' &Y.
Choose x in Y — Y. Then xe(B,uY)— B and so, by Lemma 3.1.6, there is
an element y of B—(B,uY) such that (B,uY)--X)uy is a basis of
M(S§—X)UY).AsY < Y wehavethatye B, — B, andsoB, ZB,uycS—X,
and B, Uy is independent in M(S — X). This contradicts the fact B ( 18 a basis
of M(S — X) and thereby completes the proof of the lemma. M

We require one further lemma before defining contraction for independence
spaces. If § and I are sets and & = (X,: ie!) is a family of subsets of S, then
a choice function for 4 is a mapping ¢: I—S such that ¢(i)e X, for all i in
I.IfJ = I, then ¢ |, denotes the mapping from J into S defined by ¢ |,(j) = ¢(j)
for all jin J.

3.1.8. Lemma. (Rado’s selection principle) Let (X,: i€ I) be a family of finite
subsets of a set S. For each finite subset J of I, let ¢, be a choice function for
(X;: ieJ). Then there is a choice function ¢ for (X,: iel) such that if J = 1,
then there is a set K for which J S K o= I and ¢|; = ¢yl

Mirsky’s book (1971) contains several applications of this result together
with a short proof of it using Tychonoff’s theorem. We shall not reproduc
these here. '

3.1.9. Proposition. Suppose that M(S) is an independence space, X < S, and B
is a basis of M(S — X). Let

FX={Y<X: YUBe.s} (3.2)
Then #.X is the set of independent sets of an independence space M.X, the
- contraction of M(S) to X.

Proof. By Lemma 3.1.7, #.X does not depend on the basis B chosen for
M(S — X). It is clear that .#.X satisfies (1) and (i2). Moreover, if Y= X and
every finite subset of Y is in #.X, then every finite subset of YUB is in ..
Hence YU Be 4, and so Ye#£.X. Thus, #.X satisfies (I4).
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To show that .#.X satisfies (i3"), we shall use Rado’s selection principle.
Suppose that U and T are finite members of .#.X and |T|>{U]. Then BUT
and Bu U are in .#. Moreover, for every finite subset B, of B, we have that
M(B,u T'uU) s a finite matroid, and so, applying (i3) to B,w T and B, u U,
there is an element ¢t of T— U such that BjuUute S, Thus the set
Sg,={te T—U: B;uUuvte s} is finite and non-empty. Let I be the set of

finite subsets of B and suppose that J = {B;, B, ..., B,} cc I.Let B'= |} B,
i=1

and choose an element ¢ from S,. We define a choice function ¢; for
(Sp.s Spy» -» Sp,) bY ¢,(B)) =1 for all i in {1,2,...,n}. Let ¢ be a choice
function for (Sg,: B, € I) satisfying the conclusion of Lemma 3.1.8. We show
next that ¢ maps every element of I to the same element ¢, of T— U. It will
follow from this and (14) that Bu U ut,e.#, and hence that Uut,e #.X, as
required. To show that the image of ¢ is a single clement of T'— U, suppose
that B,, Byel, and let J={B,, By}. Then there is a set K such that
Je K o1 and ¢gl; = ¢, But ¢g(Bo) = ¢x(Bo) and so $(By) = Bo). O

Tt is well known that all bases of a vector space are equicardinal. This
result was extended to independence spaces by Rado (1949).

3.1.10. Proposition. If B, and B, are bases of an independence space M(S),
then {B,| =|B,|.

The proof of this result uses the following infinite extension of Rado’s
theorem on independent transversals (see Chapter 4 of White, 1987). Note
that, since every restriction of an independence space M(S) to a finite set X
is a finite matroid, one can define the rank r(X) of X to be the rank of the

matroid M(X).

3.1.11. Proposition. Let M(S) be an independence space and & =(X;: iel) be
a family of finite subsets of S. The following statements are equivalent.

(i) r( U Xj) = |J| for every J cc I.
jeJ

(ii) Every finite subfamily of & has an independent transversal.

(iily & has an independent transversal.

Proof. The fact that (i) implies (i) follows from the finite case of Rado’s
theorem. Moreover, it is clear that (iii) implies (i). We shall complete the
proof of Proposition 3.1.11 by using Rado’s selection principle to show that
(i) implies (iii).

Suppose Lcc I. Then, by (i), (X;: i€ L) has an independent transversal.
Thus there is an injective choice function ¢; for (X;: i€ L) such that ¢, (L)e 4.
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Let ¢ be a choice function for (X;: i) satisfying the conclusion of Lemma
3.1.8. Then if i}, i,el and J'={i,, i, }, there is a finite subset K’ of I such
that J' < K'and @y ;. = b;. As ¢ (i,) # Py (i,), it follows that ¢(i, ) # ¢(i,),
s0 ¢ 1s an injection and hence ¢(I) is a transversal of . To see that ¢(I) e £,
-suppose that ¥ o< ¢(I). Then Y = ¢(J) for some J cc I. Now [ has a finite
subset K such that K 2J and ¢g|; = ¢|;. Since ¢ (K)e.#, we have that
Y= ¢(J) = ¢py(J)e.#. Thus every finite subset of ¢(I)is in .#, and so ¢(I) e .#,
as required. (]

Proof of Proposition 3.1.10. The required result will follow if we can show
that for U, Te.# and |U} < |T|, there is an element ¢ of T— U such that
Uwte.£; that is, if we can show that the finiteness restriction on [ yand I,
in (i3') can be dropped. )

Suppose that U, Te # and |U| < |T], but Uuté¢.# for all t in T— U. Then
it is easy to show that for each element ¢ of T — U there is a unique circuit
C, such that te C,c Uut. Now, if te T— U, let X,=C,—t,and if te Tn U,
then let X, = {t}. We shall show next that the family & = (X,: re T) satisfies
Proposition 3.1.11(i). Suppose 7" == T. Then T" € .#. Now let g be the closure

operator of the finite matroid N =M (T’u( U XI)). Then, for all ¢t in

te T’

T —U, the set C, is a circuit of N and so T’gg(U X,). Hence

teT”

r( U x :) = r(T")=|T'|. Thus, by Proposition 3.1.11, & has a transversal;
teT’
that is, there is an injection from T into a subset of U. Hence |T|<|U|; a

contradiction. This completes the proof of Proposition 3.1.10. o

It follows from Proposition 3.1.10 that in an independence space M(S) one
can define the rank r(X) of an arbitrary subset X of S to be the common
cardinality of all bases of M(X). .

The preceding discussion has shown that a large number of fundamental
properties of finite matroids are shared by independence spaces. In particular,
the basic operations of restriction and contraction can be defined for
independence spaces. Another important and powerful tool for finite matroids
that one would naturally wish to extend to independence spaces is the
operation of orthogonality. We shall show, however, that this cannot be
done. Indeed, the lack of a satisfactory theory of orthogonality for independence
spaces has been an important motivating factor in the study of other classes
of infinite matroids.

Suppose that M(S)is an independence space and let #* be defined as follows.

F* ={X: §— X contains a basis of M(S)}. (3.3)
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We leave the reader to check that #* is the set of independent sets of a
pre-independence space M*(S). Evidently, every independent set of M*(S) is
contained in a basis of M*(S). The term ‘cofinitary matroid” has often been
used to refer to such pre-independence spaces M*(S) (Bean, 1976; Klee, 1971).
When S is finite #*, of course, is the collection of independent sets of the
matroid orthogonal to M(S). However, as the next example shows, when §
is infinite, M*(S) may fail to satisfy the finite character condition.

3.1.12. Example. Let § be an infinite set and k be a positive integer. If
#,={X =5 |X| < k}, then %, is the set of independent sets of an independence
space M*(S). However, although every. finite subset of § is in . ¥, the set §
itself is not.

This example plays a central role in the proof of the next theorem. Let §
be an arbitrary infinite set and % be the set of independence spaces on S.
An orthogonality function A on & is a mapping from & into & such that
for all £ in &% we have that A is an involution, that is,

ANAS) = F (3.4)

and
AR X =(FX)* forall X c= 8. (3.5)

The second of these conditions expresses agreement between A and the usual
orthogonality for finite methods.

3.1.13. Theorem. There is no orthogonality function on the collection & of
independence spaces on an infinite set S.

Proof. Assume that there is an orthogonality function A on &. Now if k is
a positive integer and X < §, then §— X' is infinite, so % |(S — X) contains
a basis of M*(S). Thus .%,.X = {(}, hence X €(4,.X)* and s0, by (3.5), X e A4,
It follows that A% contains all finite subsets of § and hence A% =25
Therefore, if j and k are distinct positive integers, then, by (3.4),
Si=AAF)=AASA)=5; a contradiction. This completes the proof of
Theorem 3.1.13. !

Rado (1966) raised the problem of developing a non-trivial theory of infinite
matroids in which the finite character condition does not feature. The
motivation for discarding this condition is increased by Example 3.1.12, which
suggests that the problem with attempting to define orthogonality for
independence spaces may arise because the class of independence spaces is
too restricted. The rest of this chapter will be concerned with solving Rado’s

problem.
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3.2. B-matroids

In this section we discuss the properties of basis-matroids (B-matroids), a
class of pre-independence spaces introduced by Higgs (1969a) whose members
have many of the properties of finite matroids. It is shown that this class
contains the class of independence spaces and is closed under restriction and
contraction. Moreover, unlike the class of independence spaces, the class of
B-matroids is closed under the natural orthogonality function.

If % is a collection of subsets of a set S, then an ¥ -subset of § is a subset

of S that is a member of .
A B-matroid Mg(S) is a set S together with a collection .# of subsets of §
such that .# satisfies (i1) and (i2) together with

(Iz1) IfT< X = Sand Te ¥, then there is a maximal .#-subset of X containing T

(I2) Forall X ¢ §,if B, and B, are maximal .#-subsets of X and xe B, — B,,
then there is an element y of B, — B, such that (B, — x)u y is a maximal
F-subset of X.

It is easy to check that (I52) implies (i3) and hence that every B-matroid
is a pre-independence space. Thus, if My(S) is 2 B-matroid, the members of
# are called independent sets, and a maximal member of .# is called a basis.
An immediate consequence of Lemma 3.1.6 is that every independence space
is a B~-matroid. But, as the following example shows, not every B-matroid is
an independence space.

3.2.1. Example. Let S be the edge set of the infinite graph I" shown in Figure
3.1 and let .# consist of those subsets of S that do not contain the edge set
of any cycle or two-way infinite path in I'. It is straightforward to check that
# satisfies (il), (i2), (Iz1), and (Ig2). Hence # is the collection of independent
sets of a B-matroid My(S) on S. However, # does not satisfy (I4) because
every finite subset of a two-way infinite path is in .#, yet the path itself is
not. Therefore, My (S) is not an independence space.

Figure 3.1,

This example is one member of a class of B-matroids introduced by Higgs
{1969c¢) (see Exercise 3.19).

If My(S) is a B-matroid having .# as its collection of independent sets,
then for X = §, let #| X be defined as in (3.1). It is easy to check that #iX
is the set of independent sets of a B-matroid, M z(X), the restriction of My(S) to X.

We show next that the operation of contraction can be defined for
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B-matroids as in (3.2). First note that the argument that was used to prove
Lemma 3.1.7 can be applied in this case to give that #.X does not depend

on the basis chosen for £1(S — X).

3.2.2. Proposition. If My(S) is a B-matroid and X < S, then .#.X is the set of
independent sets of a B-matroid My X on X.

Proof. Let B be a basis of Mg(S — X). Clearly #.X satisfies (i1) and (i2). Now
suppose Z< Y= X and Z is an .#.X-subset. Then ZwBe.# and so ZUB is
contained in a2 maximal .#-subset B’ of S —(X — Y). Now B’ == Z'uU B where
Z'2Z and Z'n(S—Y)= (. Evidently Z’ is a maximal #.X-subset of ¥
containing Z. Thus £.X satisfies (I31).

We now check that £ X satisfies (I;2). Let B, and B, be maximal #.X
subsets of a subset ¥ of X and suppose xe B, — B,. Then ByuBand B,UB
are maximal #-subsets of § — (X — Y). Since xe(B, v B) — (B, U B), there is
an element y of (B, U B) — (B, U B) such that (B, uB)—x)uy is a maximal
F-subset of S — (X — Y). Clearly ye B, — B,. Moreover, (B, VB) ~x}uy=
(B, —x)uy)uUB, and so (B, —x)uy is a maximal .#.X-subset of Y. Hence
. X satisfies (Iz2) and the proposition is proved. O

In the preceding section it was suggested that one of the problems with
attempting to define orthogonality for independence spaces may be that the
class of independence spaces is too restricted. In this section we shall confirm
this by showing that (3.3) is an involution on the class of B-matroids. In
order to achieve this objective we shall consider certain aspects of the
closure-operator approach to infinite matroids as developed by Klee (1971).
We defer to the exercises consideration of an equivalent approach that was
adopted by Higgs (1969a, b, c).

An operator f on a set § is a function from 2° to 2° satisfying

(cll) X < f(X) for all X = 8.
(cl2) X = Y< S implies f(X) <= f(Y).

We shall concentrate primarily on operators satisfying the following two
additional conditions.

(€13} fAX)=f(X)forall X =S
©4) X, YeSandpef(Y)— f(Y — X),thenxef((Y — x)up)forsome xin X.

Such operators will be called idempotent-exchange- or IE-operators.

It is straightforward to check that (cll)}cl3) and (cl4') provide another
cryptomorphic axiom system for finite matroids to add to the many presented
in White (1986).
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For an operator f on a set S, let /* be defined, for all X = §, by
HX)=Xou{x x¢f(S—(Xux)}

3.2.3. Proposition. If f is an operator on a set S, then f* is an operator on S
and (f*)* = f. Moreover, if f is an IE-operator, so is f*.

The proof of this is left as an exercise,

Again, for f an operator on § and X < §, the restriction f, and contraction
f¥ of f to X are defined, for all Y< X, by

L) =f(Y)nX, and fX(Y)= f(YU(S — X)) X respectively.

3.2.4. Proposition. If f is an operator on a set S and X < S, then both fy and
f* are operators on X, and (f*)y = (fXY* and (f,)* = (f*. Furthermore, if
fis an 1E-operator, so are both fy and f*.

Proof. 1t is not difficult to check that both f, and f* are operators on X
and that if f is an IE-operator on S, then both f; and f* are IE-operators on
X. Now, if Y< X, then

(V)= NnX =(TulyeS y¢fIS —(YuyhhnX
=Yu{yeX: y¢f((S - X)u (X —(Yuy)}
=Yu{yeX: y¢f (X —(Yuy)} = (/*)*Y)

Thus (f*), = (f*)* If we replace f by f* in this equation, then, by Proposition

3.2.3 we get fy =((f*")*. Hence, by Proposition 3.2.3 again, (f;)* = (%),
and the proof of the proposition is complete. ]

Let f be an operator on a set S and suppose X = S. Then X is independent
if x¢f(X —x) for all x in X; otherwise X is dependent. We call X spanning
or non-spanning according as f(X)=S or f(X)% S; and X is a basis if X is
both independent and spanning. A minimal dependent set is a circuit and a
maximal non-spanning set is a hyperplane. Clearly when § is finite and f is
an IE-operator, f is the closure operator of a (finite) matroid on S and then
the definitions above are consistent with the usage of these terms in White
(1986). We leave the routine proofs of the next two results as exercises.

3.2.5. Propesition. If f is an 1E-operator on S, then the sets of bases, maximal
independent sets, and minimal spanning sets are identical.

3.2.6. Proposition. If f is an operator, then

(1) the f-independent sets are precisely the complements of the f *-spanning sets;
(i) the f-circuits are precisely the complements of the f*-hyperplanes; and
(i) the f-bases are precisely the complements of the f*-bases.
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The next proposition shows that B-matroids can be axiomatized in this
operator framework. This important fact will be used in the discussion of
orthogonality for B-matroids. We require the following lemma.

327, Lemma. Let f be an IE-operator on a set § and ¥ be the collection of
f-independent sets. I fX < SandBisa maximal S -subset of X, then f(B)=f(X)
Moreover, if 1 =S and €5, then fI)=I1u{x: Tux¢ S}

Proof. As Bis a maximal .#-subset of X, by Propositions 3.2.4 and 3.2.5,
f¢(B)=X. Thus X < f(B) and so, by (cl2) and (c13), f(X) < FUf(B) = f(B).
But, by (c12), fB) = f(X ), hence f(B) = f(X)as required. If T€ ¥ and JUuxé.f,
then yef(Ivx)— y) for some element y of [ux. f y=x, then xef(I). But.
if y#x, we still get x€ f) by (cl4) because yéfU — ) Therefore,
f(h=2Iuix Jux¢.f}. Now, if xef()—1I, then TuXx is not f-independent;
thatis, [ux¢.# Hence f(I) S Tuo{x:TuxgSd },and the required result follows.

3

3.2.8. Proposition. Suppose that Mg(S)isa B-matroid having . asits collection

- of independent sets and let f be defined, for all subsets X of S, by

f(X)=Xuix Tux¢S for some [= X such that Te 3. (3.6)

Then f is the unique [E-operator on S having # as its collection of independent
sets, and, since Mg(S) is @ B-matroid, £ satisfies (Ig1)- Conversely, if f is an
IE-operator on S such that the set £ of f-independent sets satisfies (Ig1), then
# is the set of independent sets of a B-matroid on S.

Proof. Suppose that Mg(S)is a B-matroid and that f is defined as in (3.6).
Then clearly f satisfies (c11) and (c12). We show next that for all X = S,
f(X)__’{XU{x.-XU}féf}, ﬁ‘Xef, (37
fly), if Ix 18 @ maximal f-subset of X.
If Xe.f and JTux¢.f for some Ic X, then XUX§S. Thus (3.6) and (3.7)
agree when X € S IfX¢SandIyzisa maximal .#-subset of X, then, by (cl2),
f(X)2 fx). Wenow show that the reverse inclusion also holds. If x€ X — Iy,
thenlyuxé¢S, Soxef(IX)andhence,f(Ix)P_X.Nextassumethatx ef(X)—X.
Then Jux¢.# for some F-subset I of X. If Iyuxés, then xef(ly), 80O
suppose that IyUXE€ #. Then Iyux is a maximal Jf-subset of Xux.
Moreover, I is contained in a maximal #_subset B of Xux, and x ¢ B. Thus
xe{lyux)—B, and so, by (Iz2), there is an element y of B—({xwX) such
that (Ixyux)—X)Uy = I,uyis 2 maximal .#-subset of XU X. Butl,uysX
and so the choice of Iy is contradicted. Thus (3.7) is established.
From (3.7), it is easy to s€€ that f satisfies (cI3). To show that f satisfies

(cl4’), suppose xcVY and pef(Y)—X and péf(Y—X). Let Iyx be a
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maximal #-subset of Y — X. Then Iy _y is contained in a maximal .#-subset
I, of Y, and, as pef(Y) = f{ly), we have I,up¢.# and so Iy is a maximal
F-subset of Yup. Now péf(Y—X)=f(Iy_x) hence I,_,uwpe.#, and so
Iy_yupe Iy, a maximal S-subset of Yup. If there is an clement x of X
such that x ¢ Iy, then xef(Y) = f(Yup) = fI) = (Y — x)u p); that is, (cl4)
holds. Thus assume that X =I;. Then Iy =1I,_yuXup2ZI1, yuX2I,.
This is a contradiction since both Iy and Iy are maximal -subsets of Yup.
We conclude that f satisfies (cl4).

The fact that .# is precisely the collection of findependent sets follows |

without difficulty from (3.7). Moreover, by Lemma 3.2.7, { is the unique
I[E-operator on S having .# as its collection of independent sets.

To prove the converse, let f be an IE-operator on S having .# as ifs
collection of independent sets and suppose that .4 satisfies (Iz1). Evidently
# satisfies (i1) and (i2). Therefore to show ./ is the collection of independent

.sets of a B-matroid, it remains only to check that (I52) holds. Note that, by
Lemma 3.2.7 and (I51), f is defined as in (3.7) for ail subsets of S. Suppose
X < § and let B, and B, be maximal .#-subsets of X. Assume that xe B, — B,
and, for all y in B, — B;, the set (B, —x)uyé¢Sf. Then, by (3.7),
B, — B, < f(B, - x). Hence f(B; —x) = f((B, — x)uB,) = f(B,)=2 X. Hence
xef(B, —x); a contradiction of the fact that B, is f-independent. This
completes the proof of Proposition 3.2.8. O

If Mg(S) is a B-matroid and f is defined as in (3.6), then we call f the
closure operator of My(S).

3.2.9. Proposition. Let f be the closure operator of a B-matroid My(S) having
¥ as its collection of independent sets. Then fy and f X are the closure operators
of My(X) and My.X respectively.

Proof. It is clear that #| X is the collection of fy-independent sets, hence by
Proposition 3.2.8, fy is the closure operator of My(X). Now suppose that
Ye #.X, but Y is not f¥-independent. Then YuBe# for some basis B of
My(S — X), and yef*(Y—y) for some y in Y. Thus yef(Y - y)u(S —X))
and, as S—Xcf(BYc f(Y—yuB), it follows by (cl2) and (cl3) that
f(Y—yulS—X) < f(Y—~y)vuB) Therefore y e f((Y — y)w B). This contra-
dicts the fact that YUBe.#. Thus, if Ye #.X, then Yis f ¥_independent. On
the other hand, if Y is f*-independent and Y¢ #.X, then YOUB¢.S where B
is a basis of My(S — X). As Be £, by (I1), YUB contains a maximal .#-subset
YU B where Y’ £Y. By Lemma 3.2.7, f(Y'v B} = f(YU B). Thus,fye Y- Y,
then yef(Y’uB)Ef((Y—y)uB)Ef((Y—y)u(S—-X)); that is, Y is not
fX-independent. This contradiction implies that if Y is f*-independent, then
Ye.#.X. We conclude that the set of f*-independent sets equals 4.X and
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hence that f* is the closure operator of My.X. This completes the proof of

Proposition 3.2.9. O

We are now in a position to prove that the class of B-matroids is closed
under the natural orthogonality function (3.3).

'3.2.10. Theorem. Suppose that My(S) is a B-matroid having [ as its closure

operator. Then f* is the closure operator of @ B-matroid on S and its collection
F* of independent sets is given by #* = {X: S — X contains a basis of Mg(S)}-

Proof. By Proposition 3.2.3, f*is an IE-operator on S. Now, by Propositions
32.3 and 3.2.6(i), the f *_independent sets are precisely the complements of
the f-spanning sets. In addition, by (3.7), a set is f-spanning if and only if it

" contains an f-basis. Therefore #* is as given. It follows from Proposition

328 that to complete the proof we need to show that #* satisfies (Iz1).
Suppose that Y€ X < Sand Yef* Then S — Y18 f-spanning and so X — Y
is f¥-spanning. But, by Proposition 3.2.9, f¥ is the closure operator of the
B-matroid Mg X and so, by (37), X — Y contains an fX-basis B. Thus
¥ _ B2 Y and, by Proposition 3.2.6(iii), X — B is an (f Xy*.pasis. Therefore,
since (fX)* =(f*)x by Proposition 3.2.4, it follows that X — B is a maximal
f*-independent subset of X containing Y. Thus 7 gatisfies (Iz1), and so, by
Proposition 3.2.8, Theorem 3.2.10 is proved. O

The attention in this chapter has been concentrated on {wo classes of
infinite matroids, the classes of independence spaces and of B-matroids. The
motivation for the study of independence spaces was algebraic. The Jast result
of this chapter provides additional motivation for the study of B-matroids,
showing that thisisa particularly natural class of infinite matroids to examine.

Let S be an arbitrary infinite set and suppose that on every subset W of
S we have a distinguished class %, of pre-independence spaces SO that

(3.1)and (3.2) give well-defined operations of restriction and contraction
on @y such thatif Z= W, the restriction or contraction of a member of
B 18 in Dy; {3.8)
and

the function defined by (3.3) is an involution on %y . (3.9)
Evidently, if for all W& S, we let 9y, be the set of B-matroids on W, then
(3.8)and (3.9) hold. In fact, for every choice of @, subject to these conditions,

the members of %y are B-matroids.

3.2.11. Theorem. IfSisan infinite set, then the largest class of pre-independence
spaces defined on 8 and all its subsets such that (3.8) and (3.9) are satisfied is

the class of B-matroids.




86 James Oxley

For the proof of this result the reader is referred to Oxley (1978a). Note, #37.
however, that there is an error in Oxley (19783a) in that only Theorem 3.2.11 :
above is proved, although a stronger result is stated there. Whether this
stronger result is true is an unsolved problem (see Exercise 3.22).

_ Exercises S;‘:m
The more difficult exercises are marked with an asterisk. '
Section 3.1 _
3.1, (a) Extend the closure axioms (cl1)}cl4) of Chapter 2 of White (1986) to give
a closure-operator definition of an independence space.
{b) Show that, by adding (B4) to (b1)«b3) of White (1986), one gets an axiom
system that is cryptomorphic to the system (i1), (i2), (i3'), and (14).
{c) Show that (b) holds with (b3) replaced by (b3.1) of White (1986). '
3.2. (a) LetIbeasetand {S;:icl} be a collection of pairwise diSjoint sets. For
all i in I, let M,(S;) be an independence space having % as its collection '

of independent sets. Show that {U U Uief,} is the collection of
iel
independent sets of an independence space on | | S;. This independence
iel
space is called the direct sum of the independence spaces M(S;) (ie1).
*(b) (Las Vergnas, 1971; Mason, 1970; Bean, 1976) Let M(S) be an independence
space for which M*(S) is also an independence space. Show that M(S)
is the direct sum of a collection of finite matroids. 2 39.
3.3.  Let M{S) be an independence space and suppose that X <c . If the restriction 3.10.
of a pre-independence space is defined as in (3.1), show that £.X = (#*| X)*, !
3.4. (Las Vergnas, 1971) Let M(S) be an independence space and define #* to be
the collection of subsets X of S such that for all Y o< X there is a basis of -' 311,
M(S} disjoint from Y. ‘
(a) Show that .#* is the collection of independent sets of an independence :“ 3.12.
space on S. 1
(b) Prove that (F*) ) =, and F7| X =(F.X)* for all X = 8.
(¢) Giveanexampleto show thatitisnot necessarily the case that (# )" =%
*d) Let f be the closure operator of M(S); that is, for all X 3§,

FX)=Xu{x: Iux¢S for some I = X such that Te.#}.

Show that {(# )" = .# if and only if for all finite subsets X of S and all elements
x of § — f(X), thereis a set ¥ containing X such that § — Y is finite and x ¢ /(Y.
*3.5, (Piff, 1971) Let & be a family of subsets of a set § and suppose that ¢very
element of § is in finitely many members of 4. Use Rado’s selection principle
to show that the set of partial transversals of Z is the collection of independent _
sets of an independence space on S. 3.13.
*3 6. (Piff, 1971) Prove that if M(S) is an independence space such that forall X c= §
the matroid M(X) is graphic, then there is a graph I' such that M(S) is
isomorphic to M. [3 3.14.
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Show that the following are equivalent.

(a}) The Axiom of Choice.

{b) (Zorn’slemma)Ifevery chainin a non-empty partially ordered set possesses
an upper bound, then the set has at least one maximal element.

(¢} (Tukey’s lernma) If & is a non-empty collection of sets satisfying (i2) and
(14), then & has a maximal member.

Section 3.2

38

30.

3.10.

3.11

3.12.

3.13.

3.14.

Higgs’s approach to infinite matroids (Higgs, 196%a}) uses the idea of a derived
set operator. The series of problems below links this approach to that taken
above. For an operator f on a set S, we define &,: 25-»2° by

8 (X)={x: xe f(X — x)}.
{a) Show that &, satisfies the following conditions.

(D) f X = YSS, then d,(X) = d,(Y).
(D2) If X = § and xed,(X), then xeJ;(X — x).

{b) Show that for all X =8, f(X)=XuUd(X).

(c) Let & be a function on 25 satisfying (D1) and (D2). Define f: 25-+2% by
F(X)=Xvd(X). Show that f is an operator on S and that J, = 0.

(d) Characterize IE-operators f in terms of properties of the corresponding
derived set operators J;.

(¢) f X =S and f is an operator on S, find 4., afx, and ¢;~ in terms of &,.

{f) For an operator f, characterize f-independent sets, f-spanning sets and
J-bases in terms of J,.

Axiomatize B-matroids in terms of their collections of bases.

Show that Proposition 3.2.5 does not hold for arbitrary operators by giving

an example of an operator whose sets of bases, maximal independent sets, and

minimal spanning sets are all distinct.

Show that an IE-operator is not uniquely determined by the pair consisting

of its collection of independent sets and its collection of spanning sets.

Consider the following conditions on an operator f on a set S.

(€I3) I X, Y= Sand X = f(Y), then /(XU Y)< f(Y)

(C) If Y= 8 and pef(Y), then there is a minimal subset U of Y such that
pef(U) and U is independent.

(H KY<SandpeS— f(Y), then thereis a maxunal superset V of Y such
that p¢ f(V) and Vup is spanning.

Show that

(a) f satisfies (c13") if and only if f satisfies (cI3);

(b} f satisfies (C) if and only if f* satisfies (H);

{c) if f satisfies (cl4) and p, ¥, and U are as in (C), then Uu p is a circuit;
(d) if f satisfies (c13) and p, ¥, and ¥ are as in (H), then V is a hyperplane.
Find an example of a B-matroid My(S) and an operator g on S so that g is
not the closure operator of My(S), yet My(S) and g have the same collections
of independent sets.

If 1 is the closure operator of a B-matroid, show that [ satisfies (C) and (H).
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3.15.

3.16.

317,

*3.18.

*3.19.

*3.20.

*3.21.

James Oxley

Let f be an IE-operator on a set S and suppose that f satisfies (C). Show that
the collection € of f~circuits satisfies (c1), (c2), and (¢3.1) and that, forall X = §,
fX)=Xu{x xeCg X ux for some C in €}

(Higgs, 1969a) Let f be an IE-operator on a set S and suppose that f satisfies
both (C) and (H). _

(a) (Unsolved) Is f the closure operator of a B-matreid on §?

(b) (Lnsolved) If X <8, does f; satisfy (H)?

{c) X <S8, does fy satisfy (C)?

(d) Show that if (a) holds, then so does (b).

Let f be an 1E-operator on a set S. Suppose f satisfies (C) and B is an f-basis.
If xeS ~ B, use the result of Exercise 3.15 to prove that there is a unique
circuit C such that xe C € Bux, and that, if ye B, then (Bux)—y is a basis
if and only if ye C.

(Oxley, 1978a) Use the results of Exercises 3.14, 3.15, and 3.17 to show that
if B, and B, are bases of a B-matroid and b; € B, — B,, then there is an element
b, of B, — B, such that both (B, — b,}ub, and (B, — b,)ub, are bases.
(Higgs, 1969¢) Let T be a graph that may be finite or infinite, and let £°(I')
consist of all finite cycles of ' together with all two-way infinite paths in I,
Use the results of Exercises 3.14 and 3.15 to show that #(T) is the set of
circuits of a B-matroid on the edge set of " if and only if " has no subgraph
homeomorphic to the graph in Figure 3.2.

Figure 3.2.

(Matthews and Oxley, 1977) Let T be a graph that may be finite or infinite,
and let A4°(I") be the set of subgraphs of T that are homeomorphic to one of
the five graphs shown in Figure 3.3 (where an arrow denotes a one-way
infinite path). Use the results of Exercises 3.14 and 3.15 to show that A1) is
the set of circuits of a B-matroid on the set of edges of I'. A detailed discussion
of the properties of the finite matroids that arise in this way may be found in
Chapter 4 of this volume.

(Higgs, 1969b) Show that if the Generalized Continuum Hypothesis holds,
then all bases of a B-matroid are equicardinal.
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3.22. Let § be an infinite set and 2 be a class of pre-independence spaces defined
on S and all its subsets such that (3.8) and (3.9) are satisfied.
{(a) Show that 2 need not equal the class of B-matroids defined on all subsets of S.
(b) (Unsolved) Does (a) remain true if we insist that & contains the class of
all those independence spaces that are defined on some subset of S?
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