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1. Introduction |
This paper proves a number of results linking the operator and independent
set approaches to infinite matroids (see Welsh [12, Chapter 20]). _

Suppose that § is a fixed infinite set and X is the collection of inde-
pendence spaces on S. Then a duality function A on ¥ is an involution
of T such that for all . in T and all finite subsets T of 8, the restriction
of A to T agrees with the finite dual of the contraction of # to 7. In
§ 2 we prove that there is no such duality function on %, while in §5 we
~ show the existence of a distinguished class of preindependence spaces on
S which includes all independence spaces on S, has well-defined operations
of restriction and contraction, and is closed under a natural duality
function.

In the operator approach of Klee [8] and Higgs [5], duality is introduced
at the beginning. Both authors define several dual pairs of conditions on
operators and characterize certain types of operators in terms of their
collections of circuits or their collections of bases. In §4 we study the
wlwE-operators of Klee [8]. These operators need not have circuits,
bases, or hyperplanes. We determine the families of sets which can occur
as collections of independent sets of such operators. In addition, we
answer a question posed by Welsh (private communication, 1976) by
proving that, whereas independence spaces fit naturally into the operator
framework established by Klee, preindependence spaces do not.

In §5 we settle a question of Higgs [6] concerned with B-matroids
[5, 6, 7]. Section 6 shows that B-matroids are a subclass of the class of
inductive exchange systems of Brualdi and Scrimger [4].

2. Preindependence spaces, independence spaces, and duality

- For the definitions of preindependence and independence spaces we
follow Welsh [12, pp. 385, 387] (see also Mirsky [11, p. 901). A maximal
independent subset of a preindependence space is called a base. The .
following condition on a preindependence space (S,.7) holds for ‘all
independence spaces (see, for example, [11]).

(2.1.1) (Maximal condition). If X e .#, then there is a base of (S,.J)
containing X.
Proc. London Math. Soc. (3) 37 (1978) 259-272




260 JAMES &¢. OXLEY

Again suppose that (S,.7) is a preindependence space and that 7' = 8.
Let

(2.1.2) ST ={X:X<T,Xes)

Then (7', #|T) is a preindependence space called the restriction of & to 7.
Now, if (§,.#) is an independence space and B is a base of A|(8\7"),
then let
(2.1.3) ST ={X:XcT, XuBeJ} |
' J.T does not depend on the choice of the base B (see, for example, [3]).
Moreover, (7', .#.7) is an independence space, the contraction of £ to 7',
Brualdi and Scrimger [4] define an exchange system (S,.#) to be a pre-
independence space with the following additional property. If 7 < §,
B, and B, are maximal members of # |7, and 2 € B, \ B,, then there is an
element y of B,\ B, such that (B,\2)uy and (B,\y)ux are maximal
members of S| 7.

An nductive exchange system (S,5) is an exchange system satisfying
the maximal condition. Note that such systems satisfy the following
strengthened exchange condition.

(2.14) X T'cS, Ae |7, B is a maximal member of #|7, and
x € A\ B, then there is an element y of B\ 4 such that (B\y)uz is
a maximal member of |7 and (A\zx)uy e F|7. If 4 is maximal in
J|T, then (A\z)uy is maximal in #|7".

Inductive exchange systems will be looked at again in §86.
Consider now the extension of duality for finite matroids to duality for
independence spaces. If (5,.7) is a preindependence space then let

(2.1.5) J¥ ={X: 8\ X contains a base of .7},

If (§,.7) is an independence space, then (8,.£*) is a preindependence
space with the maximal condition. Thus if S is finite, (8,.#%) is a
‘matroid, the dual of the matroid (S,.#). In general however, (S, #%)
need not satisfy the finite character condition (see, for example, [12]).

Let 8 be an arbitrary infinite set and let X be the set of independence
spaces on 8. A duality function A on X is a mapping from X into X such
that for all J in 2

- {(2.2.1) ' AANI = F
and
(2.2.2) (AT = (SL.7) forallT <<= §.

The second of these conditions expresses agreement between A and duality
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for finite matroids. Note that the function defined by (2.1.5) fails as a
duality function only because it may map an element of X outgide 2.

(2.8) TurorEM. There ts no duality function on the collection 2 of
independence spaces on an infinite set S.

Proof. Assume that there is a duality function A on 2. Then for each
non-negative integer k, let J, = {X: X = §, {X| < k}. Clearly (8,.%,) is
an independence space.

Now for k an arbitrary but fixed non-negative integer, if 77 << 8, then
S\ T is infinite and so %, |(S\ T') contains a base of £, Thus 4. T = {&},
. hence (J,.T)* = {X: X < T}, and so, by (2.2.2), T € AJ,. 1t follows that
AZ, contains all finite subsets of S and hence that AS, = {X: X < S}.
Therefore, for j and % distinet non-negative integers, we have, by (2.2.1),
that J; = A(AS) = A(AL) = £, a contradiction.

Las Vergnas [9] defines a function A on ¥ which maps X into Z and
satisfies (2.2.2) as well as the following weakened form of (2.2.1):

(2.2.3) AAAS = AF  for all £ in 2.

Alternatively, one can look for a more general class of infinite matroids
on which there is a permutation satisfying (2.2.1) and (2.2.2) or some palr
of corresponding conditions. Formally we seek, for an arbitrary infinite
set 8, a collection of conditions on independent sets which define on every
non-empty subset U of § a distinguished class &, of preindependence

spaces so that:
(2.4.1) Z¢; includes all independence spaces on U;

(2.4.2) on D, (2.1.2) and (2.1.3) give well-defined operations of restriction
and contraction such that if V < U, the restriction or contraction
of a member of Gy, is in &y ;

(2.4.3) the function defined by (2.1.5) is a permutation A of Py satisfyin
y p U yng
(2.2.1) and (2.2.2), where the latter is to hold for all finite subsets
Tof U. ’

Assume that for all non-empty subsets U of 8 such a class %y of
preindependence spaces on U exists. We now determine some conditions
on the members of ;. If F € @y and T < U, then S| (U\ T') must have
a base if #.7 is to be well defined. Also, if #.7" is to be independent of the
choice of base for | (U\ 7"}, then the following must hold.

(2.5) If B, and B, are bases of #|(U\T)and X =7, then BjuX e/
if and only if B,uX € 4.




262 JAMES G. OXLEY

By (2.1.5), if S e Dy;, every element of J*ig contained in & base of F*.
That is, (U, #*) has the maximal condition, and so, by (2.4.3), (2.2.1) and
(2.4.2), a restriction of an element of 2y, has the maximal condition.

(2.6) LEmMA. Let Dy be a class of preindependence spaces on S satisfying
(2.4.1)—(2.4.3). Suppose that & € Dy and U < S. Let B; and B, be bases
of F|U and x be in B)\ B,. T'hen there is an element y of B,\ By such that
(By\wyuy is a base of F|U.

Proof. Clearly B, and B, are bases of #|(B,;uB,) and B, is a base of
F(ByuB)\z]. If B,\x is a base of #|[(B,uB,)\z], then by (2.5),
since (By\z)ux € ., B,uz € #, a contradiction. Therefore, B, \  is not
a base of J|[(B,uB,)\«]. However, .#|[(B,u B,}\ «] has the maximal
condition and hence has a base B which properly contains B;\«. This
implies that there is an element ¥ of B,\ B, such that

(B\z)uy € F|(ByuB,).
Thus (By\z)uy e #|U. Now consider the contraction
_ (JU)NUN(B\2)]
of #|U. By (2.4.2), {z} is a base of this preindependence space and {y} is

independent. Hence {y}is a base of (Z|U).[U\ (B;\x)] and so (B;\z)uy
is & base of | U, as required.

- To summarize, the following are necessary conditions for .# to belong
to Y.

(2.7.1) (S, 7} is a preindependence space.
(2.7.2) Forall T < 8, F|T has the maximal condition.

(2.7.3) For all T = 8, if B, and B, are bases of J|T and x € B\ By, then
there is an element y of By\ By such that (B;\z)uy is a base of F|T.

Section 5 shows that these three conditions are sufficient to define a
class of infinite matroids for which (2.4.1)-(2.4.3) are satisfied.

3. Closure operators and infinite matroids
For the basic definitions and notation associated with the operator
approach to infinite matroids, we shall essentially follow Klee [8] (see also
Welsh [12]). In particular, Klee uses five dual pairs of conditions on an
operator f on a set §. Listing one from each pair, these are:
(vwl)'if X 1is finite, Y is independent, and X < f(Y), then
FEOY) = £(T);
(wl) if @ € f(Y), then fzu Y) = f(T);
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(1) if X = f(Y), then f(XuY)=f(Y);
(Cp) if p e f(Y), then there is & finite subset U of Y such that
» € f{U); |
(C) if p € f(Y), then there is a minimal subset U of Y such that
p € f(U) and U is independent. ,
The duals of these conditions are called respectively (vwE), (wE), (E),
(Hy), and (H). Several relations between these conditions are proved in
[8, p. 140]. An operator satisfying (wI), (wE), and (C) will be called
simply a wIwEC-operator. Similar abbreviations will be used for other
types of operators.
If f is an operator on the set S and 7' < §, define the restriction, fp,

of fto T by
Fr(X) = f(X)nT forall X = 1.

The contraction, f7, of f to T' is defined, as for finite matroids, by
FfrX) = f(XuS\T)HnT forall X < T.

Clearly both f, and f7 are operators on 7'. If f* denotes the dual operator
of f, then the following familiar relationships hold (see [7, p. 246]):

(8.1.1) 59 =1

(3.1.2) (/9)r = (fT)*.

Note that (3.1.1) and (3.1.2) are the operator forms of (2.2.1) and (2.2.2)
respectively.

An operator f on a finite set S satisfies (vwl) and (vwE) if and only if f is
the closure operator of a (finite) matroid on S. However, while the dual
of a vwIvwE-operator on an arbitrary set is also a vwlvwE-operator, a
restriction or contraction need not be: if f is an operator on S and 7' < §,
then the set of fy-independent sets is just the set of f-independent sets
contained in 7. Thus (vwl) is preserved under restriction. But, as the
following example shows, (vwE) need not be preserved under restriction
even in the presence of (I).

(3.2) Exampre. Let § = {1,2,3,4,...} and define f: 25 — 25 by

X, for X finite and {2,3} & X,
f(X) ={Xu{l}, for X finite and {2,3} = X,
S, for X infinite.

Clearly f is an operator and, since the f-spanning sets are precisely all
infinite subsets of S, f satisfies (vwE). Furthermore, f satisfies (I) and
hence (vwl).
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NOW let 7'={1,2,3} and consider f,. Put Y=4{2,8}, p=1, and

= {3}. Then pu Y is fp-spanning, p € f(Y), and p ¢ fo(¥\ X). Yet
x ¢ f(pu(Y\x)) for the only clement z of X. That is, f, does not samsfy
(vwk).

1t may be dedueed from [7, p. 247] that (wl), (wE), (I), (E), (Cgp), and
(Hy) are preserved under both restriction and contraction.

There is an important link between independence spaces and wIwECy-
operators (see, for example, [12, p. 398]). Using this and a result of
Mason [10], we can easily characterize all wIwECHy-operators.

A B-matroid (8,f) is an I-operator f on a non-empty set S such that,
for a,L T cs: S, if X is an independent subset of 7, then there is a seasmizagl
aerepeneent-sibses of 7' containing X,

4. Operators and preindependence spaces ]

In this section those families of sets which can occur as the collection
of independent sets of a wiwE-operator are characterized. It is also
shown that, unlike independence spaces, preindependence spaces cannot
be described in the operator framework of Klee.

Welsh [12] notes that a wIwE-operator is not uniquely determined by
its collection of independent sets. In fact, it is not difficult to show that
an 1E-operator is not uniquely determined by the pair consisting of its
collection of independent sets and its collection of spanning sets.

Let 7 be the collection of independent sets of a vwlwE- -operator f on
a set §. Then

(4.1.1) (8,.7) is a preindependence space.

This follows from [12, p. 398], since if 7' =< 8, then Jr 18 a wiwECy-
operator on 7'.

The next two lemmas generalize familiar finite results and are not
difficult to prove.

(4.2) Luvma. Suppose that [ is a wE-operator on a set S, I is an f-
independent subset of 8 and z € S\I. Then x € f(I) if and only. if Tuw
i8 f-dependent.

(4.3) LEMmA. Let f be a vwl-operator on S and let B be a cofinile base of o
subset ¥ of 8. Then f(B) = f(Y).

From (4.2) and (4.3) the collection .# of independent sets of a vwIwE-
operator on S satisfies the following condition.

(4.1.2) If ¥ = 8, B is a mazimal cofinite 5 subset of ¥, and I is an 7
subset of Y, then, for zx in S\ Y, Iuz e J of Bux e £,
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- Moreover, we have the following result.

(4.4) TrEOREM. Let # be a collection of subsets of a set 8. Then ¥ is the
collection of independent sets of some vwlwE-vperator on § if and cmly if S
satisfies (4.1.1) and (4.1.2).

Proof. From above, we need only check the sufficiency of (4.1.1) and
(4.1.2). Let (8,.#) be a preindependence space satisfying (4.1.2) and
define g: 25 — 25 by

Xofw: Xux ¢ S}, ifXeJd, (4.4.1)
g(X) = {g(ly), if X has a maximal cofinite .# subset Iy, (4.4.2)
S, otherwise. . (4.4.3)

To check that g is well-defined, suppose that X = § and I and 1% are
maximal cofinite .# subsets of X. Then, by (4.4.1), X < g({%) for¢ = 1,2.
Now, if # € S\ X, then, by (4.1.2), IL vz ¢ 4 if and only if I3 ux ¢ .
That is, by (4.4.1), x € g({%) if and only if » € g(I%).

Next we show that g is an operator. Clearly ¢ is enlarging. Now
suppose that X © ¥ < 8, then if g(¥) is given by (4.4.3), g(X) € g(Y) = §.
Alternatively, if g(¥) = ¢{Iy) for some maximal cofinite .# subset I of ¥,
then ¢(X) = g(Ix)} for some maximal cofinite .# subset Iy of X. If
zeg(X)\Y, then Iyux¢.#, so by (41.2), Iyux¢.# and hence
z € g(Iy). Thus g(X) < g{¥). |

To show that g satisfies (vwl), we show that g satisfies (wl). Suppose
that ¥ €4 and 2z e g(¥). Then Y is a maximal cofinite .# subset of
Yoz and so g(Yux)=g{Y). If Y ¢ .7, z € g(Y), and ¢g(Y) is given by
(4.4.2), then a similar argument gives that g(¥ uz) = g(¥).

Tror (wE), suppose that z € g(Yup) and x ¢ g(Y). Then ¢g(Y) = g(Iy)
where I is a maximal cofinite 4 subset of Y. Since g(¥ up) #g(Y),
Iy Up is a maximal .# subset of ¥ Up. Thus g(¥ up) = gy up). Now, as
x ¢ g(ly), Iyuxe S, Moreover, (Ipup)uz ¢ . f, hence, by (4.4.1),
peglyuz)=g(Yux). Thatis, (wh) i satisfied.

It is straightforward to check that £ is premsely the collection of
g-independent sets.

Note that by Lemmas 4.2 and 4.3 any vwlwE-operator having ¥ as its
collection of independent sets must be defined as in (4.4.1) and (4.4.2) on
sets containing maximal cofinite .# subsets. It follows that g is maximal
among such vwlwH-operators in the sense that if % is another such
operator, then, for all X < 8, A(X) = g(X).

In the proof of Theorem 4.4, we showed that g satisfies (wl). It follows
immediately that
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(4.5) COROLLARY. [f .7 is a collection of subsets of o set 8, then 5 is the
collection of independent sets of a wlwE-operator on S if and only if S
satisfies (4.1.1) and (4.1.2).

In Theorem 4.4 (wE) cannot be replaced by (vwE), since one can
easily find a vwIvwE-operator whose collection of independent sets is not
a preindependence space.

Welsh (private communication, 1976) asks whether preindependence
spaces can be described in operator terminology. Let P be Klee’s set of
conditions on operators. That is,

P = {(vwl), (wl), I), (vwE), (WE), (E), (C), (Cg), (H), (Hg)}.

If @ € P, an operator satisfying all of the conditions in @ will be called
simply a @-operator. Preindependence spaces cannot be described in
terms of P. That is:

(4 6) ToEOREM. There is no subset K of P for which the following state-
ment 8 true.

(4.6.1) T'he collection of independent sets of a K-operator on an arbitrary
set S is a preindependence space on 8 and conversely, if & is a preindepen-
dence space on S, then there vs some (not necessarily unique) K-operator on
8 having J as its collection of independent sets.

To prove this result three examples will be given. The first is a pre-
independence space for which there is no vwivwE-operator having the
same collection of independent sets. From this and the relations between
operators [8, p. 140], it follows that if (4.6.1) holds, then K does not
contain both (vwl) and (vwE).

(4.7) Examere. Let § ={1,2,3,4,...}, and if ny,n,,...,n,, are distinct
elements of §, then let B, ., , denote the set S\ {ny, 7y ...,n,}. In
addition, let

% = {B12,3 B1gg» By 30 Bysg Bis Bans Bs, 'mB (for all n > 5)}

and
F ={X: X << §or X < B for some B in #}.

Now suppose that there is a vwivwE-operator f on 8 having .# as
its collection of independent sets. Then f* is a vwlvwE-operator on §
and its set of spanning sets is

{X: S\ X cc S}u{X: X contains {1,2,3}, {1,2,4}, {1, 3,4}, or {2, 3, 4}}
U{X: X contains {1,%}, {2,n}, {3,n}, or {4,7}

for some n > 5}.
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Let {a,b} be a two-clement subset of {1,2,3,4}. Then {a,b} is nob
f*-spanning. Thus, either there is an element n of S\{1,2,3,4} such
that # ¢ f*({a,b}), or there is no such element. In the first case, since
fb,n} is spanning, a € f*({b,n}). Moreover, a € f*(b) as otherwise, by
(vwE), n € f*({a,b}), a contradiction. Similarly, since {a, n} is spanning,
b € f*(a).

In the second case, there is an element n of 8\ {L,2,3,4} such that
n € f*({a,b}). It follows that {a,b} is not independent, since otherwise,
by (vwl), f*({a,b,n}) = f*({a,b}) which implies that {a,b} is spanning, a
contradiction. Therefore, a € f*(b) or b € f*(a).

From the above, for all two-element subsets {a,b} of {1,2,3,4}, either
a € f*(b) or b e f¥a). Hence there are at least six ordered pairs (=, )
such that = and y are distinct elements of {1, 2, 3,4} and x € f *(y).

Next let a, b, and ¢ be distinct elements of {1,2, 38,4} and suppose that
aef*c) and bef*c). If {c; is independent, then, by (vwl),
f*({a,b,c}) = f*(c) and so {¢} is spanning, a contradiction. On the other
hand, if {c} is dependent, then ¢ € f*(0) and so f*(c) = F*(@). It follows
that {a,b,c} < f*(9), and hence, by (vwl), that f*({a,b,c}) = f*(J). Thus
@ is spanning, a contradiction.

. Therefore, for a, b, ¢, and d, distinct elements of {1,2,3, 4}, at most one

of the statements a € £*(d), b € f*(d), and ¢ € f*(d) is true. Hence there
are at most four ordered pairs (x,y) such that « and y are distinct elements
of {1,2,3,4} and « € f*(y). However, earlier it was shown that there are
at least six such pairs.

We conclude that there is no vwlvwE-operator on § having ./ as its
collection of independent sets.

To complete the proof of Theorem 4.6, we give examples of an
ECHC Hg-operator and of an ICHCyHy-operator whose collections of
independent sets do not form preindependence spaces.

(4.8) Examprr. Let S ={1,2,3} and define f: 28 > 28 by fL(©) = O,
A = (L3}, AE®) =3 AB)={23, ad fX)={1,28 for
| X|> 2. Then it is easily checked that f; is an ECHCpHg-operator on S.
Tts collection # of independent sets is {,{1},{2},{8},{1,2}}. Clearly
(8,.#) is not a preindependence space.

(4.9) ExavprE. Again let § = {1,2,3} and define f,: 25 —» 25 by

(X, if|X|<2and3¢X,
(&) = {S, otherwise.
Then it is easily checked that f, is an ICHCyHg-operator on 8 having
the same collection of independent sets as f;.
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Next let &/ = (4;:7el) be an arbitrary family of subsets of an
arbitrary set S and let () be the collection of partial transversals of &7
Then, as is well known, (S,r(#)) is a preindependence space (see, for
example, [11]). Moreover:

(4.10) Lzvma (Brualdi and Scrimger [4, Theorem 2]). (8, 7(&/ )) is an
exchange system satisfying (2.1.4).

(8, 7(=/)) may be put into the operator framework set up earlier,

(4¢.11) TarorEM, If o = (4;:4i € 1) is a family of subsets of a set S,
then there is some wiwB-operator on 8 having +(s7) as its collection of
ndependent sets.

Proof. It will be shown that (S,r()) satisfies (4.1.1) and (4.1.2).
The required result then follows by Corollary 4.6.

As noted above, (S, (o)) satisfies (4.1.1).. Now suppose that ¥ < §,
B is a cofinite base of ¥, and 7 is an mdependent subset of ¥. Then,
since [\ B is finite, we have, on applying (2.1.4) to 7(4)| Y, that there is
a subset I” of B\ I such that |I’| = |I\ B| and ( (B\I')u{I\ B) is a base
of Y. Let B’ = (B\I')u(I\B). Clearly B’ = I. :

If e S\Y, Bux e +(«f), and Tuzx ¢ v(Ff ), then, since B'uzx ¢ {s7),
Bug and B’ are bases of Yuz. Applying (2.1.4) again gives that there is
an element y of B'\ (Bux) such that [(Buz)\z]uy is a base of Yuz.
But B < Buy < Y and this is a contradiction.

5. B-matroids

In this section we characterize those families of sets which can oceur as
the collection of independent sets of a B-matroid and note that & B-
matroid is uniquely determined by this collection. In addition we show
that B-matroids satisfy (2.4.1)—(2.4.3). A collection 7 of subsets of a
set S is called a clutter if no element of </ properly contains another.

From [5, Proposition (10)], if {S,f) is a B-matroid, its collection & of
bases satisfies the conditions:

(5.1.1) & is a clutter; and

(6.1.2) if By, B, € B and A < C = 8 where A < B, and B, < O, then there
18 an element B of & such that A < B < (.

‘Higgs [6] asks the following question.

(5.2) If B # O and & satisfies (5.1.1) and (5.1.2), then does there exist a
B-matroid having % as its collection of bases ?

The next example shows that such & B-matroid need not exXish.
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(5.3) Examrre. Let S = Z\ {0}, the set of non-zero integers. Then §
is the disjoint union of Z+, the set of positive integers and Z~, the set of
negative integers. _

Suppose that  is the collection of subsets of § consisting of Z+ together
with all sets of the form [Z+\{i;,%,...,%,}]W{—%, — %, ..., — 8, Where
i1, %95 .50, aTe 7 distinct elements of Z*+ and n takes all the values
1,2,3,.... CIBar]y A is a clutter.

Suppose that 4 is contained in an element of %, C contains an element
of #, and A < C. Every element of # contains only finitely many
elements of Z— and all but finitely many elements of Z+. Moreover, if
zeZtn(8\0), then —x € 0. Ify € Z—nA, then —y ¢ 4. Thus suppose
that Z-n4 = {—j;, —Jas.+-» —Jm) and that

Z+n(8\0) = {j}clﬁjkzs o :jk,,r Uqs Ugsy « o+, uq}
where {ky, &y, ..., kp} < {1,2,...,m}. Then

O = [Z+\{j1’j2’ "':jm>u’1= Ug, '“’{u’q}]
U{—jp ""j2= cred ""jm: — Uy, Uy eees —’t&q} =24
and hence % satisfies (5.1.2).

Now suppose that there is a B-matroid (S,f) having # as its set of
bases. Then the collection, .#, of independent sets of (8,f) is given by
F ={X: X c B for some B in #}. Consider (Z—,f;-). By [5, Proposition
(13)], this is a B-matroid. Its collection of independent sets is
Il ={X:XeSf, Xch}={X: X == Z}. Clearly J|Z~ does not
satisfy the maximal condition and this contradicts the definition of a
B-matroid.

The proof of the next lemma is straightforward.

(5.4) Lemma. Let f be an I-operaior on S and let B be a base of a subset
Y of 8. Then f(B) = f(T). '

It follows from this lemma that, in contrast to wlwE-operators, B-
- matroids are uniquely determined by their collections of independent
sets. The next proposition should be compared with Theorem 4.4.

(5.5) ProrosiTiON. The collection J of independent sets of a B-matroid
on a set S satisfies the following conditions.

(6.5.1) (8,.7) is a preindependence space.
(6.5.2) Euvery restriction of S satisfies the maximal condition.

(5.5.3) If Y = 8, B is a maximal J subset of ¥ and I is an F subset of ¥,
then, for xin S\ Y, Iuw e S if Buxz e /.
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Conversely, if 7 is a collection of subsels of S satisfying (5.5.1)—(5.5.83),
then there is o unique B-matroid on S having J as its collection of independent

Seis.

Proof. The first part is straightforward. For the second part the
required IE-operator is defined by
F(X) = Xufr: Xva ¢ s}, if X e,
T \f(Ig), if Iy is a maximal .# subset of X.

The next result characterizes B-matroids in terms of their collections
of bases. Notice the similarity to the corresponding result for finite
matroids (see Welsh [12]). If .7 is a collection of subsets of a set § and
X = 8, then define &/(X) = {Y: ¥ is maximal of the form 4nX where

4 es}.
(8.6) THEOREM. 4 collection % of subsets of a set S is the set of bases of
B-matroid on S if and only if F satisfies the following conditions.

(5.6.1) # is non-empty.

(5.6.2) If Y <« X = 8 and YCBforsomeBmQ? then ¥ < By for some
Byin 32?(2()

(5.6.3) If X <8, By, b, € B(X) and x € By \ By, then there is an element y
of B\ B, such that (B;\ z)uy € B(X).

Proof. The necessity of (5.6.1) and (5.6.2) is clear. For (5.6.3), use
Proposition 5.5.

For the converse, let % be a collection of subsets of § satisfying (5.6.1)—
(6.6.3) and let .7 = {X: X < B for some B in #}. Then, from (5.6.1) and
(5.6.8), # is a preindependence space. Moreover, by (5.6.2), every
restriction of .Z satisfies the maximal condition. Now suppose that B is a
maximal .# subset of a subset ¥ of 8. Let I be an .# subset of ¥ and x be
an element of 8\ ¥ such that Buze £, If Tux ¢ #, then 1 < B, a
maximal .# subset of ¥ Uz not containing x. Clearly Buz is a maximal %
subset of Y ux; hence by (5.6.8), since = € (Bux)\ B’, there is an element
y of B’\ (Buz) such that Buy is a maximal # subset of Yuz. But
Buy < Y and hence the choice of B is contradicted. We conclude that
J satisfies (5.5.1)(5.5.3) and the result follows by Proposition 5.5.

A consequence of (5.5) and (5.6) is the following:

- (5.7) CoroLLarY. A collection F of subsels of a set S is the set of indepen-
demf sets of o B-matroid on 8 if and only if S salisfles (2.7.1)-(2.7.3).

The main result of this section comes from combining this corollary
with [5, Propositions (9), (11), (12), and (13)].
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(6.8) THEOREM. If S is an infinite sef, then the unigue class of pre-
independence spaces defined on S and all its non-empty subsets such that
(2.4.1)—(2.4.3) are satisfied is the class of B-matroids.

Tt follows from this theorem that (2.4.1) and the fact that A satisfies
(2.2.2) are consequences of the other conditions on Z;.

6. Somse further links

It is straightforward to show that, in Example 5.3, (8, .#) is an inductive
exchange system (see §2). However, (4—, #|Z~) does not satisfy the
maximal condition. Thus the restriction of an inductive exchange system
need not be inductive. The next theorem shows that B-matroids are
exactly those exchange systems for which every restriction is inductive.
The following lemma extends a result of Brualdi [2] for independence
spaces.

(6.1) Lemma. Let B be a base of a B-matroid (8,f) and let a be an element
of S\ B. Then there is a unique circust C conlaining a, such that C < Bua.
Moreover, if b ¢ B, then (B\b)ua is a base if and only if b € C.

Proof. As B is spanning, o € f(B). Thus, since f satisfies (C) [5, Proposi-
tion (16)], there is a minimal subset U of B such that a € f(U) and U is
independent. By [8, Proposition 2], auU is a circuit and clearly this
circuit satisfies the requirements of the lemma. The fact that it is unique
follows by [8, Proposition 5] sinee f is an IECH-operator. Thus let
auvlU = C.

If b€ B and (B\b)ue is a base, then (B\b)ue does not contain C,
and hence b € C. Conversely, if b€ CnB, then be C < [{(B\b)ualub
and hence, by [8, Proposition 5], b € f((B\b)ua). Thus (B\b)ua is
spanning. Moreover, (B\ b)ua is independent, as otherwise, by Lemma
4.2, a € f(B\b) and hence B\ b is spanning, a contradiction. Therefore,
for b e CnB, (B\b)ua is a base. '

(6.2) TarorEM. Let (8,.7) be a preindependence space. Then J is the
collection of independent sets of a B-matroid on S if and only if every
restriciion of (S,.#) is an inductive exchange sysiem.

Proof. Suppose that B, and B, are bases of a B-matroid (8, f) and that
b€ B\ B, Let S\(BnB,)=7. Then, by [5, Proposition (13)],
(T,f7) is a B-matroid which, by [5, Proposition (11)], has B\ B, and
B, \ By as bases.

Now b, € f(By)nT' and therefore, by Lemma 6.1, there is a unique
fL-circuit € such that b, € C < (B,\5;)ud,. Suppose that for all b in
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Cn(By\ By), [(B;\ By)\ b;jubd is dependent. Then

O\by € fP((By\ By) \ by)
and so, by {8, Proposition 5], b, € fT(C\ b;) < fT({B,\ By)\ by). That is,
B\ B, if fT-dependent, a contradiction. Therefore for some b, in
On(By\ By), [(B;\By)\b]ub, iz independent. As B,;\ B, is a base,
(Bi\By)ub, is dependent, and so b; € fT([(B,\By)\by]uby). Thus
[(Bi\Bg)\ by]Ub, is spanning and hence is an f7-base. By Lemma 6.1,
[(Be\By)\ by]ud; is also an f7-base and the required result follows.
The converse is an immediate consequence of Corollary 5.7.
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