On the Excluded Minors for Quaternary Matroids

J. F. Geelen

Department of Combinatorics and Optimization, University of Waterloo, Waterloo,
Ontario, Canada N2L 3G1
E-mail: jfgeelen@math.uwaterloo.ca

J. G. Oxley and D. L. Vertigan

Department of Mathematics, Louisiana State University, Baton Rouge,
Louisiana 70803-4918
E-mail: oxley@math.lsu.edu, vertigan@math.lsu.edu

and

G. P. Whittle

School of Mathematical and Computing Sciences, Victoria University, PO Box 600,

Wellington, New Zealand

E-mail: whittle@kauri.vuw.ac.nz

Received August 19, 1997

This paper strengthens the excluded-minor characterization of GF(4)-representable matroids. In particular, it is shown that there are only finitely many 3-connected matroids that are not GF(4)-representable and that have no $U_{2,6}$ -, $U_{4,6}$ -, P_6 -, F_7 -, or $(F_7^-)^*$ -minors. Explicitly, these matroids are all minors of S(5,6,12) with rank and corank at least 4, and P_8^* , the matroid that can be obtained from S(5,6,12) by deleting two elements, contracting two elements, and then relaxing the only pair of disjoint circuit-hyperplanes. © 2000 Academic Press

1. INTRODUCTION

Kahn and Seymour had conjectured that the excluded minors for the class of GF(4)-representable matroids are $U_{2,6}$, $U_{4,6}$, P_6 , the non-Fano matroid (F_7^-) , and its dual; see [4, p. 205]. It turns out that the complete set of excluded minors for GF(4)-representability contains two more matroids, namely P_8 and P_8^* ; see [1]. However, Kahn and Seymour were almost right, as we show in the following theorem.

Theorem 1.1. If M is a 3-connected non-GF(4)-representable matroid, then either

- (i) M has a $U_{2,6}$ -, $U_{4,6}$ -, P_{6} -, F_{7}^{-} -, or (F_{7}^{-}) *-minor,
- (ii) M is isomorphic to P₈", or
- (iii) M is isomorphic to a minor of S(5, 6, 12) with rank and corank at least 4.
- S(5, 6, 12), which is discussed in detail in [4], is the matroid that is represented over GF(3) by the following matrix.

$$I_6 = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & -1 & -1 & 1 \\ 1 & 1 & 0 & 1 & -1 & -1 \\ 1 & -1 & 1 & 0 & 1 & -1 \\ 1 & -1 & -1 & 1 & 0 & 1 \\ 1 & 1 & -1 & -1 & 1 & 0 \end{bmatrix}.$$

Evidently S(5, 6, 12) is self-dual. Moreover, it has a 5-transitive automorphism group. P_8 is the matroid that is obtained by deleting two elements and contracting two elements from S(5, 6, 12). Now P_8 has a unique pair of disjoint circuit-hyperplanes and P_8'' is obtained from P_8 by relaxing both of these circuit-hyperplanes. These observations and those made before the theorem imply that the matroids satisfying (i), (ii), or (iii) are not quaternary.

The following corollary is a reformulation of Theorem 1.1. For a collection \mathcal{M} of matroids, we denote by $EX(\mathcal{M})$ the class of matroids that have no minors isomorphic to a member of \mathcal{M} .

COROLLARY 1.2. $EX(U_{2,6}, U_{4,6}, P_6, F_7^-, (F_7^-)^*)$ can be constructed by taking direct sums and 2-sums of copies of $P_8^{"}$, minors of S(5, 6, 12), and quaternary matroids.

We obtain Theorem 1.1 as a consequence of the excluded-minor characterization for quaternary matroids [1].

THEOREM 1.3. A matroid M is GF(4)-representable if and only if M has no minor isomorphic to any of $U_{2,6}$, $U_{4,6}$, P_6 , F_7^- , $(F_7^-)^*$, P_8 , or P_8'' .

Theorem 1.1. is an immediate consequence of Theorem 1.3 and the following two theorems. Let \mathcal{M} be a minor-closed family of matroids. A matroid M in \mathcal{M} is called a *splitter* for \mathcal{M} if no 3-connected matroid in \mathcal{M} has a proper M-minor.

FIG. 1. Some rank-3 matroids.

THEOREM 1.4. P_8'' is a splitter for $EX(U_{2,6}, U_{4,6}, P_6, F_7^-, (F_7^-)^*)$.

Theorem 1.5. If M is a 3-connected matroid in $EX(U_{2,6}, U_{4,6}, P_6, F_7^-, (F_7^-)^*)$, and M has a P_8 -minor, then M is isomorphic to a minor of S(5,6,12).

Using Seymour's Splitter Theorem [5, 4], Theorems 1.4 and 1.5 can be proved by a finite case check. While we use this approach, we have endeavoured to find elegant techniques to reduce the number of cases.

THEOREM 1.6 (Splitter Theorem). Let M and N be 3-connected matroids such that M is neither a wheel nor a whirl, N has at least four elements, and M contains a proper N-minor. Then M has an element x such that either $M \setminus x$ or M/x is 3-connected with an N-minor.

We assume that readers are familiar with elementary notions in matroid theory, including representability, minors, duality, connectivity, and 1- and 2-sums. We use the notation and terminology of [4]. Figure 1 depicts some well-known matroids that are referred to in the paper. We will describe P_8 and P_8'' in more detail in the next section.

2. DEALING WITH P_8

In this section, we prove Theorem 1.5. We begin by describing some useful properties of P_8 . This matroid has a very natural geometric representation; see Fig. 2. This representation is obtained by rotating a face of the cube by 45 degrees. It is obvious from this description that P_8 has a transitive automorphism group. (However, there are automorphisms of P_8 that are not apparent from this description.) By this transitivity, all single-element contractions of P_8 are isomorphic to $P_8/8$, which is isomorphic to the matroid P_7 depicted in Fig. 2. It is also not difficult to see that P_8 is self-dual; its dual is obtained by rotating the twisted face a further 90 degrees. Therefore every single-element deletion of P_8 is isomorphic to the dual of P_7 .

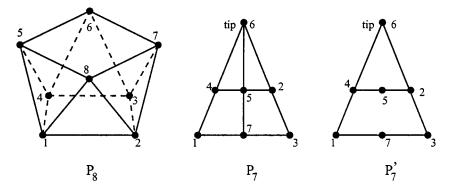


FIG. 2. Some interesting matroids.

 P_8'' is the matroid obtained from P_8 by relaxing the circuit-hyperplanes $\{1, 2, 3, 4\}$ and $\{5, 6, 7, 8\}$. From this, it is readily seen that P_8'' is self-dual and has a transitive automorphism group, and that every single-element contraction is isomorphic to P_7' (which is depicted in Fig. 2).

We use the following lemma [4, Proposition 11.2.16] and theorem [3] (see also [4, p. 367]). The matroid J is a rank-4 self-dual matroid that is not isomorphic to P_8 .

Lemma 2.1. Let M be a 3-connected matroid having rank and corank at least three. Then M has a $U_{2,5}$ -minor if and only if it has a $U_{3,5}$ -minor.

THEOREM 2.2. If M is a 3-connected matroid in $Ex(U_{2,5}, U_{3,5}, M(K_4))$, then either M is a whirl, M is isomorphic to J, or M is isomorphic to a minor of S(5, 6, 12).

COROLLARY 2.3. If M is a 3-connected matroid that is not isomorphic to a minor of S(5,6,12), and M has a P_8 -minor, then there is a minor N of either M or M^* and an element x of E(N) such that $N \setminus x$ is isomorphic to P_8 , and N contains either a $U_{2,5}$ - or an $M(K_4)$ -minor.

Proof. Let M' be a minimal 3-connected minor of M that has a P_8 -minor and a $U_{2,5}$ -, $U_{3,5}$ -, or $M(K_4)$ -minor. By the Splitter Theorem, M' has an element x such that $M' \setminus x$ or M' / x is 3-connected and has a P_8 -minor. By duality, we may assume that $M' \setminus x$ is 3-connected and has a P_8 -minor. By minimality, $M' \setminus x$ has no $U_{3,5}$ -, $U_{2,5}$ -, or $M(K_4)$ -minor. Therefore, by Theorem 2.2, $M' \setminus x$ is isomorphic to a minor of S(5,6,12).

As M' has rank and corank at least 3, by Lemma 2.1, M' has either a $U_{2,5}$ - or $M(K_4)$ -minor. Suppose that M' has rank at least 5. Then there exists $y \in E(M') - x$ such that M'/y has a $U_{2,5}$ - or $M(K_4)$ -minor. Now M'/x/y is isomorphic to a minor of S(5,6,12) with rank and corank at

least four. Hence, as S(5,6,12) has a 5-transitive automorphism group, $M'\backslash x/y$ is 3-connected and has a P_8 -minor. Now M'/y is an extension of the 3-connected matroid $M'/y\backslash x$, and, since $M'/y\backslash x$ has no $U_{2,5}$ -or $M(K_4)$ -minor, x is not in parallel with any element of M'/y. Hence M'/y is 3-connected. Moreover, M'/y has a P_8 -minor and a $U_{2,5}$ - or $M(K_4)$ -minor, contradicting the minimality of M'. Therefore, M' has rank 4.

An argument similar to that in the last paragraph establishes that the corank of M' is 5. Therefore, taking N to be equal to M', we see that the theorem holds.

Theorem 1.5. is implied by Corollary 2.3 and the following two results.

LEMMA 2.4. If $M \setminus x = P_8$ and M has an $M(K_4)$ -minor, then M has a $U_{2,5}$ -, F_7 -, or $(F_7^-)^*$ -minor.

LEMMA 2.5. If $M \setminus x = P_8$ and M has a $U_{2,5}$ -minor, then M has a $U_{2,6}$ -, $U_{4,6}$ -, P_6 , F_7^- -, or $(F_7^-)^*$ -minor.

Proof of Lemma 2.4. Suppose that M is in $Ex(U_{2,5}, F_7^-, (F_7^-)^*)$. Since M has no $U_{2,5}$ -minor and M has rank and corank at least 3, Lemma 2.1 implies that M has no $U_{3,5}$ -minor.

Now M/8 is an extension of P_7 that has no $U_{3,5}$ -minor. Furthermore, as P_7 has no $M(K_4)$ -minor and M/8 has an $M(K_4)$ -minor, M/8 is 3-connected. It is not difficult to check that there are just three 3-connected extensions of P_7 that have no $U_{3,5}$ - and hence no $U_{2,5}$ -minor; these are depicted in Fig. 3. Note that $M_2 \setminus a \cong F_7^-$, and M_3 has no $M(K_4)$ -minor. Hence $M/8 \cong M_1$. Thus, in M, the element x lies on the intersection of the planes spanned by the circuit-hyperplanes $\{2,4,5,8\}$ and $\{1,3,7,8\}$ of P_8 . We may assume that x is not in the plane of M spanned by $\{1,2,3,4\}$,

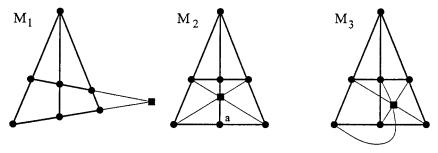


FIG. 3. Extensions of P_7 with no $U_{3,5}$ -minor.

otherwise $M \setminus 1, 2 \cong (F_7^-)^*$. To see this, observe that if x is in the plane spanned by $\{1, 2, 3, 4\}$, then the planes $\{1, 2, 3, 4, x\}$ and $\{2, 4, 5, 8, x\}$ of M imply that $\{2, 4, x\}$ is a circuit of M. Similarly, the planes $\{1, 2, 3, 4, x\}$ and $\{1, 3, 7, 8, x\}$ of M imply that $\{1, 3, x\}$ is a circuit of M. We deduce that $\{2, 4, 6, 7, x\}$, $\{1, 3, 5, 6, x\}$, $\{3, 4, 5, 7\}$, and $\{5, 6, 7, 8\}$ are hyperplanes of M, and it is now not difficult to obtain the contradiction that $M \setminus 1, 2 \cong (F_7^-)^*$.

Next we show that either M/1 or M/3 is 3-connected. Assume the contrary and note that $M/1 \setminus x$ is isomorphic to P_7 , which is 3-connected. Now, as x lies on the plane spanned by $\{1, 3, 7, 8\}$, since M/1 is not 3-connected, x is parallel to 3, 7, or 8 in M/1. However, as x is not in the plane spanned by $\{1, 2, 3, 4\}$, the element x is not parallel to 3 in M/1. Also x is not parallel to 8 in M/1 since M/8 is 3-connected. Thus x is parallel to 7 in M/1, and hence $\{1, x, 7\}$ is a line in M. By symmetry, as M/3 is not 3-connected, $\{3, x, 7\}$ is a line in M. Thus $\{1, 3, 7\}$ is a line in P_8 . This contradiction completes the proof that either M/1 or M/3 is 3-connected. But P_8 has an automorphism that swaps 1 and 2 with 3 and 4, respectively, while fixing all other elements. Therefore, we may assume that M/1 is 3-connected.

Now M/1 is a 3-connected extension of P_7 with no $U_{3,5}$ -minor. Furthermore, the point x of the extension is on a 4-point line with the tip of P_7 . Thus, M/1 is isomorphic to M_2 of Fig. 3. However, $M_2 \setminus a \cong F_7^-$; a contradiction.

To prove Lemma 2.5, we employ methods used in [1]. For a field \mathbf{F} , two $r \times n$ matrices over \mathbf{F} whose sequences of column labels coincide are *equivalent* \mathbf{F} -representations of a matroid if one matrix can be obtained from the other by elementary row operations, column scalings, and applying automorphisms of \mathbf{F} . A matroid is *uniquely representable* over \mathbf{F} if any two \mathbf{F} -representations of it are equivalent. If the $r \times n$ matrix $(I_r \mid D)$ with columns labelled $e_1, e_2, ..., e_n$ represents a matroid M over \mathbf{F} , it is common to abbreviate this \mathbf{F} -representation by specifying just the matrix D labelling

its rows and columns by $e_1, e_2, ..., e_r$ and $e_{r+1}, e_{r+2}, ..., e_n$, respectively. Such a matrix D will be called a *standard* F-representation of M.

A matroid is *stable* if it cannot be expressed as the direct sum or 2-sum of two nonbinary matroids. For our purposes, the most important examples of stable matroids are those matroids which simplify to 3-connected matroids. Kahn [2] proved that a quaternary matroid has a unique GF(4)-representation if and only if it is stable. The following corollary of Kahn's theorem is established in [1].

PROPOSITION 2.6. Let M be a matroid, and u, v be a coindependent pair of elements of M such that M/u, M/v, and M/u, v are all stable, and M/u, v is connected and nonbinary. If M/u and M/v are both quaternary, then there is a unique quaternary matroid N such that N/u = M/u and N/v = M/v.

Proof of Lemma 2.5. Since M has rank four, E(M)-x contains an element a such that M/a has a $U_{2,5}$ -minor. Now M/a is isomorphic to an extension of P_7 . We assert that E(M)-x-a contains an element b such that M/a, b has a $U_{2,5}$ -restriction. Suppose not. Then M/a, x has a $U_{2,5}$ -restriction. Hence there are at least three elements of M/a that are not on a 3- or 4-point line with x. Let b be one of these points, other than the tip of $M/a \setminus x$. Then M/a, b has a $U_{2,5}$ -restriction, as asserted.

We may assume that M has no $U_{2,6}$ -minor, so M/a, b simplifies to $U_{2,5}$. Hence M/a, b is stable. Now M/a and M/b are both isomorphic to extensions of P_7 . Hence M/a and M/b are both stable. We may assume that M/a and M/b are both quaternary. Then, by Proposition 2.6, there is a unique quaternary matroid N such that N/a = M/a and N/b = M/b.

Every pair of points of P_8 is equivalent, under automorphism, to either (1, 2), (1, 3) or (1, 8). Now $P_8/1$, 3 is binary, so no extension of $P_8/1$, 3 has a $U_{2,5}$ -restriction. Hence we may assume that (a, b) is either (1, 2) or (1, 8).

Case 1. Suppose that a=1 and b=2. Note that $M \setminus x/1$, $M \setminus x/2$, and $M \setminus x/1$, 2 are all stable, and that $M \setminus x/1$, 2 is connected and nonbinary. So, by Proposition 2.6, $N \setminus x$ is the unique quaternary matroid such that $N \setminus x/1 = M \setminus x/1$ and $N \setminus x/2 = M \setminus x/2$. Therefore, $N \setminus x$ has the following standard GF(4)-representation (where $w^2 = w + 1$).

Recall that N/1, 2 has a $U_{2,5}$ -minor, so a GF(4)-representation for N can be obtained by appending the column $(\alpha, \beta, 1, w)^T$ to the above matrix, where α and β are yet to be determined.

First suppose that $\alpha = \beta = 0$, and consider the following standard GF(4)-representation of $N \setminus 6$.

We see that $N \setminus 6/1$, $N \setminus 6/2$, and $N \setminus 6/1$, 2 are all stable, connected, and nonbinary. Furthermore, $N \setminus 6/1 = M \setminus 6/1$, $N \setminus 6/2 = M \setminus 6/2$, and $N \setminus 6/1$, $2 = M \setminus 6/1$, 2. So, by Proposition 2.6, $N \setminus 6$ is the unique GF(4)-representable matroid such that $N \setminus 6/1 = M \setminus 6/1$ and $N \setminus 6/2 = M \setminus 6/2$. Now, $\{x, 6, 8\}$ is a triangle of N. It is also a triangle of M otherwise both $\{1, x, 6, 8\}$ and $\{2, x, 6, 8\}$ are circuits of M implying the contradiction that $\{1, 2, 6, 8\}$ is dependent in M. Moreover, $\{5, 6, 7, 8\}$ is a circuit in M but not in N. Hence, $\{5, 7, x, 8\}$ is dependent in $M \setminus 6$ although it is independent in $N \setminus 6$. In particular, $N \setminus 6 \neq M \setminus 6$, so, by uniqueness, $M \setminus 6$ is not GF(4)-representable. Now $M \setminus 4$, 6, $7/1 = N \setminus 4$, 6, $7/1 \cong U_{3,5}$, so $M \setminus 6$ is not isomorphic to P_8 since the last matroid is ternary. Also $M \setminus 6$, $x \cong P_7^*$, so $M \setminus 6$ is not isomorphic to P_8^* . Therefore, by Theorem 1.3, $M \setminus 6$ has a $U_{2,6}$ -, $U_{4,6}$ -, P_{6} -, F_7^- -, or $(F_7^-)^*$ -minor, as required.

We may now assume that either $\alpha \neq 0$ or $\beta \neq 0$. Using the automorphism of P_8 that swaps 1, 4, and 5 with 2, 3 and 7, respectively, we may assume that $\alpha \neq 0$. Then, it is easy to check that $N \setminus 4/1$, $N \setminus 4/2$ and $N \setminus 4/1$, 2 are all stable, connected, and nonbinary. Furthermore, $N \setminus 4/1 = M \setminus 4/1$, $N \setminus 4/2 = M \setminus 4/2$, and $N \setminus 4/1$, $2 = M \setminus 4/1$, 2. So, by Proposition 2.6, $N \setminus 4$ is the unique GF(4)-representable matroid such that $N \setminus 4/1 = M \setminus 4/1$ and $N \setminus 4/2 = M \setminus 4/2$. Now, $\{5, 6, 7, 8\}$ is a circuit in $M \setminus 4$ but not in $N \setminus 4$. In particular, $N \setminus 4 \neq M \setminus 4$, so, by uniqueness, $M \setminus 4$ is not GF(4)-representable. However, $M \setminus 4$, $x \cong P_7^*$, so $M \setminus 4$ is not isomorphic to P_8^* . Also $M \setminus 4$, 5/1, $2 = N \setminus 4$, 5/1, $2 \cong U_{2,5}$, so $M \setminus 4$ is not isomorphic to P_8 . Therefore, by Theorem 1.3, $M \setminus 4$ has a $U_{2,6}$ -, $U_{4,6}$ -, P_6 -, F_7^- -, or $(F_7^-)^*$ -minor, as required.

Case 2. Suppose that a = 1 and b = 8. Note that $M \setminus x/1$, $M \setminus x/8$, and $M \setminus x/1$, 8 are all stable, and that $M \setminus x/1$, 8 is connected and nonbinary. So, by Proposition 2.6, $N \setminus x$ is the unique quaternary matroid such that

 $N \setminus x/1 = M \setminus x/1$ and $N \setminus x/8 = M \setminus x/8$. Therefore, $N \setminus x$ has the following standard GF(4)-representation.

Recall that N/1, 8 has a $U_{2,5}$ -minor, so a GF(4)-representation for N can be obtained by appending the column $(\alpha, w, 1, \beta)^T$ to the above matrix, where α and β are yet to be determined.

Now, $N \setminus 5$, x/1 and $N \setminus 5$, x/8 are both 3-connected. So, it is easy to check that $N \setminus 5/1$, $N \setminus 5/8$ and $N \setminus 5/1$, 8 are all stable, connected, and nonbinary. Furthermore, $N \setminus 5/1 = M \setminus 5/1$, $N \setminus 5/8 = M \setminus 5/8$, and $N \setminus 5/1$, $8 = M \setminus 5/1$, 8. So, by Proposition 2.6, $N \setminus 5$ is the unique GF(4)-representable matroid such that $N \setminus 5/1 = M \setminus 5/1$ and $N \setminus 5/8 = M \setminus 5/8$. Now, $\{2, 4, 6, 7\}$ is a circuit in $M \setminus 5$ but not in $N \setminus 5$. In particular, $N \setminus 5 \neq M \setminus 5$, so, by uniqueness, $M \setminus 5$ is not GF(4)-representable. However, $M \setminus 5$, $x \cong P_7^*$, so $M \setminus 5$ is not isomorphic to P_8^* . It is left to the reader to check that, for any $\alpha \in GF(4)$, the matroid $N/8 \setminus 5$ is not isomorphic to P_7 . Hence, $M/8 \setminus 5$ is not isomorphic to P_8 . Therefore, by Theorem 1.3, $M \setminus 5$ has a $U_{2,6}$ -, $U_{4,6}$ -, P_6 -, F_7 --, or $(F_7^-)^*$ -minor, as required.

3. DEALING WITH P_8''

In this section, we prove Theorem 1.4. The techniques are very similar to those used in the previous section.

Since P_8'' is self-dual, it suffices to prove that every 3-connected single-element extension of P_8'' contains a $U_{2,6}$ -, $U_{4,6}$ -, P_6 -, F_7^- -, or $(F_7^-)^*$ -minor. Suppose not. Then there is a 3-connected matroid M in $Ex(U_{2,6}, U_{4,6}, P_6, F_7^-, (F_7^-)^*)$ such that $M \setminus x = P_8''$.

3.1. M/1, 3 has no $U_{2,5}$ -restriction.

Suppose to the contrary that M/1, 3 has a $U_{2,5}$ -restriction. It is readily seen that M/1, M/3, and M/1, 3 are all stable, connected, and nonbinary. Then, by Proposition 2.6, there is a unique quaternary matroid N such that N/1 = M/1 and N/3 = M/3. It is easily checked that $N \setminus x$ is uniquely

Recall that N/1, 8 has a $U_{2,5}$ -minor, so a GF(4)-representation for N can be obtained by appending the column $(\alpha, 1, w, \beta)^T$ to the above matrix, where α and β are yet to be determined.

Now, $N\backslash 2$, x/1 and $N\backslash 2$, x/8 are both 3-connected. So, it is easy to check that $N\backslash 2/1$, $N\backslash 2/8$ and $N\backslash 2/1$, 8 are all stable, connected, and nonbinary. So, by Proposition 2.6, $N\backslash 2$ is the unique GF(4)-representable matroid such that $N\backslash 2/1=M\backslash 2/1$ and $N\backslash 2/8=M\backslash 2/8$. Now, $\{3,4,5,7\}$ is a circuit in $M\backslash 2$ but not in $N\backslash 2$. In particular, $N\backslash 2\neq M\backslash 2$, so, by uniqueness, $M\backslash 2$ is not GF(4)-representable. However, $M\backslash 2$, $x\cong (P'_1)^*$, so $M\backslash 2$ is not isomorphic to P_8 . Therefore, by Theorem 1.3, either $M\backslash 2$ is isomorphic to P_8 , or $M\backslash 2$ has a $U_{2,6}$ -, $U_{4,6}$ -, P_6 -, P_7 -, or $(F_7)^*$ -minor. Thus, we may assume that $M\backslash 2$ is isomorphic to P_8 . In particular, $M\backslash 2/1$ is isomorphic to P_7 . It is left to the reader to check that this implies that $\beta=w+1$. Then M/1, 3 has a $U_{2,5}$ -restriction, contradicting (3.1). This proves (3.2).

Let R be the matroid depicted in Fig. 4.

3.3. If M/1 is 3-connected, then it is isomorphic to R, where the 4-point line is either $\{3, 7, 8, x\}$ or $\{3, 5, 6, x\}$.

Suppose M/1 is 3-connected. Then it is isomorphic to a 3-connected extension of P'_7 . Now 2 and 4 are each on only one 3-point line of $M/1 \setminus x$. So, since neither M/1, $2 \setminus x$ nor M/1, $4 \setminus x$ has a $U_{2,6}$ -restriction, each of 2 and 4 is on some 3- or 4-point line of M/1 with x. By (3.1), 3 is also on some 3- or 4-point line of M/1 with x. By (3.2) and symmetry, each of 5, 6, 7, 8 is on some 3- or 4-point line of M/1 with x. Hence x is on some 3- or 4-point line with every other element of M/1. It follows that x is on one 4-point line and two 3-point lines in M/1. There is, up to isomorphism, just one such extension of P'_7 , namely R. This proves (3.3).

If x lies on three 3-point lines in M, say $\{x, a_1, a_2\}$, $\{x, b_1, b_2\}$ and $\{x, c_1, c_2\}$, then $\{a_1, a_2, b_1, b_2\}$, $\{a_1, a_2, c_1, c_2\}$, and $\{b_1, b_2, c_1, c_2\}$ are all hyperplanes of P_8'' . However, P_8'' has no three such hyperplanes, so x is

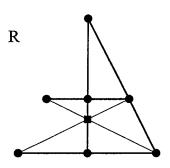


FIG. 4. An extension of P'_7 .

Recall that N/1, 8 has a $U_{2,5}$ -minor, so a GF(4)-representation for N can be obtained by appending the column $(\alpha, 1, w, \beta)^T$ to the above matrix, where α and β are yet to be determined.

Now, $N \setminus 2$, x/1 and $N \setminus 2$, x/8 are both 3-connected. So, it is easy to check that $N \setminus 2/1$, $N \setminus 2/8$ and $N \setminus 2/1$, 8 are all stable, connected, and non-binary. So, by Proposition 2.6, $N \setminus 2$ is the unique GF(4)-representable matroid such that $N \setminus 2/1 = M \setminus 2/1$ and $N \setminus 2/8 = M \setminus 2/8$. Now, $\{3, 4, 5, 7\}$ is a circuit in $M \setminus 2$ but not in $N \setminus 2$. In particular, $N \setminus 2 \neq M \setminus 2$, so, by uniqueness, $M \setminus 2$ is not GF(4)-representable. However, $M \setminus 2$, $x \cong (P'_7)^*$, so $M \setminus 2$ is not isomorphic to P_8 . Therefore, by Theorem 1.3, either $M \setminus 2$ is isomorphic to P_8 , or $M \setminus 2$ has a $U_{2,6}$ -, $U_{4,6}$ -, P_6 -, F_7 -, or $(F_7)^*$ -minor. Thus, we may assume that $M \setminus 2$ is isomorphic to P_8 . In particular, $M \setminus 2/1$ is isomorphic to P_7 . It is left to the reader to check that this implies that $\beta = w + 1$. Then M/1, 3 has a $U_{2,5}$ -restriction, contradicting (3.1). This proves (3.2).

Let R be the matroid depicted in Fig. 4.

3.3. If M/1 is 3-connected, then it is isomorphic to R, where the 4-point line is either $\{3, 7, 8, x\}$ or $\{3, 5, 6, x\}$.

Suppose M/1 is 3-connected. Then it is isomorphic to a 3-connected extension of P'_7 . Now 2 and 4 are each on only one 3-point line of $M/1 \setminus x$. So, since neither M/1, $2 \setminus x$ nor M/1, $4 \setminus x$ has a $U_{2,6}$ -restriction, each of 2 and 4 is on some 3- or 4-point line of M/1 with x. By (3.1), 3 is also on some 3- or 4-point line of M/1 with x. By (3.2) and symmetry, each of 5, 6, 7, 8 is on some 3- or 4-point line of M/1 with x. Hence x is on some 3- or 4-point line with every other element of M/1. It follows that x is on one 4-point line and two 3-point lines in M/1. There is, up to isomorphism, just one such extension of P'_7 , namely R. This proves (3.3).

If x lies on three 3-point lines in M, say $\{x, a_1, a_2\}$, $\{x, b_1, b_2\}$ and $\{x, c_1, c_2\}$, then $\{a_1, a_2, b_1, b_2\}$, $\{a_1, a_2, c_1, c_2\}$, and $\{b_1, b_2, c_1, c_2\}$ are all hyperplanes of P_8'' . However, P_8'' has no three such hyperplanes, so x is

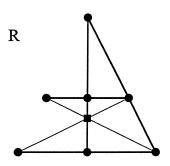


FIG. 4. An extension of P'_7 .

on at most two 3-point lines of M. Furthermore, if $\{x, a_1, a_2\}$ and $\{x, b_1, b_2\}$ are 3-point lines, then $\{a_1, a_2, b_1, b_2\}$ is a hyperplane of P_8'' . Therefore, since any two points of P_8'' lie on some circuit-hyperplane of P_8'' , if M has any 3-point lines, then M is obtained by adding x to some circuit-hyperplane of P_8'' , and all 3-point lines are contained in that hyperplane. The automorphisms of P_8'' act transitively on its circuit-hyperplanes, so we may assume that the 3-point lines of M use only points from the set $\{x, 2, 4, 6, 7\}$. Therefore, M/1, M/3, M/5 and M/8 are all 3-connected. Therefore, by (3.3) and symmetry, each of these matroids is isomorphic to R. Since M/1 is isomorphic to R, either $\{x, 1, 3, 5, 6\}$ or $\{x, 1, 3, 7, 8\}$ is a hyperplane of M. Using the automorphism of P_8'' that swaps $\{x, 1, 3, 5, 6\}$ is a hyperplane of M. Then M/5 is not isomorphic to R. This contradiction completes the proof of Theorem 1.4.

ACKNOWLEDGMENTS

Oxley and Vertigan were partially supported by grants from the National Security Agency; Vertigan was also partially supported by a grand from the Louisiana Education Quality Support Fund; Whittle was partially supported by a grant from the Marsden Fund.

REFERENCES

- J. F. Geelen, A. M. H. Gerards, and A. Kapoor, The excluded minors for GF(4)-representable matroids, J. Combin. Theory Ser. B 79 (2000), 247–299.
- J. Kahn, On the uniqueness of matroid representations over GF(4), Bull. London Math. Soc. 20 (1988), 5-10.
- J. G. Oxley, A characterization of ternary matroids with no M(K₄)-minor, J. Combin. Theory Ser. B 42 (1987), 212–249.
- 4. J. G. Oxley, "Matroid Theory," Oxford Univ. Press, New York, 1992.
- P. D. Seymour, Decomposition of regular matroids, J. Combin. Theory Ser. B 28 (1980), 305–359.