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The aim of this paper is to give insight into the behaviour of inequivalent repre-
sentations of 3-connected matroids. An element x of a matroid M is fixed if there is
no extension MŒ of M by an element xŒ such that {x, xŒ} is independent and MŒ is
unaltered by swapping the labels on x and xŒ. When x is fixed, a representation of
M0x extends in at most one way to a representation of M. A 3-connected matroid
N is totally free if neither N nor its dual has a fixed element whose deletion is a
series extension of a 3-connected matroid. The significance of such matroids derives
from the theorem, established here, that the number of inequivalent representations
of a 3-connected matroid M over a finite field F is bounded above by the
maximum, over all totally free minors N of M, of the number of inequivalent
F-representations of N. It is proved that, within a class of matroids that is closed
under minors and duality, the totally free matroids can be found by an inductive
search. Such a search is employed to show that, for all r \ 4, there are unique and
easily described rank-r quaternary and quinternary matroids, the first being the free
spike. Finally, Seymour’s Splitter Theorem is extended by showing that the
sequence of 3-connected matroids from a matroid M to a minor N, whose existence
is guaranteed by the theorem, may be chosen so that all deletions and contractions
of fixed and cofixed elements occur in the initial segment of the sequence. © 2001

Elsevier Science



1. INTRODUCTION

It is by now a truism to say that the presence of inequivalent representa-
tions of matroids over fields is the major barrier to progress in matroid
representation theory. Strong results giving characterizations of classes of
representable matroids certainly do exist [1, 8, 9, 21–23, 25, 26]. But, in all
cases, the class either has a unique representation property, as is the case
for binary matroids and ternary matroids over GF(3), or the precise way in
which inequivalent representations arise is understood, as is the case for
representations of ternary matroids over fields other than GF(3), and qua-
ternary matroids over GF(4). What is needed for progress are techniques
that would enable one to characterize the way inequivalent representations
arise for more general classes of representable matroids. It is with this
problem in mind that the research for this paper was undertaken. What
follows is a very relaxed discussion intended to give an intuitive feel for
some of the results in this paper.
It has long been noticed that certain elements of a matroid have ‘‘free-

dom,’’ while others are ‘‘fixed.’’ Indeed, this notion has been formally
studied by Cheung and Crapo [4] and by Duke [6, 7]. An element x of a
matroid is fixed if the only way to extend the matroid by an element xŒ so
that x and xŒ are in the same cyclic flats is to put xŒ in parallel with x. If x
is fixed, then any representation of M is determined uniquely by the repre-
sentation of M0x. It is the existence of elements with freedom that gives
rise to the potential for inequivalent representations. Consider a minor-
closed class M of matroids. If we knew the matroids in M whose combined
elements have, in some sense, maximum freedom, then we would have
insight into the behaviour of inequivalent representations of all members of
M. This leads to the definition of a ‘‘totally free matroid.’’ For the
moment, we can think of a totally free matroid as one for which all ele-
ments have freedom (although, of course, the formal definition has to take
into account certain technicalities). It turns out that the number of inequi-
valent representations of a 3-connected matroid M is bounded above by
the number of inequivalent representations of a totally free minor. The
task, then, is to find all totally free matroids in M. There seems no a priori
reason to believe that such totally free matroids do not occur sporadically,
but it follows from the main result of this paper that this is not the case.
All totally free matroids in M can be found by an elementary inductive
search. Of course, there may well be an infinite number of totally free
matroids in M, but, for a natural class, it may be possible to neatly
characterize the set of all totally free matroids in that class.
We now illustrate the above ideas on the class of quaternary matroids.

Kahn [11] has shown that a 3-connected quaternary matroid is uniquely
representable over GF(4). In striking contrast to this is the fact that over
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any other finite field F of non-prime order, no bound can be placed on the
number of inequivalent F-representations of a 3-connected quaternary
matroid. How does this arise? We show in this paper that, for k \ 4, there
is exactly one totally free rank-k quaternary matroid, namely the ‘‘free
spike’’ of rank k. From this it follows that the number of inequivalent
representations of a 3-connected quaternary matroid is bounded by the
number of inequivalent representations of its largest free-spike minor. This
analysis makes it clear that free spikes will play a fundamental role in
future work on the structure of subclasses of quaternary matroids.
A ‘‘totally free expansion’’ of a matroid N is, very loosely, a matroid

that is totally free relative to N. The core theorems of this paper are proved
for this more general concept and, using it, we are able to obtain a sub-
stantial strengthening of Seymour’s Splitter Theorem [22]. In broad terms,
this strengthening asserts that, given a 3-connected minor N of a 3-con-
nected matroid M, we can build from N to M via a chain of 3-connected
matroids with the property that elements that are added with freedom are
added in the initial segment of the chain.
The techniques of this paper are not particularly difficult. Primarily one

analyzes precisely what it means for an element e of a matroid M to have
freedom in M and what it means for e to have freedom in Mg. This analy-
sis leads to a number of surprisingly simple lemmas describing the structure
that arises, and the main theorems follow without difficulty.
Notation and terminology in this paper follow Oxley [13] with two

small exceptions. We denote the simple and cosimple matroid canonically
associated with a matroid M by si(M) and co(M), respectively. The prop-
erty that a circuit and a cocircuit of a matroid cannot have exactly one
common element is called orthogonality.

2. OVERVIEW

Now, we give a more precise description of the results of this paper.
Elements x and xŒ of a matroid M are clones if the map that interchanges x
and xŒ and acts as the identity on E(M)−{x, xŒ} is an automorphism of
M. In other words, x and xŒ are clones if they are indistinguishable up to
labelling. Thus, an element z of M is fixed in M if there is no single-element
extension of M by zŒ in which z and zŒ are independent clones. Clones
provide a very convenient way of capturing the notion of freedom. An
element has freedom in the sense described in the introduction if and only
if it is not fixed. We also need to consider the dual concept: the element z is
cofixed in M if there is no single-element coextension of M by zŒ in which z
and zŒ are coindependent clones. As noted earlier, freedom of an element
leads to the possibility of inequivalent representations. We now consider
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this connection. Assume that M is representable over a field F. Although a
given F-representation of M0x may or may not extend to a representation
of M, some F-representation must. We will say that a representation of
M0x extends uniquely if it does extend to a representation of M, and the
choice of vector representing x is unique up to scalar multiples. As is well
known, representations of a matroid are canonically in one-to-one corre-
spondence with representations of the dual. A representation of M/x
coextends uniquely if the canonically associated representation of Mg0x
extends uniquely to a representation of Mg. We give the very easy proof of
the next proposition because it illustrates the usefulness of the notion of
clones.

Proposition 2.1. Let M be representable over the field F. If x is fixed
in M, then a representation of M0x that extends to a representation of M
does so uniquely. If x is cofixed in M, then a representation of M/x that
coextends to a representation of M does so uniquely.

Proof. Assume that an F-representation A of M0x extends to
F-representations [A | x] and [A | xŒ] of M. Evidently x and xŒ are clones
in M[A | x, xŒ]. But x is fixed in M, so x cannot be independently cloned.
Hence {x, xŒ} is a parallel pair, that is, x and xŒ are scalar multiples. L

The last result illustrates the fact that the notions of fixed and cofixed
elements identify underlying matroid structure that guarantees unique
extensions and coextensions of representations. It is of some interest to
consider a possible converse to Proposition 2.1. First note that, at times, an
element that is not fixed may have a unique extension property because of
the size of the field. For example, a representation of U2, 4 extends uniquely
to a representation of U2, 5 over GF(4), even though U2, 5 has no fixed ele-
ments. But over any larger field, a representation of U2, 4 does not extend
uniquely to a representation of U2, 5. This is essentially the reason why there
is a unique representation theorem for quaternary matroids represented
over GF(4), but not for quaternary matroids represented over larger fields.
Our initial intuition was that if an element x of an F-representable matroid
M is not fixed in M, then, over a sufficiently large extension field of F,
there is a representation of M0x that extends to a representation of M, but
does not do so uniquely. However, we cannot see how to prove this asser-
tion. Indeed, we conjecture that the converse of Proposition 2.1 does not
hold.

Universal stabilizers. Having a guarantee that extensions and coexten-
sions of representations are unique is of considerable value in arguments in
matroid representation theory, and theorems that provide such a guarantee
for particular situations play a vital role in recent work (see, for example,
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[8, 25]). General techniques for developing such theorems are badly
needed. In a sense, this paper is the third in a series seeking to develop such
techniques, the others being [10, 27]. The motivation for this paper was
that a promising idea, developed in [10], did not turn out to be quite as
fruitful as we had hoped. In that paper the notion of a ‘‘universal sta-
bilizer’’ for a well-closed class of matroids was introduced. The latter is a
class of matroids that is closed under isomorphism, minors, and duality.
There are a number of equivalent characterizations of universal stabilizers.
For example, a 3-connected matroid N in a well-closed class N is a uni-
versal stabilizer for N if the following holds for all 3-connected matroids
M in N and all x in E(M): if M0x is 3-connected and has an N-minor,
then x is fixed in M, and if M/x is 3-connected and has an N-minor, then
x is cofixed in M. It is shown in [10] that, with some natural conditions on
the class N, the task of showing that N is a universal stabilizer for N is an
elementary finite check.
A universal stabilizer for a class is a valuable object. By the Splitter

Theorem, we see that a representation for a matroid in the class can be
built from a representation of the universal stabilizer via a sequence of
fixed extensions and cofixed coextensions. Thus a representation of the
matroid can be built uniquely from an appropriate representation of the
universal stabilizer. The hope was that, for natural classes, one could iden-
tify reasonable sets of universal stabilizers. Such is indeed the case for
ternary matroids: U2, 3 is a universal stabilizer for the class of ternary
matroids with no U2, 4-minor and U2, 4 is a universal stabilizer for the class
of all ternary matroids. Also, universal stabilizers have recently proved a
very useful tool in the characterizations of [19]. Unfortunately, an example
in [10] shows, it seems, that, for classes beyond subclasses of binary and
ternary matroids, it is often too much to ask for a reasonable set of uni-
versal stabilizers. The theory of totally free expansions was developed to
overcome the problems opened up by the existence of this example.

Totally free expansions. For a matroid M, we denote the simple and
cosimple matroids canonically associated with M by si(M) and co(M),
respectively. Let N be a 3-connected matroid with at least four elements,
and let M be a matroid with an N-minor. Then M is a totally free expan-
sion of N if M is 3-connected and the following holds for all x ¥ E(M): if
co(M0x) is 3-connected with an N-minor, then x is not fixed in M, and if
si(M/x) is 3-connected with an N-minor, then x is not cofixed in M. The
next result, which will be obtained as an immediate corollary of
Theorem 7.1, is the key theorem of this paper.

Theorem 2.2. Let M be a totally free expansion of a 3-connected
matroid N where M ]N, and |E(N)| \ 4. Then at least one of the following
holds.
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(i) There is an element d of E(M) such that M0d is a totally free
expansion of N.

(ii) There is an element c of E(M) such that M/c is a totally free
expansion of N.

(iii) There are elements c and d of E(M) such that M/c0d is a totally
free expansion of N.

A 3-connected matroid M is totally free if it has at least four elements
and, for all x in E(M), if co(M0x) is 3-connected, then x is not fixed in
M, while if si(M/x) is 3-connected, then x is not cofixed in M. We prove,
in Corollary 8.6, that a matroid is totally free if and only if it is a totally
free expansion of U2, 4. It follows that Theorem 2.2 can be specialized to
totally free matroids. In fact, this specialization can be strengthened
somewhat given the particular structure of totally free matroids, and this
strengthening is provided in Corollary 8.13. But, in both cases, the crucial
point is that totally free expansions and totally free matroids in a minor-
closed class can be found by an elementary inductive search—they do not
occur sporadically.

Strengthening the Splitter Theorem. One consequence of Theorem 2.2 is
the following strengthening of Seymour’s Splitter Theorem [22].

Theorem 2.3. Let M be a 3-connected matroid with a 3-connected
matroid N as a minor, where |E(N)| \ 4. Assume that if N is a wheel, then N
is the largest wheel minor of M, and if N is a whirl, then N is the largest
whirl minor of M. Then, for some non-negative integers n and m, there is a
sequence

M0, M1, ..., Mn, Mn+1, ..., Mn+m

of 3-connected matroids and a sequence e0, e1, ..., em+n−1 of elements of M
such that the following hold.

(i) M0=M and Mn+m 5N.

(ii) For all i in {0, 1, ..., m+n−1}, either Mi+1=Mi 0ei or Mi+1=
Mi/ei.

(iii) For all i in {0, 1, ..., n−1}, if Mi+1=Mi 0ei then ei is fixed in
Mi, and if Mi+1=Mi/ei, then ei is cofixed in Mi.

(iv) Mn is a totally free expansion of N, and, for all j in
{1, 2, ..., m−1}, if Mn+j is not a totally free expansion of N, then both
Mn+j−1 and Mn+j+1 are totally free expansions of N.

Put in somewhat plainer language, Theorem 2.3 says that, starting from
M, one can delete and contract fixed and cofixed elements until a totally
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free expansion of N is obtained. From then on, one can perform one- or
two-element steps to give a sequence of totally free expansions that even-
tually arrive at N. Alternatively, from a bottom-up point-of-view, we can
build M from a minor isomorphic to N via a chain of 3-connected minors
having the property that elements with freedom or cofreedom are added in
an initial segment of the chain. Theorem 2.3 will be proved in Section 9.

Bounding inequivalent representations. While the strengthening of the
Splitter Theorem given here is attractive and potentially useful, from the
point of view of the applications given here, the following result is vital.

Theorem 2.4. Let F be a finite field and M be a 3-connected
F-representable matroid. If M has no totally free minors, then it is uniquely
F-representable. Otherwise the number of inequivalent F-representations of
M is bounded above by the maximum, over all totally free minors ‘‘N of M,
of the number’’ of inequivalent F-representations of N.

Theorem 2.4, combined with the fact that totally free matroids in a class
can be found by an inductive search, provide tools that enable us to
examine the behaviour of inequivalent representations for 3-connected
members of well-closed classes. The proof of Theorem 2.4 will be given in
Section 10.

Totally free quaternary and quinternary matroids. In Sections 11 and 12,
we apply the theory to the classes of matroids representable over GF(4)
and GF(5) and identify all totally free quaternary and quinternary
matroids. It is of interest to note that, apart from matroids of small rank,
the totally free matroids that arise are precisely the matroids used in [20]
to prove that, for a field F with at least seven elements, no bound can be
placed on the number of inequivalent F-representations of 3-connected
matroids. We now outline the results of Sections 11 and 12.
For an integer k \ 3, a rank-k spike with tip p is a rank-k matroid with

ground set {p, a1, b1, a2, b2, ..., ak, bk} such that

(i) {p, ai, bi} is a triangle for all i in {1, 2, ..., k} and
(ii) r(1j ¥ J{aj, bj})=|J|+1 for every proper subset J of {1, 2, ..., k}.

Each pair {ai, bi} is a leg of the spike. The non-spanning circuits of a rank-k
spike include the abovementioned triangles containing p together with all
sets of the form {ai, bi, aj, bj} for distinct i and j in {1, 2, ..., k}. All other
non-spanning circuits have the form {z1, z2, ..., zk} where zi ¥ {ai, bi}. If all
such sets {z1, z2, ..., zk} are independent, then the spike obtained is called
the free rank-k spike with tip p, and is denoted by F+k . The tipless free rank-k
spike Fk is the matroid F+k 0p.
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It is shown in [20] that free spikes are representable over all finite fields
of non-prime order. Moreover, for every non-prime finite field F other than
GF(4), the free spike Fk has at least 2k−1 inequivalent F-representations.
Hence, for each such field F, there is no constant bound on the number of
inequivalent F-representations of a quaternary 3-connected F-representable
matroid. Note that Fk is a self-dual matroid.
The following are the main results of Section 11.

Theorem 2.5. A quaternary matroid M is totally free if and only if M is
isomorphic to one of U2, 4, U2, 5, U3, 5, or Fr for some r \ 3.

Corollary 2.6. Let k be a fixed integer exceeding two and F be a finite
field. Then the class of 3-connected quaternary matroids with no Fk-minor
has a bounded number of inequivalent F-representations.

Next we describe another class of matroids, which, like the free spikes,
play a key role in [20]. Suppose r \ 3. Begin with the rank-r whirl having
spokes, in cyclic order, s1, s2, ..., sr. Let the non-trivial lines of this whirl be
{s1, a1, s2}, {s2, a2, s3}, ..., {sr, ar, s1}. For each i in {1, 2, ..., r}, freely add
a new point bi on the line {si, ai, si+1}. Call the resulting matroid the rank-r
jointed swirl. Let Yr and Y

+
r denote the matroids that are obtained from

the rank-r jointed swirl by deleting, respectively, all or all but one of
the elements s1, s2, ..., sr. We shall call Yr the rank-r swirl. Note that
Y3 5 U3, 6 5 F3. It is shown in [20] that if q is a prime power that exceeds
five and is not of the form 2p where 2p−1 is prime, then the jointed rank-r
swirl has at least 2 r inequivalent GF(q)-representations. It is not difficult to
extend this to establish that Yr also has at least 2 r inequivalent GF(q)-
representations. Note that Yk is self-dual.
The main results of Section 12 are as follows.

Theorem 2.7. A quinternary matroid M is totally free if and only if M is
isomorphic to one of U2, 4, U2, 5, U2, 6, U3, 5, U4, 6, P6, or Yr for some r \ 3.

Corollary 2.8. Let k be a fixed integer exceeding two and F be a finite
field. Then the class of 3-connected quinternary matroids with no Yk-minor
has a bounded number of inequivalent R-representations.

Corollaries 2.6 and 2.8 establish that, among quaternary and quinternary
matroids, free spikes and swirls are the sole obstructions to Kahn’s conjec-
ture [11] that there is a constant n(q) such that the number of inequivalent
GF(q)-representations of a 3-connected GF(q)-representable matroid is at
most n(q). We know of no other obstructions to the conjecture in general.
Indeed, we conjecture the following.
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Conjecture 2.9. Let k be an integer exceeding two. Then, for all prime
powers q, there is a constant n(q, k) such that every 3-connected GF(q)-
representable matroid with no minor isomorphic to either Fk or Yk has at
most n(q, k) inequivalent GF(q)-representations.

3. SOME 3-CONNECTIVITY PRELIMINARIES

We assume that the reader is familiar with the theory of connectivity of
matroids as set forth in Oxley [13]. Some standard 3-connectivity results
play a vital role in this paper and, for convenience, we restate them here.
The first is a result of Tutte [24] (see also [13, Lemma 8.4.9]).

Lemma 3.1 (Tutte’s Triangle Lemma). Let M be a 3-connected matroid
with at least four elements and suppose that {e, f, g} is a triad of M such
that neither M/e nor M/f is 3-connected. Then M has a triangle that
contains e and exactly one of f and g.

The next is a theorem of Bixby [2] (see also [13, Proposition 8.4.6]).

Lemma 3.2. Let x be an element of a 3-connected matroid M. Then
either co(M0x) or si(M/x) is 3-connected.

The Splitter Theorem [22] plays a vital role in many arguments in
matroid structure theory. There are several ways to state this theorem. The
version that Theorem 2.3 generalizes is as follows.

Theorem 3.3. Let M and N be 3-connected matroids such that N is a
minor of M with at least four elements, and if N is a wheel, then M has no
larger wheel as a minor, while if N is a whirl, then M has no larger whirl as a
minor. Then there is a sequence M0, M1, ..., Mn of 3-connected matroids
such that M0 5N, for all i in {0, 1, ..., n−1}, Mi is a single-element deletion
or a single-element contraction of Mi+1, and Mn=M.

The following consequence of the Splitter Theorem will be used often
throughout this paper.

Corollary 3.4. Let M and N be 3-connected matroids such that N is a
minor of M. If M ]N, and M is not a wheel or a whirl, then there is an
element x of E(M) such that either M0x or M/x is 3-connected with an
N-minor.

The next two lemmas are Lemmas 3.8 and 3.6, respectively, of [27].
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Lemma 3.5. Let Cg be a rank-3 cocircuit of a 3-connected matroid M. If
x ¥ Cg and x has the property that clM(Cg)−x contains a triangle of M/x,
then si(M/x) is 3-connected.

Lemma 3.6. Let M be a 3-connected matroid, and let x and p be
elements of E(M) with the property that si(M/x) and si(M/x, p) are
3-connected, but si(M/p) is not 3-connected. Then r(M) \ 4 and x is in a
rank-3 cocircuit Cg such that p ¥ cl(Cg) 5 (E(M)−Cg).

Lemma 3.7. Let {e, f, g} be a triad of a 3-connected matroid M. If
neither si(M/e) nor si(M/f) is 3-connected, then M has a triangle using e
and f. Moreover, M/g is 3-connected unless M 5M(K4).

Proof. The hypotheses of the lemma imply that r(M) > 2. We shall first
consider the case when M has a triangle T containing g. Then
|T 5 {e, f, g}| \ 2. Moreover, T ] {e, f, g} (see, for example, [13, Propo-
sition 8.1.7]). Thus, without loss of generality, we may assume that
T 5 {e, f, g}={e, g}. Since si(M/f) is not 3-connected, co(M0f) is
3-connected. But the last matroid has a parallel pair, and therefore is iso-
morphic to U1, 2 or U1, 3. Thus co(M0f) has corank one or two. Hence M
has corank two or three. Consider Mg. If it has rank two, then one easily
checks that co(Mg0e) is 3-connected; a contradiction. Thus we may
assume that r(Mg)=3. Hence |E(Mg)| \ 6. Now e, f and g are collinear in
Mg and {e, g} is contained in the triad T of Mg. Hence E(Mg)−T is a line
L of Mg containing f. As Mg0f is not 3-connected, it is a union of two
lines. One of these lines must contain two elements of T and can contain at
most one element of L. The other line contains the third element of T and
hence at most one element of L. Hence, as |E(Mg)| \ 6, we deduce that
|E(Mg)|=6 and |L|=3. As neither co(Mg0e) nor co(Mg0f) is 3-con-
nected, it follows without difficulty that Mg 5M(K4) and {e, f} is
contained in a triangle of Mg. Thus the lemma holds when M has a
triangle containing g.
We may now assume that M has no triangle containing g. Since neither

M/e nor M/f is 3-connected, Lemma 3.1 implies that M has a triangle,
say {e, f, z}, using e and f. Then {e, f, z} is a triangle of M/g. By
Lemma 3.2, si(M/g) is 3-connected. But g is in no triangles, so M/g has
no parallel pairs. Hence M/g is 3-connected. L

The next lemma will be used frequently. We omit the straightforward
proof.

Lemma 3.8. Let e be an element of a 3-connected matroid M and suppose
that |E(M)| \ 4.

EXPANSIONS OF MATROIDS 139



(i) If f ¥ E(si(M/e)), then si(si(M/e)/f)=si(M/e, f).
(ii) If f ¥ E(co(M0e)), then co(co(M0e)0f)=co(M0e, f).
(iii) If si(M0e/f) is 3-connected, then si(M/f) is 3-connected.
(iv) If co(M/e0f) if 3-connected, then co(M0f) is 3-connected.

Finally, we note another elementary fact.

Lemma 3.9. If N is a 3-connected matroid with at least four elements,
and M is a matroid with an N-minor, then both si(M) and co(M) have
N-minors.

4. CLONES AND FIXED ELEMENTS

The material in this section mainly revises material from [10]. The idea
of measuring the relative freedom of elements in matroids is introduced in
Cheung and Crapo [4] and Duke [7].
As noted in Section 2, elements x and xŒ of a matroid M are clones if

interchanging x and xŒ is an automorphism of M. Thus clones are elements
of a matroid that are indistinguishable up to labelling. If {x, xŒ} is a pair of
loops, a pair of coloops, a parallel pair, or a series pair, then x and xŒ are
clones. It is also immediate that x and xŒ are clones in M if and only if they
are clones in Mg.
Let x be an element of a matroid M. The matroid MŒ is obtained by

cloning x with xŒ if MŒ is a single-element extension of M by xŒ, and x and
xŒ are clones in MŒ. Dually, we have that MŒ is obtained by cocloning x
with xŒ if MŒ is a single-element coextension of M by xŒ, and x and xŒ are
clones in MŒ.
It is always possible to clone x with xŒ: if x is a loop, just add xŒ as a

loop, while if x is not a loop, then add xŒ in parallel to x. However, it is not
always possible to clone x with xŒ so that {x, xŒ} is independent. In the case
that x cannot be cloned with xŒ so that x and xŒ are independent, we say
that x is fixed in M. Dually, x is cofixed in M if M has no coextension by
xŒ such that x and xŒ are coindependent clones in this coextension. In other
words, x is cofixed in M if and only if x is fixed in Mg.
If x is not fixed, then there is a matroid MŒ obtained by cloning x with xŒ

such that {x, xŒ} is independent in MŒ. We say that MŒ is obtained by
independently cloning x with xŒ. Dually, we refer to (MŒ)g as being obtained
from Mg by coindependently cocloning x with xŒ. Note that knowing that
MŒ is obtained by independently cloning x with xŒ does not, in general,
determine MŒ up to isomorphism. For example, if x ¥ E(U3, 4), then one can
obtain both U3, 5 and U2, 4 À2 U2, 3 by independently cloning x.
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Fixed elements can also be characterized in terms of modular cuts.
Recall that flats F1 and F2 of a matroid form a modular pair if r(F1 2 F2)+
r(F1 5 F2)=r(F1)+r(F2). A modular cut in a matroid M is a collection F
of flats of M with the following properties: if F1 and F2 are a modular pair
of flats in F, then F1 5 F2 is in F; and if F ¥F, then every flat of M that
contains F is also in F. It is known that modular cuts are in one-to-one
correspondence with single-element extensions of M; see [5].
Cheung and Crapo [4] have defined the notion of the degree of a

modular cut and Duke [7] has defined the notion of the freedom of an
element in a matroid. It is shown in [7, Theorem 3.3] that a modular cut
F has degree k if and only if the freedom of the element of extension in the
single-element extension defined by F is k. Moreover, it follows easily
from results in [7] that an element e is fixed in M if and only if it has
freedom at most 1, or equivalently, if and only if the modular cut of M0e
associated with the extension M has degree at most 1.
A flat of a matroid is cyclic if it is a union of circuits. When ordered by

inclusion, the collection of modular cuts of a matroid forms a lattice. It
follows that, given a set F of flats of a matroid, there is a unique minimal
modular cut containing that set of flats. This is the modular cut OFP
generated by F. The following proposition is Duke [7, Corollary 3.5].

Proposition 4.1. Let e be an element of a matroid M. Then e is fixed in
M if and only if cl({e}) is in the modular cut generated by the cyclic flats of
M containing e.

Next we give some elementary equivalent conditions for x and xŒ to be
clones in a matroid M.

Proposition 4.2. Let x and xŒ be elements of a matroid M. Then the
following are equivalent.

(i) x and xŒ are clones in M.

(ii) Replacing x by xŒ and fixing every other element is an iso-
morphism from M0xŒ to M0x.

(iii) M/x0xŒ=M/xŒ0x and r({x})=r({xŒ}).

The next proposition is a straightforward consequence of the definitions.
It is a useful way of showing that an element is not fixed in a minor.

Proposition 4.3. Assume that x and xŒ are clones in a matroid MŒ, and
let M=MŒ0xŒ. If X and Y are disjoint subsets of E(MŒ)−{x, xŒ}, then x
and xŒ are clones in MŒ0X/Y. Moreover, if {x, xŒ} is independent in
MŒ0X/Y, then x is not fixed in M0X/Y, and if {x, xŒ} is coindependent in
MŒ0X/Y, then x is not cofixed in M0X/Y.
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The following is an easy consequence of Proposition 4.3.

Corollary 4.4. Let x be an element of a matroid M, and X be a subset
of E(M)−x.

(i) If x is not fixed in M, then x is not fixed in M0X.

(ii) If x is not cofixed in M, then x is not cofixed in M/X.

A point p of a matroid M is freely placed on a flat F if p ¥ F, and
clM(C) ` F for every circuit C of M containing p. The next proposition is a
special case of [7, Proposition 3.1].

Proposition 4.5 (Duke). If p is fixed in M, and F is a flat of M of rank
greater than one, then p is not freely placed on F.

The following corollary of Proposition 4.5 will prove useful in this paper.

Corollary 4.6. Let M be a matroid, a be an element of E(M) that is
not a loop or a coloop, and b be an element of E(M)− cl({a}). If a is fixed in
M, then there is a cyclic flat of M that contains a but not b.

The next proposition enables us to deduce that an element is fixed or
cofixed in M from the fact that it is fixed or cofixed in certain minors.

Proposition 4.7. Let x be an element of a matroid M.

(i) If M has an element a such that x is fixed in M0a, then x is fixed
in M.

(ii) If M has an element a such that x is cofixed in M/a, then x is
cofixed in M.

(iii) If M has distinct elements a and b such that {a, b, x} is inde-
pendent in M, and x is fixed in both M/a and M/b, then x is fixed in M.

(iv) If M has distinct elements a and b such that {a, b, x} is coinde-
pendent and x is cofixed in both M0a and M0b, then x is cofixed in M.

Evidently, if x and xŒ are independent clones in M, then x is not fixed in
M0xŒ. The next proposition [10, Proposition 4.9] extends this observa-
tion.

Proposition 4.8. If x and xŒ are independent clones in M, then x is fixed
in neither M nor M0xŒ. Dually, if x and xŒ are coindependent clones in M,
then x is cofixed in neither M nor M/xŒ.

It follows that if x and xŒ are independent, coindependent clones, then x
is neither fixed nor cofixed in M. However, it is quite possible for x to be
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fixed in M/xŒ and for x to be cofixed in M0xŒ. To see this, consider the
rank-r free spike Fr where r \ 4. For any leg {ai, bi} of Fr, the elements ai
and bi are independent, coindependent clones. Moreover, it is easily
checked that ai is fixed in M/bi and cofixed in M0bi. The situation that
arises in this example is fundamental, and is the focus of much of the
argument in the proof of Theorem 7.1, our main theorem.

Proposition 4.9. Elements x and y of a matroid M are clones if and
only if the set of cyclic flats containing x is equal to the set of cyclic flats
containing y.

Proof. It is evident that if x and y are clones, then a cyclic flat contains
x if and only if it contains y. Consider the converse. Assume that a cyclic
flat contains x if and only if it contains y. Now let I ı E(M)−{x, y} and
suppose that I 2 x is independent but that I 2 y is not. Then I 2 y con-
tains a circuit C containing y, and cl(C) is a cyclic flat contained in cl(I).
But x ¨ cl(I). Thus cl(C) is a cyclic flat that contains y but not x. We
conclude that I 2 x is independent if and only if I 2 y is independent, and
it follows easily that x and y are clones. L

Lemma 4.10. Let {a, aŒ} be a pair of clones of a matroid M, and let x be
in E(M)−{a, aŒ}.

(i) If {a, aŒ} is independent, and x is not fixed in M but is fixed in
M/a, then {a, aŒ, x} is a triangle of M.

(ii) If {a, aŒ} is coindependent, and x is not cofixed in M, but is cofixed
in M0a, then {a, aŒ, x} is a triad of M.

Proof. Consider part (i). Since a and aŒ are clones, x is fixed in M/aŒ. It
is now an immediate consequence of Proposition 4.7(iii) that if {a, aŒ, x} is
independent then x is fixed in M. Hence {a, aŒ, x} is dependent. Now x is
not a loop in M since it is not fixed in M. Moreover, as a and aŒ are inde-
pendent clones, x is not parallel to a or aŒ. Hence {a, aŒ, x} is a triangle of
M, that is, (i) holds. It follows by duality that (ii) holds. L

5. THE FREE QUASI-ORDER ON MATROID ELEMENTS

Let x and y be elements of a matroid M. Then x is freer than y in M if
every cyclic flat of M that contains x also contains y. If the matroid M is
clear from the context, then we will sometimes say simply that x is freer
than y. If x is freer than y but y is not freer than x, then x is strictly freer
than y.
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It is an immediate consequence of the definition that the relation on the
elements of M defined above is transitive and reflexive. Hence it is a quasi-
order. We call this quasi-order the free quasi-order on the elements of M.
This quasi-order is introduced and studied by Duke [7, 6]. As with all
quasi-orders, one can easily obtain an equivalence relation 5 on E(M) by
defining x 5 y if and only if x is freer than y and y is freer than x. The next
proposition is an immediate consequence of Proposition 4.9.

Proposition 5.1. Let x and y be elements of a matroid M. Then x 5 y if
and only if x and y are clones in M.

We call the equivalence classes of the above relation clonal classes of M.
It is well known, and easily seen, that F is a cyclic flat of M if and only if
E(M)−F is a cyclic flat of Mg. The following is an elementary conse-
quence of this observation.

Proposition 5.2. Let x and y be elements of a matroid M. Then x is
freer than y in M if and only if y is freer than x in Mg.

Proposition 5.3. The following are equivalent for elements x and y of a
matroid M.

(i) x is freer than y.
(ii) r(A 2 x) \ r(A 2 y) for all A ı E(M)−{x, y}.
(iii) For all A ı E−{x, y}, if x ¥ cl(A), then y ¥ cl(A).

Proposition 5.4. Let x and y be elements of a matroid M.

(i) If x is fixed in M/y, but not in M, then x is freer than y.
(ii) If x is cofixed in M0y, but not in M, then y is freer than x.

Proof. Assume that x is fixed in M/y but not in M. Let MŒ be a
matroid obtained by independently cloning x with xŒ. Assume that
{x, xŒ, y} is independent. Then x and xŒ are independent clones in M/y, so
that x is not fixed in M/y. Hence {x, xŒ, y} is a triangle. Let F be a cyclic
flat of M containing x. Then, since x and xŒ are clones, clMŒ(F) contains xŒ,
and therefore y. But clMŒ(F)=F 2 xŒ. Hence y ¥ F. It follows that x is
freer than y. L

The straightforward proof of the next proposition is omitted.

Proposition 5.5. Let x and y be distinct elements of a matroid M such
that x is freer than y in M.

(i) If y is not fixed in M, then x is not fixed in M.

(ii) If x is not cofixed in M, then y is not cofixed in M.
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(iii) If x is strictly freer than y, and y is not a loop, then x is not fixed
in M.

(iv) If x is strictly freer than y, and x is not a coloop, then y is not
cofixed in M.

Proposition 5.6. Let x and y be elements of a matroid M, and V and W
be disjoint subsets of E(M)−{x, y}. If x is freer than y in M, then x is freer
than y in M0V/W.

Proof. Suppose z is an element of E−{x, y}. Let F be a cyclic flat of
M0z containing x. Then either F or F 2 z is a cyclic flat of M containing
x. Hence either F or F 2 z contains y. In either case, F contains y. Thus x
is freer than y in M0z.
Consider M/z. By Proposition 5.2, y is freer than x in Mg and, by the

above argument, y is freer than x in Mg0x. Again, by Proposition 5.2, x is
freer than y in (Mg0x)g, that is, in M/x. The proposition now follows by
an elementary induction. L

Recall that if M and MŒ are matroids on a common ground set, then MŒ
is a rank-preserving weak-map image of M if M and MŒ have the same
rank, and every independent set of MŒ is also independent in M. If MŒ is a
rank-preserving weak-map image of M, then, following [17], we say that
M is freer than MŒ. We observe that this definition differs from that in
[13] by requiring M and MŒ to have the same rank.

Proposition 5.7. Let x and y be elements of a matroid M where x is
freer than y.

(i) Let MŒ be the matroid obtained from M0y by relabelling x as y. If
x is not a coloop of M, then MŒ is freer than M0x.

(ii) Let Mœ be the matroid obtained from M/y by relabelling x as y. If
x is not a loop of M, then M/x is freer than Mœ.

Proof. We begin by proving (i). Let C be a circuit of MŒ. If C does not
contain y, then C is also a circuit of M0x. Assume that y ¥ C. Then
clM((C−y) 2 x) is a cyclic flat of M containing x. Hence clM((C−y) 2 x)
contains y. But C−y is a basis for this flat. Hence (C−y) 2 y contains a
circuit, so (C−y) 2 y is dependent in M. We conclude that every depen-
dent set of MŒ is also dependent in M0x. Moreover, as x is freer than y,
and x is not a coloop of M, the ranks of MŒ and M0x are equal. Hence MŒ
is freer than M0x, that is, (i) holds. Part (ii) follows from (i) by using
duality together with Proposition 5.2 and the fact that M2 is freer than M1

if and only if Mg
2 is freer than Mg

1 (see, for example, [13, Corollary 7.3.13]).
L
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Let k be a positive integer. Then it is well known that if M is
k-connected and MŒ is freer than M, then MŒ is also k-connected. The
following corollary is an immediate consequence of this fact and Proposi-
tion 5.7.

Corollary 5.8. Let x and y be elements of a matroid M, where x is
freer than y.

(i) If M0x is 3-connected and x is not a coloop of M, then M0y is
3-connected.

(ii) If M/y is 3-connected and y is not a loop of M, then M/x is
3-connected.

Lemma 5.9. Let c and d be elements of a matroid M, and assume that d
is fixed in M/c but not in M. Then either c and d are clones, or c is fixed
in M.

Proof. By Proposition 5.4(i), d is freer than c. Assume that c is not
fixed in M. Let MŒ be a matroid obtained by independently cloning c with
cŒ. We show next that d is not fixed in MŒ. Since c is not fixed in MŒ, it
suffices to show that d is freer than c in MŒ. Let F be a cyclic flat of MŒ
containing d. If cŒ ¨ F, then F is a cyclic flat of M containing d and, since d
is freer than c in M, it follows that c ¥ F. If cŒ ¥ F, then, as c and cŒ are
clones in MŒ, we again obtain that c ¥ F. We conclude that every cyclic flat
of MŒ containing d also contains c. Hence d is not fixed in MŒ. But, by
Corollary 4.4, d is fixed in MŒ/c. Thus, by Lemma 4.10(i), {c, cŒ, d} is a
triangle of MŒ. Hence c is freer than d in MŒ and so, by Proposition 5.6, c is
freer than d in M. Thus c and d are clones in M. L

6. LEMMAS ON TRIANGLES AND TRIADS

In this paper, just as with many papers in matroid structure theory,
much of the argument focuses on the behaviour of triads and triangles. The
lemmas of this section examine triads and triangles in the context of the
notions defined in the two previous sections.

Lemma 6.1. Let a, b, and c be elements of a matroid M.

(i) If {a, b, c} is a triangle of M and neither a nor b is fixed in M,
then a and b are clones.

(ii) If {a, b, c} is a triad of M and neither a nor b is cofixed in M, then
a and b are clones.
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Proof. Consider part (i). Let MŒ be obtained by independently cloning
a by aŒ. As {a, b, c} is a triangle, so is {aŒ, b, c}. Hence a, aŒ, b, and c are
collinear. If F is a cyclic flat of M containing a, then F 2 aŒ is a cyclic flat
of MŒ containing aŒ. Hence F 2 aŒ contains b, that is, F contains b. We
conclude that a is freer than b. By the symmetry of the hypothesis, we
deduce that b is also freer than a. Thus a and b are clones. Part (ii) follows
by duality. L

Lemma 6.2. Let a, b, and c be elements of the connected matroid M.

(i) If {a, b, c} is a coindependent triangle and a is not fixed in M, then
neither b nor c is cofixed in M.

(ii) If {a, b, c} is an independent triad and a is not cofixed in M, then
neither b nor c is fixed in M.

Proof. By duality, it suffices to prove part (i). Independently clone a by
aŒ to obtain a matroid MŒ. Then {aŒ, b, c} is a triangle of MŒ, so MŒ has a
line L containing {a, aŒ, b, c}. Since a and aŒ are clones, every cyclic flat of
MŒ that contains a also contains aŒ, and so contains L. Thus a is freer than
b in MŒ and hence also in M. Now either a and b are clones in M, or a is
strictly freer than b. In the first case, since {a, b, c} is coindependent we see
that a and b are coindependent clones and b is not cofixed. The same
conclusion holds in the second case by Proposition 5.5(iv). L

Lemma 6.3. Let a, b, and c be elements of a 3-connected matroid M for
which |E(M)| \ 4.

(i) If {a, b, c} is a triangle, a is not fixed, and no triad of M contains
both a and b, then M0b is 3-connected.

(ii) If {a, b, c} is a triad, a is not cofixed, and no triangle of M con-
tains both a and b, then M/b is 3-connected.

Proof. By duality, it suffices to prove (i). Assume that {a, b, c} is a
triangle and that a is not fixed. We show that if M0b is not 3-connected,
then there is a triad of M using a and b. Let MŒ be a matroid obtained by
independently cloning a with aŒ. Evidently MŒ | {a, aŒ, b, c} 5 U2, 4. Let
{A, Z} be a 2-separation of M0b, where a ¥ A. It is easily seen that we
lose no generality in assuming that A is closed. If c ¥ A, then
rM(A 2 b)=rM(A), and {A 2 b, Z} is a 2-separation of M, contradicting
the fact that M is 3-connected. Hence c ¥ Z. Consider MŒ0b. In this
matroid, {a, aŒ, c} is a triangle. Suppose that aŒ ¥ clMŒ0b(A). Since A is a flat
of M0b, it follows that clMŒ0b(A)=A 2 aŒ. Since {a, aŒ} spans {a, aŒ, c}, we
deduce that c ¥ A 2 aŒ, that is, c ¥ A. From this contradiction, we deduce
that aŒ ¨ clMŒ0b(A). Thus aŒ is a coloop of MŒ | (A 2 aŒ). Since a and aŒ are
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clones, a is a coloop of MŒ | (A 2 aŒ), and hence of M |A. From this, it is
easily deduced that if |A−a| > 1, then {A−a, Z 2 a} is also a 2-separation
of M0b. But now {a, c} ı Z 2 a and arguing as before, we deduce that M
is not 3-connected. Hence |A−a|=1, say A−a=t. In this case,
r(Z)=r(M)−1. Hence {a, b, t} contains a cocircuit of M. It now follows
from the fact that M is 3-connected having at least four elements that
{a, b, t} is a triad, as required. L

The next lemma gives a useful necessary and sufficient condition for an
element in a triangle to be fixed.

Lemma 6.4. Let {a, b, c} be a triangle in a matroid M. Then a is fixed in
M if and only if M has a circuit whose closure meets {a, b, c} in {a}.

Proof. If M has a circuit C whose closure meets {a, b, c} in {a}, then
{cl({a, b, c}), cl(C)} is a modular pair whose intersection is cl({a}). Thus a
is fixed in M. Conversely, if a is fixed in M, then, by Proposition 4.5, a is
not freely placed on cl({a, b, c}). Thus M has a circuit C containing a such
that cl(C) ˝ cl({a, b, c}). Thus |cl(C) 5 cl({a, b, c})| [ 1. Hence cl(C) 5
cl({a, b, c})={a}. L

Lemma 6.5. Let {X, Y} be a 3-separation of a 3-connected matroid M.
Suppose that {a, b} ı cl(X) 5 cl(Y) and a is strictly freer than b. Then b is
fixed in M.

Proof. Since a is strictly freer than b, there is a cyclic flat F containing
b but not a. Now clone b by bŒ to obtain the matroid MŒ. Then
FŒ=clMŒ(F) contains b and bŒ but not a. Also bŒ ¥ clMŒ(X) and bŒ ¥ clMŒ(Y).
Set Z=clMŒ(X) 5 clMŒ(Y). Then {b, bŒ} ı Z. As X, Y is a 3-separation,
r(Z) [ 2. Moreover, a ¥ Z, but a ¨ FŒ. Hence r(FŒ 5 Z)=1. But {b, bŒ} ı
(FŒ 5 Z). Hence {b, bŒ} is a parallel pair so that b is fixed in M. L

7. PROOF OF THE MAIN THEOREM

Let N be a 3-connected matroid with at least four elements, and let M be
a 3-connected matroid with an N-minor. Recall from the introduction that
M is a totally free expansion of N if the following holds for all x in E(M):
if M0x has an N-minor and co(M0x) is 3-connected, then x is not fixed in
M, and if M/x has an N-minor and si(M/x) is 3-connected, then x is not
cofixed in M. In this section, we prove our main theorem, the following
result.
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Theorem 7.1. Let N be a 3-connected matroid with at least four ele-
ments and M be a totally free expansion of N such that M ]N. Then either

(i) M has an element d such that M0d is a totally free expansion of
N; or

(ii) M has an element c such that M/c is a totally free expansion of
N; or

(iii) neither (i) nor (ii) holds and M has an element c such that M/c is
3-connected with an N-minor. Moreover, for, every such element c, there is
an element d of E(M) such that M0d is 3-connected with an N-minor, d is
fixed in M/c, and M0d/c is a totally free expansion of N.

Note that Theorem 7.1 is a strengthening of Theorem 2.2. It follows
from the Splitter Theorem that, unless M is a wheel or a whirl, M has an
element c such that M0c or M/c is 3-connected with an N-minor. Ideally
we would like such a matroid to be a totally free expansion of N, but this is
not always the case. Hence the necessity for part (iii) of Theorem 7.1. In
the lemmas that follow, we examine the structure that arises. The first
lemma follows immediately from the fact that the definition of a totally
free expansion is self dual.

Lemma 7.2. M is a totally free expansion of N if and only if Mg is a
totally free expansion of Ng.

Let N be a 3-connected minor of a 3-connected matroid M, where
|E(N)| \ 4. Let c be an element of M. Then M is an almost totally free
expansion of N relative to c if either M0c or M/c is 3-connected with an
N-minor and, for all y in E(M)−c, if si(M/y) is 3-connected with an
N-minor, then y is not cofixed in M, while if co(M0y) is 3-connected with
an N-minor, then y is not fixed in M.

Lemma 7.3. Let Cg be a cocircuit of a matroid M for which |Cg| \ 3 and
Cg has an element c such that no element of Cg−c is cofixed. Then there is a
subset S of Cg−c such that Cg−c−S contains a pair of clones in M0S.

Proof. We shall argue by induction on |Cg|. If Cg is a triad, then the
result follows from Lemma 6.1(ii) by taking S to be the empty set.
Now assume the lemma holds for |Cg| < k and let |Cg|=k > 3. Choose a

in Cg−c. If Cg−c−a contains an element b that is cofixed in M0a, then,
by the dual of Lemma 5.9, a and b are clones in M. Hence the result
follows by taking S to be the empty set. Thus we may assume that no
element of Cg−c−a is cofixed in M0a. Then, by the induction assump-
tion, there is a subset SŒ of Cg−c−a such that Cg−c−a−SŒ contains a
pair of clones of M0a0S. The result now follows by taking s to be SŒ 2 a.
We conclude, by induction, that the lemma holds. L
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Lemma 7.4. Let M be an almost totally free expansion of N relative to c
such that M/c is 3-connected with an N-minor. If x is an element of M such
that si(M/c, x) is 3-connected, and M/c, x has an N-minor, then x is not
cofixed in M/c.

Proof. If si(M/x) is 3-connected, then it follows from the definition of
an almost totally free expansion that x is not cofixed in M, and thus, by
Corollary 4.4(ii), x is not cofixed in M/c. Therefore we may assume that
si(M/x) is not 3-connected. By Lemma 3.6, M has a rank-3 cocircuit Cg

containing c such that x ¥ cl(Cg) 5 (E(M)−Cg). We now prove:

7.4.1. (i) If y ¥ Cg, then both M/x, y and M/y have N-minors.
(ii) No triangle of M | (Cg 2 x) meets {x, c}.
(iii) If y ¥ Cg−c, then si(M/y) is 3-connected.
(iv) If y ¥ Cg−c, then y is not cofixed in M.

Proof. Evidently Cg is a rank-2 cocircuit of M/x. It is now easily
checked that if y ¥ Cg, then si(M/x, y) 5 si(M/x, c). But si(M/x, c) has
an N-minor, so si(M/x, y) has an N-minor. It follows immediately that
M/y has an N-minor, so part (i) holds.
Suppose that (ii) fails. As M/c is 3-connected, M | (Cg 2 x) certainly has

no triangles containing c. Thus we may assume that M | (Cg 2 x) has a
triangle {x, z, zŒ}. Denote E(M)−Cg by H. If x ¨ cl(H−x), then
{H−x, Cg 2 x} is a 2-separation of M, contradicting the fact that M is
3-connected. Hence x ¥ cl(H−x). Thus H−x contains a cyclic flat F con-
taining x. Evidently r(F 2 {x, z, zŒ})=r(F)+1=r(F)+r({x, z, zŒ})−1.
Thus {F, cl({x, z, zŒ})} is a modular pair of flats of M. But
F 5 cl({x, z, zŒ})={x}. We can now deduce, by Proposition 4.1, that x is
fixed in M. By (i), M/x, z has an N-minor. Now zŒ is a loop of M/x, z so
M/x, z0zŒ has an N-minor. But {x, zŒ} is a parallel pair of M/z. Hence
M/x, z0zŒ=M/z, zŒ0x. Therefore M0x has an N-minor. Since si(M/x)
is not 3-connected, Lemma 3.2 implies that co(M0x) is 3-connected.
Hence co(M0x) is 3-connected with an N-minor. As x ] c, it follows from
the definition of an almost totally free expansion that x is not fixed in M.
We conclude from this contradiction that part (ii) holds.
Let y and yŒ be distinct elements of Cg−c. Now r(Cg)=3 and, by (ii),

M | (Cg 2 x) has no triangles meeting {x, c}. It follows that {x, yŒ, c} is a
triangle of M/y. Hence, by Lemma 3.5, si(M/y) is 3-connected, and
part (iii) holds. Part (iv) follows from parts (i) and (iii) and the definition of
an almost totally free expansion. L

By Lemma 7.3, there is a subset S of Cg−c such that Cg−c−S contains
a pair {w, z} of clones of M0S. By (7.4.1), {c, w, z} is not a triangle. Hence
{w, z} is a pair of independent clones of M0S/c.
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Consider M/c. All points of S are on the line of M/c spanned by
{x, w, z}. None of these points is parallel to either w or z. It is now
straightforward to argue that, for a subset D of E(M/c)−{w, z}, the set
D 2 w is a circuit of M/c if and only if D 2 z is a circuit of M/c. Thus w
and z are clones of M/c. We conclude that neither w nor z is fixed in M/c.
Hence, by Lemma 6.2(i), x is not cofixed in M/c. L

Dualizing Lemma 7.4, we immediately obtain the following result.

Corollary 7.5. Let M be an almost totally free expansion of N relative
to d such that M0d is 3-connected with an N-minor. If x is an element of
M0d such that co(M0d, x) is 3-connected, and M0d, x has an N-minor,
then x is not fixed in M0d.

Lemma 7.6. Let M be an almost totally free expansion of N relative to
d, and assume that M0d is 3-connected with an N-minor.

(i) If d is fixed in M, then M0d is a totally free expansion of N.

(ii) If M is a totally free expansion of N, but M0d is not a totally free
expansion of N, then there, is an element z of E(M)−d such that
si(M0d/z) is 3-connected with an N-minor and z is cofixed in M0d. More-
over, every such element also has the property that M/z is 3-connected with
an N-minor.

Proof. Assume that M0d is not a totally free expansion of N. Suppose
that y ¥ E(M)−d is such that co(M0d, y) is 3-connected with an
N-minor. Then, by Corollary 7.5, y is not fixed in M0d. Therefore there is
an element z of E(M)−d such that si(M0d/z) is 3-connected with an
N-minor and z is cofixed inM0d. By Lemma 3.8(ii), si(M/z) is 3-connected
with an N-minor. Hence z is not cofixed in M. By Proposition 5.4(ii), d is
freer than z.
Assume that d is fixed in M. Then, since d is freer than z, either d and z

are parallel or z is a loop of M, contradicting the fact that M is 3-con-
nected with more than four elements. Hence part (i) holds, and we may
assume that d is not fixed in M.
Consider part (ii). Assume that M is a totally free expansion of N. We

have already established the first assertion of part (ii). It remains to prove
that, for every element z satisfying this first assertion, M/z is 3-connected.
Assume that, for some such element, M/z is not 3-connected. As si(M/z)
is 3-connected, it follows that there is a triangle T of M using z. Suppose
first that d ¥ T, say T={d, dŒ, z}. Evidently M0d/z 5M0dŒ/z. Hence
M0dŒ has an N-minor. Since M0d is 3-connected, no triad of M uses d.
Hence, by Lemma 6.3(i), M0dŒ is 3-connected. Thus, by the definition of a
totally free expansion, dŒ is not fixed in M. Hence, by Lemma 6.1(i), d and
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dŒ are clones. It now follows by Lemma 4.10(ii) that {z, d, dŒ} is a triad of
M. The only 3-connected matroid in which a triad is also a triangle is U2, 4.
But |E(N)| \ 4, and N is a proper minor of M, so M̂ 5 U2, 4. It follows that
z is not in a triangle of M containing d.
We may now assume that T={a, b, z} where d ¨ {a, b}. Next we prove

that no triad of M contains {a, b}. Suppose that {a, b, t} is a triad Tg of
M. Since M0d is 3-connected, t ] d. As M is 3-connected but M̂ 5 U2, 4,
we deduce that |E(M)−Tg| \ 3. Thus {Tg, E(M)−Tg} is a 3-separation of
M. But z ¥ cl(Tg), so if r(E(M)−Tg) \ 3, then {Tg, E(M)−(Tg 2 z)} is a
vertical 2-separation of M/z, contradicting the fact that si(M/z) is 3-con-
nected. Hence E(M)−Tg is a line. Moreover, E(M)−Tg contains d and z,
and has at least three points. Thus M has a triangle containing {d, z}, con-
tradicting the fact that M has no such triangles. We conclude that no triad
of M contains {a, b}.
Since {a, b} is a parallel pair of M/z, and si(M/z) has an N-minor,

M0a and M0b both have N-minors. Assume that a is not fixed in M. No
triad of M contains {a, b}, so, by Lemma 6.3(i), M0b is 3-connected. By
the definition of a totally free expansion, b is not fixed in M. Hence, by
Lemma 6.1(i), a and b are clones. Thus a and b are also clones in M0d and
are therefore not fixed in M0d. It now follows, by applying Lemma 6.2(i)
to M0d, that z is not cofixed in M0d. This contradiction implies that both
a and b are fixed in M. Since both M0a and M0b have N-minors, we
deduce that neither co(M0a) nor co(M0b) is 3-connected. In this case, we
deduce from the dual of Lemma 3.7 that there is a triad of M containing
{a, b}, contradicting the fact that no such triad exists. We conclude that
M/z is 3-connected, as required. L

Lemma 7.7. Let M be a totally free expansion of N such that, for all x in
E(M), neither M0x nor M/x is a totally free expansion of N. Assume that
an element c of M has the property that M/c is 3-connected and has an
N-minor. Then there is an element d of E(M)−c with the property that
M0d is 3-connected, d is fixed in M/c, and M/c0d is a totally free
expansion of N.

Proof. Let Sdel consist of those elements whose deletion from M is
3-connected with an N-minor, and let Vdel={(x, del): x ¥ Sdel}. Let Scon
consist of those elements whose contraction from M is 3-connected with an
N-minor, and let Vcon={(x, con): x ¥ Scon}. We now construct a directed
bipartite graph with vertex set Vcon 2 Vdel as follows. There is a directed
edge from (z, del) to (zŒ, con) if and only if si(M0z/zŒ) is 3-connected with
an N-minor and zŒ is cofixed in M0z, and there is a directed edge from
(zŒ, con) to (z, del) if and only if co(M/zŒ0z) is 3-connected with an
N-minor and z is fixed in M/zŒ.
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Suppose that z ¥ Sdel. By assumption, M0z is not a totally free expansion
of N. Moreover, by Lemma 7.6(ii), there is an element zŒ of M such that
si(M0z/zŒ) is 3-connected with an N-minor and zŒ is cofixed in M0z.
Furthermore, M/zŒ is 3-connected with an N-minor. Hence zŒ ¥ Scon. We
conclude that each vertex of Vdel has out degree at least one and, by duality,
so too does each vertex of Vcon. This shows that each vertex of the bipartite
graph has outdegree at least one. Assume that some vertex, say (d, del), of
Vdel has indegree greater than one. Then there are elements c1 and c2 of Scon
such that d is fixed in both M/c1 and M/c2. Since d is not fixed in M, it
follows from Lemma 4.7(iii) that {d, c1, c2} is a triangle, contradicting the
fact that M/c1 is 3-connected. Thus each vertex of Vdel has indegree at most
one. By a dual argument, the same is true for each vertex in Vcon. It now
follows by elementary graph theory that each vertex has indegree and
outdegree exactly one.
Choose c ¥ Scon. By the above, there is a unique element d of Sdel such

that co(M/c0d) is 3-connected with an N-minor and d is fixed in M/c. By
Lemma 7.4, if x is an element of E(M)−c such that si(M/c, x) is 3-con-
nected with an N-minor, then x is not cofixed in M/c, x. Also, M0d is
3-connected, so M0d has no series pairs. Hence M0d/c has no series pairs.
Therefore co(M/c0d)=M/c0d. But we know co(M/c0d) is 3-con-
nected. Hence M/c0d is 3-connected. It follows that M/c is an almost
totally free expansion of N relative to d. Thus, by Lemma 7.6(i), M/c0d is
a totally free expansion of N. L

Proof of Theorem 7.1. Suppose first that M is a wheel or whirl. Since
|E(M)| \ 5, it follows that r(M) \ 3. One readily checks that if co(M0x) is
3-connected, then x is fixed in M, and it follows by duality that if si(M/x)
is 3-connected, then x is cofixed in M. Moreover, it is easily seen that, since
N is a proper minor of M, there is an element x such that either co(M0x)
or si(M/x) is 3-connected with an N-minor. We conclude that M is not a
totally free expansion of N; a contradiction.
We may now assume that M is not a wheel or a whirl. By the Splitter

Theorem, the set of elements whose deletion or contraction from M is
3-connected with an N-minor is non-empty. If, for some such element x,
either M0x or M/x is a totally free expansion of N, then (i) or (ii) holds.
Thus we may assume that neither (i) nor (ii) holds. Then there is an element
x of M such that either M/x or M0x is 3-connected having an N-minor.
In the second case, by the dual of Lemma 7.7, Mg has an element y such
that Mg0y is 3-connected having an Ng-minor. Hence M/y is 3-connected
having an N-minor. Thus, in both the first and second cases, M has an
element c such that M/c is 3-connected having an N-minor. It now follows
by Lemma 7.7 that (iii) holds. L
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8. TOTALLY FREE MATROIDS

Recall from the introduction that a 3-connected matroid M is totally free
if it has at least four elements and, for all x in E(M), if co(M0x) is
3-connected, then x is not fixed in M, while if si(M/x) is 3-connected, then
x is not cofixed in M. The main purpose of this section is to present a
strengthening of Theorem 7.1 for totally free matroids. Theorem 7.1 can
also be strengthened for totally free expansions of a matroid N as long as a
reasonably natural condition is placed on the matroid N, and we begin by
showing this. Recall that a matroid NŒ is strictly freer than N if N is a rank-
preserving weak-map image of NŒ, and N ]NŒ.

Theorem 8.1. Let N be a minor-closed class of matroids that is closed
under isomorphism, and let N be a 3-connected matroid in N with
|E(N)| \ 4 such that no matroid in N is strictly freer than N. Let M be a
matroid in N that is a totally free expansion of N. Then at least one of the
following holds.

(i) There is an element x of E(M) for which either M0x or M/x is a
totally free expansion of N.

(ii) The set of elements x for which either M0x or M/x is 3-connected
with an N-minor can be partitioned into 2-element subsets with the property
that if {a, aŒ} is a block in this partition, then {a, aŒ} is a clonal class of M
and M0a/aŒ is a totally free expansion of N.

Before proving Theorem 8.1, we note two lemmas. The first holds for
any totally free expansion of a 3-connected matroid. When, as in the next
proof, we refer to a clonal triple or a clonal pair, we mean a subset of size
three or two, respectively, of a clonal class.

Lemma 8.2. Let N be a 3-connected matroid with at least four elements.
Let M be a totally free expansion of N, and assume that the element a of M
belongs to a clonal class of size at least three.

(i) If M0a is 3-connected with an N-minor, then M0a is a totally free
expansion of N.

(ii) If M/a is 3-connected with an N-minor, then M/a is a totally free
expansion of N.

Proof. By duality, it suffices to prove (i). Assume that M0a is 3-con-
nected with an N-minor, but that M0a is not a totally free expansion of N.
Then, by Lemma 7.6(ii), there is an element z of E(M)−a such that z is
cofixed in M0a. Now M has elements b and c such that {a, b, c} is a clonal
triple, and hence b and c are clones in M0a. Moreover, since M0a is
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3-connected with at least four elements, {b, c} is coindependent in M0a.
Thus neither b nor c is cofixed in M0a. Hence z ¨ {b, c}.
Assume next that a is freer than z. Since a and b are clones, b is also freer

than z. By Proposition 5.6, b is freer than z in M0a. But then, by
Lemma 5.5(ii), z is not cofixed in M0a. It follows from this contradiction
that we may assume that a is not freer than z. Then, by Proposition 5.4(ii),
z is not cofixed in M0a. This contradiction completes the proof of the
lemma. L

Proof of Theorem 8.1. Assume that there is no element x such that
either M0x or M/x is a totally free expansion of N. Suppose that the set
of elements x of M for which M0x or M/x is 3-connected with an
N-minor is non-empty. By duality, we may assume that M has an element
c for which M/c is 3-connected with an N-minor. By Theorem 7.1, there is
an element d of E(M)−c such that M0d is 3-connected with an N-minor,
d is fixed in M/c, and M/c0d is a totally free expansion of N. As M is a
totally free expansion of N and M0d is 3-connected having an N-minor, it
follows that d is not fixed in M. By Proposition 5.4(i), d is freer than c. Let
MŒ be the matroid obtained from M0c by relabelling d as c. By Proposi-
tion 5.7(i), MŒ is freer than M0d. Since N is a minor of M0d, there is an
independent set I and a coindependent set J in M0d such that
(M0d)/I0J 5N. One readily checks that MŒ/I0J is freer than
(M0d)/I0J, that is, MŒ/I0J is freer than N. But N is closed under iso-
morphism and minors, so MŒ/I0J ¥N. It now follows by the hypothesis
of the theorem that MŒ/I0J is not strictly freer than N, so MŒ/I0J 5N.
Hence MŒ has an N-minor. Moreover, since M0d is 3-connected and d is
freer than c in M, it follows by Corollary 5.8 that M0c is 3-connected.
Since M0c also has an N-minor, the definition of a totally free expansion
implies that c is not fixed in M. We conclude, by Lemma 5.9, that c and d
are clones. It now follows from Lemma 8.2 that {c, d} is a clonal class. L

We now turn our attention to totally free matroids. We start by showing
that being a totally free matroid is equivalent to being a totally free expan-
sion of U2, 4. This will follow from the next three lemmas. The straightfor-
ward proof of the first of these is given in [10].

Lemma 8.3 [10, Lemma 5.6]. Let x be an element of a connected binary
matroid M with at least two elements.

(i) If M0x is connected, then x is fixed in M.

(ii) If M/x is connected, then x is cofixed in M.
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Lemma 8.4. Let a and aŒ be clones of a 3-connected matroid M such that
r(M) \ 3. Then M/a is non-binary. Moreover, if rg(M) \ 3, then M/a0aŒ is
non-binary.

Proof. Since M is 3-connected, M0a is connected. But a is not fixed in
M, so, by Lemma 8.3(i), M is non-binary. If rg(M)=2, then M 5 Un, n+2
for some n \ 3, and the result clearly holds. Assume that M has corank at
least three. In this case, it follows from [13, Corollary 11.2.19] that M has
a minor isomorphic to one of W3, P6, Q6, and U3, 6, where W3 denotes the
rank-3 whirl, and the matroids P6 and Q6 are as defined in the appendix of
[13]. But it is shown in [14] that this set of four matroids is 2-rounded.
This means that M has a minor MŒ that uses both a and aŒ and is iso-
morphic to one of W3, P6, Q6, and U3, 6. By Proposition 4.3, a and aŒ are
clones in MŒ. But W3 has no pairs of clones, so MŒ̂ 5W3. An easy check
shows that a matroid obtained by contracting one member of a clonal pair
and deleting the other is non-binary in each of the other three possibilities
for MŒ, that is, MŒ/a0aŒ is non-binary. We immediately deduce that
M/a0aŒ is non-binary. L

Lemma 8.5. Let M be a totally free expansion of U2, 4 of rank at least
three. If z ¥ E(M), then M/z is non-binary.

Proof. It is a straightforward consequence of the Splitter Theorem that
there is an element a of E(M) such that si(M/a) is 3-connected and non-
binary. If z=a, then M/z is certainly non-binary. Hence we may assume
that z ] a.
Suppose that no triangle of M contains {z, a}. Then z is not in a 2-circuit

of M/a. It now follows easily from the fact that si(M/a) is 3-connected
that M/a, z is connected. By the definition of a totally free expansion, a is
not cofixed in M, so, by Corollary 4.4(ii), a is not cofixed in M/z. By
Lemma 8.3(ii), if M/z were binary, then, given that M/a, z is connected, a
would be cofixed in M/z. We deduce that M/z is non-binary.
It remains to consider the case when M has a triangle containing {z, a}.

Let {a, y, yŒ} be such a triangle, where z ¥ {y, yŒ}. Suppose that M has a
triad Tg containing {y, yŒ}. Since M̂ 5 U2, 4, it follows that a ¨ Tg. If
r(M) \ 4, then one easily deduces, since a ¥ cl(Tg), that si(M/a) is not
3-connected. From this contradiction, we conclude that r(M)=3. In that
case, si(M/a) 5 U2, 3; a contradiction.
We may now assume that M has no triad that contains {y, yŒ}. Since

both y and yŒ are in a non-trivial parallel class of the non-binary matroid
M/a, both M/a0y and M/a0yŒ are non-binary. Hence both M0y and
M0yŒ are non-binary. Suppose that neither M0y nor M0yŒ is 3-con-
nected. Then, by Lemma 3.1 and the fact that {y, yŒ} is in no triad, it
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follows that M has a triad containing {a, y} and a different triad contain-
ing {a, yŒ}. We deduce that a is cofixed in M; a contradiction. We conclude
that either M0y or M0yŒ is 3-connected. Without loss of generality,
assume that M0y is 3-connected. Then, by the definition of a totally free
expansion, y is not fixed in M. But then, since no triad of M uses both y
and yŒ, it follows from Lemma 6.3 that M0yŒ is 3-connected. Again, by the
definition of a totally free expansion we deduce that yŒ is not fixed in M.
Hence, by Lemma 6.1(i), y and yŒ are clones. But now, by Lemma 8.4, both
M/y and M/yŒ are non-binary. Since z ¥ {y, yŒ}, we conclude that M/z is
non-binary. L

Corollary 8.6. A matroid M is totally free if and only if it is a totally
free expansion of U2, 4.

Proof. Suppose that M is totally free. It is an immediate consequence
of Lemmas 3.2 and 8.3 that M is not binary, that is, M has a U2, 4-minor. It
now follows immediately that M is a totally free expansion of U2, 4. Con-
versely, assume that M is a totally free expansion of U2, 4. If r(M)=2, then
evidently M 5 U2, n for some n \ 4, and it is easily verified that M is totally
free. Dually, M is totally free if rg(M)=2. Assume that M has rank and
corank greater than two. Choose x in E(M). Suppose si(M/x) is 3-con-
nected. By Lemma 8.5, M/x has a U2, 4-minor. Thus, since M is a totally
free expansion of U2, 4, the element x is not cofixed in M. Dually, if
co(M0x) is 3-connected, then x is not fixed in M. L

Since the class of all matroids is minor-closed and no matroid is freer
than U2, 4, Theorem 8.1 holds when the matroid M is a totally free expan-
sion of U2, 4, that is, when M is a totally free matroid. However, in the
special case of totally free matroids, Theorem 8.1 can be strengthened
somewhat. This strengthening, Corollary 8.13, will require several more
preliminaries.

Lemma 8.7. If {a, b, c} is a triad of a totally free matroid M with at
least five elements, then no triangle of M meets {a, b, c}.

Proof. Let H=E(M)−{a, b, c}. Assume that M has a triangle meeting
{a, b, c}. Then, as M̂ 5 U2, 4, this triangle is not {a, b, c}. Thus, without loss
of generality, we may assume that it is {a, b, z} for some z in H. If z is a
coloop of M |H, then {{a, b, c, z}, E(M)−{a, b, c, z}} is a 2-separation of
M; a contradiction. Thus z is not a coloop of M |H. Therefore, by
Lemma 6.4, z is fixed in M. As M is totally free, it follows that co(M0z) is
not 3-connected. Thus, by Lemma 3.2, si(M/z) is 3-connected. But si(M/z)
has a 2-cocircuit and so is isomorphic to U2, 3. On combining this with the
fact that co(M0z) is not 3-connected, it is not difficult to show that M is
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isomorphic to a rank-3 wheel or whirl. But neither of these matroids is
totally free; a contradiction. L

Lemma 8.8. If {a, b, c} is a triad or a triangle of a totally free matroid
M, then {a, b, c} is a clonal triple.

Proof. The lemma certainly holds if |E(M)|=4 since, in that case,
M 5 U2, 4. Thus suppose that |E(M)| \ 5. Assume {a, b, c} is a triad. By
Lemma 8.7 and the dual of Lemma 3.1, there is an element z of {a, b, c}
such that M/z is 3-connected. Without loss of generality, assume that M/a
is 3-connected. By the definition of a totally free matroid, a is not cofixed
in M. It now follows from Lemmas 6.3 and 8.7 that M/b and M/c are
3-connected. Hence neither b nor c is cofixed, that is, no member of
{a, b, c} is cofixed. We conclude from Lemma 6.1(ii) that {a, b, c} is a
clonal triple. L

Proposition 8.9. Let x be an element of a totally free matroid M. Then
either M0x or M/x is 3-connected.

Proof. By Lemma 3.2, either co(M0x) or si(M/x) is 3-connected. By
duality, we may assume that si(M/x) is 3-connected. If M/x is not 3-con-
nected, then x belongs to a triangle, T, and, by Lemma 8.8, T is a clonal
triple. By the dual of Lemma 8.7, no member of T belongs to a triad, so, by
Tutte’s Triangle Lemma (3.1), T has a member z such that M0z is 3-con-
nected. But z and x are clones, so M0x is 3-connected. L

Lemma 8.10. Let M be a totally free matroid and a and b be elements of
M such that M/a0b is 3-connected and b is fixed in M/a. Then {a, b} is a
clonal class of M.

Proof. Suppose first that b is fixed in M. Then M0b is not 3-con-
nected. But M0b/a is 3-connected. Hence M has a triad Tg containing
{a, b}. Thus, by Lemma 8.8, Tg is a clonal triple of M containing b, so b is
not fixed in M; a contradiction.
We may now assume that b is not fixed in M. Then, by Lemma 5.9,

either

(i) {a, b} is a clonal pair in M; or
(ii) a is fixed in M.

Suppose that (ii) holds. Then M0a is not 3-connected. Let {X, Y} be a
2-separation of M0a in which b ¥X. Now assume that b is not a coloop of
M |X. Then M |X has a cyclic flat containing b. As a ¨ clM(X), it follows
that a is not in this cyclic flat. Thus b is not freer than a in M. However, b
is fixed in M/a but not in M, so, by Proposition 5.4, b is freer than a in M;
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a contradiction. We conclude that b is a coloop of M |X. Now both |X|
and |Y| exceed two, otherwise a is in a triad of M, so, by Lemma 8.8,
a is not fixed in M. It follows that {X, Y 2 a} is a 3-separation of M and
hence of Mg. As a ¨ clM(Y), we deduce that a ¥ clMg(X), so a ¥ clMg(x) 5
clMg(Y 2 a). Moreover, as b ¨ clM(X−b), we deduce that b ¥ clMg(Y 2 a),
so b ¥ clMg(X) 5 clMg(Y 2 a).
We now know that {a, b} ı clMg(X) 5 clMg(Y 2 a). Moreover, as a is

fixed in M but b is not, b is strictly freer than a in M, so a is strictly freer
than b in Mg. Then, by Lemma 6.5, b is fixed in Mg, that is, b is cofixed in
M. Thus M/b is not 3-connected, so, by Corollary 5.8(ii), M/a is not
3-connected. But M/a0b is 3-connected, so {a, b} is contained in a triangle
T of M. Thus, by Lemma 8.8, T is a clonal triple of M containing b, so b is
not fixed in M/a; a contradiction. We conclude that a is not fixed in M,
that is, (ii) fails. Hence (i) holds, that is, {a, b} is a clonal pair in M.
Moreover, if the clonal class of M containing a has size at least three, then
b is not fixed in M/a. It follows that b is the unique clone of a in M. L

Lemma 8.11. Let M be a totally free matroid and a be an element of M
such that M/a is 3-connected.

(i) If co(M/a0x) is 3-connected but x is fixed in M/a, then M/a0x
is 3-connected and {a, x} is a clonal class of M.

(ii) If si(M/a/x) is 3-connected, then x is not cofixed in M/a.

Proof. Assume that co(M/a0x) is 3-connected and x is fixed in M/a.
If M/a0x is 3-connected, then, by Lemma 8.10, {a, x} is a clonal class of
M. Thus we may assume that M/a0x is not 3-connected. Since
co(M/a0x) is 3-connected, it follows that x is in a triad {x, s, t}, say, of
M/a. Then {x, s, t} is a triad of M. As M is totally free, by Lemma 8.8,
{x, s, t} is a clonal triple of M and hence of M/a. Thus x is not fixed in
M/a; a contradiction. We conclude that (i) holds.
Now suppose that si(M/a/x) is 3-connected but x is cofixed in M/a.

Then, by Proposition 4.7, x is cofixed in M. But M is totally free, so
si(M/x) is not 3-connected. Then, by Lemma 3.6, M has a rank-3 cocircuit
Cg containing a such that x ¥ cl(Cg) 5 (E(M)−Cg). In M/a, the elements
of (Cg−a) 2 x are collinear. Thus, if {j, k} ı Cg−a, then {x, j, k} is a
triangle of M/a and x is cofixed in M/a. Then, by Lemma 6.2, j is fixed in
M/a. Hence every element of Cg−a is fixed in M/a.
Suppose that |Cg|=3. Then, by Lemma 8.8, Cg is a clonal triple of M.

Hence Cg−a is a clonal pair in M/a, that is, no element of Cg−a is fixed
in M/a; a contradiction. We may now assume that |Cg| \ 4. Then
|(Cg−a) 2 x| \ 4. Since the elements of (Cg−a) 2 x are collinear in M/a,
it follows that if j ¥ Cg−a, then M/a0 j is 3-connected. Since j is also fixed
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in M/a, Lemma 8.10 implies that {j, a} is a clonal class of M. But this is a
contradiction since the last assertion must hold for every j in Cg−a and
|Cg−a| \ 3. We conclude that (ii) holds. L

Theorem 8.12. Let M be a totally free matroid with |E(M)| \ 5. If a is
an element of M such that either M0a is 3-connected but not totally free, or
M/a is 3-connected but not totally free, then

(i) a has a unique clone aŒ in M;

(ii) both M0a/aŒ and M/a0aŒ are totally free; and

(iii) both M0a and M/a are 3-connected.

Proof. The hypotheses imply that both r(M) and rg(M) exceed two. By
duality, we may assume that M/a is 3-connected but not totally free. Then
M/a has an element x such that either

(i) co(M/a0x) is 3-connected but x is fixed in M/a; or
(ii) si(M/a/x) is 3-connected but x is cofixed in M/a.

By Lemma 8.11, (ii) does not hold and, since (i) must hold, {a, x} is a
clonal class of M, and M/a0x is 3-connected.
We show next that M/a is an almost totally free expansion of U2, 4 rela-

tive to x. Certainly M/a0x is 3-connected and, by Lemma 8.4, M/a0x is
non-binary. Now suppose that y ¥ E(M/a)−x. Then, by Lemma 8.11, if
si(M/a/y) is 3-connected, then y is not cofixed in M/a; and if
co(M/a0y) is 3-connected, then y is not fixed in M/a since y ] x. Thus
M/a is indeed an almost totally free expansion of U2, 4 relative to x.
Moreover, M/a0x is 3-connected with a U2, 4-minor, and x is fixed in
M/a. Hence, by Lemma 7.6, M/a0x is a totally free expansion of U2, 4.
Thus, by Corollary 8.6, M/a0x is totally free. Since x and a are clones,
M/x0a is also totally free.
Finally, we note that, since {a, x} is a clonal class, Lemma 8.8 implies

that {a, x} is not in a triangle or a triad of M. Thus, as M0a/x is
3-connected, so too are M0a and M/x. L

Corollary 8.13. Let M be a totally free matroid such that |E(M)| \ 5
and, for all x in E(M), neither M0x nor M/x is totally free. Then the
ground set of M is the union of 2-element clonal classes. Moreover, if
a ¥ E(M), then M0a and M/a are both 3-connected, and if aŒ is the unique
clone of a in M, then M0a/aŒ is totally free.

Proof. Choose a in E(M). By Proposition 8.9, M0a or M/a is 3-con-
nected. The result now follows immediately from Theorem 8.12. L
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We conclude this section with a result of a somewhat different nature
from earlier ones. It shows that, while it is possible to remove elements or
pairs of elements from a totally free matroid and remain totally free, if
elements are removed in the wrong way, we may soon be far from being
totally free. It also shows that, in general, totally free matroids may be
highly complicated objects.

Theorem 8.14. Let N be a matroid. Then there is a totally free matroid
M with an N-minor such that |E(M)−E(N)|=4.

Proof. Let N0=N and, for each i in {1, 2}, let Ni be obtained from
Ni−1 by freely extending by the element di. Then, for each j in {1, 2}, let
Nj+2 be obtained from Nj+1 by freely coextending by the element cj.
Finally, let M=N4. Certainly M has an N-minor and has exactly four
more elements than N. It is straightforward to check, by, say, comparing
collections of bases [13, Exercise 7.2.5], that the operation of free exten-
sion by an element e commutes with the operation of free extension by an
element f and also with the operation of free coextension by an element g.
It follows that c1 and c2 are clones in M, as are d1 and d2. Thus none of
c1, c2, d1 and d2 is fixed or cofixed in M.
We shall show next that no element of E(M)−{c1, c2, d1, d2} is fixed or

cofixed in M. By duality, it suffices to show that no such element is fixed.
To do this, we first observe that, since a free extension of a matroid has no
coloops while a free extension has no loops, M has no loops or coloops.
Now suppose that x ¥ E(M)−c2 and x is fixed in M. The construction
of M guarantees that {d2} is a flat of M. Then, by Corollary 4.6, M
has a cyclic flat F containing x but not c2. Thus E(M)−F is a cyclic flat
of Mg containing c2 but not x. But c2 is free in Mg so the unique cyclic
flat of Mg containing c2 is E(M). This contradiction implies that x is not
fixed in M. Hence no element of E(M)−c2 is fixed in M.
We now know that no element of E(M) is fixed or cofixed in M. Hence

M is totally free provided it is 3-connected. But a free extension by pŒ of a
loopless matroid MŒ is certainly connected since the union of pŒ with a
basis of MŒ is a circuit of the free extension that meets every component of
MŒ. Thus M is certainly connected. Moreover, since M can be obtained
from another matroid by two free coextensions, M is simple. Suppose that
M has a 2-separation {X, Y}. Then r(X)+r(Y)=r(M)+1. Without loss
of generality, we may assume that d1 ¥X. If r(X−d1)=r(X), then, since
d1 is free in M, it follows that r(X)=r(M). Hence r(Y)=1; a contradic-
tion since |Y| \ 2. We deduce that r(X−d1)=r(X)−1, so r(X−d1)+
r(Y)=r(M0d1). Therefore M0d1 is disconnected. But M0d1 is a free
extension of a loopless matroid and so, from above, is connected. This
contradiction completes the proof that M is 3-connected. L
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9. AN EXTENSION OF THE SPLITTER THEOREM

In this section, we shall prove Theorem 2.3. This theorem will be
deduced as a consequence of the next theorem. The proof of the latter will
use some ideas from [15, 18]. Tutte [24] called an element e of a 3-con-
nected matroid N essential if neither N0e nor N/e is 3-connected. A chain
of triangles and triads [18] in a 3-connected matroid M is a non-empty
sequence of sets {a1, a2, a3}, {a2, a3, a4}, ..., {ak, ak+1, ak+2}, each link
{ai, ai+1, ai+2} of which is a triangle or a triad such that no two consecutive
links are triangles, no two consecutive links are triads, and the elements a1,
a2, ..., ak+2 are distinct. When M is not a wheel or whirl, a maximal chain
in M is called a fan. If a fan has at least two links, then the fan contains
exactly two non-essential elements, namely the two elements that are in
only one link of the fan. These elements are the ends of the fan.

Theorem 9.1. Let M be a 3-connected matroid and N be a 3-connected
minor of M having at least four elements. If M is not a wheel or a whirl, and
M is not a totally free expansion of N, then there is an element x of E(M)
such that either M0x is 3-connected with an N-minor and x is fixed in M, or
M/x is 3-connected with an N-minor and x is cofixed in M.

Proof. Since M is not a totally free expansion of N, there is an element
x such that either co(M0x) or si(M/x) is 3-connected with an N-minor,
and x is, respectively, either fixed or cofixed in M. By duality, we may
assume that co(M0x) is 3-connected with an N-minor and that x is fixed
in M.
The desired result holds if M0x is 3-connected. Thus we may assume

that M0x is not 3-connected. As co(M0x) is 3-connected, x is in a triad
{x, y, z} of M. Since {y, z} is a series pair of M0x, and co(M0x) has an
N-minor, it follows that both M0x/y and M0x/z have N-minors.
We now show that the theorem holds if either M/y or M/z is 3-con-

nected. Suppose that M/y is 3-connected. It has an N-minor. Thus the
theorem holds unless y is not cofixed in M. In the exceptional case, by
Lemma 6.2(ii), neither x nor z is fixed in M. This is a contradiction to the
assumption that x is fixed. Hence y is cofixed in M. The same argument
shows that the theorem holds if M/z is 3-connected.
We may now assume that neither M/y nor M/z is 3-connected. Then,

by the dual of Lemma 3.1, M has a triangle containing y and exactly one
of x and z. If there is a triangle containing y and z, then co(M0x) has a
parallel pair. Therefore, since |E(co(M0x))| \ |E(N)| \ 4, we obtain the
contradiction that co(M0x) is not 3-connected. Thus it follows, without
loss of generality, that M has a triangle containing {x, y}. The existence of
this triangle shows that M/x is not 3-connected, and, by assumption, M/z
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is not 3-connected. Thus, again by the dual of Lemma 3.1, M has a triangle
containing z and exactly one of x and y. But, as noted above, M does not
have a triangle containing {y, z}. Hence M has a triangle containing {x, z}.
Thus M has a chain of triangles and triads that contains x and has length
at least three. It now follows from Oxley and Wu [18] that x is in a unique
fan of M unless x is in exactly three 5-element fans. But the exceptional
case does not arise because M has no triangle containing {y, z}. We
conclude that x is in a unique fan of M. Hence x is in exactly two triangles
of M and exactly one triad, {x, y, z}. The fan of M containing x is of one
of three types.
For the first type, the fan consists of a chain

{x1, y1, x2}, {y1, x2, y2}, ..., {xk−1, yk−1, xk}

of triangles and triads where {x1, y1, x2} and {xk−1, yk−1, xk} are triangles,
neither x1 nor xk is essential, and x ¥ {x2, x3, ..., xk−1}. Since x is in a
unique triad of M, it follows, by [18], that co(M0x) 5M0x2/y2. But

M0x2/y1 5M/y1 0x1=M0x1/y1.

Since x1 is non-essential, M0x1 is 3-connected. Moreover, M0x1 has an
N-minor.
We shall show next that x1 is fixed in M. Assume it is not. By [18], M is

the generalized parallel connection across a triangle T of a k-spoked wheel
and a minor M1 of M, where

M1=M0x2, x3, ..., xk−1/y2, y3, ..., yk−1

with y1 renamed as z, and T={x1, xk, z}. Moreover, either M1 is 3-con-
nected, or z is in a unique 2-circuit {z, h} of M1, and M1 0z is 3-connected.
In either case, we deduce that M1 0z is connected having at least two ele-
ments. It follows from this that there is a circuit C of M1 0z containing x1.
As

M1 0z=M0y1, y2, ..., yk−1, x2, x3, ..., xk−1,

clM(C) is a cyclic flat of M. Moreover, by orthogonality with the triads
in the fan, this cyclic flat meets {x1, y1, x2} in x1. We conclude, by
Lemma 6.4, that x1 is fixed in M.
The second type of fan is dual to the first type. In this case, the chain of

triangles and triads begins and ends with triads. Since it has at least two
triangles, it contains at least seven elements of M. Now co(M0x) 5
M0x/y, so M0x/y has an N-minor. Moreover, M0x/y 5 si(M/y),
so Mg0y/x 5 co(Mg0y). Thus co(Mg0y) is 3-connected having an
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Ng-minor and we may now argue as in the first case to deduce that Mg has
an element yŒ such that Mg0yŒ is 3-connected with an Ng-minor and yŒ is
fixed in Mg. Thus M/yŒ is 3-connected with an N-minor and yŒ is cofixed
in M.
If x is in a fan of the third type, this fan consists of a chain

{x1, y2, x2}, {y1, x2, y2}, ..., {yk−1, xk, yk}

of triangles and triads where the first member is a triangle and the last is a
triad. Moreover, k \ 3. As with a fan of the first type, M is the generalized
parallel connection, across the triangle {x1, xk, z}, of a k-spoked wheel and
the matroid M1 where M1 is M0x2, x3, ..., xk−1/y2, y3, ..., yk−1 with y1
renamed as z. We may now argue as in the first case to deduce that x1 is
fixed in M. L

Proof of Theorem 2.3. Define M=M0. Assume that M0, M1, ..., Mi

have been defined with each having an N-minor. If Mi is a wheel or a
whirl, then it follows easily from the hypotheses that Mi=N. We may now
assume that Mi is not a wheel or a whirl. Either

(i) Mi is a totally free expansion of N; or
(ii) Mi is not a totally free expansion of N.

In case (ii), by Theorem 9.1, Mi has an element ei such that either

(a) Mi 0ei is 3-connected with an N-minor and ei is fixed in Mi; or
(b) Mi/ei is 3-connected with an N-minor and ei is cofixed in Mi.

If (a) occurs, let Mi+1=Mi 0ei; otherwise let Mi+1=Mi/ei.
In case (i), if Mi has an element ei such that Mi 0ei is a totally free

expansion of N, then let Mi+1=Mi 0ei. If Mi has no element e such Mi 0e
that is a totally free expansion of N, but Mi does have an element ei such
that Mi/ei is a totally free expansion of N, then let Mi+1=Mi/ei. Finally,
if Mi has no element e for which Mi 0e or Mi/e is a totally free expansion
of N, then, by Theorem 7.1, Mi has elements ei and ei=1 such that
Mi 0ei/ei+1 is a totally free expansion of N, and Mi 0ei is 3-connected. In
that case, we let Mi+1=Mi 0ei and Mi+2=Mi+1/ei+1. L

The next result is an extension of Theorem 2.3 for totally free matroids.
The proof, a straightforward combination of Proposition 8.9 and
Theorem 8.12, is omitted.

Theorem 9.2. Let M be a totally free matroid. Then there is a sequence

M0, M1, ..., Mn

of 3-connected matroids and a sequence e0, e1, ..., en−1 of elements of M such
that the following hold.
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(i) M0=M and Mn 5 U2, 4.
(ii) For all i in {0, 1, ..., n−1}, either Mi+1=Mi 0ei or Mi+1=

Mi/ei.
(iii) For all i in {1, 2, ..., n−1}, if Mi is not totally free, then both

Mi−1 and Mi+1 are totally free, Mi+1=Mi−1 0ei−1/ei, and {ei−1, ei} is a
clonal class of Mi−1.

10. TOTALLY FREE MATROIDS AND INEQUIVALENT
REPRESENTATIONS

The original motivation for studying totally free matroids was to gain
insight into inequivalent representations. Theorem 2.4 bounds the number
of such representations over a finite field of a 3-connected matroid, and we
now prove that result.

Proof of Theorem 2.4. By Corollary 8.6, M has no totally free minors if
and only if M is binary. In that case, by results of Brylawski and Lucas
[3], M is uniquely F-representable. We may now assume that M is non-
binary. The second part of the theorem will be proved by induction on
|E(M)|. If |E(M)|=4, the result certainly holds. Now let |E(M)|=n > 4
and assume that the result holds for all non-binary 3-connected matroids
with fewer than n elements. We may suppose that M is not totally free,
otherwise the result holds. Then M has an element x such that either
co(M0x) is 3-connected and x is fixed in M, or si(M/x) is 3-connected
and x is cofixed in M. We lose no generality in assuming the latter. In that
case, by Proposition 2.1, M has no more inequivalent F-representations
than M/x. Moreover, representations of si(M/x) are in one-to-one corre-
spondence with representations of M/x. Now either si(M/x) is binary or it
is not. In the first case, si(M/x), and hence M, is uniquely F-representable.
In the second case, the induction assumption implies that the number of
inequivalent F-representations of si(M/x) is bounded above by the
maximum, over all totally free minors N of si(M/x), of the number of
inequivalent F-representations of N. Since such minors are also minors of
M, the result follows by induction. L

An immediate consequence of Theorem 2.4 is the following.

Corollary 10.1. Let F be a finite field and M be a minor-closed class
of F-representable matroids. Suppose that, for some positive integer k, every
totally free matroid in M has at most k inequivalent F-representations. Then
every 3-connected matroid in M has at most k inequivalent F-representations.
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In particular, if M contains only a finite number of totally free matroids,
then, for some integer kŒ, every 3-connected member of M has at most kŒ
inequivalent F-representations.

Finally, we note an analogue of Theorem 2.4 for totally free expansions.
It follows by a similar argument to that of Theorem 2.4. It is also a more-
or-less immediate corollary of Theorem 9.1.

Corollary 10.2. Let F be a finite field, N be a 3-connected
F-representable matroid with at least four elements, and M be a 3-connected
matroid M with an N-minor. Then the number of inequivalent F-repre-
sentations of M is bounded above by the maximum, over all minors NŒ of
M that are totally free expansions of N, of the number of inequivalent
F-representations of NŒ.

11. TOTALLY FREE QUATERNARY MATROIDS

In this section, we determine all totally free quaternary matroids. Some
of the preliminaries here will also deal with totally free quinternary
matroids and the determination of all matroids of the latter type will be
completed in the next section.
First we shall determine which small quaternary or quinternary matroids

are totally free. We shall use two preliminary lemmas in proving that result.

Lemma 11.1. The matroid M that is obtained from U3, 6 by freely adding
a point on some line is not quinternary.

Proof. Let E(U3, 6)={1, 2, ..., 6} and assume that M is obtained by
freely adding x on the line through 5 and 6. View M as a restriction of
PG(2, 5). Let L be the line of this projective space spanned by {5, 6}. Then
each of the six lines of PG(2, 5) that are spanned by two points from
{1, 2, 3, 4} meets L in one of the three points of L−{5, 6, x}. Moreover,
for each i in {1, 2, 3, 4}, the three lines through i and each of the members
of {1, 2, 3, 4}−i meet L in distinct points. Thus we may assume that
{1, 2, p2}, {1, 3, p3}, and {1, 4, p4} are circuits of PG(2, 5) where
L−{5, 6, x}={p2, p3, p4}. Since the three lines through two of 1, 2, and 3
meet L in distinct points, we deduce that {2, 3, p4} is a circuit. Similarly,
{2, 4, p3} and {3, 4, p2} are circuits. It follows that PG(2, 5) | {1, 2, 3, 4,
p2, p3, p4} 5 F7; a contradiction. L

Lemma 11.2. Let M be a quinternary extension of U3, 6 by the element x.
Then x is fixed in M.
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Proof. We shall argue geometrically. We may assume that M is simple
otherwise x is certainly fixed. Now U3, 7 is not GF(5)-representable. Hence
x lies on at least one 3-point line with two points of U3, 6. If x lies on at
least two such lines in M, then it is certainly fixed. Thus we may assume
that x lies on exactly one non-trivial line of M. In that case, by Lemma
11.1, M is not quinternary; a contradiction. L

Lemma 11.3. Let M be a matroid with at most eight elements and
suppose that M is quaternary or quinternary and that M is totally free. Then
M is isomorphic to one of U2, 4, U2, 5, U2, 6, U3, 5, U3, 6, U4, 6, P6, F4, or Y4.

Proof. If r(M)=2, then, since M is quaternary or quinternary but non-
binary, M is isomorphic to one of U2, 4, U2, 5 or U2, 6. Now assume that
r(M)=3. If rg(M)=2, then M 5 U3, 5. Thus we may assume that
rg(M)=3. Then, by [13, Corollary 11.2.9], M has W3, U3, 6, P6, or Q6 as a
minor. The last matroid has a fixed element whose deletion is U3, 5 and so
Q6 cannot occur as a restriction of M. Suppose that M has W3 as a
restriction. Each spoke x of W3 is fixed in W3 and hence in M. Moreover,
co(W30x) is 3-connected. Thus co(M0x) is not 3-connected. Since W3

has three spokes, it is now straightforward to obtain a contradiction. Hence
M does not have W3 as a restriction. If M has U3, 6 as a restriction, then,
by Lemma 11.2, M 5 U3, 6. Thus, we may assume that M has P6 as a minor
but that M̂ 5 P6. Hence M is not quaternary, so M is quinternary. More-
over, M has a single-element extension of P6 as a restriction. It is not diffi-
cult to see that there are exactly three single-element extensions of P6 in
which no element whose deletion is 3-connected is fixed: the matroids
consisting of

(i) four points and a 3-point line freely placed in the plane;
(ii) three points and a 4-point line freely placed in the plane; and
(iii) two disjoint 3-point lines and a single point freely placed in the

plane.

The first matroid was shown in Lemma 11.1 to be non-quinternary. To see
that the second and third matroids are not quinternary, one can argue
similarly: take one of the non-trivial lines L of the matroid. If the matroid
is quinternary, all of the lines through two points not on L must meet the
closure of L in PG(2, 5) at points not in L. But this is easily seen to be
impossible.
We may now assume that r(M) > 3. By duality, we may also assume that

rg(M) > 3. Thus M is totally free of rank four having eight elements. As
there are no 7-element totally free quaternary or quinternary matroids, we
deduce, by Corollary 8.13, that the ground set of M is the union of four
2-element clonal classes, {a1, b1}, {a2, b2}, {a3, b3}, {a4, b4}. Moreover, for

EXPANSIONS OF MATROIDS 167



all i, the matroid M0ai/bi is totally free, and M0ai and M/bi are 3-con-
nected. Therefore M0ai/bi is isomorphic to U3, 6 or P6. But E(M)−{ai, bi}
is the union of three clonal pairs in M. Hence M0ai/bi has no clonal
classes of size three, and so M0ai/bi ^ 5 P6. Therefore M0ai/bi 5 U3, 6.
Since neither U3, 7 nor the matroid in (i) above is quaternary or quinternary,
it follows that M/bi is isomorphic to one of Y+3 or F+3 , where, in both
cases, ai corresponds to the point that is on more than one non-trivial line.
Observe that, because every single-element deletion and contraction of M is
3-connected, M has no triangles and no triads. Thus no 4-circuit C of M
contains exactly one element of {ai, bi} otherwise clM(C) contains {ai, bi}
and so E(M)− clM(C) is a triad of M.
We now know that every 4-circuit of M has the form {aj, bj, ak, bk} for

some {j, k} ı {1, 2, 3, 4}. Construct an auxiliary graph G with vertex set
{1, 2, 3, 4} such that jk is an edge if and only if {aj, bj, ak, bk} is a circuit of
M. Then a vertex i of G has degree 2 or 3 depending on whether M/bi is
isomorphic to Y+3 or F+3 , respectively. It follows that G is isomorphic to
K4, K4−e, or a 4-cycle.
Suppose that G has K4−34 as a subgraph. Then the five edges of this

subgraph imply that M has five 4-circuits of the form {ai, bi, aj, bj}.
These five circuits include three containing each of a1, b1, a2, and b2.
Thus none of these elements is in any more 4-circuits since M/x has at
most three 3-circuits for all x. Hence the only other possible 4-circuit
of M is {a3, b3, a4, b4}. If M does have this 4-circuit, then the set of
4-circuits of M coincides with that of F4. If M does not have this 4-circuit,
then its set of 4-circuits coincides with that of the Vámos matroid, V8. Thus
the set of non-spanning circuits of M coincides with that of F4 or V8, so
M 5 F4 or V8 [16]. As M is representable, it follows that M 5 F4.
We may now assume that G is a 4-cycle. Then M has the same set of

4-circuits as Y4, so M 5Y4. L

The converse of the last lemma is also true, but it will be simpler not to
prove it yet. We shall require one further preliminary result.

Lemma 11.4. If r \ 3 and M is a connected quaternary matroid such that
M0x 5 Fr, then x is fixed in M.

Proof. If M is not 3-connected, then x is in a non-trivial parallel class
and is certainly fixed in M. Thus we may assume that M is 3-connected.
We argue by induction on r. The result holds if r=3 by [10, Lemma
8.2(vi)]. Now assume that the lemma holds for r < k and let r=k \ 4. We
may assume that M0x has a leg {a, b} such that {a, b, x} is independent
otherwise x is certainly fixed in M. Then M0a/b0x 5 Fr−1 and so M0a/b
is connected. Thus, by the induction assumption, x is fixed in M0a/b,
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and hence in M/b. Similarly, x is fixed in M/a. It now follows from
Proposition 4.7(iii) that x is fixed in M. L

We are now able to prove Theorem 2.5. For convenience, we restate it
here.

Theorem 11.5. A quaternary matroid M is a totally free if and only if M
is isomorphic to one of U2, 4, U2, 5, U3, 5, or Fr for some r \ 3.

Proof. Certainly each of the matroids listed is totally free and quater-
nary. It remains to show that there are no other totally free quaternary
matroids. By Lemma 11.3, there are no other such matroids with at most
eight elements for Y4 has a P6-minor and so is not quaternary. Let M be a
totally free quaternary matroid. We shall show, by induction on |E(M)|
that if |E(M)| \ 8, then M 5 Fr for some r \ 4. This is true if |E(M)|=8.
Assume it true for |E(M)| < k and let |E(M)|=k \ 8.
Now suppose that M has an element d such that M0d is totally free.

Then, by the induction assumption, M0d 5 Fr for some r. But, by
Lemma 11.4, d is fixed in M, contradicting the fact that M is totally free.
Thus there is no element d such that M0d is totally free and, by duality,
there is no element c such that M/c is totally free. It now follows, by
Corollary 8.13, that the ground set of M is the union of 2-element clonal
classes, that for every element a of E(M), both M0a and M/a are 3-con-
nected, and that, for every clonal pair {a, aŒ}, the matroid M0a/aŒ is
totally free.
Choose a clonal pair {c, d} of M. By the induction assumption and the

fact that M0d/c is totally free, we deduce that M0d/c 5 Fr for some
r \ 4. Then M0d/c is represented over GF(4) by the matrix [Ir | Dr],
where Dr is

b1

b2

x

br−1

br

R
a1 a2 · · · ar−1 ar

w 1 · · · 1 1

1 w · · · 1 1

x x z x x

1 1 · · · w 1

1 1 · · · 1 w

S ,
and w2=w+1.
Elements of E(M)−{c, d} that are clones in M remain clones in

M0d/c. The clonal classes of M0d/c are the pairs {ai, bi} for all i in
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{1, 2, ..., r}. Therefore, these pairs, together with {c, d}, are the clonal
classes of M. Evidently, M is represented by the matrix [Ir+1 | D

−

r+1] where
D −r+1 is

b1

b2

x

br

c

R
a1 a2 · · · ar d

w 1 · · · 1 y1

1 w · · · 1 y2

x x z x x

1 1 · · · w yr

x1 x2 · · · xr z

S .
Now M0b1/a1 5 Fr and has {c, d}, {a2, b2}, {a3, b3}, ..., {ar, br} as its
clonal classes. Given this, and the unique representability of 3-connected
quaternary matroids [11], we can deduce that y2=y3=·· ·=yr ] 0 and
that x2=x3=·· ·=xr ] 0. By scaling the last row and last column of D −r+1
if necessary, we may assume that x2=x3=·· ·=xr=1 and that y2=y3=
·· ·=yr=1. It now follows that z=w. Finally, we deduce that x1=y1=1
by considering M0b2/a2, which is isomorphic to Fr. We conclude that
M 5 Fr+1 and the theorem follows by induction. L

Corollary 2.6 follows without difficulty by combining Theorem 11.5
and Corollary 10.1. The last result of this section is a consequence of
Corollary 2.6 and the following result.

Lemma 11.6. Let p be a prime exceeding 4. If r \ p−1, then Fr is not
GF(p)-representable. Moreover, F3 is GF(p)-representable but is not binary
or ternary.

Proof. The last statement follows easily from the fact that F3 5 U3, 6.
Now assume that r \ p−1 and Fr is GF(p)-representable. Then so too are
Fp−1 and F+p−1 We may assume that F+p−1 is represented by the matrix
[Ip−1 | Dp−1 | 1], where 1, the column of all ones, corresponds to the tip, the
matrix Dk is

b1

b2

b3

x

bk

R
a1 a2 a3 · · · ak

1+a1 1 1 · · · 1

1 1+a2 1 · · · 1

1 1 1+a3 · · · 1

x x x z x

1 1 1 · · · 1

S ,
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and a1, a2, ..., ak are non-zero members of GF(p). As Wu [28] notes, one
can show by induction (or see Mirsky [12, Exercise I.13]) that

det(Dk)=11+C
k

i=1
a−1i 2 D

k

i=1
ai.

Consider the multiset S={a−11 , a−12 , ..., a−1p−1}. We shall show next that
some submultiset of S sums to −1. This is surely known but we prove it
here for completeness. It is certainly true if all the members of S are equal.
Thus we may assume that all a−11 ] a−12 . Now let {s1, s2, ..., sm} be the set of
distinct sums of submultisets of {a−11 , a−12 , ..., a−1j−1}. We show that, among
the submultisets of {a−11 , a−12 , ..., a−1j−1, a

−1
j }, there are at least m+1 distinct

sums. If not, then

{s1, s2, ..., sm}={s1+a
−1
j , s2+a

−1
j , ..., sm+a

−1
j }.

Thus there is a permutation s of {1, 2, ..., m} such that si=ss(i)+a
−1
j for

all i. Therefore

C
m

i=1
(si−ss(i))=ma−1j ,

that is, ;m
i=1 si−;m

i=1 ss(i)=ma−1j , so ma−1j =0; a contradiction. Since
a−11 ] a−12 , the submultisets of {a−11 , a−12 } have three distinct sums. We
deduce that the submultisets of {a−11 , a−12 , ..., a−1p−1} have at least, and hence
have exactly, p distinct sums. Thus, for some subset T of {1, 2, ..., p−1},
we have ;t ¥ T a−1t =−1. Then Fp−1 has as a circuit the set {at: t ¥ T} 2
{bi: i ¥ {1, 2, ..., p−1}−T}; a contradiction. L

Corollary 11.7. Let p be a prime number. Then there is an integer k
such that every 3-connected GF(p)-representable quaternary matroid has at
most k inequivalent GF(p)-representations.

12. TOTALLY FREE GF(5)-REPRESENTABLE MATROIDS

The purpose of this section is to specify all totally free quinternary
matroids. We begin by noting some basic properties of swirls. In the first
result, all subscripts should be interpreted modulo r.

Lemma 12.1. If r=3, then Yr 5 U3, 6 and Yr has no non-spanning cir-
cuits. However, if r > 3, then the collection of non-spanning circuits of Yr
consists of all sets of the form

{ai, bi, ei+1, ei+2, ..., ej−1, aj, bj},
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where et ¥ {at, bt} for all t, the elements i and j are distinct members of
{1, 2, ..., r}, and {i, i+1, ..., j−1, j} ] {1, 2, ..., r}.

Proof. This is straightforward using the observation that, for all i, the
matroid Yr 0{ai, bi} can be constructed as follows. Let N0 be a 3-point line
on {ai+1, bi+1, si+1}. Then, for all j in {1, 2, ..., r−1}, let Nj be obtained by
taking the 2-sum, across the basepoint si+j, of Nj−1 and a 4-point line on
{si+j, ai+j, bi+j, si+j+1}. Finally, Yr 0{ai, bi} is the 2-sum, across the base-
point si−1, of Nr−1 and a 3-point line on {si−1, ai−1, bi−1}. We omit the
remaining details. L

Swirls have many similar properties to free spikes. The next lemma
summarizes some of these basic properties. The proof, which is not diffi-
cult, is omitted.

Lemma 12.2. Let r be an integer greater than 2.

(i) Yg
r=Yr.

(ii) If r > 3, and e ¥ {ai, bi}, then Yr/e 5Y
+
r−1.

(iii) Yr 0ai/bi=Yr 0bi/ai 5Yr−1 for all i in {1, 2, ..., r}.
(iv) Yr and Y

+
r are 3-connected.

Lemma 12.3. Yr is quinternary for all r \ 3. Moreover, if r \ 4, then
every representation of Yr over GF(5) is equivalent to [Ir | D] where the
columns of this matrix are labelled, in order, b1, b1, ..., br, a1, br, a1, a2, ...,
ar, and either D or its transpose is

|
3 2 2 · · · 2 2

4 3 2 · · · 2 2

4 4 3 · · · 2 2

x x x z x x

4 4 4 · · · 3 2

4 4 4 · · · 4 3

} .
Proof. Certainly Y3, which is isomorphic to U3, 6, is quinternary. Now

let r \ 4 and suppose that [Ir | D] is a quinternary representation of Yr
where the columns of this matrix are labelled in the order specified above.
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By scaling rows and columns, we may certainly assume that D is

b1

b2

b3

b4

x

br

R
a1 a2 a3 a4 · · · ar

z1 x1 x1 x1 · · · x1

y1 z2 d23 d24 · · · d2r

y1 d32 z3 d34 · · · d3r

y1 d42 d43 z4 · · · d4r

x x x x z x

y1 dr2 dr3 dr4 · · · zr

S ,
where all the entries of D are non-zero. The circuit {a1, b1, a2, b2} implies
that d32=d42=·· ·=dr2. Then, from considering {ai, bi, ai+1, bi+1} for
consecutive elements i of {2, 3, ..., r−1}, we deduce that all below-diagonal
entries of D, except possibly those in the first column, take a common
value. Thus we may assume, in the above notation, that dij=y for all i > j.
Similarly, from considering the fact that each of the circuits above is also a
cocircuit, we deduce that all above-diagonal entries in D, except possibly
those in the first row, take a common value. Thus we may assume that
dij=x, say, for all j > i. By rescaling the first row and first column and
then all the rows, we may assume that D is

b1

b2

b3

b4

x

br

R
a1 a2 a3 a4 · · · ar

z −1 2 2 2 · · · 2

yŒ z −2 2 2 · · · 2

yŒ yŒ z −3 2 · · · 2

yŒ yŒ yŒ z −4 · · · 2

x x x x z x

yŒ yŒ yŒ yŒ · · · z −r

S .
Moreover, none of z −1, z

−

2, ..., z
−

r; is in {2, yŒ}, and, since {a1, b1, a3, b3} is
independent in M, the elements yŒ and 2 are distinct.
If DŒ is a matrix obtained from D by deleting any r−3 rows and the

corresponding r−3 columns, then

DŒ=r
z −i 2 2

yŒ z −j 2

yŒ yŒ z −k

s
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and [I3 | DŒ] represents U3, 6. Thus none of z −iz
−

j, z
−

iz
−

k and z −jz
−

k equals 2yŒ.
Since each of z −i, z

−

j, and z −k is in {1, 2, 3, 4}−{2, yŒ}, at least two of z −i, z
−

j,
and z −k are equal. Thus yŒ ] 3 otherwise 2yŒ=1, and {1, 2, 3, 4}−{2, yŒ}=
{1, 4} in which case one of z −iz

−

j, z
−

iz
−

k and z −jz
−

k is in {12, 42}={1}; a con-
tradiction. If yŒ=1, then z −i, z

−

j, and z −k are all in {3, 4}. But 3×4=2=2yŒ,
so z −i=z −j=z −k Similarly, if yŒ=4, then z −i, z

−

j, and z −k are all in {1, 3}. But
1×3=3=2yŒ, so z −i=z −j=z −k. We conclude that either

(i) yŒ=1 and z −j=z −2=·· ·=z −r ¥ {3, 4}; or
(ii) yŒ=4 and z −1=z −2=·· ·=z −r ¥ {1, 3}.

The matrix DŒ cannot have zero determinant so, in cases (i) and (ii), the
common values of all the z −i are 4 and 3, respectively. Thus, in case (ii), the
matrix D certainly has the desired form. Moreover, in case (i), by multiply-
ing all entries of D by 2, we obtain the transpose of the matrix in (ii).
Now let D be the r×r matrix in which all entries on the main diagonal

equal 3, all entries above the main diagonal equal 2, and all entries below
the main diagonal equal 4. To complete the proof of the lemma, it suffices
to show that, when their columns are labelled b1, b2, ..., br, a1, a2, ..., ar,
both of the matrices [Ir | D] and [Ir | DT] represent Yr over GF(5). The
matroids M[Ir | D], M[Ir | DT], and Yr all certainly have the same ground
set. In the proof of Lemma 12.1, we described Yr 0{ai, bi} constructively.
Using this, it is straightforward to check that both M[Ir | D]0{ai, bi}
and M[Ir | DT]0{ai, bi} equal Yr 0{ai, bi}. Thus both M[Ir | D] and
M[Ir | DT] have the same sets of non-spanning circuits as Yr unless one of
the former has a non-spanning circuit meeting all of {a1, b1}, {a2, b2}, ...,
{ar, br}. It is not difficult to check that the exceptional case does not arise.
We conclude that both M[Ir | D] and M[Ir | DT] equal Yr. L

Next we prove the analogue of Lemma 11.4.

Lemma 12.4. If r \ 3 and M is a connected quinternary matroid such
that M0x 5Yr, then x is fixed in M.

Proof. Assume that the lemma fails and let M be a counterexample for
which r is minimal. Then, by Lemma 11.2, r \ 4. Moreover, since x is not
fixed in M, it is in no non-trivial parallel classes. Hence M is 3-connected.
Now, for some i in {1, 2, ..., r}, the set {x, ai, bi} is independent. Since
Yr/ai 0bi 5Yr−1, the matroid M/ai 0bi is a connected quinternary exten-
sion of Yr−1. The minimality of r implies that x is fixed in M/ai 0bi. We
conclude that x is fixed in M/ai. Similarly, x is fixed in M/bi. Hence, by
Proposition 4.7(iii), x is fixed in M; a contradiction. L

Next we prove Theorem 2.7, again restating the result for convenience.
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Theorem 12.5. A quinternary matroid M is totally free if and only if M
is isomorphic to one of U2, 4, U2, 5, U2, 6, U3, 5, U4, 6, P6, or Yr for some r \ 3.

Proof. Certainly all of the matroids listed are totally free and quinter-
nary. It remains to prove the converse. Let M be totally free and quinter-
nary. By Lemma 11.3, if |E(M)| [ 8, then M is isomorphic to one of the
matroids listed since, as is not difficult to check, F4 is not quinternary. We
complete the proof by arguing by induction on |E(M)| that if |E(M)| \ 8,
then M 5Yr for some r. This is certainly true if |E(M)|=8. Assume it true
if |E(M)| < n and suppose that |E(M)|=n > 8. If M has an element d such
that M0d is totally free, then, by the induction assumption, M0d 5Yr for
some r. But, by Lemma 12.4, d is fixed in M, a contradiction. Thus M has
no element d such that M0d is totally free and, by duality, M has no
element c such that M/c is totally free. Corollary 8.13 now implies that the
ground set of M is the union of 2-element clonal classes. Moreover, if
{c, d} is such a class, then M0d/c is totally free. Thus, by the induction
assumption, M0d/c 5Yr for some r \ 4. Then letting the clonal classes of
M other than {c, d} be {a1, b1}, {a2, b2}, ..., {ar, br}, we may assume, by
Lemma 12.3, that M is represented by the matrix [Ir+1 | D] where D is

b1

b2

b3

x

br−1

br

c

R
a1 a2 a3 · · · ar−1 ar d

3 a a · · · a a y1

b 3 a · · · a a y2

b b 3 · · · a a y3

x x x z x x x

b b b · · · 3 a yr−1

b b b · · · b 3 yr

x1 x2 x3 · · · xr−1 xr z

S ,
and (a, b) is (2, 4) or (4, 2).
Suppose first that, for all i in {1, 2, ..., r}, the set {ai, bi, ai+1, bi+1} is a

circuit of M where, throughout this proof, all subscripts are interpreted
modulo r. We shall show that {b1, a1, a2, ..., ar−1} spans E(M)−{c, d}.
Certainly {b1, a1, a2, ..., ar−1} spans b2 and hence spans b3. Continuing
with this pattern, we deduce that {b1, a1, a2, ..., ar−1} spans {b2, b3, ...,
br−1}. But {a1, b1, ar, br} and {ar−1, br−1, ar, br} are both circuits of M.
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Therefore, by elimination, both {a1, b1, ar−1, br−1, ar} and {a1, b1, ar−1,
br−1, br} contain circuits of M. From considering M0d/c, we deduce that
neither of these sets contains a 4-circuit, so both are circuits of M. We
conclude that {b1, a1, a2, ..., ar−1} also spans {ar, br}. Hence {b1, a1, a2, ...,
ar−1} does indeed span E(M)−{c, d}, so {c, d} contains a cocircuit of M;
a contradiction.
Without loss of generality, we may now assume that {a1, b1, ar, br, c} is a

circuit of M. Hence {a1, b1, ar, br, d} is also a circuit of M. Thus both
{a1, ar, br, c, d} and {b1, ar, br, c, d} contain circuits of M. Since neither
M0a1/b1 nor M0b1/a1 has a 3-circuit, we deduce that either

(i) {ar, br, c, d} is a circuit of M; or
(ii) both {b1, ar, br, c, d} and {a1, ar, br, c, d} are circuits of M.

It follows, by symmetry, that either

(iii) {a1, b1, c, d} is a circuit of M; or
(iv) both {br, a1, b1, c, d} and {ar, a1, b1, c, d} are circuits of M.

By the dual argument to that used for circuits, we obtain that, for some
i, both {ai, bi, ai+1, bi+1, d} and {ai, bi, ai+1, bi+1, c} are cocircuits of M.
Since the first of these sets meets the circuit {a1, b1, ar, br, d}, we deduce
that {i, i+1} meets {1, r}. Thus i ¥ {1, r−1, r}. Hence, by symmetry, we
may assume that one of the following holds:

(v) both {a1, b1, a2, b2, d} and {a1, b1, a2, b2, c} are cocircuits of M;
or

(vi) both {a1, b1, ar, br, d} and {a1, b1, ar, br, c} are cocircuits of M.

For all j in {1, 2, ..., r}, either {aj, bj, aj+1, bj+1} is a circuit, or both
{aj, bj, aj+1, bj+1, c} and {aj, bj, aj+1, bj+1, d} are circuits of M. If {j, j+1}
avoids {1, 2, r}, then, in both cases (v) and (vi), orthogonality implies that
{aj, bj, aj+1, bj+1} is a circuit of M. Similarly, it follows from (i) and (ii)
that {ai, bi, ai+1, bi+1} is a cocircuit of M for all i in {2, 3, ..., r−2}.
Now recall the matrix [Ir+1 | D] that represents M. The cocircuits

{ai, bi, ai+1, bi+1} for i in {2, 3, ..., r−2} imply that y2=y3=·· ·=yr−1=y
say. Similarly, the circuits {aj, bj, aj+1, bj+1} for j in {3, 4, ..., r−2} imply
that x3=x4=·· ·=xr−1=x, say. Moreover, since (i) or (ii) holds,
{ar, br, c, d} is a circuit of M/b1 0a1 and hence, by Lemma 12.2(i), is a
cocircuit of M/b1 0a1. Thus x2=x. By scaling the last row and the last
column of D, we may assume that x=b and y=a. Thus D is
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b1

b2

b3

x

br−1

br

c

R
a1 a2 a3 · · · ar−1 ar d

3 a a · · · a a y1

b 3 a · · · a a a

b b 3 · · · a a a

x x x z x x x

b b b · · · 3 a a

b b b · · · b 3 yr

x1 b b · · · b xr z

S .
Assume that (v) occurs. Then, by orthogonality, {ar−1, br−1, ar, br} is a
circuit of M, so xr=b. Thus {ar−1, br−1, ar, br} is a circuit of M/b1 0a1. As
the last matroid is isomorphic to Yr, it follows that {ar−1, br−1, ar, br} is a
cocircuit of M/b1 0a1, and so yr=a. Now consider M/br 0ar. It too is
isomorphic to Yr. For each i in {2, 3, ..., r−2}, the set {ai, bi, ai+1, bi+1} is
a circuit and a cocircuit of M/br 0ar. Moreover, as (iii) or (iv) holds,
{a1, b1, c, d} is a circuit and hence a cocircuit of M/br 0ar. Thus exactly
one of (I) {a2, b2, c, d} and (II) {ar−1, br−1, c, d} is both a circuit and a
cocircuit of M/br 0ar. In case (I), the fact that {a2, b2, c, d} is a cocircuit of
M/br 0ar implies that x1=b2/a. But then, we deduce from the matrix D
that {a1, b1, ar, br} is a circuit of M; a contradiction. Hence case (II) holds.
Then the fact that {ar−1, br−1, c, d} is a circuit of M/br 0ar implies that
y1=a. Hence {a1, b1, a2, b2} is a cocircuit of M; a contradiction.
We may now assume that (vi) holds and that (v) does not. Then {a1, b1,

a2, b2} is a cocircuit and hence a circuit of M/br 0ar. It follows that x1=b
and y1=a. Then the sets of 4-circuits and 4-cocircuits of M/b1 0a1 coin-
cide and include {a2, b2, a3, b3}, {a3, b3, a4, b4}, ..., {ar−2, br−2, ar−1, br−1},
and {c, d, ar, br}. Thus exactly one of {a2, b2, c, d} and {ar−1, br−1, c, d} is
a circuit and a cocircuit of M/b1 0a1. In the first case, yr=a and xr=b. In
the second case, yr=b and xr=a, and so {a1, b1, ar, br} is a circuit of M;
a contradiction. Thus we may assume that the first case holds. Then, since
M/{b1, b2, ..., br−2}0{a1, a2, ..., ar−2} 5 U3, 6, it follows that z ¨ {a, b} so
z ¥ {1, 3}. The first possibility implies that {ar−1, ar, d} is a circuit of this
minor; a contradiction. Hence z=3 and so M 5Yr+1. The theorem now
follows by induction. L

Corollary 2.8 follows without difficulty on combining Theorem 12.5 and
Corollary 10.1. Kahn’s conjecture for GF(5) was proved in [20,
Theorem 4.1]. We conclude by noting that it can be derived from the
results above.
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Corollary 12.6. A 3-connected matroid has at most six inequivalent
representations over GF(5).

Proof. By Corollary 2.4 and Theorem 12.5, it suffices to show that
none of the matroids U2, 4, U2, 5, U2, 6, U3, 5, U3, 6, U4, 6, P6, or Yr for r \ 4 has
more than six inequivalent GF(5)-representations. By Lemma 12.3, Yr has
exactly two such representations. Hence the corollary is reduced to check-
ing that each of the seven matroids listed above has at most six inequi-
valent GF(5)-representations. This straightforward check appears in [20,
Lemmas 4.2 and 4.3]. L
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