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This  paper  general izes a t heo rem of Dirac for g raphs  by proving t h a t  if M is a 3-connected  
mat ro id ,  then ,  for all pairs {a,b} of dis t inct  e lements  of  M and  all cocircui ts  C* of M ,  the re  is 
a circuit  t ha t  conta ins  {a,b) and  mee ts  C*.  It is also shown tha t ,  a l t hough  the  converse of  th is  
resul t  fails, the  specified condi t ion can be used to character ize  3-connected  mat ro ids .  

1. I n t r o d u c t i o n  

Dirac [2] proved that,  for all n_> 2, if G is a simple n-connected graph, then 
every two distinguished edges and every n - 2  distinguished vertices lie in a common 
cycle. An immediate consequence of this is that,  in an n-connected graph, there is 
a cycle through any specified set of n vertices. This paper  shows that ,  for n =-3, 
these results are special cases of a more general theorem for matroids. 

The matroids for which every pair of distinct elements lie in some circuit are 
precisely the connected matroids. The problem of characterizing the matroids in 
which every triple of distinct elements lies in some circuit was solved by Seymour [4] 
in the binary case, but remains unsolved in general. Evidently, a ma t ro id  in which 
every 3-set lies in some circuit need not be 3-connected; for instance, consider the 2- 
sum of two copies of U2,4. On the other hand, a 3-connected matroid can certainly 
have three elements that  do not lie in a common circuit; for example, consider 
three edges meeting at a common vertex in a graph. The following theorem, the 
main result of the paper, asserts that  all 3-connected matroids satisfy a condition 
intermediate between having every 2-set of elements in a circuit and having every 
3-set of elements in a circuit. 

(1.1) Theorem. I f  M is a U-connected matroid, then, for every pair {a, b} of distinct 
eIements" of M and every cocircuit C* of M,  there is a circuit that contains {a, b} 
and meets C*. 
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The matroid terminology used here will follow Oxley [3]. In particular,  a 
tria'n91e in a matroid is a 3-element circuit, and a triad is a 3-element cocircuit. For 
a matroid M, the simple matroid and the cosimple matroid associated with M will 

be denoted by M and M, respectively. 

The basic property of matroids that  a circuit and a cocircuit cannot have 
exactly one common element .will be referred to as orthogonality. 

We now note two well-known results of Bixby [1] and Tutte  [5] which will be 
used in the proof of the main theorem. 

(1.2) Lemma. Let e be an element of a 3-connected matroid M. Then either M\e  

or M/e  is 3-connected. 

The next lemma is often called Tut te 's  Triangle Lemma. 

(1.3) Lemma. Let {e,f,9} be a triangle of a 3-connected matroid M. If neither 
M\e  nor M \ f  is 3-connected, then M has a triad containing e and exactly one of 
f and 9. 

2. P r o o f  a n d  c o n s e q u e n c e s  

In this section, we prove the main result and present some straightforward 
corollaries of it. 

P roof  of Theorem 1.1. Assume that  the theorem fails for a,b, and C* in a minor- 
minimal counterexample M. Evidently 

(2.1) {a,b}nC*=O, 
otherwise the fact that  M is connected implies that  M satisfies the theorem. 

If IE(M)I <4,  then M is isomorphic to one of U1,2,Ul,a,U2,3, or U2,4, and (2.1) 
fails in each of these cases. Thus we may assume that  

(2.2) tE(M)I > 4. 

Next we note that  if xeC*Acl({a,b}),  then, by (2.1), xEcl ({a ,b}) -  {a,b}, so 
{a,b,x} is a circuit containing {a,b} and meeting C*; a contradiction. Thus 

(2.3) C*C3cl({a,b})=O. 

Extending this, we now show that  

(2.4) c l ({a ,b})~E(M)  - C*. 
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Certainly cl({a, b}) C E(M) -C*.  Suppose equality holds here. Then r(M) = 3. 
As M is 3-connected, C* contains a basis {u,v,w} of M. Clearly, at least one of 
cl({u,v}), cl({u,w}), and cl({v,w}), say the first, avoids {a,b}. Then {u,v,a,b} is 
a circuit and we have a contradiction that establishes (2.4). 

Next we prove the following: 

(2.5) Lemma. Suppose that x �9 E(M) - C* - {a, b}. T1~e, 
(i) M \ x  is not 3-connected; and 

(ii) either ~J/x is not 3-connected, or {a,b,x} is a circuit of M. 

Proof. To show (ii), suppose that  M / x  is 3-connected but that  {a,b,x} is not 

a circuit of M. Then we can label M / x  so that  its ground set contains {a,b}. 

Certainly C* is a eocircuit of M/x.  Hence C* contains a cocireuit C~ of M/x.  

Thus, by the choice of M, there is a circuit Ct of M / x  containing {a,b} and meeting 
C~. But C1 or CI Ux is a circuit of M and so we have a contradiction, thereby 

establishing (ii). The proof of (i) is similar. | 

We now show that  

(2.6) Icl({a,b})l _<3. 

Suppose that a l  and x2 are distinct elements of c l ( { a , b } ) -  {a,b}. Then 
Ml{xt,~2,a,b}~U = 2,4. ~ I o r e o v e r ,  by (2.4) and (2.5)(i), neither M\x l  nor M\x2 is 
3-connected. Thus, by Tutte 's Triangle Lelnnla applied to the triangle {Xl,x2,a}, 
we deduce that M has a triad containing two elements of this triangle. By orthog- 
onality, this triad is contained in {xl,x2,a,b}. Hence M has a triad that  is also a 
triangle, so M ~ U2,4; a contradiction to (2.2). 

(2.7). M has no triad containing {a,b}. 

To see this, assume that  {a,b,d} is a triad of M. Then M \ d  is connected 
and has {a,b} as a cocircuit. Moreover, C* - d contains a cocircuit C~ of M\d.  
Evidently M \ d  has a circuit that contains a and meets C~. By orthogonality, this 

circuit nmst also contain b, and so we have a contradiction that  establishes (2.7). 

By (2.4), there is an element in E(a4)-C*-c l ({a ,b}) .  Moreover, by (2.5)(ii), 

for every such element z, the matroid M / z  is not 3-connected. Thus, by Lemma 
1.2, M \ z  is 3-connected. Moreover, by (2.7), M \ z  has both a and b as elements. 

We now show that 

(2.s) zeClM.(C*). 
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Assume the contrary. Then M\z  has C* as a cocircuit. Since C* contains at 
most one element of each series class of M\z,  we may assunm that  M\z  has C* as 

a cocircuit. Thus, by the choice of M, there is a circuit C1 of M\_____z that  meets C* 

and contains {a,b}. It follows that the choice of M is contradicted, and (2.8) holds. 
By (2.8), there is a partition {X1,X2,. . . ,Xk} of C* such that  k >__ 2 and 

(C*-Xi )Uz  is a cocircuit of M for all i. Next we show that  

(2.9) IC* - & l = 2  for all i. 

Suppose that  ] C * - X i l  > 2 for some i. Then we may assume that  M\z  

has C * - X i  as a cocircuit. But, by (2.7), M\z  also contains {a,b}, and it is 

straightforward to check that the choice of M is contradicted. Thus (2.9) holds. 

(2.10) Either 
(i) C* = {xl,x2,x3} ~'here every 3-subset of C* Uz is a. triad of M; or 

(ii) C*= {Xl,Xtl,x2,xl2} where both {Xl,Xl,Z } and {x2,x~2,z} are triads of M. 

To see this, note that, by (2.9), IX2UXaU...UXkl = 2 =  IX1UXaU.. .UXk[.  
Since each Xi is non-empty, k<3.  Moreover, if k=3 ,  then (i) holds, while if k=2 ,  
then (ii) holds. 

Now, z was arbitrarily chosen in E ( M ) -  C*-cl({a, b}). Thus, by (2.8), 

(2.11) clM. (C*) D_ E ( M )  - cl({a, b}). 

Next we prove the following: 

(2.12) Either 
(i) cl({a,b})={a,b} and C* spans M*; or 

(ii) M has an element c such that cl({a, b}) = {a,b, c} and r(M*) = r M ,  (C*) + 1. 

By (2.6), lcI({a,b})l < 3. If {cl({a,b}) l = 2, then, as M* has no 2-cocircuits, 
(2.11) implies that C* spans M*, so (i) holds. If [cl({a,b}) I = 3, let cl({a,b}) = 
{a, b, el. Then, by orthogonality, c r clM, (C*). Thus r(M*) # rM. (C*) and (2.11) 
implies that (ii) holds. 

On combining (2.10) and (2.12), we deduce that: 

(2.13) One of the following" occurs: 
(i) Ic*l = 3  and 

(ii) IC*]=3=r(M*) and cl({a,b})={a,b,c}; 
(iii) tC*I=4 and r(M*)=3; 
(iv) [C*[=4=r(M*)  and cl({a,b})={a,b,c}. 

We complete the proof of the theorem by showing that  each of these possibilities 
yields a contradiction. In particular, if (i) holds, then M* is a line and so, for j G C*, 
the set E ( M ) - j  is a circuit of M containing {a,b} and meeting C*; a contradiction. 
Thus (i) does not hold. 
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Next we note that  if (ii) holds, then C* spans a line in M* whose complement 
is {a,b,c}. As ]C* t = 3 ,  for some e in C*, the line in M* through e and c avoids 
{a, b}. The complement of this line is a circuit of M tha t  contains {a, b} and meets 
C*. This contradiction implies that  (ii) does not hold. 

Now suppose that  (iii) holds. Then, for some 2-subset {u,v}  of C*, the line L 
through u and v in M* avoids {a, b}. Thus E ( M ) - L  is a circuit of M that  contains 
{a,b} and meets C*. Hence (iii) does not hold. 

We may now assmne that  (iv) holds. Then, by (2.10), M* has a circuit 
! ! 

{Xl,Xa,X2,X2} that  spans the plane complementary to {a,b,c}. Consider M*/c .  
We show next that:  

(2.14) A t  least one of  the six lines of  M * / c  that are spanned by the 2-subsets of 

avoids (a,b}. 

To see this, note that  an element d is on at most three of these lines with 
equality occurring only if d is parallel to one of Xl,X~,X2, or x[.  Thus the required 

line exists unless each of a and 5 is parallel to one of x1,ZJl,X2, and x~. Now a and 

b cannot both be parallel to the same element of {Xl,Xll,X2,Zl2} otherwise {a,b,c} 
has rank two in M* and so M* is not 3-connected. If each of a and b is parallel 
to a different element of {Xl, J i x 1, x2, x2}, then the other two members  of this subset 

span a line that  avoids {a,b}. Hence (2.14) holds. 

Let L be one of the lines whose existence was established by (2.14). Then 
LUc is a hyperplane of M*. Its complement is a circuit of M containing {a, b} and 
meeting C*. This contradiction completes the proof tha t  (iv) cannot occur and 
thereby finishes the proof of the theorem. | 

The next result is an immediate consequence of Theorem 1.1. 

(2.15) Corollary. Let M be a 3-connected lnatroid with at least two elements. I f  
6 1 , 6 2 ,  and C.~ a r e  cocircuits of M,  then M has a circuit that meets  ati three of 
these cocircuits. 

Applying (1.1) and (2.15) to graphs, we get the following results of Dirac [2]. 

(2.16) Corollary. Let G be a 3-connected simple graph. I ra  and b are edges and v 
is a vertex of  G, then a, b, and v all lie on some common cycle of  G. 

(2.17) Corollary. Let G be a 3-connected graph. I f  u, v, and w are vertices of  G, 
then u, v, and w all Iie on some common cycle of  G. 

The last two corollaries are special cases of results tha t  hold for n-connected 
graphs for all n > 2. I t  is not known whether Theorem 1.1 can be extended to n- 
connected matroids for n_> 4. When Theorem 1.1 and Corollary 2.15 are applied 
to cographic matroids, they seem to produce new graph results. We state  just the 
first of these. 
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(2.18) Corollary. Let G be a 3-connected graph. If  a and b are edges and C is a 
cycle of G, then G has a minimal edge cut that contains a and b and meets C. 

3. T h e  c o n v e r s e  

The  matroid  g2,402U2,4, the 2-sum of two 4-point lines, shows tha t  the converse 
of Theorem 1.1 fails. Nevertheless, the condit ion in tha t  theorem can be used to 
characterize 3-connected matroids.  In this section, we state and prove such a result. 

A mat ro id  N is a non-trivial extension of the matroid  M if N has an element 
e such tha t  N \ e  = M and e is neither a loop nor a coloop of N and e is not  in a 
2-circuit of N.  

(3.1) Theorem.  Let M be a matroid having rank and corank at least two. Then M 
is 3-connected if and only if M and all its non-trivial extensions have the property 
that,  for every pair of elements a and b and every cocircuit C*, there is a circuit 
that contains {a,b} and meets C*. 

Proof.  Suppose M is 3-connected. Then  every non-trivial extension M + of M 
is also 3-connected and so, by Theorem 1.1, M and every such M + satisfy the 
specified condition. 

Now suppose tha t  M is not 3-connected. We may  assume tha t  M is simple, 
otherwise M has elements a and b and a cocircuit  C* avoiding {a,b} such tha t  
{a,b} contains a circuit; hence M does not  satisfy the specified condition. Suppose 
tha t  M is disconnected. Then  M has a component  M1 with at  least two elements. 
Let  a and b be elements of Mz, and C* be a eocircuit of a component  of M other  
than  M1. Then  M does not satisfy the specified condition. Thus  we may  assume 
tha t  M is connected. Hence M = M 1 0 2  M2 = P(M1, M2)\p where each of M1 and 
M2 has at least three elements and is isomorphic to a proper  minor  of  M,  and p is 
the basepoint  of the parallel connection. 

Suppose tha t  P(M1,M2) is simple. Then  M2 has a cocireuit  U* avoiding p, 
and C* is a eoeireuit of P(M1, M2), a non-trivial  extension of M.  Let t ing  a = p and 
b be an element of E(M1) - p ,  we see tha t  P(M1,M2) has no circuit t ha t  contains 
{a,b} and meets C*; a contradiction.  

We may  now assume tha t  P(Mt,M2)  is non-simple. Then  p is parallel to  some 
element q of M.  Wi thou t  loss of generality, we may assume tha t  q E N(M2),  and so 
{p, q} is a circuit of M2. As M is simple, r(M2) _> 2 and M ~= P(M1, M2\q). Now let 
C* be a cocircuit  of M2\q avoiding p, take a=I), and choose b E E ( M 1 ) - p .  Then  
P(M1,M2\q) has no circuit tha t  contains {a,b} and meets C*; a contradict ion.  | 
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