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Abstract
We study the complexity of computing the coefficients of three classical

polynomials, namely the chromatic, flow and reliability polynomials of a graph.
Each of these is a specialisation of the Tutte polynomial Σtijxiyj . It is shown
that, unless NP = RP , many of the relevant coefficients do not even have good
randomised approximation schemes. We consider the quasiorder induced by
approximation reducibility and highlight the pivotal position of the coefficient
t10 = t01, otherwise known as the beta invariant.

Our nonapproximability results are obtained by showing that various deci-
sion problems based on the coefficients are NP -hard. A study of such predicates
shows a significant difference between the case of graphs, where, by Robertson-
Seymour theory, they are in polynomial time, and matrices over finite fields,
where they are shown to be NP -hard.

1 Introduction

Although the study of the complexity of counting problems is more than twenty years
old, there are still far more questions unanswered than not. Here we concentrate on
∗The authors were partially supported by, respectively, the National Security Agency and the

ESPRIT Project RAND-APX.
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counting problems arising in the study of classical combinatorial polynomials.
We assume familiarity with the chromatic and flow polynomials of a graph and

the Tutte polynomial of a matroid; more details can be found in [12] or [40]. The
basics of counting complexity such as the relation of #P to other complexity classes
can be found in [40].

Throughout, Σ will denote a finite alphabet and Σ∗ will be the language of finite
strings of elements of Σ. For x ∈ Σ∗, its length is denoted by |x|. A randomised
approximation scheme for a function f : Σ∗ → N is a randomised algorithm which
takes as input a pair (x, ε) ∈ Σ∗ × (0, 1) and produces as output an integer random
variable Y satisfying

Pr

{
1

1 + ε
≤ Y

f(x)
≤ 1 + ε

}
≥ 3

4
.

It is a fully polynomial scheme if its running time is bounded by a polynomial in
|x|, ε−1. Such a scheme is often called an fpras (pronounced “effpras”). The follow-
ing well-known observation about the existence of an fpras will be used frequently
throughout the paper.

Lemma 1.1 If f : Σ∗ → N is such that deciding whether f is non-zero is NP -hard,
then there is no fpras for f unless NP = RP .

Much of the time, we will be concerned with graphs. However, some of our results
and problems extend naturally to matroids and, in particular, to the matroids arising
from matrices with entries from a finite field. To accommodate this, we use the
concept of an “accessible” matroid, defined precisely below.

In this paper, we will be addressing the problem of computing matroid invariants
in time bounded by a polynomial in n, the size of the ground set of the matroid. In
order for this to be even a sensible question, a first requirement is that it is possible
to describe the matroid in time which is bounded by a polynomial function of n. We
call classes of matroids which can be so described succinct; for a precise definition,
see [24]. In practice, we are principally concerned with the succinct classes consisting
of matroids obtained from graphs or from matrices with entries from some finite
or algebraically closed field. Whether the matroid is described by a graph or by
its matrix representation is immaterial as far as polynomial-time computations are
concerned. Thus henceforth when we refer to a computational question for one of
these classes of matroids, we will implicitly assume that the matroid will be given (or
described) by a graph, by a matrix, or by some other such succinct presentation.

We say that a class M of matroids is accessible if

a) each member of M has a succinct representation;

b) if M ∈ M, the rank of any subset of E(M) can be found in time bounded by
a polynomial in |E(M)|;

c) M is closed under minors and, from a succinct representation of M ∈ M,
it is possible to find a succinct representation of each deletion M\e and each
contraction M/e in time which is bounded by a polynomial in |E(M)|.
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For the relation between this and other oracle representations of matroids, we refer
to Robinson and Welsh [35].

It is clear that many of the standard classes of matroids encountered in practice
are accessible. More specifically:

1.2 The classes of graphic and cographic matroids are accessible.

1.3 IfM(F ) denotes the class of matroids coordinatisable over a field F , thenM(F )
is accessible.

All of the specific polynomials whose complexity is studied here are specialisa-
tions of the 2-variable Tutte polynomial T (M ;x, y). As far as evaluations of these
polynomials are concerned, the problems of deciding their complexity are completely
answered in the papers of [24] and [39]. In particular, it is known [39] that, even for
a bipartite planar graph, every evaluation T (G; a, b) is #P -hard except when (a, b)
lies on two particular curves or is one of 8 special points. Here we are principally
concerned with individual coefficients of the various polynomials.

Where possible, we have separated the coefficients into those which are computable
in polynomial time (p-time), and those which are #P -hard. In the latter case, we
have tried to show the existence of an fpras or prove that, barring some unlikely
collapse in the complexity hierarchy, no fpras can exist.

The graph terminology is standard; the matroid terminology follows Oxley [31].

2 The chromatic and flow polynomials

When G is a graph with k(G) components, its chromatic polynomial P (G;λ) and
flow polynomial F (G;λ) have the form

P (G;λ) = a1λ+ a2λ
2 + · · ·+ anλ

n

and
F (G;λ) = f0 + f1λ+ · · ·+ fdλ

d

where n = |V (G)| and d = |E(G)| − |V (G)| + k(G). Whereas both an and fd are
known to equal 1, at the other end of the range we have the following hardness result.

Proposition 2.1 Even for bipartite planar graphs, the following problems are #P -
hard:

a) computing ak for any fixed k ≥ 1,
b) computing fk for any fixed k ≥ 0.

Proof. Take G to be connected. Then

P (G;λ) = (−1)|V (G)|−1λT (G; 1− λ, 0),

so

|a1| = lim
λ→0

∣∣∣∣P (G;λ)

λ

∣∣∣∣ = T (G; 1, 0).
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From [39], computing this evaluation of T is #P -hard even for bipartite planar graphs.
To see that computing ak is #P -hard, note that if we take k vertex-disjoint copies

of G and call the graph obtained G(k), then

P (G(k);λ) = (P (G, λ))k.

Thus if there is a p-time algorithm to determine the coefficient of λk in P (G(k);λ),
we have a p-time algorithm for finding the coefficient of λ in P (G;λ). But we have
shown the latter to be #P -hard.

To show that computing fk is #P -hard for any fixed k ≥ 0, we proceed as follows.
Let G be a connected plane graph, let G∗ be its dual, and let G2 be the graph that
is obtained from G by inserting a degree-2 vertex into each edge of G. Then G2 is a
bipartite plane graph and

F (G2;λ) = F (G;λ).

Moreover,
F (G;λ) = λ−1P (G∗;λ).

Thus if there is a p-time algorithm to determine the coefficient of λk in F (G2;λ), we
have a p-time algorithm for finding the coefficient of λk+1 in P (G∗;λ). Since G∗ is an
arbitrary connected plane graph, the latter is #P -hard by (i), and (ii) follows. �

3 Combinatorial complexes

The f -vector of a polytope or complex lists the number of its faces of each dimension.
This and the intimately related h-vector have been the subject of massive research
effort, particularly for shellable complexes (see, for example, [6]).

A complex ∆ on a finite set E is simply a collection of subsets which is closed under
containment. The members of ∆ are called faces or simplices. The dimension of ∆ is
the maximum cardinality of a face in ∆. (Note that this definition of dimension is one
more than is often found in the literature, but it is much more natural in the context
of combinatorics.) We say ∆ is pure if every maximal face has the same cardinality
d. These maximal faces are called facets.

A pure d-dimensional complex ∆ is shellable if its facets can be ordered as B1,
B2, . . . , Bm such that, for all k ∈ {2, 3, . . . ,m},

P (Bk) ∩
k−1⋃
i=1

P (Bi)

is a pure (d − 1)-dimensional complex. Here P (X) denotes the collection of subsets
of X. A pure complex is partitionable if its faces can be partitioned into intervals
[L1, U1], [L2, U2], . . . , [Lp, Up], where each Ui is a facet of ∆.

It is well-known that any shellable complex is partitionable and if

hi = |{j : |Lj| = i}|,
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then

hk =
k∑
j=0

(−1)k−j
(
d− j
d− k

)
fj

where fj is the number of faces of ∆ of cardinality j. Thus (f0, f1, ..., fd) and
(h0, h1, ..., hd) are related by writing

h(∆, x) =
d∑
i=0

hix
i and

f(∆, x) =
d∑
i=0

fix
i

to give

h(∆, x) = (1− x)df(∆,
x

1− x
). (1)

Note 3.1 Björner [6] uses the hi in reverse order. Although this has some notational
advantages, we prefer to stick with standard practice.

Almost all the complexes we deal with henceforth are matroid complexes. Such a
complex ∆ is the complex of independent sets of a matroid M = (E, r). The facets
of ∆ are the bases of M and the faces are the independent sets. Hence

f(∆, x) =
r∑

k=0

ikx
k,

where ik is the number of independent subsets of size k in M .
Every matroid complex is shellable and the h-vectors and f -vectors of matroid

complexes have natural interpretations in terms of the Tutte polynomial which we
now address.

4 The tableau of Tutte coefficients

The Tutte polynomial T (M ;x, y) of a matroid M = (E, r) can be written in the two
forms:

T (M ;x, y) =
∑
A⊆E

(x− 1)r(E)−r(A)(y − 1)|A|−r(A) (2)

=
∑
i,j

ti,jx
iyj

where each ti,j is a non-negative integer.
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It is convenient to represent T as a tableau or r + 1 by (|E| − r) + 1 array as
shown: 

t0,0 t0,1 . . . t0,|E|−r
t1,0 t1,1 . . .
...
tr,0


We use Ri (0 ≤ i ≤ r) and Cj (0 ≤ j ≤ |E| − r) to denote the row and column

sums, respectively, of the matrix (ti,j). Thus

r∑
i=0

Rix
i = T (M ;x, 1)

and
|E|−r∑
j=0

Cjy
j = T (M ; 1, y).

Putting y = 1 in (2) shows that

T (M ;x, 1) =
∑

A⊆E: A independent

(x− 1)r(E)−|A|

=
r∑

k=0

ik(M)(x− 1)r−k.

Hence,

T (M ;x, 1) = (x− 1)rf(∆(M),
1

x− 1
).

But, from (1),

h

(
∆,

1

x

)
=

(
x− 1

x

)r
f

(
∆,

1

x− 1

)
so

h

(
∆,

1

x

)
= x−rT (M ;x, 1)

giving for any matroid M , the identity

(hr, hr−1, ..., h0) = (R0, R1, ..., Rr).

It follows from [39] that, even for bipartite planar graphs, computing the whole
array (ti,j) must be #P -hard. Annan [4] makes this precise. We summarise his results
as follows. The input in each case is a graph with n vertices and m edges.

4.1 For fixed (i, j) 6= (0, 0), computing ti,j is #P -complete.

4.2 For all fixed a and arbitrary i and j, computing

tn−1−a,j and ti,m−n+1−a

is in P .
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4.3 For a constant α with 0 ≤ α < 1, computing

tbαn+1,0c

is #P -complete.

4.4 For a constant c with 0 < c ≤ 1, computing

tbn−nc+1c,0

is #P -complete.

4.5 Computing tb(n−1)/2c,b(n−m+1)/2c is #P -complete.

Loosely speaking, the combination of the above says that almost all the ti,j are
#P -hard except for those in a finite “South-East” border of the tableau.

On the positive side, it follows from Oxley and Welsh [32] that:

4.6 For any i, j, computing ti,j is in P for series-parallel graphs and for any class
of accessible matroids whose largest 3-connected member has bounded cardinality.

Andrzejak [2] and Noble [29] have extended the graphical version of this and
independently shown:

4.7 For any i, j, computing ti,j is in P for any class of graphs of bounded tree width.

We return to these coefficients in Sections 6 and 7. First we consider some ques-
tions about reliability.

5 Reliability polynomials

An enormous amount of effort has gone into the study of reliability polynomials and
the F -vectors, andH-vectors which are associated with them (see, for example, Brown
and Colbourn [8]).

First we give the basic definitions. Suppose that G is a connected graph and each
edge is independently operating (or present) with probability p and not operating (or
absent) with probability 1 − p. Rel(G, p) denotes the probability that the resulting
subgraph of G is connected and is known as the (all-terminal) reliability. Standard
forms for the reliability polynomial when G has m vertices and n edges are (see Brown
and Colbourn [8])

Rel(G, p) =
m−n+1∑
i=0

Fip
m−i(1− p)i

=
m∑

i=n−1

Nip
i(1− p)m−i

= pn−1

m−n+1∑
i=0

Hi(1− p)i.
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Here Fi and Ni are, respectively, the number of independent sets of M∗(G) of size i
and the number of spanning connected subgraphs of G with i edges, and {Hi} is the
h-vector of ∆(M∗(G)).

Clearly

5.1 Fm−n+1 is the number of spanning trees of G.

5.2 F0 = 1 and F1 is the number of edges of G that are not isthmuses.

All of these are p-time computable and it is easy to see that the following is true.

5.3 For any fixed k, computing Fk is in P .

At the other end of the range, apart from (5.1), not much seems to be known. In
[14], Chari and Colbourn pose the following problem which as far as we know is still
open.

Problem 5.4 Can the number of spanning connected unicyclic subgraphs of a graph
be computed efficiently?

The subgraphs we are seeking to count here correspond to spanning trees plus one
edge. Liu and Chow [27] show there is a p-time algorithm for this problem in planar
graphs. Interest in this seemingly strange problem is because the number sought is the
next-to-leading coefficient in the f -expansion of the reliability polynomial. Curiously,
it also arose in a completely different context in a problem of Przytycki [33] on the
Jones polynomial of a knot.

Although the status of exact computation is still open, we do have:

Theorem 5.5 (Annan [3]) For any fixed integer k, there exists an fpras for counting
the number of spanning connected subgraphs with n − 1 + k edges in a graph on n
vertices.

Turning to the H-form of the reliability polynomial, it is known (see, for example,
[14]) that the following is true.

5.6 For any fixed k, in a graph of edge connectivity c, there is a p-time algorithm to
calculate H0, H1, ..., Hc+k.

At the other end of the polynomial, one encounters the reliability domination D(G) of
a graph G. This is a parameter which has received a lot of attention in the literature
(see, for example, Boesch et al [7]). It turns out that D(G) is just the coefficient
Hm−n+1(G). Chari and Colbourn [14] note that, by a result of Vertigan [38], the
computation of Hm−n+1 is #P -hard even for planar graphs. The next proposition
extends this observation.

Proposition 5.7 For any fixed k ≥ 0, computing Hm−n+1−k is #P -hard even for
planar graphs.
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Proof. For any connected graph G, we know that {Hi} is the h-vector of ∆(M∗(G)).
Hence ∑

Hkz
k = h(∆(M∗(G)); z)

= zr(M
∗(G))T (M∗(G); z−1, 1)

= z|E|−r(M(G))T (G; 1, z−1)

=
∑

Cm−n+1−kz
k

where Cj is the j-th column sum of the Tutte tableau of G. Thus it suffices to show
that computing Ck is #P -hard. To see this, suppose that G′ is obtained from the
input graph G by adding a single loop. Then

T (G′;x, y) = yT (G;x, y).

Putting x = 1 and rewriting in terms of the column sums {Ck} gives, by comparing
coefficients, Ck(G

′) = Ck−1(G). Hence, for any fixed k > 0, a p-time algorithm to
compute Ck gives a p-time algorithm for Ck−1. Iterating this gives a p-time algorithm
for computing C0 = Hm−n+1 which we know to be #P -hard for planar connected
graphs.

�

6 Approximations

Now we turn to the question of which of the above coefficients have good approxima-
tion schemes. First we show that, unless there is a surprising collapse of complexity
hierarchies, there can be no fpras for “most” of the coefficients ti,j.

Proposition 6.1 Unless NP = RP , there is no fpras for the following:
Input: Connected graph G on n vertices and rational ε in (0, 1).
Output: Coefficient ti,j for

i = n− bnεc, j =

(
bnεc − 1

2

)
.

Proof. Leo [26] proves that, when k ≥ 3 and M = M(G) is simple,

tr(M)−k+1,n(k)

counts the number of subgraphs of G which are k-cliques. Here

n(k) =

(
k − 1

2

)
.

Now it is easy to prove that deciding whether a connected n-vertex graph contains
a clique of size bnεc is NP -complete. The idea is to start with a version of clique
known to be NP -complete, such as the existence of an (n/2)-clique. Then augment
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the input G by adding m isolated vertices to get G′ where m is chosen so that G′

on N vertices has an N ε-clique if and only if G has an (n/2)-clique. Existence of an
fpras for the counting problem would give an RP -algorithm for the decision problem
and hence imply NP = RP . �

Following [19], if f, g : Σ∗ → N are functions whose complexity of approximation
we wish to compare, an approximation preserving reduction from f to g is a proba-
bilistic oracle Turing machine M which takes as input a pair (x, ε) ∈ Σ∗ × (0, 1) and
satisfies (i)–(iii) below:

(i) every oracle call made by M is of the form (ω, δ) where ω ∈ Σ∗ is an instance
of g and δ ∈ (0, 1) is an error bound satisfying

δ−1 ≤ p(|x|, ε−1)

where p is a fixed polynomial;

(ii) the Turing machine M meets the specification of being a randomised approx-
imation scheme for f whenever the oracle meets the specification for being a
randomised approximation scheme for g;

(iii) the run time of M is polynomial in |x| and ε−1.

When such an approximation preserving reduction exists, we write f ≤AP g and
say f is AP-reducible to g.

In other words, if π1 and π2 are two counting problems, we say π1 is approximation
reducible or AP-reducible to π2 if the existence of an fpras for π2 implies the existence
of an fpras for π1. We should emphasise that, although this definition appears quite
forbidding, all the reductions which we will be using are of a very straightforward
character. A first easy result is the following.

Proposition 6.2 For fixed i, j ≥ 0, if π(ti,j) denotes the problem of computing the
coefficient ti,j, then

(a) π(ti,j) ≤AP π(ti+1,j),

(b) π(ti,j) ≤AP π(ti,j+1).

Proof.
T (M ⊕ U1,1;x, y) = xT (M ;x, y)

so
ti+1,j(M ⊕ U1,1) = ti,j(M),

and this gives (a). A dual argument gives (b). �

Combining the above propositions shows that, for all the coefficients ti,j which are
not on the North-West fringe of the tableau, there can be no fpras unless NP = RP .
It also highlights the following question as one which is most in need of a clear answer.
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Question 6.3 Is there an fpras to estimate t1,0?

The reasons for this are that, from Proposition 6.2, a negative answer implies a
negative answer for every coefficient ti,j, while, as our next result shows, a positive
answer gives a solution to the long-standing open question of whether there is an
fpras for the number of acyclic orientations of a graph.

Proposition 6.4 If a(G) denotes the number of acyclic orientations of G, then

π(a(G)) ≤AP π(t1,0).

Proof. Consider a connected graph G. Form G+ by adding a new vertex joined to
all vertices of G. Then

P (G+;λ) = λP (G;λ− 1).

Hence
(−λ)T (G+; 1− λ, 0) = λ(λ− 1)T (G; 2− λ, 0)

giving
T (G+;x, 0) = xT (G;x+ 1, 0). (3)

Comparing coefficients gives

t1,0(G+) = t1,0(G) + t2,0(G) + · · · .

This gives an AP -reduction showing that

π(T (G; 1, 0)) ≤AP π(t1,0). (4)

But putting x = 1 in (3) shows that

π(T (G; 2, 0)) ≤AP π(T (G; 1, 0))

and, since T (G; 2, 0) counts acyclic orientations, the result follows. �
Extending the argument above as x runs through the integers shows that, for each

positive integer k, the following is true:

π(T (G; k + 1, 0)) ≤AP π(T (G; k, 0). (5)

Since, for any matroid, t1,0 = t0,1, it is tempting to believe that the answer to the
following question is positive.

Question 6.5 Is it true that π(T (G; 0, 1)) ≤AP π(t1,0)?

Recall from §2 that T (G; 1, 0) and T (G; 0, 1) are, up to a sign, the coefficients a1

and f0, respectively, of the chromatic and flow polynomials. Hence another corollary
of the above proof is:

π(a1) ≤AP π(t1,0) (6)

and Question 6.5 is equivalent to:
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Question 6.6 Is it true that π(f0) ≤AP π(t1,0)?

A question which is prompted by the above is: What is the relationship between
the problems of approximating coefficients “along the diagonal” i + j = c for some
constant c? In particular, we pose:

Question 6.7 How do the difficulties of π(t1,1) and π(t2,0) compare?

Another question in the same vein is based on the intuition that “diagonal dis-
tance” from t0,0 provides a rough measure of the difficulty in computing ti,j. Thus we
pose:

Question 6.8 Are the following statements true?
a) π(t0,2) ≤AP π(t2,1).
b) π(t2,0) ≤AP π(t1,2).

Note, for the class of all matroids, or indeed any subclass closed under duality,
these two statements are equivalent.

7 Polynomial time predicates

From the above, it is likely that good approximations to the coefficients a1 and f0

either do not exist or are going to be very hard to find. However, what we do have is
the following:

Theorem 7.1 The following questions about an input graph G and fixed positive
integer k can be tested in polynomial time:

a) For the coefficient a1 of λ in P (G;λ), is |a1| less than k?

b) For the constant term f0 of F (G, λ), is |f0| less than k?

c) Is hd, the leading coefficient of the h-vector of a graphic or cographic matroid,
less than or equal to k?

d) For fixed rational α and input p with 0 < p < 1, is

Rel(G, p) ≤ αpn−1(1− p)m−n+1

for a graph with m edges and n vertices?

Annan [4] has shown that, for given fixed integers i, j, k, the predicate “ti,j(G) is
less than k” can be decided in p-time. This result does not seem to imply the above
or our next result which includes (a) to (d) as special cases.

Theorem 7.2 For given non-negative rationals a, b, k, deciding whether

T (M(G); a, b) ≤ k

is in P .
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Proof. Let π = π(a, b, k) be the predicate “T (M(G); a, b) ≤ k”. For a matroid M
with components M1,M2, . . . ,Mp, we know

T (M ; a, b) =
∏
i

T (Mi; a, b).

Since k is fixed, it is not hard to see that we can decide π in p-time for all a, b, k, if
we can decide it for connected matroids in p-time.

Call a graph G such that M(G) is connected a block. Consider the set of blocks
G such that π(a, b, k) holds for G and let Fk(a, b) consist of all minors of such blocks.
Clearly Fk(a, b) is a minor-closed family.

We now assert that every graph H ∈ Fk(a, b) satisfies π. Suppose not. Then
clearly H is not a block but must be a minor of some block G which does satisfy π.
But, from Brylawski [10, Corollary 6.9], we know that if N is a minor of a connected
matroid M , then, for each i, j,

ti,j(N) ≤ ti,j(M).

But, since G is a block, M(G) is connected and we have the contradiction

k < T (M(H); a, b)

≤ T (M(G); a, b) ≤ k.

To complete the proof, we observe that, by Robertson-Seymour theory [34], there are
only a finite number of minor-minimal graphs which do not belong to Fk(a, b) for any
non-negative k, a, b. Thus, given any block G, we can test membership in Fk(a, b) in
O(n3) time and this completes the proof. �

The proof above depends heavily on the Robertson-Seymour theory of graph mi-
nors. We would like to extend the results to matrices, or more explicitly, to the
class of accessible matroids. Despite the recent breakthrough by Geelen, Gerards and
Whittle [22], there is as yet no algorithmic theory for matrix minors and consequently
any proof will be more complicated.

Consider the following complexity question.

ACCESSIBLE(a, b, k).
Input: Accessible matroid M , fixed non-negative rationals a, b, k.
Question: Is T (M ; a, b) ≤ k?

Proposition 7.3 For a ≥ 1 and b ≥ 1, there is a p-time algorithm for
ACCESSIBLE(a, b, k).

Proof. Dinolt [18] and Murty [28] established that an n-element connected matroid
of rank r has at least r(n−r)+1 bases. Using this and the fact that T (M ; 1, 1) counts
the number of bases of M , it is straightforward to show that if M is a matroid without
loops or coloops, then T (M ; 1, 1) ≥ |E(M)|. Now let M be a matroid whose sets of
loops and coloops are L and L∗, respectively. Then T (M ; 1, 1) = T (M\(L∪L∗); 1, 1).

13



If M\(L ∪ L∗) has more than k elements, then, since a ≥ 1 and b ≥ 1, we have
T (M ; a, b) ≥ T (M ; 1, 1) > k. If M\(L ∪ L∗) has fewer than k elements, then there
are a bounded number of choices for M\(L ∪ L∗) and so the problem of determining
whether T (M ; a, b) ≤ k has been reduced to checking a bounded number of cases. �

We cannot see how to extend this result to the case where a or b lies in (0, 1).
In particular, we cannot settle the cases (a, b) = (0, 1) and (a, b) = (1, 0) which
correspond to |f0| and |a1| in the case of graphs.

In the same vein, we feel it should be possible to extend Annan’s result from
graphs to accessible matroids. In other words, we believe that the following is true.

Conjecture 7.4 For fixed integers i, j, k ≥ 0, there is a p-time algorithm to decide,
for an accessible matroid M , whether or not ti,j(M) ≤ k.

In an attempt to make progress on some of these problems, in the next section,
we study in detail the special case t1,0 = t0,1. This is the parameter β(M), already
much studied in the literature.

8 The beta invariant

The beta invariant β(M) of a non-empty matroid M is the coefficient of x in the Tutte
polynomial of M . Thus, when M is a loop or a coloop, β(M) is 0 or 1, respectively.
Crapo [15] proved the following:

Theorem 8.1 Let M be a non-empty matroid.

(i) If e ∈ E(M) and e is neither a loop nor a coloop of M , then

β(M) = β(M\e) + β(M/e).

(ii) If |E(M)| ≥ 2, then

(a) β(M) > 0 if and only if M is connected; and

(b) β(M∗) = β(M).

Exact excluded-minor conditions for β to take specific low values have been given
by Oxley [30]. In the context of this paper, it is interesting to note two particular
interpretations of β in terms of orientations of a graph.

Greene and Zaslavsky [23] have proved that, when M is the cycle matroid of a
graph G,

8.2 β(M) counts the number of acyclic orientations of G in which i is the only
source and j is the only sink, irrespective of the choice of an edge ij of G.

Equivalently:

8.3 If e is an edge of G, then β(M) counts the number of acyclic orientations of G
which become totally cyclic when the direction of e is switched.

14



As we have shown, approximating β is at least as hard as approximating the
number of acyclic orientations of G, and it is mildly surprising therefore to observe
that Bubley and Dyer [13] have found an fpras for counting sink-free orientations
which runs in time O∗(n2m3 + n5m).

Whether or not there is an fpras for determining β remains one of the most
intriguing problems in this area. However, the main purpose of this section is to
prove:

Theorem 8.4 If M is an accessible class of matroids and k is a fixed integer, then,
for M ∈M, it can be determined in polynomial time whether β(M) < k.

In order to prove Theorem 8.4, we shall need some preliminaries. The wheel with
r spokes and the whirl of rank r are denoted by Wr and Wr, respectively. The next
result is due to Crapo [15].

Lemma 8.5 β(M(Wr)) = r − 1 and β(Wr) = r for all r ≥ 2.

The following result extends an observation of Oxley [30, p. 274].

Lemma 8.6 Suppose k ≥ 2 and let M be a 3-connected matroid having β(M) = k.
Then |E(M)| ≤ 2k + 2. Moreover, equality holds if and only if M ∼= M(Wk+1).

Proof. If k = 2, then, as M is 3-connected, it follows by [30, Theorem 2.2] that M is
isomorphic to M(W3) or U2,4. Thus |E(M)| ≤ 6 = 2k + 2 and equality holds if and
only if M ∼= M(Wk+1). Hence the lemma holds for k = 2. Assume it holds for all
integers k in {2, 3, . . . ,m− 1} and let k = m. Now either

(i) M has an element e such that M\e or M/e is 3-connected, or

(ii) for all elements e of M , neither M\e nor M/e is 3-connected.

In the second case, by Tutte’s Wheels-and-Whirls Theorem [36, 8.2], M is a wheel
or a whirl. Since β(M) = m, it follows that M ∼= M(Wm+1) or M ∼= Wm. Thus
|E(M)| ≤ 2m+ 2 with equality holding if and only if M ∼= M(Wm+1).

Now assume that (i) holds. Then M\e or M∗\e is 3-connected. By switching to
the dual if necessary, we may assume that M\e is 3-connected. Since M/e must be
connected, β(M/e) is positive. Thus, as β(M) = β(M\e) + β(M/e), it follows that
β(M\e) ≤ m− 1. Therefore, by the induction assumption, |E(M\e)| ≤ 2(m− 1) + 2.
Hence |E(M)| ≤ 2m+ 1. The lemma follows by induction. �

For all n ≥ 2, let Bn be the set of minor-minimal matroids M for which β(M) =
n. Let B∞ = ∪n≥2Bn. A basic tool in the proof of Theorem 8.4 is the following
result of Cunningham and Edmonds [17] that every connected matroid has a unique
decomposition into circuits, cocircuits, and 3-connected matroids with at least four
elements.

Theorem 8.7 Let M be a connected matroid. Then, for some positive integer k,
there is a collection M1,M2, . . . ,Mk of matroids and a k-vertex tree T with edges
labelled e1, e2, . . . , ek−1 and vertices labelled M1,M2, . . . ,Mk such that
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(i) each Mi is 3-connected or is a circuit or cocircuit;

(ii) E(M1) ∪ E(M2) ∪ . . . ∪ E(Mk) = E(M) ∪ {e1, e2, . . . , ek};

(iii) if the edge ei joins the vertices Mj1 and Mj2, then E(Mj1) ∩ E(Mj2) is {ei};

(iv) if no edge joins the vertices Mj1 and Mj2, then E(Mj1) ∩ E(Mji) is empty;

(v) T does not have two adjacent vertices that are both labelled by circuits or that
are both labelled by cocircuits.

Moreover, M is the matroid that labels the single vertex of the tree T/e1, e2, . . . , ek−1

at the conclusion of the following process: contract the edges e1, e2, . . . , ek−1 of T one
by one in order; when ei is contracted, its ends are identified and the vertex formed
by this identification is labelled by the 2-sum of the matroids that previously labelled
the ends of ei. Furthermore, the tree T is unique to within relabelling of its edges.

The fact that the tree T in this theorem is unique comes at a price: one cannot
insist, as one would like, that each Mi is 3-connected, for a big circuit or cocircuit
can be decomposed in several ways into 3-element (and hence 3-connected) circuits or
cocircuits, respectively. Cunningham and Edmonds also proved a variant of the last
theorem in which (i) was replaced by the requirement that each Mi is 3-connected.
In that case, one must eliminate (v) and the conclusion that T is unique, but other-
wise the theorem remains intact. An important consequence of this variant is that,
although T itself need not be unique, for each element e of M , the isomorphism type
of the matroid that contains e in the decomposition is determined. We shall refer to
a decomposition of M according to this variant of Theorem 8.7 as a 3-connected tree
decomposition of M . The decomposition whose existence is asserted in Theorem 8.7
will be called the unique tree decomposition of M . An element of a connected matroid
is in a circuit or cocircuit in the unique tree decomposition of M if and only if it is
in a circuit or cocircuit in some or, equivalently, all 3-connected tree decompositions
of M .

Theorem 8.8 The following statements are equivalent for a matroid M .

(i) M is in B∞.

(ii) M is connected, |E(M)| ≥ 3, and, in the unique tree decomposition of M , no
element of M is in either a circuit or a cocircuit in the tree decomposition.

(iii) M is connected, |E(M)| ≥ 3, and, if T is some 3-connected tree decomposition
of M , then no element of M is in either a circuit or a cocircuit of T .

This theorem follows immediately by combining the next two lemmas. The first
of these is a consequence of Theorem 8.1 and the straightforward details are omitted.

Lemma 8.9 A matroid M is in B∞ if and only if |E(M)| ≥ 3 and, for all elements
e of M , both M\e and M/e are connected.
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The next result is well-known but we include the proof for completeness. There
is a technical difficulty that arises in the proof, namely that one may be faced with
taking a 2-sum in which one of the matroids has just two elements, an operation which
is undefined. However, this problem is easily overcome by extending the definition
of 2-sum to include the case when the matroids have two elements. In that case, the
2-sum of matroids N1 and N2 is, as usual, the parallel connection of N1 and N2 with
the basepoint deleted.

Lemma 8.10 Let e be an element of a connected matroid M with |E(M)| ≥ 3. Then

(i) M\e is disconnected if and only if e is in a circuit in the unique tree decompo-
sition of M ; and

(ii) M/e is disconnected if and only if e is in a cocircuit in the unique tree decom-
position of M .

Proof. By duality, it suffices to prove (i). Let Mi be the matroid that contains e in
the unique tree decomposition of M . Suppose that Mi is not a circuit. Then Mi is
either a cocircuit or a 3-connected matroid. Thus Mi\e is connected. It follows that
M\e is connected since the 2-sum of connected matroids is connected. On the other
hand, if Mi is a circuit, then, as |E(Mi)| ≥ 3, it follows that Mi\e is disconnected
and so M\e is disconnected. �

Theorem 8.11 Let n ≥ 2 and M be a member of Bn. Then |E(M)| ≤ 2n + 2.
Moreover, equality holds if and only if

(i) M ∼= M(Wn+1), or

(ii) n = 4 and M is the 2-sum of two copies of M(K4).

Proof. If M is 3-connected, then the theorem holds by Lemma 8.6. Thus we may
assume that M is not 3-connected. Let M1,M2, . . . ,Mm be the 3-connected matroids
that label vertices in the unique tree decomposition of M and that are not circuits
and are not cocircuits. Then, by Theorem 8.8, every element of M is in some Mi and
every Mi contains a basepoint that is not in M . Thus

|E(M)| ≤
m∑
i=1

(|E(Mi)| − 1) (7)

≤
m∑
i=1

(2β(Mi) + 2− 1) (8)

≤ [2
m∑
i=1

β(Mi) + (m− 2)] + 2. (9)

Now if N1 and N2 are matroids, then β(N1⊕2N2) = β(N1)β(N2) [30, p. 270]. Hence,
as β(M) = n, we deduce that

∏m
i=1 β(Mi) = n. Thus the desired bound on |E(M)|

holds provided
m∑
i=1

β(Mi) +
m− 2

2
≤

m∏
i=1

β(Mi). (10)
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Without loss of generality, we may assume that

β(M1) ≥ β(M2) ≥ . . . ≥ β(Mm) ≥ 2,

where the last inequality follows since every 3-connected matroid that is not a circuit
or a cocircuit has β ≥ 2 [9, Theorem 7.6]. Since

∑m
i=1 β(Mi) + m−2

2
≤ mβ(M1) + m−2

2

and 2m−1β(M1) ≤
∏m

i=1 β(Mi), it follows that (10) holds provided

mβ(M1) +
m− 2

2
≤ 2m−1β(M1).

This holds if and only if

m− 2

2
≤ (2m−1 −m)β(M1).

The last inequality certainly holds for m ≥ 2 and is strict for m ≥ 3. But we know
that m ≥ 2. Therefore, when M is not 3-connected, |E(M)| ≤ 2n + 2. Moreover,
equality can only hold if m = 2 and equality holds in (10) and (8). Now equality in
(10) implies that β(M1) = β(M2) = 2, and equality in (8) implies, by Lemma 8.6,
that both M1 and M2 are isomorphic to M(K4). Since, for M ∼= M(K4)⊕2 M(K4),
we have |E(M)| = 10 = 2β(M) + 2, we conclude that the matroids attaining equality
in the bound in the theorem are as specified there. �

We now turn to the proof of the main result of this section, Theorem 8.4. Note
that the second paragraph of the next proof is very similar to the first part of the
proof of Theorem 2 of [32].

Proof of Theorem 8.4. We may assume that k is positive since β(M) ≥ 0 for all
matroids M . For k ≥ 3, every minor-minimal matroid N with β(N) = i and 2 ≤ i < k
is in ∪k−1

i=2Bi. By Theorem 8.11, every matroid in this collection has at most 2k
elements. Thus the number of matroids in ∪k−1

i=2Bi equals f(k) for some function
f . To determine whether β(M) < k, we shall produce, from M , a minor-minimal
matroid M ′ for which β(M ′) = β(M). We then need only to compare M ′ with each
of the f(k) members of ∪k−1

i=2Bi to determine whether 2 ≤ β(M) < k. The procedure
used to produce M ′ will also enable us to determine whether β(M) ∈ {0, 1}.

By using the algorithm of Bixby and Cunningham [5], we may determine whether
or not M is 3-connected and, if not, the algorithm will produce a 2-separation of M .
Moreover, since the matroid is accessible, this can be done in time that is bounded
by a polynomial in |E(M)| = n. This is because the main component of the algo-
rithm involves using Edmonds’ matroid intersection algorithm, which can be done in
polynomial time for accessible matroids. By at most n− 1 applications of Bixby and
Cunningham’s algorithm, we obtain a decomposition of M into its connected com-
ponents and, for each such component, we obtain a 3-connected tree decomposition.
Note that when we find a 2-separation {S1, S2} of a connected matroid N , we can
obtain two matroids N1 and N2 of which N is the 2-sum as follows:

(i) For each i in {1, 2}, construct a basis Bi for N |Si. Then, as |B1| + |B2| =
r(S1) + r(S2) = r(N) + 1, the set B1 ∪ B2 contains a circuit C of N , and C
must meet both B1 and B2.
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(ii) Let p1 be an element of C ∩ B2, let p2 be an element of C ∩ B1 and, for each
i in {1, 2}, let Ni = [N |(Si ∪ C)].(Si ∪ pi). Then N is the 2-sum of N1 and N2

with respect to the basepoints p1 and p2, respectively.

If M has more than one component, then β(M) = 0 < k. Thus we may assume
that M is connected. We may also assume that |E(M)| > 1 otherwise we can eas-
ily determine β(M) exactly. Now consider the collection of matroids labelling the
vertices in the tree decomposition obtained for M . From this collection, discard all
circuits and all cocircuits, leaving a collection Mi1 ,Mi2 , . . . ,Mim of 3-connected ma-
troids each with at least four elements. Then β(M) = 1 if and only if this collection
is empty. If the collection is non-empty, then β(M) =

∏m
j=1 β(Mij). Now let M ′ be

the matroid that is formed from a circuit with elements e1, e2, . . . , em by, for each j in
{1, 2, . . . ,m}, attaching Mij at ej via a 2-sum, where the basepoint of this 2-sum in
Mij is arbitrarily chosen. Although M ′ will certainly depend on the choices of these
basepoints, the value of β(M ′) will not since β(M ′) =

∏m
j=1 β(Mij) = β(M). More-

over, by Theorem 8.8, every proper minor of M ′ has a smaller value of β. Consider
|E(M ′)|. By Theorem 8.11, if |E(M ′)| ≥ 2k + 1, then β(M ′) ≥ k. Thus we may
assume that |E(M ′)| ≤ 2k. Evidently β(M) < k if and only if M ′ is isomorphic to
one of the f(k) members of ∪k−1

i=2Bi. �

9 Some Decision Problems

We have seen in Proposition 6.1 that knowing that it is, in some provable sense, hard
to decide whether ti,j > 0 is very strong evidence that there is no fpras for that ti,j.
Accordingly, in this section, we study various decision problems of this kind. First
we state a positive result.

Theorem 9.1 IfM is an accessible class of matroids and i is a fixed positive integer,
then, for M ∈M, there are p-time algorithms to detemine whether or not ti,0(M) = 0
and whether or not t0,i(M) = 0.

Proof. By duality, it suffices to prove that such a p-time algorithm exists to determine
whether or not ti,0(M) = 0. Let |E(M)| = n. By at most n − 1 applications
of Bixby and Cunningham’s algorithm, we obtain a decomposition of M into its
connected components. We can then check in p-time whether or not M has any
loops. If M does have a loop, then ti,0(M) = 0. Thus we may assume that M has
no loops. Evidently we can determine in p-time both the rank r and the number k of
components of M . Then, from a result of Brylawski [11, p. 222], ti,0(M) = 0 if and
only if i 6∈ {k, k + 1, . . . , r}. The theorem follows immediately. �

In contrast we have the following negative result.

Theorem 9.2 Let i, j, and k be fixed positive integers. There is no function f in
Z[x] such that, for every n-element matroid M , it can be determined by using at most
f(n) probes of an independence oracle whether or not ti,j(M) < k.
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The proof will use two lemmas. The first combines results of Brylawski [11, p. 212]
and Leo [26]. The two-wheel is the cycle matroid of the wheel graph with two spokes.

Lemma 9.3 The following statements are equivalent for a connected matroid M .

(i) t1,1 > 0.

(ii) M is not uniform.

(iii) M has a two-wheel as a minor.

The next lemma follows from a result of Brylawski [10, Corollary 7.14].

Lemma 9.4 Suppose that r and n− r are positive integers. Then

β(Ur,n) =

(
n− 2

r − 1

)
.

Let r and n be integers exceeding one and m be a non-negative integer such that
r +m ≤ n. Let M(r,m, n) be the matroid that is obtained from Ur,n−m by choosing
a hyperplane X of the latter and freely adding m points to X to form the set H. In
particular, M(r, 0, n) ∼= Ur,n and M(r,m, r +m) ∼= Ur−1,r−1+m ⊕ U1,1. It is clear that
M(r,m, n) is representable over the rationals and hence over the reals.

Lemma 9.5 Let r and n be integers exceeding one and m be a non-negative integer
such that r +m ≤ n. Then

t1,1(M(r,m, n)) =

(
r − 3 +m

r − 2

)
.

Proof. First suppose that n = r+m. Clearly t1,1(M(r,m, r+m)) = t1,1(Ur−1,r−1+m⊕
U1,1) = t0,1(Ur−1,r−1+m). If m > 0, then t0,1(Ur−1,r−1+m) = β(Ur−1,r−1+m) =

(
r−3+m
r−2

)
,

where the last equality follows by Lemma 9.4. If m = 0, then Ur−1,r−1+m is the direct
sum of r − 1 coloops, so t0,1(Ur−1,r−1+m) = 0 and t1,1(M(r,m, r +m)) = 0 =

(
r−3
r−2

)
.

Now assume that r + m < n. Choose an element e of E(M(r,m, n)) − H.
Then M(r,m, n)/e ∼= Ur−1,n−1 and M(r,m, n)\e ∼= M(r,m, n − 1). By Lemma 9.3,
t1,1(Ur−1,n−1) = 0, so t1,1(M(r,m, n)) = t1,1(M(r,m, n−1)). By repeating this process,
we deduce that t1,1(M(r,m, n)) = t1,1(M(r,m, r +m)) =

(
r−3+m
r−2

)
. �

Proof of Theorem 9.2. For a matroid M , let M ′ be obtained by taking the direct sum
of M with i− 1 coloops and j − 1 loops. Then ti,j(M

′) = t1,1(M). It follows that it
suffices to prove the theorem in the case that i = j = 1.

By Lemma 9.5, t1,1(M(r, s, 2r)) =
(
r−3+s
r−2

)
. Thus t1,1(M(r, 0, 2r)) = 0, while

t1,1(M(r, 2, 2r)) = r − 1. But M(r, 0, 2r) ∼= Ur,2r, while M(r, 2, 2r) differs from
Ur,2r in that the former has an (r + 1)-element subset H of its ground set such that
every r-element subset of H is a non-basis of the former but a basis of the latter. To
detect the difference between M(r, 0, 2r) and M(r, 2, 2r) on a (2r)−element set E,
we need to probe at least one r-element subset of each (r+ 1)-element subset of E to
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determine whether or not it is independent. Each r-element subset of E is in exactly
r subsets of E of cardinality r + 1. Thus at least 1

r

(
2r
r

)
probes of an independence

oracle are needed to distinguish between M(r, 0, 2r) and M(r, 2, 2r). But, for r > k,
we have t1,1(M(r, 0, 2r)) = 0 while t1,1(M(r, 2, 2r)) ≥ k. The theorem follows. �

Suppose now we consider the following matrix problems.

TUTTE COEFFICIENT OVER FIELD F
Input: Matrix A with entries from the finite field Fq or the rationals Q and positive

integers i, j.

Question: If M = M [A], is ti,j(M) > 0?

The same argument that was used to prove Proposition 6.1 also shows that, as it
stands, the above problem is NP -hard. This is because we allow i, j to be part of
the input. For fixed i, j, this argument fails. On the other hand, Theorem 9.2 gives
strong evidence that TUTTE COEFFICIENT is not in P . However, it is not a proof
because the algorithmic steps which we are allowing are in terms of independence-
oracle probes. Accordingly we next define:

UNIFORM MATROID ISOMORPHISM
Input: k × n matrix A with integer entries.

Question: Is M [A] isomorphic to Uk,n?

Then we obtain the following result from Lemma 9.3.

Theorem 9.6 Deciding whether t1,1(M [A]) > 0 when A is an integer matrix is Tur-
ing equivalent to UNIFORM MATROID ISOMORPHISM.

To the best of our knowledge, none of the classical “isomorphism” questions in
combinatorics has been proved to be NP -hard nor are they known to be in P . Hence,
initially, we suspected that UNIFORM MATROID ISOMORPHISM is another prob-
lem in the complexity gap. However, this is not the case, for Khachiyan [25] has
shown that it is NP -hard to determine if a set of n rational points in d dimensions
is affinely or linearly dependent. As immediate consequences of this fact and the last
theorem, we have the following:

Theorem 9.7 UNIFORM MATROID ISOMORPHISM is NP -hard.

Corollary 9.8 For an integer matrix A, deciding whether t1,1(M [A]) > 0 is NP -
hard.

It follows from the last result and Lemma 1.1 that, for an integer matrix A, there
can be no fpras for t1,1(M [A]) unless NP = RP . However, when A is a matrix over
a finite field Fq, the situation is quite different since, for any fixed q and sufficiently
large n, the matroid M [A] cannot be uniform.

We close this section with a result which shows that deciding whether t1,w(M) > 0
for a general accessible matroid isNP -hard. We do this by proving it hard for matrices
with entries from a finite field. Whether a similar result holds for matrices over the
rationals is not clear.
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Theorem 9.9 The following problem is NP -hard for any finite field Fq:

Input: Matrix A with entries from Fq and positive integer w.

Question: Is t1,w(M [A]) > 0?

Proof. From [12, p. 182], we know that the minimum distance d(C) of a linear code
C over Fq is obtainable from T (M(C)) using the formula

d(C) = n− r + 1− δ

where C has length n and dimension r, and

δ = max{j : ti,j > 0 for some i > 0}.

But we know from standard properties of the Tutte tableau (see, for example, [11,
Proposition 6.5]) that, for a connected matroid, if ti,j > 0, then tk,l > 0 for all
(k, l) 6= (0, 0) such that 0 ≤ k ≤ i and 0 ≤ l ≤ j. Hence

δ = max{j : t1,j > 0}.

Thus we have reduced the problem to finding the minimum distance of a linear code
over Fq and, by the recent result of Vardy [37], we know this is NP -hard for all prime
powers q. �

Note 9.10 (i) We cannot replace an Fq-representable matroid by a graphic matroid
(or even a regular matroid) in the above statement.

(ii) By Lemma 1.1, the last theorem implies that, unless NP = RP , there is no
fpras for t1,w for general integer w, even in the binary case.

10 Conclusion: an fpras order

We close with a brief overview. Define a quasi-order on Tutte invariants by µ < λ if
the existence of an fpras for λ implies the existence of an fpras for µ; in other words,
we are abbreviating the relation ≤AP of AP -reducibility to just <. Then, restricting
attention to graphic inputs, we have from (4), (5), (6), and Proposition 6.2, that this
quasi-order has the following structure, where a(G) = T (G; 2, 0) denotes the number
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of acyclic orientations of G:

t3,0 t2,1 t1,2 t0,3
� � � � � �

t2,0 t1,1 t0,2
� | �

� | �

t1,0 = β = t0,1
|

a1(G)
|

a(G)
|

T (3, 0)
|

T (4, 0)
...

Of course, the whole order may significantly collapse if all the ti,j have an fpras.
However, it does highlight the pivotal position of the invariant β. Deciding whether
or not it has an fpras would be a significant advance.

The results of Section 9 show that the situation illustrated in the quasi-order
above is significantly different when working in the class of matroids rather than
graphs. In particular, for a matrix A over the rationals, we know from Lemma 1.1,
Proposition 6.2, and Corollary 9.8 that, for i and j both positive, there is no fpras
for ti,j(M [A]) unless NP = RP.

We have also made no further progress on deciding how well the constant term f0

of the flow polynomial can be approximated. Although duality arguments suggest it
should be comparable in difficulty to approximating the coefficients of the chromatic
polynomial and thus AP -reducible to t1,0, we have not been able to prove this. We
should also note that because |f0(G)| = |T (G; 0, 1)| and, by [1], the latter has an fpras
for the class of dense graphs, then so does |f0(G)|. There is no known comparable
result for the coefficients of the chromatic polynomial.
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