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Abstract. An element e of a 3–connected matroid M is essential if neither

the deletion nor the contraction of e from M is 3–connected. Tutte’s 1966
Wheels and Whirls Theorem proves that the only 3–connected matroids in

which every element is essential are the wheels and whirls. It was proved by

Oxley and Wu that if a 3–connected matroid M has a non-essential element,
then it has at least two such elements. Moreover, the set of essential elements

of M can be partitioned into classes where two elements are in the same class

if M has a fan, a maximal partial wheel, containing both. In addition, if M
has a fan with 2k or 2k + 1 elements for some k ≥ 2, then M can be obtained

by sticking together a (k + 1)–spoked wheel and a certain 3–connected minor

of M . In this paper, it is shown how a slight modification of these ideas can
be used to describe the structure of a 3–connected matroid M having a 3–

separation (A, B) such that every element of A is essential. The motivation

for this study derives from a desire to determine when one can remove an
element from M so as to both maintain 3–connectedness and preserve one side

of the 3–separation.

1. Introduction

The terminology used here will follow Oxley [6] with two exceptions: the simpli-
fication and cosimplification of a matroid N will be denoted by si(N) and co(N),
respectively. The property that a circuit and a cocircuit cannot have exactly one
common element will be referred to as orthogonality. If X is a set in a matroid M
and k is a positive integer, then X is k-separating [5] if r(X)+r(E(M)−X)−r(M) ≤
k − 1. Thus (X, E(M) − X) is a k–separation of M if X is k–separating and
|X|, |E(M) − X| ≥ k. A basic structure in the study of 3–connected matroids
is a chain of triangles and triads. Let T1, T2, . . . , Tk be a non-empty sequence of
sets each of which is a triangle or a triad of a matroid N such that, for all i in
{1, 2, . . . , k − 1},

(i) |Ti ∩ Ti+1| = 2;
(ii) (Ti+1 − Ti) ∩ (T1 ∪ T2 ∪ . . . ∪ Ti) is empty; and
(iii) in {Ti, Ti+1}, exactly one set is a triangle and exactly one set is a triad.

Then we call T1, T2, . . . , Tk a chain of N of length k with links T1, T2, . . . , Tk.
When this occurs, it is straightforward to show that N has k + 2 distinct elements
x1, x2, . . . , xk+2 such that Ti = {xi, xi+1, xi+2} for all i in {1, 2, . . . , k}. When
k ≥ 2, the elements x1 and xk+2 are the only elements of the chain that are in
exactly one link. We call them the ends of the chain and call x2, x3, . . . , xk+1 the
internal elements of the chain.
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In a 3–connected matroid other than a wheel or whirl, a maximal chain is called
a fan [8]. If A is the set of internal elements of such a fan and |A| ≥ 3, then
(A,E(M)−A) is a 3–separation of M in which every element of A is essential. We
shall show here that if we begin with a 3–separation (A,B) in which every element
of A is essential, then the structure of A relative to M can be described using a
modified notion of a fan.

Let (A,B) be a partition of the ground set of a 3–connected matroid M such
that |A|, |B| ≥ 2. An A-fan is a chain T1, T2, . . . , Tk of triangles and triads of M of
length at least two such that all internal elements of the chain are in A and both
ends of the chain are in B. There are three types of A-fans: type-1 when both T1

and Tk are triangles; type-2 when both T1 and Tk are triads; and type-3 when one
of T1 and Tk is a triangle and the other is a triad. Evidently F is a type-1 A-fan
of M if and only if it is a type-2 A-fan of M∗. We remark that, whereas the ends
of a fan are non-essential elements, the ends of an A-fan are elements of B.

The following is the main result of the paper. It is proved in Section 3.

1.1. Theorem. Let (A,B) be a 3–separation of a 3–connected matroid M in which
every element of A is essential. Then there is a partition {A1, A2, . . . , Ak} of A
such that a subset A′ of A is the set of internal elements of an A-fan if and only
if A′ ∈ {A1, A2, . . . , Ak}. Moreover, every A-fan has the same type t. If t = 1
or t = 2, then the ends of all A-fans are collinear in M or in M∗, respectively; if
t = 3, then all A-fans have the same ends.

This theorem and duality imply that we have two cases to consider: when all
A-fans have type-1, and when all A-fans have type-3. Sections 4 and 5 give construc-
tive descriptions, corresponding to these two cases, of all the 3–connected matroids
having a 3–separation (A,B) in which every element is essential. These construc-
tions will use a special case of the operation of generalized parallel connection intro-
duced by Brylawski [3]. Let M1 and M2 be matroids such that E(M1)∩E(M2) = ∆
where ∆ is a triangle of both M1 and M2. Assume that M1 is binary. The gen-
eralized parallel connection P∆(M1,M2) of M1 and M2 across ∆ is the matroid
on E(M1) ∪ E(M2) whose flats are those subsets X of E(M1) ∪ E(M2) such that
X ∩ E(M1) is a flat of M1, and X ∩ E(M2) is a flat of M2.

This paper will rely heavily on [8]. Since the techniques used here are similar to
those used in that paper and [9], a number of arguments from this paper will be
abbreviated or omitted.

2. Preliminaries

This section presents three lemmas that will be used in the proof of the main re-
sult. The first two are known as Bixby’s Lemma [2] and Tutte’s Triangle Lemma [10],
respectively.

2.1. Lemma. Let e be an element of a 3–connected matroid M . Then either
co(M\e) or si(M/e) is 3–connected.

2.2. Lemma. Let {e, f, g} be a triangle of a 3–connected matroid M . If neither
M\e nor M\f is 3–connected, then M has a triad containing e and exactly one of
f and g.

2.3. Lemma. Let (A,B) be a 3–separation of a 3–connected matroid M . Suppose
that |cl(A) ∩B| ≥ j for some j in {2, 3}. Then M |B is j-connected.
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Proof. Let (X, Y ) be a k–separation of M |B for some k with 1 ≤ k ≤ j − 1. Then

r(X) + r(Y )− r(B) ≤ k − 1 ≤ j − 2. (1)

Without loss of generality, we may assume that |X ∩ cl(A)| ≥ d j
2e. Thus, as j is in

{2, 3}, it follows that r(X ∩ cl(A)) ≥ d j
2e. Let t = r(X ∩ cl(A)). Then

r(X ∪A) = r(cl(X) ∪ cl(A))
≤ r(cl(X)) + r(cl(A))− r(cl(X) ∩ cl(A))
= r(X) + r(A)− r(cl(X) ∩ cl(A)).

Hence
r(X ∪A) ≤ r(X) + r(A)− t. (2)

Thus

r(X ∪A) + r(Y )− r(M) ≤ r(X) + r(A)− t + r(Y )− r(M) by (2),
= r(A) + (r(X) + r(Y ))− r(M)− t

≤ r(A) + r(B) + j − 2− r(M)− t by (1),
= (r(A) + r(B)− r(M))− 2 + j − t.

Hence
r(X ∪A) + r(Y )− r(M) ≤ j − t ≤ j − d j

2
e = b j

2
c = 1. (3)

As M is certainly connected, equality holds throughout (3), so t = d j
2e. Since M

is 3–connected, we deduce that
|Y | = 1. (4)

Now suppose that j = 2. Then, as |cl(A) ∩ B| ≥ 2 and r(X ∩ cl(A)) = 1, we
deduce that r(Y ∩ cl(A)) ≥ 1. Thus we may interchange X and Y in the argument
that produced (3), noting that t becomes equal to r(Y ∩ cl(A)). It follows, since
M is 3–connected, that |X| = 1. Hence |B| = |X| + |Y | = 2; a contradiction.
We conclude that the lemma holds for j = 2. In particular, M |B is 2-connected.
Now let j = 3. Then, since (X, Y ) is a k–separation of M |B for some k with
1 ≤ k ≤ j − 1, it follows that k = 2. Thus |Y | ≥ 2; a contradiction to (4). Hence
the lemma also holds when j = 3. �

3. Proof of Theorem 1.1

Throughout this section, we shall assume that (A,B) is a 3–separation of a 3–
connected matroid M in which every element of A is essential. When this occurs,
a result of Tutte [10, 7.1] asserts that every element of A is in a triangle or a triad.
We extend this to show that every element of A is in an A-fan. To prove this, we
shall use the following result.

3.1. Lemma. If a ∈ A, then a is in a triangle or a triad of M that contains at
least two elements of A.

Proof. By Bixby’s Lemma (2.1) and duality, we may assume that si(M/a) is 3–
connected. But M/a is not 3–connected. Thus a is in a triangle T of M . We may
assume that T − a ⊆ B otherwise the lemma holds. Thus a ∈ cl(B). Now let

rM/a(A− a) + rM/a(B)− r(M/a) = t.

Then
r(A)− 1 + r(B ∪ a)− 1− r(M) + 1 = t.
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But r(B ∪ a) = r(B) so r(A) + r(B) − r(M) = t + 1. Hence t = 1. Since M/a
is vertically 3–connected, we deduce that rM/a(A − a) ≤ 1 or rM/a(B) ≤ 1. Thus
r(A) = 2 or r(B) = 2. In the first case, since |A| ≥ 3, we deduce that a is
contained in a triangle of M contained in A, so the lemma holds. In the second
case, r(A) = r(M) and B is contained in a line of M that contains a. Since this line
contains B ∪ a, it has at least four elements. It follows that M\a is 3–connected; a
contradiction. �

3.2. Corollary. Every element of A is in an A-fan.

Proof. Let a ∈ A. By Lemma 3.1, a is in a triangle or a triad that contains at least
two elements of A.

Assume first that a is in a 3-set T that is contained in A and is a triangle
or a triad. Take a maximal chain {a1, a2, a3}, {a2, a3, a4}, . . . , {an−2, an−1, an} of
triangles and triads using T such that every element is in A. By using duality, we
may assume that {a1, a2, a3} is a triangle. By Tutte’s Triangle Lemma (2.2), a1 is
in a triad T ∗ that contains exactly one of a2 and a3. Suppose that T ∗ = {a1, a2, x}.
Then x 6= a3 as T ∗ is not both a triangle and a triad since |E(M)| ≥ 6. Moreover,
x 6= a4 otherwise the triads {a1, a2, a4} and {a2, a3, a4} imply that the triangle
{a1, a2, a3} is also a triad. Orthogonality implies that x 6∈ {a5, a6, . . . , an}. Hence
x 6∈ {a1, a2, . . . , an}, so adjoining T ∗ to the beginning of the original chain gives a
longer chain. Therefore if T ∗ contains {a1, a2}, then its third element is in B.

Now suppose that T ∗ contains {a1, a3}. Then either the original chain has just
two links, or that chain has at least five elements. In the former case, we may
interchange a2 and a3 and reduce to the situation where T ∗ contains {a1, a2}. In
the latter case, by [8, Lemma 3.4], we have a contradiction. We conclude that if a
is in a triangle or a triad contained in A, then we can obtain an A-fan containing
a by adjoining links to the beginning and end of the original chain. Moreover, this
A-fan has at least five elements.

We may now assume, using duality, that a is in neither a triangle nor a triad
contained in A. Using duality again, we may assume that M has a triangle {b, a, a′}
where b ∈ B and a′ ∈ A. By Tutte’s Triangle Lemma, a is contained in a triad
T ∗ of M that contains exactly one of a′ and b. If T ∗ contains a′, then it must
equal {a, a′, b′} for some b′ in B. In this case, {b, a, a′}, {a, a′, b′} is a type-2 A-fan
containing a and having four elements, and the lemma holds. Thus we may assume
that T ∗ contains b, say T ∗ = {b, a, x}. A similar argument establishes that {b, a′, y}
is a triad of M for some element y. If x or y is in A, then b is a coloop of M |B that
is in the closure of A, hence (A ∪ b, B − b) is a 2-separation of M ; a contradiction.
Thus {x, y} ⊆ B, so both a and a′ are coloops of M |A. Therefore

r(A− {a, a′}) + r(B ∪ {a, a′})− r(M) ≤ r(A)− 2 + r(B) + 1− r(M) ≤ 1.

Hence |A−{a, a′}| = 1, so |A| = 3 and A is a triangle or a triad containing a. This
contradiction completes the proof of the corollary. �

The combination of the next two lemmas and duality proves Theorem 1.1.

3.3. Lemma. Suppose that M has a type-3 A-fan with ends b and b′ in B. Then

(i) every A-fan has type-3 and has ends b and b′; and
(ii) every element of A is in a unique A-fan.
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Proof. Let {b, a0, a1}, {a0, a1, a2}, {a1, a2, a3}, . . . , {a2m−2, a2m−1, b
′} be a type-3

A-fan F of M and assume, without loss of generality, that {b, a0, a1} is a triad.
Then {a2m−2, a2m−1, b

′} is a triangle, b′ ∈ B ∩ cl(A) and b is a coloop of M |B.
Hence, by Lemma 2.3, b′ is the unique element of B ∩ cl(A). By duality, it follows
that b is the unique element of B ∩ cl∗(A).

An A-fan of type-1 has distinct ends both of which are in B. Thus the existence
of such a fan implies that |B ∩ cl(A)| ≥ 2; a contradiction. We conclude that M
has no type-1 A-fans and, by duality, M has no type-2 A-fans. Thus every A-
fan has type-3. Moreover, the ends of every such fan must be b and b′ otherwise
|B ∩ cl(A)| ≥ 2 or |B ∩ cl∗(A)| ≥ 2. Hence (i) holds.

To prove (ii), first note that, since one easily checks that M 6∼= M(K4), it follows,
by [8, Lemma 3.4], that none of a1, a2, . . . , a2m−2 is in any triangles or triads other
than those in F .

Suppose that a0 is in a triad T ∗ that contains at most one element of B and is
different from {b, a0, a1}. From the first paragraph, cl(A) ∩B = {b′} and cl∗(A) ∩
B = {b}. By orthogonality, T ∗ must contain an element of the triangle of F
containing {a0, a1}. Thus if m > 1, then T ∗ contains a1 or a2; a contradiction.
Hence m = 1 and either

(a) T ∗ contains a1; or
(b) T ∗ contains b′.

Consider case (a), letting T ∗ = {a0, a1, z}. Since cl∗(A) ∩ B = {b}, we deduce
that z ∈ A. By the dual of Tutte’s Triangle Lemma, z is in a triangle with exactly
one of a0 and a1. The triad {b, a0, a1} implies that {z, a0, b} or {z, a1, b} is a
triangle. In each case, we deduce that b ∈ cl(A) ∩ B; a contradiction. In case (b),
T ∗ = {a0, b

′, z}, where z ∈ A since T ∗ contains at most one element of B. Thus
b′ ∈ cl∗(A) ∩B = {b}; a contradiction.

Now assume that a0 is in a triangle T that contains at most one element of B
and is different from the triangle T1 of F that contains {a0, a1}. By orthogonality,
T contains a1 or b. If T contains a1, then T ∪ T1 is a 4-element set of which every
3-element subset is a triangle. Thus (T ∪ T1)− a0 is a triangle meeting {b, a0, a1}
in a single element. This contradiction implies that a1 6∈ T . Thus b ∈ T . But
this implies that b ∈ cl(A) ∩ B = {b′}; a contradiction. We conclude that T1 is
the unique triangle that contains a0 and at most one element of B. Thus F is the
unique A-fan containing a0. By symmetry, F is the unique A-fan containing a2m−1.
But we noted earlier that none of a1, a2, . . . , a2m−2 is in a triangle or triad other
than those in F . We conclude that (ii) holds. �

3.4. Lemma. Suppose that M has a type-1 A-fan with ends b and b′ in B. Then
(i) every A-fan has type-1, has at least five elements, and has its ends on the

line of M spanned by b and b′; and
(ii) if two distinct A-fans contain a common element of A, then they contain

exactly the same elements of A, and the restriction of M to the union of
these two A-fans is isomorphic to M(K4).

Proof. Evidently {b, b′} ⊆ cl(A). Thus, by Lemma 2.3, M |B is connected. If M has
an A-fan that is not of type-1, then M |B has a coloop; a contradiction. Thus every
A-fan of M has type-1. Moreover, r(cl(A)∩cl(B)) ≤ 2. Since {b, b′} ⊆ cl(A)∩B, it
follows that {b, b′} spans cl(A) ∩ cl(B). Thus the ends of every A-fan, which must
be in cl(A) ∩ cl(B), lie on the line of M spanned by b and b′.
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Now let a ∈ A. Then, by Corollary 3.2, a is contained in a type-1 A-fan F of M
having at least five elements. Let F be {b, a0, d1}, {a0, d1, a1}, . . . , {dn, an, b′}. If a
is in a type-1 A-fan having exactly three elements, then a is in a triangle meeting
A in {a}. But, from considering F , we know that a is in a triad contained in A.
This contradiction to orthogonality implies that every type-1 A-fan has at least five
elements.

By [8, Lemma 3.4], either

(a) M ∼= M(K4); or
(b) M 6∼= M(K4) and d1, a1, d2, a2, . . . , an−1, dn are in no triangles or triads

other than those in the designated A-fan F .

In case (a), A is a triad of M and B, which equals E(M) − A, is a triangle.
Moreover, for each 2-element subset B′ of B, there is a unique A-fan whose ends
are in B′. We may now assume that (b) holds. Then F is the unique A-fan meeting
{d1, a1, d2, a2, . . . , a2n−1, dn}. By symmetry, to complete the proof it suffices to
consider the triangles and triads containing a0.

Assume that M has a triangle T that contains a0 and is different from {b, a0, d1}.
Then, by orthogonality, since T does not contain d1, it follows that n = 1, and T
contains a1. Thus T = {a0, a1, z} for some element z of M that is not in F .
Then {b, b′, z} is contained in cl({a0, a1, d1}) ∩ [E(M) − {a0, a1, d1}]. Thus, by
submodularity, {b, b′, z} is a triangle of M .

Suppose that M\z is not 3–connected. Then, by applying Tutte’s Triangle
Lemma to {a0, a1, z}, we deduce that M has a triad containing z and exactly
one of a0 and a1. By orthogonality, this triad must be {z, a0, b} or {z, a1, b

′}. It
follows, by [8, Lemma 2.4], that M is isomorphic to a wheel or whirl of rank three.
Since M has four triangles, we deduce that M ∼= M(K4); a contradiction.

We may now assume that M\z is 3–connected. Thus z ∈ B. By orthogonality,
the only triad of M containing {a0, a1} is {a0, a1, d1}, and the only triangles con-
taining {a1, d1} and {a0, d1} are {a1, d1, b

′} and {a0, d1, b}, respectively. Thus a0

is in two A-fans other than F . Each of these A-fans contains {a0, a1, d1}, and one
contains {b′, z} while the other contains {b, z}. It follows easily that the restriction
of M to the union of two distinct A-fans containing a0 is isomorphic to M(K4).

Finally, suppose that a0 is in a triad other than {a0, d1, a1}. This triad cannot
contain d1. Thus, by orthogonality, it contains b. By Lemma 2.3, since M |B is
connected, this triad has its third element in B. Thus {a0, d1, a1} is the only triad
that contains a0 and at most one element of B. The lemma follows. �

By duality and the last two lemmas, we have two cases to consider: when all
A-fans have type-1, and when all A-fans have type-3. The first is somewhat easier
to handle. In each case, we shall present results that describe how to construct
all matroids with the specified property. These two cases will be considered in the
next two sections. Note that Theorem 1.1 follows immediately by combining the
last two lemmas.

4. M has a type-1 A-fan

In this section, we shall prove the following constructive description of all the
matroids with a type-1 A-fan.
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4.1. Theorem. A matroid M is 3–connected, has a 3–separation (A,B) in which
every element of A is essential, and has a type-1 A-fan if and only if M can be
constructed as follows.

(i) Let N0 be a 3–connected matroid with a distinguished line L having at least
three points.

(ii) For some positive integer k, let N1, N2, . . . , Nk be a collection of wheels of
rank at least three such that E(N0), E(N1), E(N2), . . . , E(Nk) are disjoint.

(iii) Let ∆1,∆2, . . . ,∆k be a collection of triangles contained in L and let ∆′
1,∆

′
2,

. . . , ∆′
k be triangles in N1, N2, . . . , Nk, respectively.

(iv) For each i in {1, 2, . . . , k}, take a bijection from ∆′
i to ∆i and relabel each

element of ∆′
i by the corresponding element of ∆i.

(v) Let H0 = N0 and, for all i in {1, 2, . . . , k}, let Hi = P∆i
(Ni,Hi−1).

(vi) Let Z be a subset of L such that, for all i in {1, 2, . . . , k},
(a) |Z ∩∆i| ≤ 1;
(b) if Ni has rank at least four, then Z does not contain a spoke of Ni;

and
(c) if N0

∼= U2,3, then Z = ∅.
(vii) Let M = Hk\Z, let A = ∪k

i=1(E(Ni)−∆i), and let B = E(M)−A.

Figure 1.

Proof. Suppose that M is a 3–connected matroid having a 3–separation (A,B)
such that every element of A is essential and M has a type-1 A-fan F with ends b
and b′. By Lemma 3.4, every A-fan of M has type-1 and has its ends on the line
spanned by {b, b′}. Let F be such an A-fan, {b0, a0, d1}, {a0, d1, a1}, {d1, a1, d2},
. . . , {dn, an, b′}. Then, by [8, Theorem 1.11], M = P∆(M(Wn+2),M1)\z where
∆ = {b, b′, z}; the wheel Wn+2 is labelled as in Figure 1; and M1 is obtained from
M/a0, a1, . . . , an−1\d1, d2, . . . , dn by relabelling an as z. Moreover, either M1 is
3–connected; or z is in a unique 2–circuit {z, h} of M1, and M1\z is 3–connected.

To prove that M can be constructed as described, we argue by induction on the
number of internally disjoint A-fans, that is, the number of pairwise disjoint subsets
A′ of A for which A′ is the set of internal elements of an A-fan. This number would
be equal to the number of A-fans except for the possibility that some three-element
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subsets of A can be the internal elements of three different A-fans. Suppose that
A = {a0, d1, a1, d2, . . . , dn, an}. If z is in a 2–circuit of M1, then take N0 to be M1\z
and Z = ∅. If z is not in a 2-circuit of M1, then take N0 to be M1 and Z = {z}.
In each case, take N1 to be M(Wn+2). Then M can certainly be constructed as in
(i)–(vii).

Now assume that M can be constructed as in (i)–(vii) when M has fewer than
k internally disjoint A-fans and suppose that M has exactly k internally disjoint
A-fans one of which is F . Let A1 = A − {a0, a1, . . . , an, d1, d2, . . . , dn}. Then
it is not difficult to show that M\(A − A1), which equals M1\z, is 3–connected
and has (A1, B) as a 3–separation. Moreover, a straightforward argument, whose
details we omit, shows that the A1-fans of M\(A − A1) are exactly the A-fans of
M other than F . By the induction assumption, M\(A − A1) can be constructed
as in (i)–(vii). If z is in a 2–circuit {z, h} of M1, then, by [8, Theorem 1.8],
M = P∆′(M(Wn+2),M\(A − A1)) where ∆′ = {b, b′, h}, and Wn+2 is labelled as
in Figure 1 with z relabelled as h. It follows that, in this case, M itself can be
constructed as in (i)–(vii).

We may now suppose that z is not in a 2–circuit of M1. Then M1, which is
3–connected, has {b, b′, z} as a circuit and so has (A1, B ∪ z) as a 3–separation.
Moreover, the A1-fans of M1 are exactly the A-fans of M other than F . Thus,
by the induction assumption, M1 can be constructed as in (i)–(vii). Hence so too
can P∆(M(Wn+2),M1) where Nk = M(Wn+2) and ∆k = ∆. To obtain M from
P∆(M(Wn+2),M1), we delete z. If Z(M1) is the set of elements that are deleted
in (vi) of the construction of M1, then to prove that M can also be constructed in
the specified manner, it suffices to show that (vi) holds for the set Z(M) obtained
by adjoining z to Z(M1). Clearly |Z(M) ∩ ∆k| = 1, and, if n ≥ 2, then Z(M)
does not contain a spoke of Nk. If z is a spoke of some Ni for i < k such that
r(Ni) ≥ 4, then the rim element of Ni that is in A and is adjacent to this spoke
can be contracted from M to produce a 3–connected matroid; a contradiction. If
r(Ni) = 3 and |Z(M)∩∆i| = 2 for some i < k, then one of the elements of A∩E(Ni)
can be contracted from M to produce a 3–connected matroid; a contradiction. We
conclude that Z(M) satisfies (vi), and it follows that M can be constructed as in
(i)–(vii).

It is straightforward to check that every matroid M that can be constructed as
in (i)–(vii) has (A,B) as a 3–separation, has every element in A essential, and has
a type-1 A-fan. �

A contraction-minimally 3–connected matroid is a 3–connected matroid of which
no single-element contraction is 3–connected. The structure of such matroids in
which the set of non-essential elements has rank two was described in [9]. The
next result, whose straightforward proof is omitted, relates such matroids to those
3–connected matroids having a type-1 A-fan.

4.2. Corollary. Let M be a 3–connected matroid having a 3–separation (A,B) in
which every element of A is essential. Suppose that M has a type-1 A-fan and let
M ′ be obtained from M by freely adding an element x on the line of M spanned
by cl(A)∩B. Then M ′|(B ∪ x) is 3–connected and M ′|(cl(A)∪ x) is either a whirl
or a contraction-minimally 3–connected matroid in which the set of non-essential
elements has rank two.
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5. M has a type-3 A-fan

The constructive description of 3–connected matroids having type-3 A-fans will
be presented in two cases: when there is a unique such fan; and when there is more
than one such fan. In the first case, the description is somewhat more explicit and
is closer to the situation when we have a type-1 A-fan. The proof of this result is
not difficult to derive from [8, Corollaries 2.7 and 2.8, Theorem 4.7] and is omitted.

5.1. Theorem. Let N be a 3–connected matroid having a triangle ∆ = {x, y, z}.
Construct P∆(M(Wn), N) for some n ≥ 4, letting {y, z, w} be a triad of M(Wn).

(i) Let M1 = P∆(M(Wn), N), let A = E(M(Wn)) − {x, y, z, w}, and let B =
E(N) ∪ w.

(ii) Assuming |E(N)| ≥ 4, let u ∈ {y, z}, let M2 = P∆(M(Wn), N)\u, let
A = E(M(Wn))− {x, y, z, w}, and let B = (E(N)− u) ∪ w.

(iii) Assuming |E(N)| ≥ 4 and N has no triad containing {y, z}, let M3 =
P∆(M(Wn), N)\{y, z}, let A = E(M(Wn)) − {x, y, z, w}, and let B =
(E(N)− {y, z}) ∪ w.

Then, for each i in {1, 2, 3}, the matroid Mi is 3–connected having (A,B) as a
3–separation and having a unique A–fan. Moreover, this A-fan has type-3 and
contains all the elements of A.

Furthermore, if M is a 3–connected matroid with a 3–separation (A,B) in which
every element of A is essential, and M has exactly one A-fan, which is of type-3,
then there is a 3–connected matroid N and a wheel M(Wn) such that M is one of
the matroids M1, M2, and M3 constructed above.

The next theorem describes constructively how to obtain every 3–connected ma-
troid M that has a 3–separation (A,B) in which every element of A is essential and
has at least two type-3 A-fans. The construction we describe will be less explicit
than in the last theorem in that we shall add elements on lines in the matroid where
the positions of these elements need not be fixed.

5.2. Theorem. A matroid M is 3–connected, has a 3–separation (A,B) in which
every element of A is essential, and has at least two type-3 A-fans if and only if M
can be constructed as follows.

(i) Let N be a 3–connected matroid having a triangle {b0, x, y}.
(ii) Add b1 in parallel with x.
(iii) For some k ≥ 2, add a1, a2, . . . , ak in series with b1.
(iv) For each i in {1, 2, . . . , k}, add a′i so that {b0, ai, a

′
i} is a triangle. Let the

resulting matroid be N0.
(v) For each i in {1, 2, . . . , k}, let Ni be a wheel of rank at least two having both

b0 and ai as spokes and having {b0, ai, a
′
i} as a triangle ∆i.

(vi) Let H0 = N0 and, for all i in {1, 2, . . . , k}, let Hi = P∆i
(Ni,Hi−1)\a′i and

let Ai = E(Ni)− {b0, a
′
i}.

(vii) Let Z be a subset of {x, y} such that
(a) if |E(N)| = 3, then Z = ∅; and
(b) if {x, y} is in a triad of N , then Z 6= {x, y}.

(viii) Let M = Hk\Z, let A = ∪k
i=1Ai, and let B = E(M)−A.

In order to simplify the proofs when M has a type-3 A-fan, we first shrink one
such A-fan so that it contains exactly two elements of A. More precisely, we have
the following result, which follows without difficulty from [8, Theorem 1.8].
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5.3. Lemma. Let {b, a0, a1}, {a0, a1, a2}, {a1, a2, a3}, . . . , {a2n−2, a2n−1, b
′} be a

type-3 A-fan F of M for some n ≥ 2 where {b, b′} ⊆ B and {b, a0, a1} is a triad.
Then

(i) M = P∆(M(Wn+1),M1)\a′1 where ∆ = {a0, a
′
1, b

′} and M1 is obtained
from M/a3, a5, . . . , a2n−1\a2, a4, . . . , a2n−2 by relabelling a1 as a′1.

(ii) M1 is 3–connected.
(iii) If A1 = [A − {a1, a2, . . . , a2n−1}] ∪ {a′1}, then, either |A1| = 2, or (A1, B)

is a 3–separation of M1 in which each element of A1 is essential.
(iv) If F ′ is an A-fan different from F , then F ′ is an A1-fan of M1; and

{b, a0, a
′
1},

{a0, a
′
1, b

′} is an A1-fan of M1.

The next result indicates how to remove an A-fan containing exactly two elements
of A while maintaining all remaining A-fans.

5.4. Theorem. Let N be a 3–connected matroid having a 3–separation (A,B) such
that every element of A is essential. Let {b, a, a′}, {a, a′, b′} be an A-fan F of N
where {b, b′} ⊆ B and {b, a, a′} is a triad. Then N\a/a′ is 3–connected. Moreover,
A−{a, a′} is a 3–separating set of N\a/a′ in which every element is essential, and
every A-fan of N other than F is an (A− {a, a′})-fan of N\a/a′.

The proof of this theorem will use the next lemma. Since |A| ≥ 3, it follows
that there are at least two A-fans. Hence, by Lemma 3.3, |A| ≥ 4. Using this, it is
straightforward to complete the proof of the lemma and the details are omitted.

5.5. Lemma. N has no triangle containing b.

Proof of Theorem 5.4. We shall prove the theorem in the case that all A-fans con-
tain exactly two elements of A. The general case will follow from this by using
Lemma 5.3. We begin by proving that N\a/a′ is 3–connected. Assume the con-
trary. Now N\a/a′ ∼= N\a/b. Since b is not in a triangle of N , it follows by [1] that
N/b is 3–connected. Let (J,K) be a 2–separation of N\a/b. Suppose that |J | = 2.
Then J ∪ a is a triad of N/b and hence of N . By the dual of the last lemma, b′ is
not in a triad of N . Thus, by orthogonality, a is in a unique triad of N , namely
{a, a′, b}. Hence J = {a, a′, b}; a contradiction. We conclude that

|J | > 2 (5)

and, similarly,
|K| > 2. (6)

Now, as N/b is 3–connected,

rN/b(J ∪ a) = rN/b(J) + 1 (7)

and
rN/b(K ∪ a) = rN/b(K) + 1. (8)

Hence {a′, b′} is not contained in either J or K. Thus, we may assume, without
loss of generality, that a′ ∈ J and b′ ∈ K.

Now N has an A-fan other than F . Let the A-elements of it be a1 and a′1.
If {a1, a

′
1} ⊆ J , then, as {a, a′, a1, a

′
1} is a union of circuits of N/b, we have a

contradiction to (7). We conclude that {a1, a
′
1} 6⊆ J . Thus, we may assume,

without loss of generality, that a1 ∈ K. Now (J ∪ a,K) is a 3–separation of N/b.
Suppose that a′1 ∈ J. Then, as {a, a′, a1, a

′
1} is a cocircuit and a union of circuits
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of N/b, we deduce, since |K| ≥ 3, that (J ∪ a ∪ a1,K − a1) is a 2–separation of
N/b; a contradiction. We conclude that a′1 ∈ K. Now (J,K ∪ a) is a 3–separation
of N/b. Again the fact that {a, a′, a1, a

′
1} is a cocircuit and a union of circuits in

N/b implies, since |J | ≥ 3, that (J − a′,K ∪ a ∪ a′) is a 2–separation of N/b. This
contradiction completes the proof that N\a/a′ is 3–connected.

To check that all the A-fans of N other than F are (A−{a, a′})-fans of N\a/a′,
we note that every triangle and every triad of an A-fan other than F contains a
circuit or cocircuit of N\a/a′. Since the last matroid is 3–connected, all the triangles
and triads of the A-fans other than F remain triangles and triads of N\a/a′. Thus
every A-fan of N other than F is an (A− {a, a′})-fan of N\a/a′.

Finally, it is straightforward to check that A−{a, a′} is 3–separating in N\a/a′

and we omit the details. �

The proof of Theorem 5.2 will use a fundamental class of 3–connected matroids
called spikes [4]. For n ≥ 3, an n-spike with tip p is a rank-n matroid N whose
ground set is the union of n three-point lines, L1, L2, . . . , Ln, all containing p, such
that, for all k in {1, 2, . . . , n−1}, the union of any k of these lines has rank k+1. Let
L1 = {p, x, q}. It follows from the properties of spikes [4] that N\x is isomorphic
to its dual. We call it a spike with tip p and cotip q.

To prove Theorem 5.2, we shall prove the case when all A-fans contain exactly
two elements of A. The general case will follow by combining that theorem with
Lemma 5.3, and again we omit the details. In the former case, we have a 3–
connected matroid M having a 3–separation (A,B) in which every element of A
is essential, and M has at least two type-3 A-fans each of which has exactly four
elements. Loosely speaking, such a matroid is obtained from a spike with tip and
cotip and another 3–connected matroid by sticking these two matroids together
along a 3-point line L of the spike and then possibly deleting some non-tip elements
from L. The tip and the cotip serve as the ends of all the A-fans where A consists
of all the elements of the spike except the tip, the cotip, and the elements of L.

5.6. Theorem. Suppose that M is a 3–connected matroid whose ground set has a
partition (A,B) in which |A| ≥ 2, |B| ≥ 3, every element of A is essential, and M
has exactly k type-3 A-fans each of which has exactly four elements. Then there
is a matroid N1 and a subset Z of E(N1) such that M = N1\Z, where N1 can be
constructed from a 3–connected matroid N0 having a triangle {b0, x, y} by

(i) adding an element b1 in parallel with x;
(ii) for some k ≥ 1, adding elements a1, a2, . . . , ak in series with b1; and
(iii) for each i in {1, 2, . . . , k}, adding an element a′i so that {b0, ai, a

′
i} is a

triangle;
and Z is a subset of {x, y} such that

(a) Z = ∅ if |E(N0)| = 3; and
(b) Z 6= {x, y} if {x, y} is in a triad of N0.

Furthermore, for every pair (N1, Z) satisfying these conditions, the restriction
N2 of N1 to {b0, b1, x, y, a1, a

′
1, a2, a

′
2, . . . , ak, a′k}, is a spike with tip b0 and cotip b1,

and N1\Z is a 3–connected matroid. Moreover, if A = {a1, a
′
1, a2, a

′
2, . . . , ak, a′k},

then A is a 3–separating set of N1\Z in which every element is essential; and N1\Z
has exactly k A-fans, each of type-3, and each having exactly four elements.

Proof. Let N1 be a matroid and Z be a subset of E(N1) that satisfy the specified
conditions. Let N ′

2 be obtained from N2 by freely adding z on the line through
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b0 and b1. The resulting matroid N ′
2 is a (k + 2)-spike with tip b0. Thus, by

the properties of spikes [4], N ′
2 and N2 are 3–connected. Hence, by [7], N1 is

3–connected since both N1|E(N0) and N1|E(N2) are 3–connected and |E(N0) ∩
E(N2)| ≥ 3.

Now, we shall show that N1\Z is 3–connected. Let u ∈ {x, y}. It is straightfor-
ward to check that

(E(N0)− u, {b1, a1, a
′
1, a2, a

′
2, . . . , ak, a′k})

is a vertical 2–separation of N1/u. Thus, by Bixby’s Lemma, co(N1\u) is 3–
connected. Thus N1\u is 3–connected unless u is in a triad T ∗ of N1. Assume
that the exceptional case occurs. Then, by orthogonality, T ∗ contains {x, y} or T ∗

contains b0. In the former case, since x ∈ T ∗, orthogonality implies that T ∗ meets
{b1, a1, a2, . . . , ak}. In the latter case, orthogonality implies that T ∗ meets each
{ai, a

′
i}. In both cases, N1|E(N0) has a cocircuit properly contained in T ∗, so N0

is not 3–connected because, by assumption, N0 6∼= U2,3. This contradiction implies
that N1\u is 3–connected.

Next let Z = {x, y}. Then, by assumption, {x, y} is not in a triad of N0.
One easily checks that (E(N0) − {x, y}, {b1, a1, a

′
1, a2, a

′
2, . . . , ak, a′k}) is a verti-

cal 2–separation of N1\x/y. Thus, since N1\x is 3–connected, it follows that
co(N1\{x, y}) is 3–connected. We deduce that N1\Z is 3–connected unless N1\x
has a triad T ∗ containing y. Assume that the exceptional case occurs. Then T ∗

must contain an element of E(N0)− {x, y} otherwise N1|E(N0), which equals N0,
has a cocircuit of size at most two. If b0 ∈ T ∗, then T ∗ must meet each {ai, a

′
i}.

Thus k = 1 and N1|(E(N0)− x) has {b0, y} as a cocircuit. Hence {b0, x, y} is a co-
circuit of N0, contradicting (b). We deduce that b0 6∈ T ∗. Since |T ∗−E(N0)| ≤ 1, it
follows by orthogonality that T ∗ avoids {a1, a

′
1, a2, a

′
2, . . . , ak, a′k}. If b1 ∈ T ∗, then

N1|(E(N0)− x) has a 2–cocircuit containing y, and again we obtain the contradic-
tion that N0 has a triad containing {x, y}. We conclude that T ∗ is a triad of N1\x
containing y but avoiding {b0, b1, a1, a

′
1, a2, a

′
2, . . . , ak, a′k}. However, in N1, the set

{b1, a1, a
′
1, a2, a

′
2, . . . , ak, a′k} spans b0 and x, and so also spans y; a contradiction.

It follows that N1\{x, y} is 3–connected.
It is straightforward to check that N1\Z has the properties specified in the last

paragraph of the theorem and we omit the details of the argument.
Now suppose that M is a 3–connected matroid whose ground set has a parti-

tion (A,B) in which |A| ≥ 2, |B| ≥ 3, every element of A is essential, and M
has exactly k type-3 A-fans each of which has exactly four elements. Then, by
Lemma 3.3, we may assume that the A-fans are {b0, a

′
i, ai}, {a′i, ai, b1} for i =

1, 2, . . . , k where {b0, a
′
i, ai} is a triangle. Then, by repeatedly applying The-

orem 5.4, we deduce that if M ′ = M\a2, a3, . . . , ak/a′2, a
′
3, . . . , a

′
k, then M ′ is

3–connected having {b0, a
′
1, a1}, {a′1, a1, b1} as an {a′1, a1}-fan. Now the parallel

classes of M ′/b1 containing a1 and a′1 are the only posssible non-trivial parallel
classes of M ′/b1. Let N0 be obtained from si(M ′/b1) by relabelling the elements
corresponding to these parallel classes as x and y, respectively. Moreover, let Z
consist of the subset of {x, y} for which the corresponding parallel classes of M ′/b1

are trivial.
Certainly {b0, x, y} is a triangle of N0 and, since M ′ is 3–connected, if |E(N0)| =

3, then Z = ∅. Moreover, if {x, y} is in a triad of N0, then Z 6= {x, y} otherwise
M ′ has a triad that contains {a1, a

′
1} and is different from {a1, a

′
1, b1}, and it is not
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difficult to get a contradiction to orthogonality. We conclude that the matroid M
can be constructed as described in the theorem. �
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