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Abstract. An essential element of a 3-connected matroid M is one for which neither the
deletion nor the contraction is 3-connected. Tutte's Wheels and Whirls Theorem proves that
the only 3-connected matroids in which every element is essential are the wheels and whirls.
In an earlier paper, the authors showed that a 3-connected matroid with at least one non-
essential element has at least two such elements. This paper completely determines all 3-
connected matroids with exactly two non-essential elements. Furthermore, it is proved that
every 3-connected matroid M for which no single-element contraction is 3-connected can
be constructed from a similar such matroid whose rank equals the rank in M of the set of
elements e for which the deletion Mne is 3-connected.

1. Introduction

An element e of a 3-connected matroid M is deletable if the deletion Mne is 3-
connected; e is contractible if the contraction M=e is 3-connected. If e is neither
deletable nor contractible, it is essential. Tutte's Wheels and Whirls Theorem [15]
established that a 3-connected matroid has no non-essential elements if and only
if it is a wheel or whirl and has rank at least three. In an earlier paper [11], the
authors showed that a 3-connected matroid with at least one non-essential element
must have at least two such elements. This paper determines all 3-connected mat-
roids with exactly two non-essential elements.

A 3-connected matroid for which no single-element contraction is 3-connected
is called contraction-minimally 3-connected. The duals of such matroids, which are
called minimally 3-connected matroids, have been studied quite extensively (see, for
example, [3, 5, 6, 7, 8, 15]). It will be shown that every contraction-minimally 3-
connected matroid with exactly two non-essential elements can be constructed by
beginning with a line L, attaching wheels to L so that a 3-point line of each wheel
is identi®ed with three points of L and, ®nally, deleting some subset of L consisting
of elements that are not spokes of the attached wheels. In addition, this result will
be extended by showing that in a contraction-minimally 3-connected matroid M,
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if the rank of the set of deletable elements is d for some d V 3, then M can be
obtained by attaching wheels to some contraction-minimally 3-connected matroid
N0 of rank d where N0 contains and is spanned by the set of deletable elements
of M.

The matroid terminology used here will follow Oxley [9]. For a matroid M, the
simple matroid and the cosimple matroid associated with M will be denoted by ~M
and

~
M, respectively. We call these matroids the simpli®cation and the cosimpli®-

cation of M. The basic property that a circuit and a cocircuit in a matroid cannot
have exactly one common element is referred to as orthogonality. M�Wr� and Wr

will denote, respectively, the cycle matroid of the wheel with 2r edges, and the
whirl of rank r. Frequently, M�Wr� will be referred to just as the rank-r wheel. In
this matroid, the elements can be partitioned into spokes and rim elements corre-
sponding to the role these elements play in the wheel graph Wr. When rV 4, this
partition is unique, the spokes being precisely the elements that are in exactly two
triangles. When r � 3, since M�Wr�GM�K4�, any one of the triangles of W3 can
be viewed as its rim. In this case, we arbitrarily designate a triangle as the rim and
take the complementary set of edges as the set of spokes.

This paper will rely heavily on [11]. In this section and the next, we brie¯y
review the de®nitions and theorems from that paper that will be needed here.

Let T1;T2; . . . ;Tk be a non-empty sequence of sets each of which is a triangle
or a triad of a matroid M such that, for all i in f1; 2; . . . ; k ÿ 1g,
(i) in fTi;Ti�1g exactly one set is a triangle and exactly one set is a triad;
(ii) jTi VTi�1j � 2; and
(iii) �Ti�1 ÿ Ti�V �T1 UT2 U � � � UTi� is empty.

Then we call T1;T2; . . . ;Tk a chain of M of length k with links T1;T2; . . . ;Tk.
Evidently T1;T2; . . . ;Tk is a chain of M if and only if it is a chain of M �.

An easy induction argument using orthogonality shows that if T1;T2; . . . ;Tk

is a chain in a matroid M, then M has k � 2 distinct elements a1; a2; . . . ; ak�2

such that Ti � fai; ai�1; ai�2g for all i in f1; 2; . . . ; kg. The following result was
proved in [11] by extending Tutte's proof of the Wheels and Whirls Theorem.

1.1 Lemma. Let M be a 3-connected matroid with at least four elements and suppose
that M is not a wheel or a whirl. Let T1;T2; . . . ;Tk be a maximal chain in M. Then

the elements of T1 UT2 U � � � UTk can be labelled so that neither a1 nor ak�2 is

essential where Ti � fai; ai�1; ai�2g for all i.

Now suppose that T1;T2; . . . ;Tk is a maximal chain of a 3-connected matroid
M where M is not a wheel or a whirl. We call this maximal chain a fan of M with
links T1;T2; . . . ;Tk. Let Ti � fai; ai�1; ai�2g for all i. Then fa1; a2; . . . ; ak�2g is the
ground set of the fan, and a1; a2; . . . ; ak�2 are the elements of the fan. For k V 2,
Lemma 1.1 implies that there are exactly two non-essential elements in T1 UT2

U � � � UTk, namely a1 and ak�2, since each of a2; a3; . . . ; ak�1 is in both a triangle
and a triad. We call a1 and ak�2 the ends of the fan. When k � 1, the fan has T1 as
its ground set and contains either two or three non-essential elements of M. In the
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®rst case, we take the ends of the fan to be the non-essential elements in T1; in the
second case, we arbitrarily choose two of the elements of T1 to be the ends of the
fan. Figure 1 (a), (b), and (c) show the three types of chains, where a triangle in
these graphs corresponds to a triangle in the chain, while a triad in the chain cor-
responds to a circled vertex. Maximal chains of these three types will be called
type-1, type-2, and type-3 fans, respectively. In the ®gure, the non-essential ele-
ments of these fans have been marked in bold. Two fans are equal if they have
the same sets of links. The internal spokes of a fan are the elements of the fan
that belong to at least two triangles of the fan. A trivial fan is one with either
three or four elements. In particular, a type-3 fan that is trivial has exactly four
elements.

Fig. 1. The three types of chains
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We know from Lemma 1.1 that if M is a 3-connected matroid other than a
wheel or a whirl, then every essential element of M is in a fan the ends of which are
non-essential. Thus, if M has exactly two non-essential elements, these two ele-
ments must occur as the ends of every fan. Therefore M is formed by somehow
attaching these fans together across the two non-essential elements. In what fol-
lows, we shall describe precisely how these attachments are done. If M is graphic,
it is not di½cult to ®nd some examples of such attachments. The right-hand graph
in Figure 2 is called a twisted wheel. It can be obtained from K4, drawn as in the
left-hand graph, by subdividing the edges s and t by inserting at least one new
vertex into each and then joining each of the newly created vertices to one of u and
v as shown. Evidently x and y are the only non-essential elements in the cycle
matroid of such a graph. It is clear that the cycle matroid of a twisted wheel can
also be constructed by appropriately joining two type-3 fans with ends x and y.

The graph in Figure 3(b) is an example of a 3-dimensional wheel. In general,
for all k V 2, a k-dimensional wheel is constructed as follows: begin with the 3-
vertex graph in Figure 3(a) in which u and v are joined by a path u; h; v of length
two and by k parallel edges x1; x2; . . . ; xk. Subdivide each of these parallel edges
by inserting at least one new vertex into each and, ®nally, join each newly created
vertex to h. When k � 2, the resulting graph is a wheel. When k V 3, it is clear that
the cycle matroid of the resulting graph has x and y as its only non-essential ele-
ments. Moreover, this matroid can be obtained by appropriately joining k type-1
fans with ends x and y. Observe that if each of x1; x2; . . . ; xk is subdivided into

Fig. 2. Construction of a twisted wheel from K4

Fig. 3. Construction of a multidimensional wheel
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exactly two edges, the resulting k-dimensional wheel is isomorphic to the graph
that is obtained from K3;k by adding two edges joining distinct pairs of vertices
in the 3-vertex class of this bipartite graph. A multidimensional wheel is a k-
dimensional wheel for some k V 3.

The next result, which follows easily from the main results of this paper, asserts
that the only graphic matroids with exactly two non-essential elements are those
described above.

1.2 Theorem. Let M be a 3-connected graphic matroid. Then M has exactly two

non-essential elements if and only if M is the cycle matroid of a twisted wheel or a

multidimensional wheel.

In every 3-connected matroid M with exactly two non-essential elements, every
element is in a fan and so belongs to a triangle or a triad. Thus M has no element
that is both deletable and contractible. Hence, in M, we must have one of the
following:

(i) both non-essential elements are deletable but not contractible;
(ii) both non-essential elements are contractible but not deletable; or
(iii) one non-essential element is deletable but not contractible and the other is

contractible but not deletable.

Hence, for example, the cycle matroid of a multidimensional wheel satis®es (i),
whereas the cycle matroid of a twisted wheel satis®es (iii). Evidently, in cases (i),
(ii), and (iii), every fan of M is of type-1, type-2, or type-3, respectively. Accord-
ingly, in these three cases, we shall refer to M itself as being of type-1 type-2, or
type-3. Clearly the class of type-2 matroids coincides with the class of duals of
type-1 matroids, so to specify all 3-connected matroids with exactly two non-
essential elements, it su½ces to describe the matroids of type-1 and those of type-3.

To state these results, we shall need to use a special case of the operation of
generalized parallel connection introduced by Brylawski [2]. Let M1 and M2 be
matroids such that E�M1�VE�M2� � D where D is a triangle of both M1 and M2.
Assume that M1 is binary. The generalized parallel connection PD�M1;M2� of M1

and M2 across D is the matroid on E�M1�UE�M2� whose ¯ats are those subsets X

of E�M1�UE�M2� such that X VE�M1� is a ¯at of M1, and X VE�M2� is a ¯at of
M2. If both M1 and M2 are binary having more than six elements and D does not
contain a cocircuit of M1 or of M2, then PD�M1;M2�nD is what Seymour [13,
p. 305] calls the 3-sum and Truemper [14, p. 183] calls the D-sum of M1 and M2.

Let G1 and G2 be graphs whose sets of edge labels are disjoint except that each
has a triangle D whose edges are labelled by e; f , and g. If G is the graph that is
obtained by identifying these triangles so that edges with the same labels coincide,
then the cycle matroid of G is precisely the matroid PD�M�G1�;M�G2��. We
remark that the graph Gnfe; f ; gg is what Robertson and Seymour [25] call the
3-sum of G1 and G2.

The next theorem describes how to construct all type-1 matroids. As an intro-
duction to this result, it is instructive to consider a geometric construction for the
cycle matroid of a multidimensional wheel. Begin with a 3-point line fx; y; zg and
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k wheels for some k V 3. Let fx; y; zg also label a triangle in each of these wheels
with x and y being spokes. Attach the wheels to the line, one at a time, via gen-
eralized parallel connection. Finally, delete the element z to obtain the desired
matroid.

1.3 Theorem. The class of 3-connected matroids that have exactly two non-essential

elements, x and y, each of which is deletable, coincides with the class of matroids M
that are constructed as follows.

(i) Let L be an n-point line for some nV 3, and x and y be two elements of L.
(ii) Let N1;N2; . . . ;Nk be a collection of wheels of rank at least three such that

E�L�;E�N1�;E�N2�; . . . ;E�Nk� are disjoint and k V 3.
(iii) Let D1;D2; . . . ;Dk be a collection of triangles whose union is L such that each

contains fx; yg, and let D 01;D
0
2; . . . ;D 0k be triangles in N1;N2; . . . ;Nk, respec-

tively.
(iv) For each i in f1; 2; . . . ; kg, take a bijection from D 0i to Di and relabel each ele-

ment of D 0i by the corresponding element of Di so that x and y label spokes of

Ni.
(v) Let A0 � L and, for all i in f1; 2; . . . ; kg, let Ai � PDi

�Ni;Aiÿ1�.
(vi) Let M � Akn�Lÿ fx; yg�.

It should be noted that the triangles D1;D2; . . . ;Dk, which appear in the above
construction of type-1 matroids, need not be distinct. Like type-1 matroids, type-3
matroids are obtained by attaching wheels to a certain root matroid. This root
matroid has a special form and, indeed, plays a fundamental role elsewhere [4].
For all nV 3, an n-spike with tip p is any matroid that satis®es the following three
conditions:

(i) the ground set is the union of n lines, L1;L2; . . . ;Ln, all having three points
and passing through a common point p;

(ii) for all k in f1; 2; . . . ; nÿ 1g, the union of any k of L1;L2; . . . ;Ln has rank
k � 1; and

(iii) r�L1 UL2 U � � � ULn� � n.

For example, it is not di½cult to show that the only n-spike that is binary is the
vector matroid of the binary matrix �InjJn ÿ Inj1�, where Jn is the n� n matrix of
all ones and 1 is the all-ones column. Moreover, every n-spike is 3-connected.

1.4 Theorem. The class of 3-connected matroids that have exactly two non-essential
elements, one of which is deletable and one of which is contractible, coincides with

the non-wheels and non-whirls that are in the class of matroids M that are con-

structed as follows.

(i) Let D;D1;D2; . . . ;Dnÿ1 be the triangles of an n-spike N that contain the tip y of
N where D � fy; x; zg and Di � fy; xi; zig for all i.

(ii) Let N0 � Nnz and, for some tU nÿ 1, let N1;N2; . . . ;Nt be a collection of

wheels of rank at least three such that E�N0�;E�N1�;E�N2�; . . . ;E�Nt� are

disjoint.
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(iii) Let D 01;D
0
2; . . . ;D 0t be triangles in N1;N2; . . . ;Nt, respectively.

(iv) For each i in f1; 2; . . . ; tg, take a bijection from D 0i to Di and relabel each ele-
ment of D 0i by the corresponding element of Di so that y labels a spoke and zi a

rim element of Ni.
(v) Let R0 � N0 and, for all i in f1; 2; . . . ; tg, let Ri � PDi

�Ni;Riÿ1�.
(vi) Let M � Rtnz1; z2; . . . ; zt.

The last two theorems will be proved in Sections 3 and 4, respectively. Indeed,
the ®rst will be derived as a special case of a much more general result, Theorem
3.1, which speci®es, for all d V 2, all contraction-minimally 3-connected matroids
in which the set of deletable elements has rank d.

2. Preliminaries

In this section, we present several results that will be used in the proofs of our
main results. We begin by stating the two main theorems of [11]. Tutte [15] proved
that every essential element of a 3-connected matroid is in a chain. The ®rst
theorem determines precisely when such an element is in more than one maximal
chain.

2.1 Theorem. Let M be a 3-connected matroid that is not a wheel or a whirl. Sup-
pose that e is an essential element of M. Then e is in a fan, both ends of which are

non-essential. Moreover, this fan is unique unless

(a) every fan containing e consists of a single triangle and any two such triangles

meet in feg;
(b) every fan containing e consists of a single triad and any two such triads meet in

feg;
(c) e is in exactly three fans; these three fans are of the same type, each has ®ve

elements, together they contain a total of six elements; and, depending on

whether these fans are of type-1 or type-2, the restriction or contraction, re-

spectively, of M to this set of six elements is isomorphic to M�K4�.
When a 3-connected matroid M has a chain of odd length exceeding two, we

can break o¨ a wheel from M to leave a certain 3-connected minor of M. The next
theorem speci®es precisely how this is done when the chain begins, and hence ends,
with a triangle. If the chain begins with a triad, we apply the dual of this result.

2.2 Theorem. Let M be a 3-connected matroid and suppose that, for some non-

negative integer n, the sequence

fy0; x0; y1g; fx0; y1; x1g; fy1; x1; y2g; . . . ; fyn; xn; yn�1g
is a chain in M in which fy0; x0; y1g is a triangle. Then

M � PD1
�M�Wn�2�;M1�nz

where D1 � fy0; yn�1; zg; Wn�2 is labelled as in Figure 4; and M1 is obtained from
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the matroid M=x0; x1; . . . ; xnÿ1ny1; y2; . . . ; yn by relabelling xn as z. Moreover,

either

(i) M1 is 3-connected; or

(ii) z is in a unique 2-circuit fz; hg of M1, and M1nz is 3-connected.

In the latter case,

M � PD2
�M�Wn�2�;M2�

where D2 � fy0; yn�1; hg;Wn�2 is labelled as in Figure 4 with z relabelled as h; and
M2 is M1nz, which equals Mnx0; x1; . . . ; xn; y1; y2; . . . ; yn.

We shall now describe how essential elements behave when a wheel is broken
o¨ as in Theorem 2.2. In that theorem, the resulting 3-connected matroid is M1 or
M2. We shall ®rst consider the latter [11, Proposition 4.4].

2.3 Proposition. Let M � PD2
�M�Wn�2�;M2� where n is a positive integer and D2 is

a triangle. Suppose that M2 is 3-connected having at least four elements, and let e

be an element of M2. Then

(a) M2=e is 3-connected if and only if either M=e is 3-connected or M2 GU2;4;
(b) Mne is 3-connected if and only if either M2ne is 3-connected or e A D2.

Hence, if e is essential in M, then e is essential in M2; and if e is non-essential in M,

then e is non-essential in M2 or e A D2.

The next result [11, Proposition 4.5] shows that, when the matroid M1 in
Theorem 2.2 is 3-connected, every essential element of M that is in M1 is also
essential in M1. However, the behaviour of the non-essential elements of M is less
straightforward.

2.4 Proposition. Let M be a 3-connected matroid that is not a whirl. Suppose that

there is a positive integer n such that

M � PD1
�M�Wn�2�;M1�nz

where D1 � fy0; yn�1; zg and Wn�2 is labelled as in Figure 4. Let M1 be 3-connected

and e be an element of E�M1� ÿ z. Then

(a) M=e is 3-connected if and only if either M1=e is 3-connected; or e B D1, there is

a unique triangle of M1 containing fe; zg, and M1=enz is 3-connected;
(b) Mne is 3-connected if and only if either M1ne is 3-connected; or e A D1 and e is

not in a triad of M.

Hence, if e is essential in M, then e is essential in M1. However, if e is non-essential

in M, then either e is non-essential in M1; or e A D1 and e is not in a triad of M;

or e B D1, there is a unique triangle of M1 containing fe; zg, and M1=enz is

3-connected.

The following result [10, p. 323] will be used in the case when n � 3.
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2.5 Lemma. Let n be an integer exceeding one and M be a matroid having no cir-

cuits with fewer than n elements. If MjX and MjY are n-connected and the closures

of X and Y have at least nÿ 1 common elements, then Mj�X UY � is n-connected.

The last of our preliminaries is a very useful result of Lemos [5, Theorem 1].

2.6 Theorem. Let M be a 3-connected matroid with at least four elements and C be a

circuit of M. If, for all e in C, the matroid Mne is not 3-connected, then C meets at

least two distinct triads of M.

3. All Non-Essential Elements are Deletable

In this section, we prove a general result that describes all contraction-minimally
3-connected matroids. In such a matroid M, if the set of deletable elements has
rank d and d U 1, then, by Theorem 2.1, d � 0 and M is a wheel or a whirl. The
main result of this section shows that, when d V 2, the matroid M can be con-
structed by attaching fans to a rank-d matroid N0 that contains and is spanned by
the set of deletable elements of M. Moreover, N0 is either contraction-minimally
3-connected or is isomorphic to a 3- or 4-point line.

We shall ®rst present a constructive description of a matroid N.

(I) Begin with a 3-connected matroid N0 of rank at least two. We call N0 the
root matroid.

(II) Let N1;N2; . . . ;Nk be a collection of wheels each having rank at least three
such that E�N0�;E�N1�; . . . ;E�Nk� are disjoint.

(III) Let D 01;D
0
2; . . . ;D 0k be triangles in N0 where these triangles are not necessar-

ily distinct. Let D 001 ;D
00
2 ; . . . ;D 00k be triangles in N1;N2; . . . ;Nk, respectively.

(IV) For each i in f1; 2; . . . ; kg, take a bijection from D 00i to D 0i and relabel each
element of D 00i by the corresponding element of D 0i .

Fig. 4. A labelled wheel.
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(V) Construct the sequence of matroids A0;A1; . . . ;Ak as follows: let A0 � N0;
and, for all i in f1; 2; . . . ; kg, let Ai � PD 0i �Ni;Aiÿ1�.

(VI) Let V be a subset of D 01 UD 02 U � � � UD 0k such that
(a) for all i V 1, if Ni has rank at least four, then V does not contain a

spoke of Ni;
(b) for all i V 1, if Ni has rank three, then V contains at most one element

of Ni;
(c) if k U 1, then jE�N0� ÿ V jV 5ÿ k.

(VII) Let N � AknV .

The triangles D 01;D
0
2; . . . ;D 0k of N0 will be called triangles of attachment. We now

de®ne N to consist of all ordered pairs the ®rst member of which is a matroid N

that has a constructive description, and the second member of which is such a
constructive description of N. We shall denote a member of N by the associated
matroid N and assume the matroids and sets in its constructive description are
labelled as in (I)±(VII).

The next theorem, the main result of this section, identi®es all contraction-
minimally 3-connected matroids with a non-empty set of deletable elements. The
characterization of all type-1 matroids in Theorem 1.3 will follow quite straight-
forwardly from this theorem.

3.1 Theorem. A matroid N is a contraction-minimally 3-connected matroid in which

the set D of deletable elements has rank d for some d V 2 if and only if N is a

member of N for which the root matroid N0 has rank d and has the following

properties:

(i) E�N0� contains and is spanned by D;
(ii) for every element e of N0,

(a) e is in some triangle of attachment; or

(b) e is in a triangle of N0 that is contained in E�N�; or

(c) gN0=e is not 3-connected;
(iii) for each t in f2; 3g, every t-cocircuit C � of N0 meets at least 4ÿ jC � ÿ V j of

the triangles of attachment.

Before beginning the proof of this theorem, we ®rst note that, in (iii),
2-cocircuits arise if and only if N0 GU2;3. This case is unavoidable and is indeed
the only possibility for N0 when N is binary and d � 2. Next, we brie¯y outline
the overall strategy of the proof. Suppose that one begins with a contraction-
minimally 3-connected matroid M in which the set D of deletable elements has
rank d. Every element e of M not in the closure of D is essential and so is in a type-
1 fan both ends of which are in D. We can shrink this fan to a single triangle quite
easily: ®rst delete every internal spoke of the fan thereby putting all the rim ele-
ments of the fan in series; then contract all but one of these rim elements. By
repeating this process for every fan in M with at least six elements and then sim-
plifying the resulting matroid, we obtain a 3-connected matroid N0 such that
E�N0� contains and is spanned by D, and N0 has rank 2 or is contraction-
minimally 3-connected. It can be shown that M is a member of N having N0 as its
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root. Thus the root is uniquely determined by the initial matroid M up to a pos-
sible relabelling of some elements that results from choosing to retain a di¨erent
element from a parallel or series class that arises in the above construction.

One attractive feature of the above decomposition is that the root N0 has the
same rank as the set D of deletable elements of M. Now suppose that we alter
perspective and begin with a contraction-minimally 3-connected matroid N0 as the
root in the construction of a member N of N. To ensure that N is contraction-
minimally 3-connected, we need the root N0 to obey (ii) of Theorem 3.1. Every
element of E�N� ÿ E�N0� can be shown to be essential in N. But, to guarantee
that the set of deletable elements of N contains a basis of N0, we need to ensure
that the set V of elements that is deleted in the last step of the construction of N

must obey (iii) of Theorem 3.1.
The proof of Theorem 3.1 will require several preliminaries. In particular, we

begin with a technical lemma involving the matroid Ak that appears in the con-
struction of a member of N. We shall then move on to an investigation of the
properties of the members of N including the identi®cation of exactly which
members of this class are contraction-minimally 3-connected.

3.2 Lemma. For all m in f0; 1; 2; . . . ; kg,

r�Am� �
Xm

i�0

r�Ni� ÿ 2m:

Moreover, the ¯ats of Am are precisely those subsets F of 6m

i�0E�Ni� such that F V
E�Nj� is a ¯at of Nj for all j in f0; 1; 2; . . . ;mg.

The proof of this lemma follows by a routine induction argument and so is
omitted. An immediate consequence of the lemma is that the matroid Ak is inde-
pendent of the order in which the wheels N1;N2; . . . ;Nk are attached to the root
matroid N0.

3.3 Theorem. Let N be a member of N. Then

(i) N is 3-connected;
(ii) all elements of E�N� ÿ E�N0� are essential;
(iii) r�N� � r�Ak�; and

(iv) N0 is isomorphic to a minor of N.

Proof. We show ®rst that r�N� � r�Ak�. If r�N� < r�Ak�, then V contains a cocir-
cuit C � of Ak. Now C � meets D 0i for some i, but C � contains at most one element
of D 0i ; a contradiction. Hence we do indeed have r�N� � r�Ak�.

To establish that AknV is 3-connected, we ®rst partition the set N1;N2; . . . ;Nk

of wheels so that two such wheels belong to the same class exactly when they have
the same triangle of attachment. Now arbitrarily order the classes in this partition.
Each element of V belongs to some triangle of attachment and no such triangle
contains more than one element of V. Associate each element v of V with the
last class in the imposed order for which v is in the corresponding triangle of
attachment.
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We now build up AknV as follows. Beginning with the ®rst class of wheels
sharing a common triangle of attachment, attach these wheels one by one to N0

until one wheel in the class remains unattached. By Lemma 2.5, the matroid that
one has at this stage is 3-connected. Finally, attach the last wheel in the class and,
if there is one, delete the element of V associated with the class. By Proposition
2.3(b), the resulting matroid, Q say, is still 3-connected unless the class contains
just one wheel, jE�N0�j � 3, and there is an element of V associated with the class.
But, in the exceptional case, it follows that every triangle of attachment of N

equals E�N0�. Thus k � 1 and so, by (VI)(c), jE�N0� ÿ V jV 4; a contradiction.
We conclude that Q is indeed 3-connected. We may now repeat this process, one
by one attaching to Q all the wheels in the second class and, after attaching the last
wheel in the class, deleting the element of V associated with the class, if there
is one. Doing this for each of the classes in order, we maintain a 3-connected
matroid. We conclude that the matroid obtained at the end of this process, namely
AknV , is 3-connected.

Each element of E�Ak� ÿ E�N0� is in both a triangle and a triad of Ak. Since
N � AknV and r�N� � r�Ak�, each of these triads must avoid V otherwise N is not
cosimple and so is not 3-connected. Moreover, the restrictions governing the set V
guarantee that each element of E�Ak� ÿ E�N0� is in a triangle of N. We conclude
that every element of E�N� ÿ E�N0� is essential in N.

Finally, we observe that N0 is certainly a minor of Ak. Moreover, V contains at
most one element of each D 0i . If v A V VD 0k, then we may view it as a rim element
of Nk. Moreover, since Ak � PD 0k

�Nk;Akÿ1�, by deleting spokes and contracting
rim elements from Nk, it is easy to see that Aknv has a minor isomorphic to Akÿ1.
By repeatedly applying this idea, we deduce that N0 is isomorphic to a minor
of N. r

The next result identi®es exactly which members of N are contraction-
minimally 3-connected.

3.4 Proposition. Let N be a member of N. Then N is contraction-minimally 3-
connected if and only if, for every element e of the 3-connected root matroid N0,

(i) e A D 0i for some i; or

(ii) e is in a triangle of N0 avoiding V; or

(iii) gN0=e is not 3-connected.

Proof. Suppose that, for every element e of E�N0�, one of (i)±(iii) holds. By Theo-
rem 3.3, every element of E�N� ÿ E�N0� is essential in N. All remaining elements
of N lie in E�N0� ÿ V . Take such an element e. If (i) holds, then N=e breaks up as
a 2-sum and so is not 3-connected. If (ii) holds, then N=e has a 2-circuit and so
is not 3-connected. Finally, suppose that (iii) holds. In this case, showing that N=e

is not 3-connected will require more e¨ort. Assume the contrary, that N=e is
3-connected. Then neither (i) nor (ii) holds. It follows that, for all i, the element e is
not in clN0

�D 0i �, so D 0i is a triangle of N0=e. Now N=e � �AknV�=e � �Ak=e�nV .
Moreover, by the de®nition of A0;A1; . . . ;Ak and the properties of the generalized
parallel connection, we deduce that, for all i in f1; 2; . . . ; kg, the contraction Ai=e
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equals PD 0i �Ni;Aiÿ1=e� where A0 � N0. Since gN0=e is not 3-connected, N0=e has
a vertical 2-separation fS;Tg. Let K � f1; 2; . . . ; kg. Clearly, for every i in K,
exactly one of jD 0i VSj and jD 0i VT j exceeds one. Let KS � fi A K : jD 0i VSj > 1g
and KT � K ÿ KS. Also let S 0 � S U �6

i AKS
�E�Ni� ÿ E�N0��� and T 0 �

T U �6
i AKT
�E�Ni� ÿ E�N0���. Then rAk=e�S 0� � rAk=e�S� �

P
i AKS
�r�Ni� ÿ 2� and

rAk=e�T 0� � rAk=e�T� �
P

i AKT
�r�Ni� ÿ 2�. Hence

rAk=e�S 0� � rAk=e�T 0� � rAk=e�S� � rAk=e�T� �
Xk

i�1

�r�Ni� ÿ 2�:

But, by assumption, rN0=e�S� � rN0=e�T� � r�N0=e� � 1. Moreover, N0=e is a

restriction of Ak=e and r�Ak=e� � r�N0=e� �Pk
i�1�r�Ni� ÿ 2�. Thus fS 0;T 0g is a

vertical 2-separation of Ak=e. Hence the simpli®cation of Ak=e is not 3-connected.
Since N=e is 3-connected, Ak=enV is 3-connected. As r�Ak=enV� � r�Ak=e�, we
can adjoin elements of V to Ak=enV until we get a matroid isomorphic to the
simpli®cation of Ak=e. This matroid must be 3-connected; a contradiction. We
conclude that, in case (iii), N=e is not 3-connected. This completes the proof that
no element of N is contractible, that is, N is contraction-minimally 3-connected.

Conversely, suppose that N is contraction-minimally 3-connected and let e be
an element of N0 for which neither (i) nor (ii) holds. Then e B 6k

i�1clN0
�D 0i �. Hence

D 0i is a triangle of N0=e for all i in f1; 2; . . . ; kg. We need to show that gN0=e is not
3-connected. Assume the contrary. By assumption, N0=e has no 2-circuits avoiding
V. Let V 0 be a minimal subset of V for which N0=enV 0 is simple. Then this mat-
roid is certainly 3-connected. For all t in f1; 2; . . . ; kg, if v A V 0 VD 0t , then relabel v

in Nt by the element of N0=enV 0 to which it is parallel in N0=e. Now N=e can be
constructed as follows: for all i in f1; 2; . . . ; kg, let Ai=enV 0 � PD 0i �Ni;Aiÿ1=enV 0�,
and let N=e � �Ak=enV 0�n�V ÿ V 0�. By Theorem 3.3(i), since N0=enV 0 is 3-
connected and (vi) holds with N0=enV 0 and V ÿ V 0 replacing N0 and V, respec-
tively, we deduce that N=e is in N and hence is 3-connected; a contradiction. We
conclude that gN0=e is not 3-connected, thereby completing the proof of Proposi-
tion 3.4. r

The following result is an immediate consequence of the last proposition.

3.5 Corollary. If a matroid N in N is contraction-minimally 3-connected, then the

root matroid N0 is contraction-minimally 3-connected or has rank 2.

We remark that, as can be deduced from Proposition 3.4, the converse of the
last result is not true. For example, let N0 be the 7-element rank-3 matroid shown
in Figure 5, let N1 be a 3-wheel with a triangle labelled by f1; 2; 3g, let D 01 �
f1; 2; 3g, and let V � f2g. Then, for N � PD 01

�N1;N0�nV , the matroid N=4 is
3-connected, so N is not contraction-minimally 3-connected although N0 is.

Next we consider the problem of identifying the deletable elements in a mem-
ber N of N. Theorem 3.3 implies that the set of deletable elements is contained in
E�N0�. We should like to ensure that the set of deletable elements spans E�N0�V
E�N� so that each contraction-minimally 3-connected member of N can be built
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from a unique root. This will involve imposing an additional condition on N0.
This condition has the e¨ect of guaranteeing that distinct wheels that are attached
to N0 produce distinct fans and never coalesce into a single, larger fan. The fol-
lowing elementary lemma will be used in the proof of the next result.

3.6 Lemma. If t A f1; 2; . . . ; kg and Ak has a cocircuit C � that meets D 0t , then C �

meets E�Nt� ÿ D 0t .

Proof. Since C � VD 0t is non-empty, jC � VD 0t jV 2. Moreover, it is easy to see that
some triangle of the wheel Nt contains exactly one element of C � VD 0t . This tri-
angle, which is also a triangle of Ak, must contain another element of C �. r

3.7 Lemma. Let N be a matroid in N and suppose that the root matroid N0 has the

property that, for each t in f2; 3g, every t-cocircuit C � of N0 meets at least 4ÿ
jC � ÿ V j of the triangles of attachment. If w A D 0i ÿ V for some i in f1; 2; . . . ; kg,
then Nnw is 3-connected.

Proof. Assume that Nnw is not 3-connected. As w A D 0i , either

(i) gN=w is not 3-connected; or
(ii) k � 1 and r�N0� � 2.

But, in the latter case, since jE�N0� ÿ V jV 4, the matroid N0nV is a line with at
least four points and so Nnw is 3-connected; a contradiction.

We may now assume that (ii) does not hold. Thus (i) holds and so, by a result
of Bixby [1] (see also [9, Proposition 8.4.6]), the cosimpli®cation of Nnw is
3-connected. Since Nnw is not 3-connected, w must be in some triad T � of N.
But N � AknV . Thus Ak has a cocircuit C � that contains T � and is contained in
T � U V . Clearly C � meets D 0i so, by Lemma 3.6, C � ÿ w and hence T � ÿ w meets
E�Ni� ÿ D 0i . Now either

(a) �T � ÿ w�V �D 0i ÿ V� is non-empty; or
(b) jV VD 0i j � 1.

In case (a), let u be an element of �T � ÿ w�V �D 0i ÿ V�. Then the cosimpli®cation
of Nnw equals the cosimpli®cation of Nnw=u and, since u A D 0i , is not 3-connected;
a contradiction. Thus we may assume that (a) fails and that jV VD 0i j � 1. Let
V VD 0i � fvig.

Consider the number t�w� of indices j such that D 0j contains w. As T � ÿ w must

Fig. 5. N0
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contain an element of E�Nj� ÿ D 0j for each such j, it follows that t�w�U 2. The rest
of the proof of this lemma will consider separately the cases when t�w� � 1 and
when t�w� � 2.

Suppose ®rst that t�w� � 1. Then i is the unique index j such that w A D 0j . By
Theorem 3.3, Akn�V ÿ fvig�n�E�Ni� ÿ D 0i � is 3-connected. This matroid has a
cocircuit T �1 contained in �T � U fvig� ÿ �E�Ni� ÿ D 0i �. But T � ÿ w meets E�Ni�ÿ
D 0i . Thus T �1 has size at most three and so it is a triad of the 3-connected matroid
Akn�V ÿ fvig�n�E�Ni� ÿ D 0i �. Therefore T �1 U �V ÿ fvig� contains a cocircuit C �

of Akn�E�Ni� ÿ D 0i � containing T �1 .
Suppose that C � contains an element v 0 of V ÿ fvig. Then v 0 is in some D 0p and

D 0p 0D 0i . But V ÿ fvig contains at most one element of D 0p, yet C � must contain at

least two elements of D 0p. Hence D 0p meets T �1 . But w B D 0p by assumption, and vi B
D 0p. Hence y A D 0p where T �1 � fw; vi; yg. But y is in a triangle of Npnv 0. This tri-
angle is also a triangle of Akn�V ÿ fvig�n�E�Ni� ÿ D 0i �, but it meets the triad T �1
in just one element; a contradiction. We conclude that C � avoids V ÿ fvig. Hence
C � � T �1 .

Now N0 � Akn�6k

j�1�E�Nj� ÿ D 0j ��, so T �1 is a union of cocircuits of N0. Thus
either T �1 is a triad of N0, or N0 GU2;3. But, in the latter case, we obtain that
r�N0� � 2 and k � 1 contradicting the fact that (ii) does not hold. Therefore T �1 is
a triad of N0. We know that w is in exactly one triangle of attachment, namely D 0i .
It follows that D 0i is the only triangle of attachment to meet T �1 since, for every

triangle D 0j meeting T �1 , there is an element of T �1 in E�Nj� ÿ D 0j . Thus we have a
contradiction to the condition that every triad C � of N0 meets at least 4ÿ
jC � ÿ V j triangles of attachment.

Next we consider the case when t�w� � 2. We know that w A D 0i . Let D 0h be the
other triangle of attachment containing w. Since (b) above must hold for the tri-
angle D 0h, we may suppose that V VD 0h � fvhg, where vh and vi, like D 0h and D 0i ,
may or may not be distinct. By orthogonality, T � U fvi; vhg is a cocircuit of
Akn�V ÿ fvi; vhg�. Thus Ak has a cocircuit C � that contains T � U fvi; vhg and
is contained in T � UV . But, since T � avoids E�Nt� ÿ D 0t unless t A fi; hg, Lemma
3.6 implies that C � avoids V ÿ fvi; vhg. Hence C � � T � U fvi; vhg. On deleting

6k

j�1�E�Ni� ÿ D 0i � from Ak, we obtain N0. Moreover, since T � meets each of

E�Ni� ÿ D 0i and E�Nh� ÿ D 0h, it follows that jC � VE�N0�j � jC �j ÿ 2. But C � V
E�N0� is a union of cocircuits of N0. Thus N0 has a cocircuit C �0 of size at most
three that is contained in C � VE�N0� and contains w such that jC �0 ÿ V j � 1 and
C �0 meets only two triangles of attachment. This cocircuit violates the condition on
the cocircuits of N0. r

3.8 Proposition. Let N be a matroid in N and suppose that the root matroid N0 has

the property that, for each t in f2; 3g, every t-cocircuit C � of N0 meets at least 4ÿ
jC � ÿ V j of the triangles of attachment. Then the set of deletable elements of N is a

subset of E�N0� of rank r�N0�.
Proof. By Lemma 3.7, for all i in f1; 2; . . . ; kg, every element of D 0i ÿ V is delet-
able. Hence the set of deletable elements of N certainly spans clN�6k

i�1�D 0i ÿ V��.
By Theorem 3.3, every element of E�N� ÿ E�N0� is essential in N. To complete
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the proof of the theorem, it su½ces to show that every cocircuit D� of N0 that is
contained in E�N0� ÿ clN0

�6k

i�1D 0i � contains a deletable element of N. If D� V V is
non-empty, then, by orthogonality in N0, the set D� meets D 0i ÿ V for some i. Thus
we may assume that D� VV �h. Hence D�JE�N�.

If d A D� and N0nd is 3-connected, then Nnd A N and so, by Theorem 3.3,
Nnd is 3-connected. Thus we may assume that N0nd is not 3-connected for all d in
D�. As N is contraction-minimally 3-connected, Proposition 3.4 implies that, for
every element d of D�, either

(i) d is in a triangle of N0 avoiding V; or

(ii) gN0=d is not 3-connected.

If (ii) holds for all d in D�, then, for all such elements d, the matroid N0=d is
not 3-connected. Thus, by the dual of Theorem 2.6, N0 has a triangle meeting D�.
Since this also holds if (i) occurs, we may now assume that N0 has a triangle T that
meets D�. Then jT VD�jV 2, so we may choose distinct elements d1 and d2 of D�

that are also in T. Let w be the third element of T. Since neither N0nd1 nor N0nd2

is 3-connected, Tutte's Triangle Lemma [15] (see also [9, Lemma 8.4.9]) implies
that N0 has a triad containing d1 and exactly one of d2 and w, and N0 has a triad
containing d2 and exactly one of d1 and w. If N0 has a triad containing both d1 and
d2, then the cocircuit condition on N0 implies that this triad must meet D 0i for some
i. By orthogonality, d1 or d2 is in D 0i ; a contradiction. Thus N0 has distinct triads
T �1 and T �2 meeting T in fd1;wg and fd2;wg, respectively. For each i in f1; 2g, let
T �i ÿ T � feig. By the cocircuit condition on N0, the triad T �1 meets some D 0j .
Hence D 0j contains fw; e1g. Thus, as w A D 0j but d2 B D 0j , we must have that e2 A D 0j .
Hence D 0j � fe1; e2;wg. Let X � fd1; d2; e1; e2;wg. Then, in N0, we have r�X ��
r��X � ÿ jX jU 1. It follows, since N0 is 3-connected, that jE�N0�j � 6. Hence
jD�j � 3 and so D� meets some triangle of attachment; a contradiction. r

We are now ready to prove the main result of this section.

Proof of Theorem 3.1. First suppose that N is a member of N for which the root
matroid N0 has rank d and conditions (i)±(iii) hold. Then, by Proposition 3.4,
since (ii) holds, N is contraction-minimally 3-connected. Moreover, by Proposition
3.8 and Theorem 3.3(b), since (iii) holds, the set D of deletable elements of N is
a subset of E�N0� ÿ V of rank r�N0�. Thus N is a contraction-minimally 3-
connected matroid in which the set of deletable elements has rank d.

To prove the converse, we now suppose that M is a contraction-minimally 3-
connected matroid in which the set D of deletable elements has rank d for some
d V 2. We shall show that M A N by constructing a root matroid N0 and a family
of wheels that are attached to this root in the prescibed manner.

Every element e of M that is not in clM�D� is in a fan. Since M has no con-
tractible elements, this fan must be of type-1 having both ends in D. As e is not in
clM�D�, this fan has at least ®ve elements. Moreover, by Theorem 2.1, this fan is
unique unless M has an M�K4�-restriction having a line L that lies in clM�D� and
avoids e. Thus, if we take the set of fans of M that contain an element of
E�M� ÿ clM�D� and, from each such fan, delete the ends, we obtain a collection of
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sets any two of which are either equal or disjoint. Look at the distinct sets in this
collection and arbitrarily order these sets. For each such set, choose a type-1 fan
from which this set arose. Let fF1;F2; . . . ;Fmg be this set of fans. Suppose that
Fi is fyi;0; xi;0; yi;1g; fxi;0; yi;1; xi;1g; . . . ; fyi;ni

; xi;ni
; yi;ni�1g. Then, for all j 0 i,

we have E�Fi�VE�Fj�J fyi;0; yi;ni�1g.
Now construct the matroids M0;M1; . . . ;Mm as follows: let Mm �M; and, for

all i with 1U i Um, let Miÿ1 be the matroid MinYi=Xi with the element xi;ni

relabelled as zi where Yi � fyi;1; yi;2; . . . ; yi;ni
g and Xi � fxi;0; xi;1; . . . ; xi;niÿ1g.

For all i in f1; 2; . . . ;mg, let Di � fyi;0; zi; yi;ni�1g and let Ni be the matroid
M�Wni�2� where the wheel is labelled as in Figure 6.

The next lemma contains the core of the argument that M A N. Its statement
is somewhat awkward. This arises from the fact that, to construct the triangles of
attachment, one must shrink fans down to a single triangle spanned by the ends
of the fan. When two fans with the same ends are shrunk, parallel elements may
result.

3.9 Lemma. For all i in f1; 2; . . . ;mg,
(i) Mi � PDi

�Ni;Miÿ1�nzi;
(ii) Fj is a chain of Mi for all j U i;
(iii) in Miÿ1, every 2-circuit avoids Yj UXj U xj;nj

for all j U i ÿ 1; moreover, if Z 0iÿ1

is the subset of fzi; zi�1; . . . ; zmg consisting of those elements zj that are parallel

in Miÿ1 either to some element of E�M� or to zp for some p > j, then
Miÿ1nZ 0iÿ1 is 3-connected and is isomorphic to gMiÿ1;

(iv) Dj is a triangle of Miÿ1 for all j V i; and

(v) D is a subset of E�Miÿ1nZ 0iÿ1�; moreover, either Miÿ1nZ 0iÿ1 GU2;3 or U2;4; or

no element of Miÿ1nZ 0iÿ1 is contractible and the set of non-essential elements of

this matroid is spanned by D.

Fig. 6. M�Wni�2�
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Proof. We shall prove all ®ve parts simultaneously using an induction argument
on mÿ i. For mÿ i � 0, part (ii) holds by assumption; parts (i), (iv), and the sec-
ond part of (iii) are immediate consequences of Theorem 2.2. To establish the ®rst
part of (iii), we note that a 2-circuit of Mmÿ1 must contain zm. If it meets Yj U
Xj U xj;nj

for some j Umÿ 1, then Mm has a circuit containing xm;nm
, some subset

of Xm, and some element of Yj UXj U xj;nj
for some j Umÿ 1. This circuit meets

some triad of the fan Fj in a single element; a contradiction. Hence (iii) holds
when mÿ i � 0.

To prove (v) when mÿ i � 0, we note that, by Theorem 2.2, either (a) M �
PDm
�Nm;Mmÿ1�nzm and Mmÿ1 is 3-connected; or (b) zm is in a 2-circuit fzm; hmg of

Mmÿ1; the matroid Mmÿ1nzm is 3-connected; and M � PD 0m�N 0m;Mmÿ1nzm� where
N 0m is Nm with zm relabelled as hm, and D 0m � fym;0; ym;nm�1; hmg. By assumption,
M has no contractible elements and the set of deletable elements of M is D, which
contains fym;0; ym;nm�1g. Evidently DJE�Miÿ1nZ 0iÿ1�. Assume that (a) holds and
suppose ®rst that r�Mmÿ1� � 2. Then either Mmÿ1 GU2;3 or U2;4; or jE�Mmÿ1�jV
5;Mmÿ1 has no contractible elements, and the set of deletable elements of Mmÿ1 is
E�Mmÿ1� which is spanned by fym;0; ym;nm�1g, a subset of D. Thus (v) holds in
case (a) when r�Mmÿ1� � 2. Suppose next that r�Mmÿ1� > 2. Then, by Proposition
2.4, since M has no contractible elements, Mmÿ1 has no contractible elements
except possibly for zm. But this element is in a triangle of Mmÿ1 and r�Mmÿ1� > 2,
so zm is also not contractible. Likewise, by Proposition 2.4, the set of deletable
elements of Mmÿ1 is contained in DU zm and so is spanned by D. Thus (v) holds in
case (a) when r�Mmÿ1� > 2.

In case (b), Mmÿ1nZ 0mÿ1 �Mmÿ1nzm. By Proposition 2.3, every deletable
element of Mmÿ1nZ 0mÿ1 is in D. Moreover Mmÿ1nZ 0mÿ1 GU2;3 or U2;4; or
Mmÿ1nZ 0mÿ1 has no contractible elements. Thus (v) holds when mÿ i � 0.

Now assume that (i)±(v) hold for mÿ iU pÿ 1 and let mÿ i � pUmÿ 1.
Thus i � mÿ p. We show ®rst that (ii) holds in this case. By de®nition, Mi is
Mi�1nYi�1=Xi�1 with xi�1;ni�1

relabelled as zi�1. Hence, for all j U i, all the ele-
ments of Fj are elements of Mi. If T is a link of Fj that is a triangle of Mi�1, then
T is a triangle of Mi unless Mi�1 has a circuit of the form T 0 UX 0i�1 where T 0 is a
proper non-empty subset of T, and X 0i�1 is a non-empty subset of Xi�1. But, in the

exceptional case, by orthogonality, T 0 UX 0i�1 must contain Xi�1 U xi�1;ni�1
; a con-

tradiction since xi�1;ni�1
B T . Hence each link of Fj that is a triangle of Mi�1 is

also a triangle of Mi. Now let T be a link of Fj that is a triad of Mi�1. Then T is a
triad of Mi unless Mi�1 has a cocircuit of the form T 0 UY 0i�1 where T 0 is a proper
non-empty subset of T, and Y 0i�1 is a non-empty subset of Yi�1. In the exceptional
case, by orthogonality, T 0 UY 0i�1 must contain Yi�1 U fyi�1;0; yi�1;ni�1�1g; a con-
tradiction since no triad of Fj contains yi�1;0. We conclude that every link of Fj

that is a triad of Mi�1 is also a triad of Mi. Hence Fj is a chain of Mi for all j U i;
that is, (ii) holds when mÿ i � p.

We shall show next that Miÿ1 is loopless. Assume, to the contrary, that Miÿ1

has a loop. Then MinYi=Xi has a loop, e say. By (iii) of the induction assumption,
Mi is loopless. Hence Mi has eUX 0i as a circuit for some non-empty subset X 0i of
Xi. We showed above that Fi is a chain of Mi. Since e B Yi, it follows, by ortho-
gonality, that X 0i � Xi and e � xi;ni

. By a sequence of circuit eliminations begin-
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ning with the circuit eUXi, using each of the triangles of Fi in order, and
exploiting orthogonality after each elimination, we deduce that Mi has a circuit
that is contained in fyi;0; yi;ni�1g. This contradiction to (iii) of the induction
assumption completes the proof that Miÿ1 is loopless.

By the induction assumption, fMi is isomorphic to MinZ 0i and is 3-connected.
Moreover, Z 0i J fzi�1; zi�2; . . . ; zmg. Thus MinZ 0i has Fj as a chain for all j U i.
Since MinZ 0i is 3-connected, Theorem 2.2 implies that

MinZ 0i � PDi
�Ni;M

0
iÿ1�nzi�1�

where M 0
iÿ1 is �MinZ 0i �nYi=Xi with xi;ni

relabelled as zi, and Ni is M�Wni�2� where
the wheel is labelled as in Figure 6. Thus Di is a triangle of M 0

iÿ1. Moreover, either

(a) M 0
iÿ1 is 3-connected; or

(b) M 0
iÿ1 has a 2-circuit C containing zi, and M 0

iÿ1nzi is 3-connected.

In the latter case, by the same argument that we used to prove the ®rst part of (iii)
when mÿ i � 0, we deduce that C is disjoint from Yj UXj U xj;nj

for all j U i ÿ 1.
By de®nition, Miÿ1 is MinYi=Xi with xi;ni

relabelled as zi. Thus M 0
iÿ1 �

Miÿ1nZ 0i , and so Di is a triangle of Miÿ1. We showed above that Miÿ1 is loopless.
Therefore, if p is a parallel class of Mi and pJ fzi�1; zi�2; . . . ; zmg, then the
elements of p are parallel in Miÿ1. Moreover, if p 0J fzi�1; zi�2; . . . ; zmg and the
elements of p 0 are parallel in Mi to some element e of E�M�, then, by the induc-
tion assumption, feg is disjoint from Yj UXj U xj;nj

for all j U i. Thus eU p 0J
E�Miÿ1� and the elements of eU p 0 are parallel in Miÿ1. Thus every non-trivial
parallel class of Mi is contained in a parallel class of Miÿ1. Hence Z 0i JZ 0iÿ1. In

case (a), Miÿ1nZ 0i is 3-connected and is isomorphic to gMiÿ1; hence Z 0iÿ1 � Z 0i . In

case (b), Miÿ1n�Z 0i U zi� is 3-connected and is isomorphic to gMiÿ1; hence
Z 0iÿ1 � Z 0i U zi. The observation concerning the circuit C and the induction as-
sumption imply that, in both cases, every 2-circuit of Miÿ1 avoids Yj UXj U xj;nj

for all j U i ÿ 1. We conclude that (iii) holds when mÿ i � p. Furthermore, since,
in Miÿ1, each element of Z 0i is parallel to an element of Miÿ1 to which it is parallel
in Mi, we deduce that Mi � PDi

�Ni;Miÿ1�nzi; that is, (i) holds for i � mÿ p.
We have already noted that Di is a triangle of Miÿ1. To complete the proof that

(iv) holds when i � mÿ p, we need to show that Dj is a triangle of Miÿ1 for all j V
i � 1. By the induction assumption, for all such j, the set Dj is a triangle of Mi.
Since E�Fj�VE�Fi�J fyi;0; yi;ni�1g, every such triangle Dj avoids Yi UXi U xi;ni

and so is a union of circuits of Miÿ1. But, since we have shown that (iii) holds
for i � mÿ p, it follows that Miÿ1 is loopless with all its 2-circuits meeting
fzi; zi�1; . . . ; zmg. Hence Dj is a triangle of Miÿ1 for all j V i ÿ 1. Therefore (iv)
holds when mÿ i � p.

Finally, to show that (v) holds when mÿ i � p, we note that, by (1), MinZ 0i �
PDi
�Ni;M

0
iÿ1�nzi. Since i V 1, it follows by (iii) and (v) of the induction assumption

that MinZ 0i is 3-connected having no contractible elements and having its set of
non-essential elements spanned by D. As noted above, either

(a) M 0
iÿ1 is 3-connected, in which case, Z 0iÿ1 � Z 0i ; or

(b) M 0
iÿ1nzi is 3-connected, in which case, Z 0iÿ1 � Z 0i U zi.
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Now, precisely the same argument that was used to establish (v) when mÿ i � 0
completes the proof of (v) when mÿ i � p. r

3.10 Corollary. For all i in f0; 1; . . . ;mg,
(i) r�M� � r�Mi� �

Pm
j�i�1 nj; and

(ii) rMi
�D� � rM�D�.

Moreover, D spans M0.

Proof. Let BD be a basis for D in M and consider BD U �6m

j�1Xj�. Clearly this set
spans M. Suppose that it contains a circuit C. If C meets Xj for some j in
f1; 2; . . . ;mg, then, by orthogonality using the triads of the chain Fj , we deduce
that C contains Xj U xj;nj

. But xj;nj
B BD so C avoids Xj . Hence C JBD; a contra-

diction. We conclude that BD U �6m

j�1Xj� is a basis for M. Thus r�M� � r�Mm� �
r�D� �Pm

j�1 jXj j � r�D� �Pm
j�1 nj. But, for all j in f1; 2; . . . ;mg, we have r�Mj� �

r�Mjÿ1� � jXjj by Lemma 3.9(i). It follows easily that, for all i in f0; 1; . . . ;mg,

r�M� � r�Mm� � r�Mi� �
Xm

j�i�1

jXjj � r�Mi� �
Xm

j�i�1

nj:

Thus r�D� � r�M0�, so D spans M0. Moreover,

rMi
�D� � rM DU 6

m

j�i�1

Xj

 ! !
ÿ rM 6

m

j�i�1

Xj

 !

� rM BD U 6
m

j�i�1

Xj

 ! !
ÿ rM 6

m

j�i�1

Xj

 !

� rM�BD� � rM�D�: r

We now complete the proof of Theorem 3.1. First note that, by repeatedly
applying Lemma 3.9(i), we deduce that

Mm � PDm
�Nm;PDmÿ1

�Nmÿ1; . . . ;PD1
�N1;M0� . . .��nfz1; z2; . . . ; zmg:

By Lemma 3.9, the matroid M0nZ 00 is 3-connected and Di is a triangle of M0 for
all i in f1; 2; . . . ;mg. For all such i, let D 0i be the three elements of M0nZ 00 that are
parallel in M0 to some element of Di. Relabel the elements of the triangle Di of Ni

with the corresponding elements of D 0i . Then, for j 0 i, we have E�Nj�VE�Ni�J
D 0j VD 0i . Construct the sequence of matroids A0;A1; . . . ;Am by letting A0 �
M0nZ 00 � N0 and, for all i in f1; 2; . . . ;mg, letting Ai � PD 0i �Ni;Aiÿ1�.

Let V � E�M0nZ 00�V fz1; z2; . . . ; zmg. Clearly M � AmnV , and V satis®es (vi).
Moreover, by Corollary 3.10, rM�D� � r�M0�. Since r�M0nZ 00� � r�M0�, we
deduce that rM�D� � r�N0�. We conclude that M A N and its set of deletable
elements has rank r�N0�. Since, by assumption, M is contraction-minimally 3-
connected, it follows, by Proposition 3.4, that every element e of N0 obeys one of
(ii)(a)±(c) of Theorem 3.1.
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Finally, we need to show that N0 satis®es (iii) of Theorem 3.1. Let C � be a
t-cocircuit of N0 for some t in f2; 3g such that C � meets at most 3ÿ jC � ÿ V j of
the triangles of attachment.

Suppose ®rst that t � 2. Then N0 GU2;3 and jC � ÿ V j is 2 or 1. In the former
case, C � meets at most one of the triangles of attachment, so k U 1 and M is U2;3

or a wheel; a contradiction. In the latter case, as jC � VV j � 1, the cocircuit C �

must meet one or two of the triangles of attachment. Indeed, by (VI)(c), k � 2 and
M is obtained by taking the generalized parallel connection of two wheels across a
triangle, and then deleting an element of this triangle that is a rim element of both
wheels. Thus M is a wheel; a contradiction.

We may now assume that t � 3, that is, C � is a triad of N0. Since each element
of V is in a triangle of attachment, it is a straightforward consequence of ortho-
gonality that V cannot contain C �. Hence we need only consider the cases when
jV VC �j is 0, 1, or 2. In the ®rst case, C � avoids D 0i for all i. Thus C � avoids
clN0
�D 0i � for all i, and so C � is a triad of Am. Hence C � is a union of cocircuits of

AmnV . The last matroid, which equals M, is 3-connected. Hence C � is a triad of
M. Therefore, for all e in C �, the matroid Mne is not 3-connected. Thus the set
of deletable elements of M is contained in E�N0� ÿ C � and so has rank less than
r�N0�; a contradiction. Thus jV VC �j0 0.

Suppose that jV VC �j � 1. Then C � meets some D 0i in an element vi of V and
in some other element ui. Moreover, C � meets no other triangle of attachment.
Now D 0i is a triangle of the wheel Ni and this wheel has a triad T �i containing
fui; vig. It follows from properties of the generalized parallel connection that T �i U
C � is a cocircuit of Am. Therefore the 3-element set �T �i UC �� ÿ vi is a union of
cocircuits of M. Hence this set is a triad of M containing ui. But ui is a fan end in
M and so is deletable in M, a contradiction. Thus jV VC �j0 1.

It remains to consider the case when jV VC �j � 2. Then C � meets some D 0i and
D 0j in distinct elements vi and vj, respectively, of V. Moreover, these are the only
triangles of attachment meeting C �. If rN0

�D 0i UD 0j � � 2, then the line of N0 that
contains D 0i UD 0j has at least four points and so contains C �. Thus N0 GU2;4 and it
follows that k � 2 and that M is a whirl; a contradiction. We may now assume
that rN0

�D 0i UD 0j � � 3. Then C � � fvi; vj ; xg where x is the unique element in D 0i V
D 0j . Now the wheels Ni and Nj have triads T �i and T �j that meet D 0i and D 0j in fx; vig
and fx; vjg, respectively. Thus T �i UT �j UC � is a cocircuit of Am. Therefore
�T �i UT �j UC �� ÿ fvi; vjg is a triad of M containing x. But x is a fan end in M and

so is deletable in M; a contradiction. This completes the proof that N0 satis®es (iii)
and thereby ®nishes the proof of Theorem 3.1. r

Next we shall show how Theorem 1.3 can be deduced from Theorem 3.1.

Proof of Theorem 1.3. Suppose M is a 3-connected matroid having exactly two
non-essential elements, x and y, each of which is deletable. Then M is contraction-
minimally 3-connected whose set of deletable elements has rank 2. Thus, by The-
orem 3.1, M is a member of N in which the root N0 has rank 2 and contains
fx; yg. Suppose jE�N0�VE�M�jV 4. Since, for each element e of �E�N0�VE�M��
ÿ fx; yg, the matroid Mne is not 3-connected, Tutte's Triangle Lemma [15]
implies that M has a triad contained in E�N0�VE�M� which implies that M G
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U2;4; a contradiction. Thus jE�N0�VE�M�jU 3. If jE�N0�VE�M�j � 2, then
E�N0�VE�M� � fx; yg. In that case, we may view x and y as spokes of each Ni.
Moreover, k V 3 otherwise M is a wheel or whirl. Hence, if jE�N0�VE�M�j � 2,
then M can be constructed by following steps (i)±(vi) of Theorem 1.3. It remains
to consider the case when jE�N0�VE�M�j � 3. If this occurs, then, by (VI)(c) in
the constructive description of M as a member of N, it follows that k V 2. Thus, if
z is the element of �E�N0�VE�M�� ÿ fx; yg, then the simpli®cation of M=z is not
3-connected. Hence the cosimpli®cation of Mnz is 3-connected. But Mnz is not
3-connected since z B fx; yg, so M has a triad containing z. This triad must also
contain x or y, contradicting the fact that each of these elements is deletable.

Conversely, suppose that M is constructed as described in (i)±(vi) of Theorem
1.3. Then M is a member of N in which the root N0 has rank 2 and is spanned by
fx; yg, and so (ii)(a) of Theorem 3.1 holds for all elements e of N0. Moreover, as
k V 3, it follows that (iii) of Theorem 3.1 holds. Hence, by Theorem 3.1, M is
contraction-minimally 3-connected and its set of deletable elements has rank 2 and
is contained in E�N0�VE�M�. Thus x and y are the only deletable elements of M

and the theorem holds. r

4. One Deletable and One Contractible Element

In this section, we shall prove the characterization of type-3 matroids given in
Theorem 1.4. First, recall that a type-3 matroid is a 3-connected matroid having
exactly two non-essential elements, one of which is deletable and one of which is
contractible.

A big step in proving Theorem 1.4 is to identify the type-3 matroids in which
all the fans are trivial, that is, have exactly four elements. For all k V 2, let Nk be
the class of such matroids that have exactly k fans.

4.1 Proposition. For all k V 2, the class Nk coincides precisely with the class of

matroids M, other than the 3-wheel and the 3-whirl, that can be obtained from a

�k � 1�-spike by deleting an element other than the tip.

We remark that the exclusion of the 3-wheel and the 3-whirl in the last result
only takes e¨ect in the case when k � 2.

Proof. First, suppose that M is neither a 3-wheel nor a 3-whirl and that M can be
obtained from a �k � 1�-spike Sk�1 by deleting an element z that is di¨erent from
the tip, y. It is straightforward to check that M is 3-connected. Let fx; y; zg be the
triangle of Sk�1 that contains fy; zg, and let fy; a1; b1g; fy; a2; b2g; . . . ; fy; ak; bkg
be the other k triangles through the tip. Then these k triangles are the only tri-
angles of M unless k � 2. But, even in the exceptional case, since M is not a 3-
wheel or a 3-whirl, it has no other triangles. The only triads of M are the k sets of
the form fx; ai; big. It now follows easily that M has exactly k fans, each set of the
form fx; y; ai; big being the ground set of such a fan. Thus M A Nk.

Now suppose that N is a member of Nk. Let the k fans in N be F1;F2; . . . ;
Fk and suppose that the links of the fan Fi are fy; ai; big and fx; ai; big, the ®rst
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of which is a triangle and the second a triad. Evidently E�N� �6k

i�1E�Fi�, so
jE�M�j � 2k � 2. Deleting the k triads fx; a1; b1g; fx; a2; b2g; . . . ; fx; ak; bkg from
M reduces the rank by at least k and leaves just the element y. Thus r�M�V k � 1.
Dually, r��M�V k � 1. Since jE�M�j � 2k � 2, it follows that both M and its
dual have rank k � 1. Now Mnx has fai; big as a cocircuit for all i. Thus Mnx
is the parallel connection of k three-point lines, L1;L2; . . . ;Lk, with common
basepoint y where Li � fy; ai; big for all i.

To show that M can be obtained from a spike by deleting a non-tip element,
we construct a single-element extension of M that is a spike. Let M� be obtained
from M by freely adding the element z to the line fx; yg of M. Let L0 � fx; y; zg.
Then, in M�, the k � 1 lines L0;L1; . . . ;Lk all have three points and all pass
through y. Moreover, their union is E�M�� and so has rank k � 1. Now take a set
X of m of the lines L0;L1; . . . ;Lk where mU k and choose j such that Lj B X. If
L0 B X, the union of the m lines in X has rank m� 1. If L0 A X, then the union of
the mÿ 1 lines in Xÿ fL0g has rank m. Since this union avoids the cocircuit
fxgU �Lj ÿ fyg�, the union of all of the lines in X has rank m� 1. Hence M� is
indeed a spike. r

In order to describe all type-3 matroids, we shall want to shrink a non-trivial
fan down to a trivial fan. The next result describes how this can be done.

4.2 Lemma. Suppose k V 2. Let M be a type-3 matroid with exactly k fans and x
and y be the two non-essential elements where x is contractible and y is deletable.

Every fan of M has x and y as its ends. Let

fy0; x0; y1g; fx0; y1; x1g; fy1; x1; y2g; . . . ; fxn; yn�1; xn�1g
be a fan with at least six elements, where y � y0 and x � xn�1. Then

M � PD1
�M�Wn�2�;M1�nz

where D1 � fy0; yn�1; zg;Wn�2 is labelled as in Figure 4; and M1 is 3-connected and
is obtained from the matroid M=x0; x1; . . . ; xnÿ1ny1; y2; . . . ; yn by relabelling xn as

z. Moreover,

(i) if M is binary, then M1 is also binary;
(ii) if k V 3, then M1 is a type-3 matroid with exactly k fans;
(iii) if k � 2, then M1 is a wheel, or a whirl, or a type-3 matroid with exactly two

fans; and

(iv) if M1 is a type-3 matroid, then D1 is the unique triangle of a trivial fan of M1.

Proof. Consider the given fan and omit the last link fxn; yn�1; xn�1g from this fan.
This leaves a chain to which Theorem 2.2 can be applied. Hence

M � PD1
�M�Wn�2�;M1�nz

where D1 � fy0; yn�1; zg;Wn�2 is labelled as in Figure 4; and M1 is the matroid
M=x0; x1; . . . ; xnÿ1ny1; y2; . . . ; yn with xn relabelled as z. Moreover, M1 is 3-
connected, or M1nz is 3-connected. If the latter occurs, then we deduce that
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M=x0; x1; . . . ; xnÿ1ny1; y2; . . . ; yn; xn is 3-connected. But M has fxn; yn�1; xn�1g as
a cocircuit, so M=x0; x1; . . . ; xnÿ1ny1; y2; . . . ; yn; xn has a cocircuit contained in
fyn�1; xn�1g. This matroid has at least four elements since M has at least two fans.
Thus M=x0; x1; . . . ; xnÿ1ny1; y2; . . . ; yn; xn cannot be 3-connected. We conclude
that M1nz is not 3-connected. Hence M1 is 3-connected.

If M is binary, then M1 is also binary since it is isomorphic to a minor of M.
Next we prove that M1 has at most two non-essential elements. By Proposition
2.4, if e B fx; y; zg, then, as e is essential in M, it is also essential in M1. Moreover,
it is easy to see that fz; xn�1; yn�1g is a triad in M1. Therefore, z is in both a tri-
angle and a triad in M1, and thus it is essential. We conclude that M1 has at most
two non-essential elements. Thus M1 is not uniform and, since it is 3-connected,
M1 has at least six elements.

Now we show that (ii)±(iv) hold. The element y is in at least k triangles of M1.
Thus either (a) k � 2 and M1 is a wheel or a whirl, or (b) M1 is not a wheel or a
whirl. Hence we may assume that the latter holds. Therefore, by Theorem 2.1, M1

has exactly two non-essential elements, namely, x and y. Since x is in a triad and y

is in a triangle, we conclude that x is contractible and y is deletable in M1. Thus
M1 is a type-3 matroid. Since x � xn�1 and y � y0, we conclude that fy0; z; yn�1g;
fz; yn�1; xn�1g is a maximal chain and therefore a type-3 fan of M1. Therefore D1

is the unique triangle of a trivial fan of M1. As M1 is the matroid M=x0; x1; . . . ;
xnÿ1ny1; y2; . . . ; yn with xn relabelled as z, it is straightforward to check, by using
orthogonality, that M1, like M, has exactly k fans. We conclude that (ii)±(iv)
hold. r

Next, for all k V 2, we construct a class Rk of matroids as follows. Start with a
matroid N0 that can be obtained from a �k � 1�-spike by deleting an element z

other than the tip y. We shall call N0 the root matroid. N0 has exactly k triangles,
D1;D2; . . . ;Dk, that contain y. Suppose tU k. Let N1;N2; . . . ;Nt be a collection of
wheels, each having rank at least three such that E�N0�;E�N1�; . . . ;E�Nt� are all
disjoint. Let D 01;D

0
2; . . . ;D 0t be triangles of N1;N2; . . . ;Nt, respectively. For all i in

f1; 2; . . . ; tg, take a bijection from Di to D 0i that maps y to a spoke of Ni, and
relabel the elements of each D 0i by the corresponding elements of Di so that zi

labels the element of D 0i that is a rim element of Ni. Construct a sequence of mat-
roids as follows: let R0 � N0, and, for each i in f1; 2; . . . ; tg, let Ri � PDi

�Ni;Riÿ1�.
Finally, let M � Rtnz1; z2; . . . ; zt. The class Rk consists of all matroids M that can
be constructed in this way.

By a similar argument to that given in Lemma 3.2, it is not di½cult to show
that Rt is independent of the order in which the wheels N1;N2; . . . ;Nt are attached
to the root matroid N0. Thus Rt is well-de®ned, although it should not be over-
looked that it does depend on the bijections that map each Di onto the corre-
sponding D 0i .

The next lemma shows that, for all k V 2, every member of Rk that is not a
wheel or whirl is a type-3 matroid.

4.3 Lemma. Suppose k V 2 and t A f0; 1; . . . ; kg. Let M be a member Rtnz1; z2; . . . ;
zt of Rk. Then N0 is a minor of M and either
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(i) k � 2 and M is a wheel or whirl; or

(ii) M is a type-3 matroid having exactly k fans, the ground sets of which are
�E�N1�U fxg� ÿ fz1g, �E�N2�U fxg� ÿ fz2g; . . . ; �E�Nt�U fxg� ÿ fztg, Dt�1 U
fxg;Dt�2 U fxg; . . . ;Dk U fxg.

Proof. If t � 0, then Rt � N0 and the result follows by Proposition 4.1. Now sup-
pose the lemma is true for t < n. Then, for t � nV 1, by elementary properties of
the generalized parallel connection (see, for example, [9, Proposition [12.4.14]),

M � Rnnz1; z2; . . . ; zn

� PDn
�Nn;Rnÿ1�nz1; z2; . . . ; zn

� PDn
�Nn;Rnÿ1nz1; z2; . . . ; znÿ1�nzn:

Now write M1 for Rnÿ1nz1; z2; . . . ; znÿ1. By the induction assumption, N0 is a
minor of M1 and either

(i) k � 2 and M1 is a wheel or a whirl; or
(ii) M1 is a type-3 matroid having exactly k fans, the ground sets of which are
�E�N1�U fxg� ÿ fz1g, �E�N2�U fxg� ÿ fz2g; . . . ; �E�Nnÿ1�U fxg� ÿ fznÿ1g,
Dn U fxg;Dn�1 U fxg; . . . ;Dk U fxg.

It follows easily that N0 is a minor of M. Moreover, in case (i), it is not di½cult
to see that M is also a wheel or a whirl. Thus we may assume that (ii) holds. By
Lemma 2.5, since both Nn and M1 are 3-connected having at least four elements,
PDn
�Nn;M1� is 3-connected. As the simpli®cation of PDn

�Nn;M1�=zn is not 3-
connected, it follows that the cosimpli®cation of PDn

�Nn;M1�nzn is 3-connected.
But PDn

�Nn;M1�nzn is cosimple unless there is a triad in PDn
�Nn;M1� containing

zn. Such a triad contains exactly two elements of Dn. Thus its intersection with one
of E�Nn� and E�M1� has size two, so Nn or M1 is not cosimple; a contradiction.
We conclude that PDn

�Nn;M1�nzn is indeed cosimple. Hence M is 3-connected.
Next we consider the collections of triangles and triads of M. Evidently the

triangles of M consist of the triangles of M1 that avoid zn along with the triangles
of Nn that avoid zn. In particular, every element of E�M� ÿ fxg is in a triangle of
M. A set that is a triad of Nn or of M1 and that avoids Dn is a triad of M. In
particular, every element of E�M� ÿ Dn is in a triad of M. Moreover, M1 has a
triad fxn; zn; xg contained in Dn U fxg, and Nn has a triad fe; xn; zng containing
fxn; zng. Thus PDn

�Nn;M1� has fe; xn; zn; xg as a cocircuit, so M has fe; xn; xg as a
triad. We conclude that every element of E�M� ÿ fyg is in a triad of M.

We now know that every element of E�M� ÿ fx; yg is essential in M, that y is
in a triangle, and that x is in a triad. Indeed, y is in at least k triangles. Thus, if
k V 3, then M is certainly not a wheel or a whirl, so M is a type-3 matroid in
which y is deletable and x is contractible. Moreover, the ground sets of the fans of
M are as speci®ed in (ii) of the theorem. If k � 2 and M is not a wheel or a whirl,
then y is deletable and x is contractible in M; and M has exactly two fans whose
ground sets are �E�N1�U fxg� ÿ fz1g and D2 U fxg, or �E�N1�U fxg� ÿ fz1g and
�E�N2�U fxg� ÿ fz2g. r

Matroids with Few Non-Essential Elements 223



4.4 Lemma. Let M be a type-3 matroid having exactly k fans for some k V 2. Then

M A Rk.

Proof. Let M be a counterexample to the lemma having the minimum number of
elements. Let x be the unique contractible element of M and y be the unique
deletable element. By Theorem 2.1, the set of essential elements of M can be par-
titioned into k classes such that two elements are in the same class if and only if
they are in a common fan. Let F1;F2; . . . ;Fk be the fans of M. Then E�M� �
6k

i�1E�Fi�. If, for all i in f1; 2; . . . ; kg, the fan Fi has exactly four elements, then
M A Nk and so M A Rk; a contradiction. Thus we may assume that there is a fan,
say F1, having at least six elements. Suppose the links of F1 are fy0; x0; y1g;
fx0; y1; x1g; fy1; x1; y2g; . . . ; fxn; yn�1; xn�1g where y0 � y. By Lemma 4.2,

M � PD�M�Wn�2�;M1�nz

where D � fy0; yn�1; zg;Wn�2 is labelled as in Figure 4; and M1 is obtained from
the matroid M=x0; x1; . . . ; xnÿ1ny1; y2; . . . ; yn by relabelling xn as z. Moreover,
either

(i) k � 2 and M1 is a wheel or a whirl; or
(ii) M1 is a type-3 matroid having exactly k fans.

In case (i), M is a wheel or a whirl; a contradiction. Thus (ii) holds. Since jE�M1�j
< jE�M�j, we have that M1 A Rk. Hence we may assume that M1 � Rtnz1; z2; . . . ;
zt for some Rt constructed as above and some tU k. Now, by (iv) of Lemma 4.2,
D is the unique triangle of a trivial fan of M1. Thus, by Lemma 4.3, D is a triangle
of the root N0. Therefore, since

M � PD�M�Wn�2�;Rt�nz1; z2; . . . ; zt; z;

we obtain the contradiction that M A Rk. r

To prove Theorem 1.4, we need only to combine the earlier lemmas.

Proof of Theorem 1.4. Every 3-connected matroid M with just two non-essential
elements, one deletable and one contractible, is a type-3 matroid with k fans for
some k V 2. Thus, by Lemma 4.4, M A Rk and so M can be constructed as
described in the theorem. Conversely, if M A Rk, then, by Lemma 4.3, M is a
wheel or whirl, or a type-3 matroid with exactly k fans. r

5. Consequences

In this section, we look brie¯y at some of the consequences of the main results of
the earlier sections. In particular, we shall prove Theorem 1.2, thereby completing
the description of all 3-connected graphic matroids with exactly two non-essential
elements. Moreover, we shall determine all 3-connected binary matroids in which
the set of non-essential elements has rank two. In the binary case, one can be more
explicit than in the general case in describing exactly which matroids arise.
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Let M be a binary matroid in which the set X of non-essential elements has
rank two. Then, as M is binary, jX j is 2 or 3. In the latter case, either (i) M GU2;3,
or (ii) no element of X is contractible. In case (ii), every element of X is deletable,
so M is contraction-minimally 3-connected. If jX j � 2, then M is a matroid of
type-1, type-2, or type-3. But, if M is of type-1, then it is again contraction-
minimally 3-connected. Thus, to ®nd all the possibilities for M, it will su½ce to
determine (a) all binary type-3 matroids and (b) all contraction-minimally 3-
connected binary matroids in which the set of deletable elements has rank two and
hence has size two or three. The ®rst result of this section notes that all the mat-
roids of type (b) are graphic. In order to state this result, we introduce another
class of graphs. For all k V 2, a triangle-sum of k wheels is the graph that can be
obtained from k disjoint wheels and a single triangle with edge set fx; y; zg by
identifying fx; y; zg with a triangle in each of the k wheels.

5.1 Theorem. Let M be a binary matroid. Then M is a contraction-minimally 3-
connected matroid in which the set of deletable elements has rank two if and only if

M is isomorphic to the cycle matroid of an m-dimensional wheel for some mV 3 or a

triangle-sum of n wheels for some nV 2.

The proofs of the results in this section will be delayed until all the results have
been stated. The results in Section 4 imply that every binary type-3 matroid can be
constructed from a matroid that is obtained by deleting a non-tip element from a
binary spike. We noted earlier that, for all k V 2, the unique binary �k � 1�-spike
is the vector matroid of the matrix �Ik�1jJk�1 ÿ Ik�1j1� where the column 1 of all
ones corresponds to the tip of the spike. Let Lk be the vector matroid of the matrix
�Ik�1jA� that is obtained from �Ik�1jJk�1 ÿ Ik�1j1� by deleting the second last
column.

5.2 Lemma. Let M be a binary matroid and suppose k V 3. Then M is a type-3
matroid having exactly k fans each of which is trivial if and only if M GLk.

Next we describe how to construct all binary type-3 matroids starting from Lk.
This construction is a special case of the construction described in Section 4, so we
shall be somewhat less formal here. We label the elements of Lk as follows. If k is
odd, label the columns of �Ik�1jA�, in order, by b1; b2; . . . ; bk; x; a1; a2; . . . ; ak; y; if
k is even, then interchange ak and bk in the above labelling. It is easy to check that,
in both cases, (i) fa1; a2; . . . ; ak; xg is a circuit; and (ii) fy; ai; big is a triangle and
fx; ai; big is a triad for all i in f1; 2; . . . ; kg. Let Di � fy; ai; big for all i, and let
n1; n2; . . . ; nk be non-negative integers such that n1 V n2 V � � � V nk. Let t �
maxf j : nj > 0g. For all iU t, attach M�Wni�2� to Lk across the triangle Di such
that ai labels a rim element of the attached wheel. From the resulting matroid,
delete all the elements ai for which iU t to produce the matroid M1�n1; n2; . . . ; nk�.
When t � k, the matroid M2�n1; n2; . . . ; nk� is obtained by modifying the above
construction so that a1; a2; . . . ; akÿ1 and bk are identi®ed with rim elements of the
attached wheels, and these k elements are deleted at the last step of the construc-
tion. If nk � 0, we de®ne M2�n1; n2; . . . ; nk� to be equal to M1�n1; n2; . . . ; nk�.
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The next theorem characterizes all binary type-3 matroids identifying, in par-
ticular, exactly when two such matroids are isomorphic.

5.3 Theorem. Let M be a binary matroid. Then M is of type-3 if and only if M is

isomorphic to the cycle matroid of a twisted wheel, or to M1�n1; n2; . . . ; nk� or

M2�n1; n2; . . . ; nk� for some k V 3. Moreover, the matroids M1�n1; n2; . . . ; nk� and

M2�n1; n2; . . . ; nk� are isomorphic if and only if M has at least one trivial fan.

On combining Theorem 5.1 and Theorem 5.3 and using duality, we immedi-
ately obtain the following result that explicitly identi®es all 3-connected binary
matroids whose set of non-essential elements has rank at most two.

5.4 Corollary. Let M be a 3-connected binary matroid other than a wheel. Then the

set of non-essential elements of M has rank one if and only if M GU1;3, and has
rank two if and only if M is isomorphic to one of the following:

(i) U2;3;
(ii) the cycle matroid of a twisted wheel;
(iii) the cycle matroid of a triangle-sum of n wheels for some nV 2;
(iv) the cycle or cocycle matroid of an m-dimensional wheel for some mV 3; or

(v) M1�n1; n2; . . . ; nk� or M2�n1; n2; . . . ; nk� for some k V 3.

The remainder of this section will be devoted to proving the results stated
above. We begin by proving Theorem 5.1 thereby specifying all binary matroids of
type-1.

Proof of Theorem 5.1. If M is isomorphic to the cycle matroid of an m-dimensional
wheel for some mV 3 or a triangle-sum of n wheels for some nV 2, then it is
straightforward to check that M is contraction-minimally 3-connected and its set
of deletable elements has rank two.

Now suppose that M is contraction-minimally 3-connected and that its set of
deletable elements has rank two. Then, by Theorem 3.1, M is a member of N in
which the root N0 has rank two. Moreover, by Theorem 3.3, N0 is isomorphic to
a minor of M. Hence, as M is binary, jE�N0�jU 3. Moreover, since N0 is 3-
connected, equality must hold here. From the construction for members of N and
condition (iii) of Theorem 3.1, it follows easily that M is indeed isomorphic to the
cycle matroid of an m-dimensional wheel for some mV 3 or a triangle-sum of n
wheels for some nV 2. r

We now turn to binary matroids of type-3 ®rst specifying all such matroids in
which all fans are trivial.

Proof of Lemma 5.2. By Proposition 4.1, it su½ces to show that every single-
element deletion of the unique binary �k � 1�-spike M is isomorphic to Lk. Label
the columns in the representation �Ik�1jJk�1 ÿ Ik�1j1� for M by x1; x2; . . . ; xk�1;
y1; y2; . . . ; yk�1; p. Then the set of non-spanning circuits of M consists of

(i) all sets of the form fp; xi; yig for 1U i U k � 1;
(ii) all sets of the form fxi; yi; xj; yjg for 1U i < j U k � 1;
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(iii) all sets of the form fd1; d2; . . . ; dk�1g such that di A fxi; yig for all i and there
are an odd number of elements in fd1; d2; . . . ; dk�1gV fy1; y2; . . . ; yk�1g.

Evidently Mnyi GLk for all i, and Mnxi GMnxj for all i and j. Moreover, from
the list of circuits of M, it is easy to see that M has an automorphism that inter-
changes x1 with y1, interchanges x2 with y2, and ®xes every other element. Thus
Mny1 GMnx1 GLk and the lemma follows easily. r

We are now ready to prove the characterization of all binary type-3 matroids.

Proof of Theorem 5.3. The construction for a twisted wheel described in Section 1
shows that the cycle matroid of this graph is a member of R2 with the root being a
3-wheel. Thus, by Theorem 1.4, this cycle matroid is of type-3. The same theorem
guarantees that, for all k V 3, each of M1�n1; n2; . . . ; nk� and M2�n1; n2; . . . ; nk� is
of type-3. Moreover, each is certainly binary since the generalized parallel con-
nection of two binary matroids is always binary [2, Corollary 6.13].

Conversely, suppose that the binary matroid M is of type-3. Let M have
exactly k fans. Then, by Lemma 4.4, M A Rk. Since the root N0 is a minor of M,
Proposition 4.1 and Lemma 5.2 imply that either k � 2 and N0 is isomorphic to a
3-wheel, or k V 3 and N0 GLk. In the ®rst case, since the generalized parallel
connection of two graphic matroids is graphic [2, Theorem 6.17], it is straightfor-
ward to check that M is the cycle matroid of a twisted wheel. We may now assume
that k V 3. Let the k fans of M have 2n1 � 4; 2n2 � 4; . . . ; 2nk � 4 elements, re-
spectively, where n1 V n2 V � � � V nk and let t � maxf j : nj > 0g. Then, by the
symmetry of Lk, we may assume that, in the construction of M, the wheel Wni�2 is
attached across the triangle Di for all i in f1; 2; . . . ; tg. To specify M exactly, we
need to indicate, for each i, whether ai or bi is identi®ed with a rim element of
Wni�2. Now the circuits of Lk include all the sets Di and all the sets �Di VDj� ÿ fyg
for i 0 j. From the list of circuits of M�Ik�1jJk�1 ÿ Ik�1j1� given in the proof of
Lemma 5.2 and from the remarks made following the statement of that lemma, we
deduce that the only other non-spanning circuits of Lk are the sets of the form
fd1; d2; . . . ; dk; xg where di A fai; big for all i and fd1; d2; . . . ; dkg contains an even
number of members of fb1; b2; . . . ; bkg. We deduce that Lk has an automorphism
that interchanges an even number of ai's with the corresponding bi's. Then, by
applying such an automorphism, we may assume that each Wni�2 is attached to Di

so that ai is a rim element of the wheel for all i < k. Thus, when t < k, we deduce
that M GM1�n1; n2; . . . ; nk�. When t � k, a choice arises as to whether ak or bk is
identi®ed with a rim element of Wnk�2, so M is isomorphic to M1�n1; n2; . . . ; nk� or
M2�n1; n2; . . . ; nk�.

To complete the proof of the theorem, it remains only to decide when the
matroids M1�n1; n2; . . . ; nk� and M2�n1; n2; . . . ; nk� are isomorphic. By de®nition
they certainly are if nk � 0. We shall now show that when nk > 0, these matroids
are not isomorphic. Abbreviate these two matroids as M1 and M2. Assume that j
is an isomorphism between M1 and M2. By Theorem 2.1, every essential element
of M1 and M2 is in a unique type-3 fan. Thus every essential element is in at most
two triangles and two triads. In M1 and M2, the element y is the only element that
is in more than two triangles and x is the only element in more than two triads.
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Thus the isomorphism must ®x each of these elements. Moreover, because every
fan in each matroid has at least six elements, there is a unique element in each fan
for which the only triad of the matroid containing this element also contains x. In
M1 and M2, the collections U1 and U2 of such elements equal fb1; b2; . . . ; bkg and
fb1; b2; . . . ; bkÿ1; akg, respectively. Under the map j, a fan in M1 must map to a
fan in M2. Moreover, j�U1� � U2. Thus j�fxgUU1� � fxgUU2. Now if k is
even, then fxgUU1 is a circuit of M1, but fxgUU2 is not a circuit of M2; and if
k is odd, then fxgUU1 is not a circuit of M1, but fxgUU2 is a circuit of M2. In
either case, we get a contradiction. r

Finally, Theorem 1.2 is quite straightforward to deduce from Corollary 5.4.
Alternatively, it is not di½cult to prove this theorem directly using Theorem 2.1.
We conclude by presenting the ®rst of these proofs.

Proof of Theorem 1.2. From the list given in Corollary 5.4 of binary 3-connected
matroids whose set of non-essential elements has rank two, we eliminate the mat-
roids under (i) and (iii) as having more than two non-essential elements. If mV 3,
then an m-dimensional wheel has K3;3 as a minor and so the cocycle matroid
of this graph is not graphic. For k V 3, the matroids M1�n1; n2; . . . ; nk� and
M2�n1; n2; . . . nk� have Lk as a minor and so have L3 as a minor. But L3 has the
dual of the Fano matroid as a restriction and so is not graphic. The only matroids
that remain in the list in Corollary 5.4 are the cycle matroids of twisted wheels and
m-dimensional wheels for mV 3, so the theorem is proved. r
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