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On Random Representable Matroids

By D. G. Kelly* and J. G. Oxley

Results are obtained on the likely connectivity properties and sizes of circuits in
the column dependence matroid of a random r X » matrix over a finite field, for
large r and x. In a sense made precise in the paper, it is shown to be highly
probable that when n is less than r such a matroid is the free matroid on n
points, while if » exceeds 7 it is a connected matroid of rank r. Moreover, the
connectivity can b;e strengthened under additional hypotheses on the growth of »
and r, using the notion of vertical connectivity; and the values of % for which

circuits of size k exist can be determined in terms of » and r.

i ) 1. Introduction

In earlier joint paﬁers [13, 14] and a paper by Oxley alone [18] we considered the
likely behavior of large matroids obtained by randomly and independently
retaining (with probability p) or deleting (with probability 1— p) the elements of
the finite projectiﬁre geometry PG(r —1, g). Such a process produces a matroid
without loops or multiple points (dependent singletons or pairs), but which has a
random number o:f elements.

In the present paper we consider matroids obtained by randomly and indepen-
dently choosing # elements of the r-dimensional vector space over GF(g) (the
field with ¢ elements, where g is a fixed prime power), allowing the zero vector to
be chosen and allowing multiple choices of the same vector. That is, we consider
the column dependence matroid of an r X n matrix whose entries are chosen
independently and at random from GF(q). Such a matroid has n elements,
possibly including loops and multiple points. Allowing the presence of such
elements simplifie§‘ the calculation of probabilities and thus permits us to obtain
more results. ‘ :
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In a sense that we shall presently make precise, we show for such random
matroids that for large r and » the following are highly probable: if » is less than
r, then the matroid is the free matroid on » elements, while if » exceeds r, then
the matroid is a connected matroid of rank r. Moreover, under additional
hypotheses on the growth of r and r we obtain stronger results on the connected-
ness of the matroid and estimates of the likely sizes of its circuits.

A more detailed summary of these results will be given below, after we have
discussed the terminology and notation we shall use.

Terminology

Let g be a fixed prime power, and let {n,} be a sequence of positive integers. For
r=1,2,3,..., let M, be an r X n, matrix whose entries are chosen independently
from GF(q), each member having probability 1/¢ of being chosen for any entry.
(No assumption need be made concerning the independence of the M,; they may
be mutually independent, or if the n, are increasing, each may be a submatrix of
the next.) We shall use the symbol M, to denote both the matrix and its column
dependence matroid.

Most of our theorems state that under certain conditions involving the growth
of the n,, and for certain properties, say 4, which a matroid may or may not
possess, a series

‘ Y. P[ M, does not have property 4]
|

converges. By the well-known first Borel-Cantelli Lemma (Lemma 2.1 below), it
follows from s:inch a conclusion that with probability 1 there exists a random
integer R such that for all » > R, M, has property 4. To shorten such statements,
we shall attach|the following meaning to the word eventually: if there exists an
integer R such that a given property A(r) holds for all r > R, then we say that
A(r) holds cvc:jtua]ly. Thus a consequence of the convergence of the above series
is that with probability 1 eventually M, has property 4.

We shall follow Welsh [22] for all matroid terminology that is not othetwise
explained, with two exceptions. First, we shall use tk M to denote the rank of a
matroid M. Second, we shall say that a matroid M is connected even if it contains
loops, providedl that deleting the loops Ieaves a matroid that is connected in the
usual sense. .|

We will also use the O, 0, and ~ mnotations as they are customarily used. Thus,
for example, a; b, + o(1) means that a,— b, approaches 0 as r increases, and
a,~ b, means that hmmmj /b =1

Summary of results

Section 3 concerns the rank of M,. Its results imply that if », /7 is eventually
bounded below{ 1, then with probability 1 eventually M, is the free matroid on n,
elements; while if n,_/r is eventually bounded above 1, then with probability 1
eventuaily M, has rank r.
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In Section 4 we show that if n, /r is eventually bounded above 1, then with
probability 1 eventually M, is connected. Moreover, under additional hypotheses
on the limiting value of n,/r, we can make considerably stronger statements
concerning the connectivity of M,. To do this, we use the notion of vertical
m-connectivity, the matrpid generalization of the graph-theoretic concept of
m-connectivity. Vertical m-connectivity was introduced by Tutte [20, 21] and has
been studied by authors,|including Cunningham (3}, Inukai and Weinberg [12),
and Oxley [17]. Theorem 4.4 provides that if n,/r approaches a limit large
enough to satisfy a certajn inequality, then with probability 1 eventually M, is
vertically r-connected. For smaller limiting values of n,/r, Theorem 4.5 gives in
effect the vertical iconnect.ivity of M. Table 1 gives, for various g, the critical
limiting value of #| /r for vertical r-connectivity and the vertical connectivity for
various smaller hmmng values of n, /¥,

In Section 5 Wc\conmder the existence of circuits of various sizes. Theorem 5.1
gives an asyrnptotic value for the probability that M, has no circuits of size &,,
when {k,} is a sequence with k, = o(n,). Theorem 5.2 asserts, for a sequence
{%,} for which k,/n, is bounded above zero, that with probability 1 eventually
M, has or does nopt have circuits of size k, according as a certain quantity is
eventua.lly bounded below or above 1. Table 2 gives, for various g and various
limiting values of n,/r greater than 1, the size of the largest circuits that can be
expected in M,.

Related work

Our study of random matroids has from the beginning been motivated by the
extensive theory of random graphs, begun by Erdos [4] and Erdos and Rényi {5,
6]. The subject is well expounded and documented in the books of Erdés and
Spencer {10] and Bollobas [1] and the articles by Spencer [19] and Bollobas {2),
and the reader is referred to these works and their bibliographies.

The only result obtained in our earlier papers that is directly comparable to a
result of this paper is Theorem 2.1 in [14]. This theorem provides that rg~" is a
threshold probability for the property that a random submatroid of PG(r —1, q)
has full rank. Otherwise stated: if the expected proportion of elements retained,
which correspondsito n,47" in the present paper, is o(rg™"), then with probabil-
ity 1 eventually the rank is less than r; while if rg="=o(n,g™"), then with
probability 1 eventually the rank is ». This result corresponds precisely with the
results of Section 3 of this paper.

Other work on random matrices appears in papers of Erdos and Rényi [8, 9]
and of Komlés [15, 16]. Erdés and Rényi are primarily concerned with the
permanent of a random square matrix of zeros and ones, while Komlos studies
random matrices over the field of real numbers.

2. Preliminary lemmas

Our first lemma will be used in most of our theorems to deduce the likely
behavior of random matroids of large rank from the convergence of certain series.
The remaining leEmas are elementary bounds from probability theory. Unex-
plained notions can be found in Feller [11].
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LemMA 2.1 (Borel-Cantelli). If {A,)} is a sequence of events in a probability
space and if T, P[A,] converges, then with probability 1 there is a random integer R
such that none of the A, occur for r > R,

Proof can be found in [11}. O

LEMMA 2.2. If 4, B, and C are events in a probability space and P[B "N C]> 0,
then

P[4] < P[ANBNC]+ Plnot B]+ PlnotC]
< Pl 4|BNC] + P[oot B]+ P[notC].

This follows easﬂy from the definition of conditional probability. O

LEMMA 2.3. If n and k are positive integers and 0 < k < n, then

| (&) <)< (%)

Proof: The first inequality is an easy inductive consequence of the inequality
a/b < (a—1)/(b—1), which is valid for a > b > 1. The second inequality follows
because obvious ly

k
ny _n
(k) <7
and because Stirling’s formula k*e~*(27k)*? underestimates k! O

Lemma 2.4 (The first- and second-moment methods). If X is a nonnegative
integer-valued random variable, then

P[X>0] < EX.
If X has finite vafriance, then

EXx?
(Ex)*

P[x=0] <

Proof: We omit the easy proof of the first assertion. A proof of the second is
found in [13}. o

3. Rank

Let ¢ be a fixed prime power, let {n,} be a sequence of positive integers, and for
r=L2,..., let M, be (the column dependence matroid of) an r X n, matrix
whose entries are chosen independently and at random from GF(g).




o

On Random Representable Matroids 185

LEMMA 3.1. Ifn, < r, then

PltkM,=n]=(0-¢g"Yi-g"*)---(1- g1y, (1)
Hence
e 8 g Ptk M =n,] < e~ A~ /DB
where
A= q—(r—n)lq _‘11
and
‘ B = q—z(,_,,)l‘—zq_z"
g-—1

Proof: Evidently
. qr_l qr_q qr“q"_l
PltkM,=n,] = (—-—)(_._) 4 =g
and (3.1) follows. Now for x < 3,

e—x—xz €l-x< e-—x—(l/l)xz

On applying ﬂns to each of the terms on the right-hand side of (3.1) and then
summing the expopents, we obtain the stated bounds on Plrk M, =n,]. O

The next two rpsults are straightforward consequences of the above lemma.
The second of them uses the elementary fact that the rank of the matroid M, is
the same as both the column rank and the row rank of the corresponding matrix.

THEOREM 3.2. Suppose that eventually n, < r. Then ¥ Ptk M, < n,} <o if and
only if £,g7""" < c0. In particular, if evenrually

n, < r—log,r —(1+8)log log, r

Jor some 8> 0, then £ P[tk M, < n,] <o, and 5o with probability 1, eventually M,
is the free matroid on n, elemems, while if eventually
|

n,. = r—log,r—log log,r,

then Y, Pltk M, < n,] diverges.
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THEOREM 3.3. Suppose that eventually n,=r. Then L, P[rkM, <r]< o if and
only if L,q7""" < co. In particular, if eventually

, 2 r+log,r +(1+8)log log, r

for some § >0, then L Plrk M, <r]<oo, and so with probability | eventually M,
has full rank; if eventually

n. < r+log,r +log log,r,

then ¥ Ptk M, < r] diverges. :

4. Connectivity and vertical connectivity

In this section we show that when n_/r is larger than 1, M, is connected.
Moreover, when n,/r is larger than 2, the connectivity of M, is considerably
strengthened. It wxll be convenient to assume not merely that eventually n,/rz
1+ a (where 1 < a g o0), but that lim, _, . n, /r =1+ a. Little generality is lost by
this assumption, }and our proofs will be simplified.

A matroid M of rank # is said to be vertically k-separated if there are two sets
partitioning the ground set of M, each of rank at least &, such that the sum of
their ranks cquaﬂs r—1+ k. For an integer m = 2, M is vertically m-connected if
M is not vertically k-separated for any k=1,2,...,m—1.

By way of illastration we mention three elcmentary properties of vertical
m-connectivity. ’I‘he third of these will be used in the proof of the next theorem.

PROPOSITION 4.1. If M is the cycle matroid of a graph G, then M is vertically
m-connected if aqd only if G is m-connected.

Proofs of this result are given independently in Theorem 1 of Cunningham [3],
Theorem 2 of Inuka1 and Weinberg [12], and Theorem 2 of [17].

PROPOSITION 14.2. A matroid is vertically 2-connected if and only if it is
connected.

This is (3.5) m the paper of Tutte [20].

PROPOSITION 4 3. A matroid of rank r is vertically r-connected if and only if it is
not the union of any two of its hyperplanes.

This is Theorem 5 of Inukai and Weinberg [12] and also is on p. 208 of [17].
THEOREM 4.4. If lim,_, n_/r =1+ a where

i In(24-1)
} 2lng —In(2g — 1)

a < o, (4.1)

then

Y. P[ M, is not vertically r-connected ] < .

Lo

Consequently, with probability 1, eventually M, is vertically r-connected.
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Proof:
P{ M, is not vertically r-connected]
< P[M_is not vertically r-connected | tk M, =r]+ P[rk M, < r].

But by Theorem 3.3, since n, > (1+ a/2)r eventually, ¥, Pirk M, <r] <o, and
s0 it suffices to show that ¥« < oo, where

m, = P[M, is not vertically r-connected | tk M, =r].
By Proposition 4.3l
m, =P [M, is the union of two hyperplanes]
< P [e\%'ery column of M, is in the
u@ion of some pair of hyperplanes of V{7, )]
< (no.gof hyperplanes of ¥(r, q})°

X P[a column is in the union of two distinct hyperplanes]”

(q’*l )2( qu—l_qr_z]"
gri - q

A
[&]
~
ro
W
!
it
o
E

-[ef22 T

Now as r—co th§= quantity in brackets approaches 0 if a= oo and approaches
(2g -1 Fe/q3e otherwise. Therefore the desired result follows if either a =00 or
if 2g — D= < g27 that is, if (4.1) holds. O

The next theorem gives sufficient conditions for vertical m-connectivity when
m<r. :

THECREM 4.5. Let {m,)} be a sequence of integers with 1 < m_< r. Suppose that
lim, , m,/r=tand lim, ,| n,/r=1+a, where 0 <t <1l and t <a< 0. Then
under any of the following conditions A, B, or C,

Y P[ M, is|not vertically m -connected ] < oo,
i r
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and consequently, with probability 1, eventually M, is vertically m -connected:

A O0<t<land a=ow.
B. 0<t<landtInf(1+t)a/1*]<(a~1t)lng—21.
C. =0

On taking m,=2 for all r>2 and using Proposition 4.2, we obtain the
following:

COROLLARY 4.6. If eventually n, > (1+ a)r for some a> 0, then ©_P[M, is not
connected] < oo. Consequently, with probability 1, eventually M, is connected.

Before proving Theorem 4.5 we remark on Condition B and establish a lemma.

Notice that for fixed values of ¢ and g, Condition B is always satisfied for
sufficiently large a. Table 1 at the end of this section gives the smallest such value
of & for various 1 and g.

Lemma 4.7 If M is a random r X n matrix over G¥{(q) and D is any set of
columns of M, then

P[ M is vertically k-separated and tk M = r, and D is independent |

<l%("+2k_1)] n___lDl (I‘+k—1)
S o r+k—1-|Dj J

r

qj+ qr+k—1—j_qk—1]n—(r+k—1_)
q

|

Proof: Suppdse M has rank r and is vertically k-separated, and that D is an
independent set of columns. Then for some j in {k,k+1,..., [${r+k—1)|},
there are sets X and Y of ranks j and r+k—-1—j partmomng the set of
columns of M, and they have bases X, and ¥, contalmng X;=XnND and
Y, =Y N D, respectively. Let X, = X, — X, and Y2 —¥,. Let E X,UY,.

Otherwise stated: there exists EC M — D of size r + k—1-|D| and a parti-
tion of DU E into X, and ¥ of sizes j and r+ & —1— j, such that X, and ¥,
are mdependent and all the other columns are either in the span of X, or in the
span of Y. |

The number of choices of such E, X, and ¥, is

n—|D| (r+k—1‘)
r+k—1-(D| J ’

and the probability for any such choice that the other columns are spanned by X,
orby Y, is ‘

{qj+qr+k—1—j_qk—1 ]n—(r+k-—1)
qr
The result folloWs. a
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Proof of Theorem 4.5: First we notice that the sufficiency of A4 or the
sufficiency of B implies that of C; for if £ =0, then we choose ¢’ > 0 small enough
that B holds (or choose ¢ arbitrarily if a=w0), and let m) = |¢r], which is
eventually greater than m,, since m, /r — 0. Then for sufficiently large r,

P[ M, is not vertically m -connected] < P[ M, is not vertically n7’-connected];

and because .4 or B holds, the latter is the rth term in a convergent series.

Now we prove the sufficiency of A4 and that of B. For any ¢ with 0 <e <1 let
D(r, ¢) (or simply D) denote the set consisting of the first [7(1—¢)| columns of
M,. Then by Lemma 4.6,

P[ M, is not vertically m -connected]
< P+ P{tk M, <r]+ P[ D is dependent}, (4.2)

where
P, = P[M, is not vertically mconnected, tk M, =r, and D is independent].

By Corollaries 3.2 and 3.3, each of the last two terms in (4.2) is the rth term in
a convergent series; thus it suffices to show that %, P. < co. The sufficiency of 4
and of B for this wilt follow from the inequality

2
r
P <=

3 eB’, (4.3)

~ [

where

)

(m/r)* r
n e+m/r 1+ qm—r (n/r)=(m/ry—1
x(-1+2) { L )

The important quantity in this expression is
1 m—r 1 r{—14+m/r)
CF=E(1+€1 )=E(1+q )

which approaches 1/4 as r increases, because m /r approaches ¢, which is less
than 1. ‘

Before proving (4.3) we show how it implies the sufficiency of 4 and of B for
the summability of ¥ P,. All that is needed is to show that under each of these
conditions, thereis a choice of ¢ > 0 for which lim B <1.

e oo
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Under Condition A, lim, B, =0,
Under Condition B,

- ItE i—a
H

z+1)‘
tTa'" g

]ij - le+c(
r tz
and there will exist € >  for which this is less than 1 if

1
ez:( t +1) a'g'~® <1;

)
equivalently, if |
2 i
agt > (e_(f_jl)_Q) ,
t
or
2
tln(f;(lfz—t-)—q) < alng — flne,

and this is Condition B. .
So we complete the proof of the theorem by proving (4.3). Now

m—1

P, < Y. P[M, is vertically k-separated, rk M, =r, and D is independent],
k=1 '

and so according to Lemma 4.6,

m-1 lE(r+k-1)]

P<s Y X (i)

kml j=k
where
B( i n—|D| r+k=1\[ g/+ g TH 1o gkm1 0T UATD
(’)"(Hk—HDJ)( J )( 7 '

We proceed in three steps, the details of which follow:
>(1) For suffic%ently large r and for any k in {1,2,...,m—1},

} b(k) = b(k+1) = - > b(l-ﬂf%——l“
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(2) Consequently

N
A
™

83y
b-
_—
Fad
S’

3

=Lm_1( n—|Dj )(r+k-1)(q"+q’“‘-q’°’1)"_{'+k_n
2 2 \rvk-1-p )\ & 7

and we shall find a bound on each term in this sum that is independent of k.
(3) Finally we pFrfom more manipulations to produce (4.3).

Details. (1): Forany j in {k,k+1,..., |[(r+k—1)/2| -1},

5(j) - j+1 An— k=D
b(j+1)  rtk—j—1 ’

where

qj+ qr+k—j—l _ qk—l
gl gt gkl

_ qj—k+1+qr~vj__1
- qj—k+2+qr—j—1__1 .

Now we show that‘

(4.4)

|
This inequality is equivalent to

ij—k+2 +2qr—‘;j+1 -2g> qj—k+4 + qr—j+l . qz + qj—k+2 + qr—j—l -1;
that is, to
qr%—j+l — g1 +(q—1)2 > gimkHe _ gimkt2

Ignoring (g —1)* and dividing by g2 — 1, both of which are positive, we see that
o to prove (4.4) it is sufficient to show that "/~ 1> g/~%*2 that is, that r + & —3
> 2 j. But this is true if

= . | r+k-1
‘ Jl—— |-k
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Thus (4.4) is proved. Also,

i1 2
r+k—j=-17"r+k

(as may be seen by cross-multiplying and noting that j3>1). Consequently

b(j) 2 gyn-r—k+l
D) > TR '

Because kg m —1,

b( ) n—r—m
b(]il) r+m()

s rn/r—m/r—1)

Rl

But n/r—m / r -1 approaches a — ¢, which is posmve and therefore for large r,
b(j)/b(j +1)\Is positive for all j in {k,k +1,....[4(r +k—2)] —1}.
@: Therefcbre

m—-1

B< Y irb(k)
k=1

s Il (r+k-1)[drg gt e
Y S \r+k~1- D k g )

To bound the binomial coefficients we use Lemma 2.3:

(r}k—l) _ (r+k—l) < (r+m—1)
'k r—1 r—1

_ (r+m—1) < (r-;fm) g ((r+m)e)m

Also, |

n—|D| _ nwr+v [(n~—r+v}e]" 1+
r+k—1-~|Dj k 1+v k=1+v

-

where v denottjas frel.
i
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Now because (a/x)* is increasing for 0 <x € a/e, and because (for suffi-
ciently large ) m+ v < n—r+ v, it follows that

( n—|D| )g((n—r-%u)e)”’”

r+k-1-|D| m+v

((n—r+re+1)e)"'+'E+1
g | — .
m-+re

In addition,

[qk+ qr—1§_ g ! ]n*—(rd»k«l) < [qk_l_qr-l_ qk—l]n—-(r-i-m»l)

qu ql'
{because the quantity in parentheses is less than 1)

< [q'r-l_i_qmﬂ(q_l)]m-(wm)
=~z qr

Therefore

| (n-r+re+1)e]"’+"“((r+m)e)"’
m+ re m

g~ +q" g1 l"“’”"
q '

(3): Now we express the above bound as much as possible as an rth power of
quantities involvi.ug m/r and n/r which we denote by M and N, respectively:

rt r+m 1
—'?M, po —1+H’

m
2

n—rtretl N-14e+(1/r) -

m+re M+e S M

for large r,

qr—1+qm—12(q_1) _ 1+qm—r—1(q_1) < 1+qm-r

q" q g

and therefore

2 1y, 1AM+ e+ A/ ¢ M[ 14 gm-r ] -M-1
e R Y M e

F<3 M M q
2 . 2
= %(N—l)eB,’ < -’Z—NeB,’,
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Table 1
Supremum of ¢ under Condition B of Theorem 4.5

Limiting value of n /r

For r-
g 101 105 11 12 15 20 25 30 connectivity
2 0005 .003 .006 .014 .041 091 .147 205 3.82
3 0008 .005 011 .024 .070 .158 .254 2.74
4 001 .006 .014 .031 .091 .205 2.35
5 .000 .007 016 .037 .107 .241 2.15
7 001 009 020 .045 .130 1.93
8 .001 016 022 .048 .139 1.87
9 001 .010 .023 .051 .146 1.81
16 002 .013 .028 .063 .180 1.63
31 002 016 .034 075 1.49
43 002 .017 037 .081 1.44
125 .003 020 .044 .096 1.33
20 004 026 .055 118 1.22
22 006 073 1.11

where

S B

i M M . m—-rIN—-—M-1
e W L ks L

MZ
|

Table 1 shows, for selected values of g and selected limiting values of n /r, the
supremum of the values of ¢ for which Condition B of Theorem 4.5 holds. {Note
that the a of Theorem 4.5 is one less than the limiting value of n/r.) Values in
the table are to three decimal places, rounded down. Roughly speaking, for a
given value of g and ratio of n to r, one can expect a large r X n matroid over

GF(q) to be vertically m-connected if m /1 18 less than the tabulated value of 1.
In addition, the rightmost column of the table shows, for each g, the infimum
of the limiting values of n /r for which the hypothesis of Theorem 4.4 is satisfied.
Values are rounded up. Roughly speaking, for a given value of g, one can expect

alarge rxXn m}atroid over GF(g) to be vertically r-connected if n /r exceeds the
tabulated Va.luej.

5. Existence of circuits

Again we let M, be (the column dependence matroid of) a random r X n, matrix
over GF(q). From Theorem 3.1 we have that if eventually n, < fr for some # <1,
then with probability 1 eventually M, has no circuits at all. Consequently we shall
assume that ev?ntuaﬂy n,=0r for some 8> 0. (The natural assumption, that
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n./r is eventually bounded above 1, is stronger than what is needed for our
results.)

Let {k,} be a sequence of nonnegative integers, and for r=1,2,..., let C,
denote the number of k -circuits in M,.

Our first theorem concerns small circuits, that is, the case in which k. /n,
approaches zero as r increases. In its proof, as elsewhere, we shall freely drop the
subscripts from n, and %,.

THEOREM 5.1. Let

P C s V.

" k! q"’

Suppose that lim, _, . k,/n,=0 and also that n*-q~" is bounded. Then
‘ P[C =0] - e~

Proof: For any r and k, let D,(k) denote the number of circuits of sizes
0,1,2,...;k in M,. Then

P[C,=0]- P[D,{(k)=0] =1~ P[D(k-1)=0].
We complete the proof by showing that
P[D(k—1)=0] 51 and P[D(k)=0] ~ e~

Now the event [ D,(k) = 0] is the intersection of Ey, E,, E, , ,,..., E,, where E, is
the event that the first £ — 1 columns are independent, and for J=kk+1,...,n,
E; is the event that column j is not 0 or a linear combination of k& —1 of the first
J —1 columns. For these cvents we have

fel g™ — r__ k-2
P[Eo}zq r qqrq.l.q qg ’

k-1 _
PIEIE] ~1-¢7 T (¥71)(q-)",
i=0

' k-1 )
PLE B, and Bl =1- ¢ T (%)(a-1),
i=0 '

etc. Hence

r_q r_. r__ k=2

X

x TI [1—q"ki1({)(q—1)‘]-

j=hk-1 i=0
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Now
g'—1g"—¢q qr”‘]kmz —F —r+1 —rtk=2
. - (1- 1— (1~
P 7 (I-—g)1-g Y- (1—¢ )
k-2
21-g7" L gl x 1L,
=0

Since n*g~" is bounded and lim, , k /n =0, eventually k < ir. Thus

g’ =1g —q ¢ —g*?
a9 q

=1 as r — oo,

Consequently we complete the proof by showing

_"ﬁl[l—q ):( )ea- 1)] macto) (5.1)
| j=k-1 i=0

and

n—1
I [1 g Z( )(q -1) ]-*1-
J=k=2
Proof of (5.1): Denote the left side of (5.1) by 4,. If x < 1, then
In(1~-x) = —x - K(x)x?  where }< K(x)<1.
We now obtain a uniform upper bound on
| =y _
"B ( )(q—l)
i=0

for all j such that k—1< j<n-1, that will enable us to apply the above
observation to get In 4,:

i=0

q"Z( )q 1)’ sq"( )Z (g-1)"  (forlarger)

—1)e]k-1%5212
< g (n-1) ]

k-1 EO(‘I ~1)"  (by Lemma2.3)

—-r (n'—l)e]k‘I k-1
<4 [ k-1 q

k-1
<alen)

Since n*g~" is bounded, the last expression approaches 0 as r — co. Therefore
eventually ;

A, = ._ )R DY ({:)(fl—l)i* B,
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where

5 % &)oL (o]

j=k—1 i=0
and 3 < K; <1 for all j. Thus eventually

ne 5 'S (Na-n]

jmk-1

¢ et

j=k-1

-l . _{ eq )k—12
fto )T

As n*g™" is bounded, it follows that B, = o(1) and so

T @ T (o

iw0 i=k—1

Ind,

f

- % @0 ) (53] e

i=0

~(R)a-D* 7 = B+ o),

wheére

o

=0

=g ”Z(fl ' (;+1) (,:-:11)}

< q_rz (g-1)° (z+1)

imQ

(k 1)4_'2(4 ~-1)"  (forlarge r)

<

1) —rgk-?

( knel ) 92 (by Lemma 2.3)

1k-r €q k-1
SR (k 1)

= 0(1).

R‘-
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Thus
Ind, = —q~(g-1)* Y7} + o)

__ g gD

T +0(1)

—a,+o(1).
Proof of (5.2); The left side is bounded below for large r by
k-2 n—1 s
1-¢7" % ( ; )(q—l) ] :
i=0
and for large r this is greater than

[1 (£ 23)e L (- l)]

]
§ exp[_n(;;;)q-rfg_(q-1)..]

s eof-ofy e

and so it remains only to show that

"(Z:;)Q"’q"‘z - 0.

But

j n—1) _, k-2 o (n 1)] —r k=2
""(k—z)q s [ k-2 74

1 k, —r €q ‘k—Z
<nnq (k—2) ’

Again, since nkg"" is bounded, the result follows. 0

Our final theorem concerns large circuits, that is, the case in which k./n,is
bounded away from 0. Our proof uses the first- and second-moment methods,
employing the inequalities of Lemma 2.4. Before proceeding to the theorem we
obtain estimates for the bounds given by that lemma for the random variable C..
Again we drop the subscripts from n, and &k, when it is convenient to do so.



g
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Lo 52
56, = ()10 - = (53)
and
2 el
where
) =LA
i
and |
| s(r,j)mﬁlj.

Proof- For any ]g—set J of columns let

X, = {1 if J is a circuit,

‘ 0 if not.
Then
C= 3 X,.
[f] =k

Now J = {ci,-..,ckP is a circuit if and only if ¢y,...,¢,_, are independent and ¢,
is a linear combinaiion of them with all coefficients nonzero. Therefore

EX, = EX;* = P[J isa circuit]

T r r - k-1
_9-1q'~q g -¢"%(g-1)

g g q’ q"

s

and (5.1) follows.
| |




200 D. G. Kelly and J. G. Oxley

Now

ECr2 = Z E(XJXK)’
(J,K)

the sum extending over all ordered pairs of k-sets. This sum equals

k-1 ()

X X E(X Xx)“‘ZEX;,

J=0(J.K)

where L{ ., indicates 2 sum extending over ordered pairs of k-sets whose
intersections ly‘ave J elements, and ¥, indicates a sum over all k-sets.

Now suppose that J and X are k-sets whose intersection is 2 j-set for some j,
0 j<k; say

J=Aenucupenal, K= {6, ).
If J and K are both circuits, then {¢,,..., ¢, Ca1s- - s G 1} and
{¢1--3¢5€j115..., €1 } are independent, and each of ck, ¢ isa ]J.near combina-
tion of an mdependent (k —1)-set with all coefficients nonzero. Therefore

}EX_,XK = P[J and K are both circuits]

9 -1¢"-q g —gq'!
- r

g q q

’ . , _ k-1 |2
x[q —q¢/ ¢ -4 % (g-1)
q q g

= T(r,k—l)zs(r,j)[g—:?lr)i]z.

Also, for 0<j < k, the number of ordered pairs of k-sets whose intersections are

()5

Conseguently

C gi( )( )(k j)T( k—1)*s(r, J)[_(‘I_ql_)k__l]z

f=0

+(Z)T(r,kf1)-(ﬁ—jqﬂ1,)—k_—l

>




On Random Representable Matroids 201

and so
. ‘o (k ) ( n— k)
i EC? ~ \Jf\Vk—j r
__’_2 < Z --J—---n—J--S(r, ')+‘,11_S("ak“1)‘—q-k__l~
(ECY /<o ( ) ( ) (g-1)
. k k
&
(5.2) follows upon observing that
o (EG)
=1 |
Z J . J 4 ’11 —1,
o) )
because this is the sum of the probabilities for a hypergeometric distribution. O
THEOREM 5.3. Suppose {k,} is a sequence of positive integers such that k, < n,,
k. <r+1, and eventually k_/n_= v for some positive y. Define
K inesko
b= Tx[1~ 2 -1
K, n, g’/
Also assume that evéntualba n, = 8r for some positive 0.
(a) If eventually'b, < o for some a with 0 < a <1, then L, P[C, > 0] converges.
(b) If eventually b, > B for some B>1, and if eventually k . /n, <8 for some
8 <1, then L P[C, == 0] converges.
Consequently, with probability 1, eventually M, has no k -circuits if b, is bounded
below 1, and M, has at least one k ~circuit if b, is bounded above 1 and k,_/n, is
bounded below 1,
Table 2 shows, for various values of ¢ and limiting values of n,/r, the
supremum of values of & for which b, exceeds 1.
: Table 2
| Supremum of k /¥ under Theorem 5.3(b)
Limiting value of n /r
q 101 15 2.0 5.0 10.0 100
2 445 260 220 155 129 086
3 603 373 318 231 195 132
4 683 437 378 279 238 163
. 9 .827 577 S11 0 394 342 242
' 25 911 687 622 500 A42 324
125 960 786 129 614 556 A28
% 210 981 852 805 706 652 526

220 994 928 500 837 99 699
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Proof: Again we write k and n for k, and n_.
Proof of (a):

P[C,>0] < EC, - (Z)T(r,k—l)(i:‘};,lk—t

< (;)(qml)k_l_

q.l'

(5.5)

Stirling’s formula implies that eventually

| - k = k n- k )

ric>0 <3 [i] [

(1-% kg1 |t
n qr/k
bk

r

2 |
|

2

Assertion (a) foHows.
Proof of (b): From Lemmas 5.2 and 2.4 we get .

P[C,=0] < D+ E,+F,

where :
i k—3lo —ki(k
PR i PR
e (k)
E = k)il L?5:—];—)—(51[S(r.j)—ll,
J=lk-3log k| +1 (Z)
and
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We show in turn that I F,, £, D,, and I E, all converge if eventually b, > 8 >1.
LF:

which is a positive constant, say . Therefore S(r, k —1)<1/¥, and

| 1 q"

| 1 g 1
r= o k-1 @°
-1
(§) a=1)
But thisis a com‘j,gant multiple of the reciprocal of the quantity (5.5), and that
quantity is summable if b, is bounded below 1. Therefore F, is summable if b, is
bounded above 1.
L,D,: First notice that

r j
S(r,j)—lé[——wq ] -1

g —q/1
;o
< [l-l-—l } —-1.
g™

But for j<k —3log_k, r— j— oo as r increases, and hence asymptoticaily for
these j, - |

S(r, j)—1< &7 =1,

Thus

; o —k\(k
bl ai :qkl %}_ ol

Because the ratios involving binomial coefficients are hypergeometric probabili-
ties (see [11]),

Dr < exp[k/qr—.k+3log¢k] -1

= exp(k~2g™"+*) -1,
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Because ¢* —1 < 2x for small positive x, eventually

2

D, < k2€r—k'

»

" But eventually k, > y#r, and hence ¥_D, converges.
L, E.: As already noted, S(r, j)—1 is bounded above by a positive constant if
b, is bounded above 1. So it suffices to show that if

i J={k-3loggk| +1 (z) |

then £,G, converges. But writing A for [310qu], we have

N e A )

(&) (%)

Using Lemma 23, we get

Now our hypotheses imply that n < k /vy and k/n < 8 <1; hence

ek \** "
"‘r“(m) 5%

because ;= O(kj)g k), this is dominated by 8%, and because & > yn 2 vor, X.G, is
summable. 0O |

Table 2 5how$, for selected values of g and selected limiting values of n/r, the
supremum of the values of k/r for which the hypotheses of part (b) of Theorem
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5.3 hold. Values are to three decimal places, rounded down. Roughly speaking,
for a given value of g and ratio of n to r, one can expect a large r X n matroid to
have circuits of all sizes less than the tabulated fraction of r.

1.
2.

3.
. P. Ernds, Graph theory and probability, Canad. J. Math. 11:34-38 (1959).

T

12.

13,

14.

15.
16.

17.

18.

19.

20.

21.
22
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