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Abstract. Oxley, Semple and Whittle described a tree decomposition
for a 3-connected matroid M that displays, up to a natural equivalence,
all non-trivial 3-separations of M . Crossing 3-separations gave rise to
fundamental structures known as flowers. In this paper, we define a
generalized flower structure called a k-flower, with no assumptions on
the connectivity of M . We completely classify k-flowers in terms of the
local connectivity between pairs of petals.

1. Introduction

For a matroid M , Cunningham and Edmonds [2] showed that if M is
2-connected, it has a corresponding tree that displays all 2-separations of
M . In the same spirit, Oxley, Semple and Whittle [7] showed that, when
M is 3-connected, there is an associated tree that displays, up to a natural
equivalence, all non-trivial 3-separations of M . The interactions of cross-
ing 3-separations in M were described by fundamental structures known as
flowers. A flower in a 3-connected matroid M is a partition (P1, P2, . . . , Pn)
of E(M) in which each petal Pi is 3-separating having at least two elements,
and the union of any two consecutive petals is 3-separating. All flowers are
either anemones or daisies [7], that is, either every union of petals is 3-
separating, or only consecutive such unions are. The classification of flowers
was further refined by considering the local connectivity between pairs of
petals.

In this paper, we make no assumptions about the connectivity of the ma-
troid M , and analyze flowers that display exact k-separations. This theory
relies only on the fact that the rank function r of a matroid on a set E is
a polymatroid [3], that is, a non-negative, integer-valued, increasing, sub-
modular function on 2E whose value on ∅ is 0. Because of the potential for
broader applicability of such a theory, we shall present it for an arbitrary
polymatroid f on a finite set E. The reader whose sole interest is in ma-
troids can, throughout this development, view f as the rank function of a
matroid on E. The connectivity function λf of f is defined for all subsets
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X of E by λf (X) = f(X) + f(E − X) − f(E); and the local connectiv-
ity uf (X, Y ) between two subsets X and Y of E is given by uf (X, Y ) =
f(X) + f(Y ) − f(X ∪ Y ). Clearly uf (X, E − X) = λf (X) = λf (E − X).
We shall usually abbreviate λf and uf as λ and u. For a positive integer n,
we write [n] for {1, 2, . . . , n}.

Let f be a polymatroid on E. If X ⊆ E, then X is k-separating if
λf (X) ≤ k− 1. When λf (X) = k− 1, we say X is exactly k-separating. For
an integer n exceeding one, we call (P1, P2, . . . , Pn) a k-flower for f with
petals P1, P2, . . . , Pn if (P1, P2, . . . , Pn) is a partition of E into non-empty
sets such that each Pi is exactly k-separating and, when n ≥ 3, each Pi∪Pi+1

is exactly k-separating, where all subscripts are interpreted modulo n. It is
also convenient to view (E) as a k-flower with a single petal. We call it a
trivial k-flower. When f is the rank function of a 3-connected matroid, a
3-flower is what we defined to be a flower. Let (P1, P2, . . . , Pn) be a k-flower
Φ and I be a proper non-empty subset of [n]. Then Φ is a k-anemone if⋃

i∈I Pi is exactly k-separating for all such I; and Φ is a k-daisy if
⋃

i∈I Pi is
exactly k-separating for precisely those such subsets I whose members form
a consecutive set in the cyclic order (1, 2, . . . , n).

The theory of flowers that was developed for matroids in [7] assumed that
the underlying matroid was 3-connected. Whittle (private communication)
suggested that this assumption could be dropped and this is what we do here.
In particular, for all k ≥ 1, we develop a theory of k-flowers in arbitrary
polymatroids and show that the classification of flowers in terms of local
connectivity extends to k-flowers. For example, we prove the following result
in Section 4.

Theorem 1.1. Every k-flower is either a k-anemone or a k-daisy.

Let (P1, P2, . . . , Pn) be a flower Φ in a matroid with n ≥ 3. When Φ is
an anemone, Φ is a paddle if u(Pi, Pj) = 2 for all distinct i, j in [n]; Φ is a
copaddle if u(Pi, Pj) = 0 for all distinct i, j in [n]; and Φ is spike-like if n ≥ 4
and u(Pi, Pj) = 1 for all distinct i, j in [n]. When Φ is a daisy, it is swirl-like
if n ≥ 4 and u(Pi, Pj) = 1 for all consecutive i and j, while u(Pi, Pj) = 0 for
all non-consecutive i and j; and Φ is Vámos-like if n = 4 and u(Pi, Pj) = 1
for all consecutive i and j, while {u(P1, P3),u(P2, P4)} = {0, 1}. Matroid
flowers with fewer than 4 petals can be viewed as anemones or daisies and we
call Φ unresolved if n = 3, and u(Pi, Pj) = 1 for all distinct i, j in {1, 2, 3}.
The same sort of ambiguity arises for general k-flowers with three petals. A
k-flower with two petals is just an exactly k-separating partition. We shall
spend the majority of this paper working with k-flowers that have at least
three petals. It was proved in [7, Theorem 4.1] that every such matroid
flower is of one of the types noted above.
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Theorem 1.2. If (P1, P2, . . . , Pn) is a flower Φ in a matroid, then Φ is
either an anemone or a daisy. Moreover, if n ≥ 3, then Φ is either a paddle
or a copaddle, or is spike-like, swirl-like, Vámos-like, or unresolved.

The main results of this paper are contained in the next two theorems,
which generalize Theorem 1.2.

Theorem 1.3. For some n ≥ 5 and k ≥ 1, let (P1, P2, . . . , Pn) be a k-flower
Φ in a polymatroid. Then there are integers c and d with

k − 1 ≥ c ≥ d ≥ max{2c− (k − 1), 0}
such that

(i) the local connectivity between distinct petals is c if the petals are
consecutive and is d otherwise;

(ii) Φ is a k-anemone if and only if c = d; and
(iii) the local connectivity between any two sets of petals having disjoint

index sets I and J can be expressed in terms of I, J , c, d, and k,
and is invariant under the permutation (1, 2, . . . , n).

Theorem 1.4. If k ≥ 1, then, for all pairs (c, d) of integers such that
k − 1 ≥ c ≥ d ≥ max{2c− (k − 1), 0} and, for all n ≥ 3, there is a k-flower
(P1, P2, . . . , Pn) in a matroid such that the local connectivity between pairs
of distinct petals is c when the petals are consecutive and is d otherwise.

We noted above that in a 3-flower (P1, P2, P3, P4), the values of u(P1, P3)
and u(P2, P4) may differ. For general k ≥ 3, there is an entire class of 4-
petal k-flowers with the property that u(P1, P3) 6= u(P2, P4). These flowers
are studied in Section 6 where the following theorem, which corresponds to
Theorem 1.4 for n = 4, is proved.

Theorem 1.5. Let (P1, P2, P3, P4) be a k-flower Φ in a polymatroid. Then
there are integers c, d1, and d2 with

(1.1) k − 1 ≥ c ≥ d1 ≥ d2 ≥ max{2c− (k − 1), 0},
such that

(i) the local connectivity between consecutive distinct petals is c; and
(ii) {u(P1, P3),u(P2, P4)} = {d1, d2}.

Moreover, for all triples (c, d1, d2) with c ≥ d1 > d2 ≥ 0 and all k in
{2c + 1 − d2, 2c + 1 − d2 + 1, . . . , 2c + 1}, there is a 4-petal k-flower in a
matroid such that (i) and (ii) hold.

In Section 3, we investigate the local connectivity between sets of petals
of k-flowers. In particular, we prove part (i) of Theorem 1.3. In Section 4,
we prove Theorem 1.1 and part (ii) of Theorem 1.3 enabling us to determine
the type of a k-flower. This is followed by a section on constructing examples
of k-anemones and k-daisies for all allowable values of k, c, and d, which will
complete the proof of Theorem 1.4. We study 4-petal k-flowers in Section 6,
where we prove Theorem 1.5. In Section 7, we compute the local connectivity
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between any two disjoint collections of petals in a k-flower and thereby prove
part (iii) of Theorem 1.3. Finally, in Section 8, we briefly consider flowers
for connectivity functions. To simplify our notation, if i and j are in [n],
we shall write [i, j] for the set of integers {i, i + 1, . . . , j}. In addition, if
(A1, A2, . . . , An) is a family of sets and I is a non-empty subset of [n], we
write AI for

⋃
i∈I Ai. Any unexplained notation throughout this paper will

follow Oxley [5]. Finally, we remark that we could weaken the requirement
that f is a polymatroid by dropping the assumption that f(∅) = 0. This
would not introduce any fundamentally different structures. Indeed, a k-
flower in a polymatroid becomes a (k + m)-flower if f(∅) is m rather than
0.

2. Preliminaries

In this section, we present some more definitions along with some lemmas
that will be needed in the proofs of the main results. Before computing
local connectivity in k-flowers, we state two lemmas which give us useful
properties of the connectivity and local connectivity functions. These re-
sults are stated for matroids in [7]. The extensions to polymatroids are
straightforward and we prove the first of these as an illustration.

Lemma 2.1. Let X1, X2, Y1 and Y2 be subsets of the ground set of a poly-
matroid f . If X1 ⊇ Y1 and X2 ⊇ Y2, then

u(X1, X2) ≥ u(Y1, Y2)

or, equivalently,

f(X1) + f(X2)− f(X1 ∪X2) ≥ f(Y1) + f(Y2)− f(Y1 ∪ Y2).

Proof. Let m = |X1 − Y1| + |X2 − Y2|. The result is immediate if m = 0.
Assume it holds when m < t and let m = t > 0. We may assume that
X1 − Y1 contains an element e. Then, by the induction assumption,

f(X1 − e) + f(X2)− f((X1 − e) ∪X2) ≥ f(Y1) + f(Y2)− f(Y1 ∪ Y2).

Hence the lemma holds provided that

f(X1)− f(X1 ∪X2) ≥ f(X1 − e)− f((X1 − e) ∪X2).

But, since f is a submodular, increasing function,

f(X1) + f((X1 − e) ∪X2)

≥ f(X1 ∪ [(X1 − e) ∪X2]) + f(X1 ∩ [(X1 − e) ∪X2])

≥ f(X1 ∪X2) + f(X1 − e).

The result follows. �

The next lemma is the most widely used result in this paper. In particu-
lar, it is frequently applied in Section 3 to get leverage on computing local
connectivity and it is crucial in proving the main theorems.
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Lemma 2.2. Let A,B, C and D be subsets of the ground set E of a poly-
matroid f . Then the following hold:

(i) u(A ∪B,C ∪D) + u(A,B) + u(C,D)

= u(A ∪ C,B ∪D) + u(A,C) + u(B,D).

(ii) u(A ∪B,C) + u(A,B) = u(A ∪ C,B) + u(A,C).
(iii) u(A ∪B,C) + u(A,B) ≥ u(A,C) + u(B,C).
(iv) If {X, Y, Z} is a partition of E, then

λ(X) + u(Y, Z) = λ(Z) + u(X, Y ).

Hence, u(X, Y ) = u(Y, Z) if and only if λ(X) = λ(Z).

The next lemma notes that λ itself is a submodular function. The proof
is a straightforward consequence of the fact that f is submodular.

Lemma 2.3. If X and Y are subsets of the ground set of a polymatroid,
then

λ(X) + λ(Y ) ≥ λ(X ∪ Y ) + λ(X ∩ Y ).

3. Local Connectivity

In this section, we prove several local-connectivity results for k-flowers. In
particular, we establish (i) of Theorem 1.3. Throughout this paper, when-
ever we deal with a k-flower (P1, P2, . . . , Pn), all calculations on subscripts
will be done modulo n. The arguments here generalize those in [7].

Lemma 3.1. Let (P1, P2, . . . , Pn) be a k-flower. Then, for all t in [n− 1],
every union of t consecutive petals is exactly k-separating.

Proof. By the definition of a k-flower, the result is true if t ∈ {1, 2}. If
t ∈ [2, n− 1], then

λ(P[1,t]) + λ(P[t,t+1]) ≥ λ(Pt) + λ(P[1,t+1]).

As λ(P[t,t+1]) = k − 1 = λ(Pt), we deduce that

λ(P[1,t]) ≥ λ(P[1,t+1]).

By repeatedly applying the last inequality, we get

k − 1 = λ(P[1,2]) ≥ λ(P[1,3]) ≥ · · · ≥ λ(P[1,n−1]) = λ(Pn) = k − 1.

Thus λ(P[1,t]) = k − 1 and the lemma follows by symmetry. �

Lemma 3.2. Let (P1, P2, . . . , Pn) be a k-flower Φ. Then u(Pi, Pi+1) =
u(Pj , Pj+1) for all i, j in [n].

Proof. This follows by making the obvious changes to the proof of [7, Lemma
4.5] and we omit the details. �

Lemma 3.3. Let (P1, P2, . . . , Pn) be a k-flower Φ with n ≥ 3. Then

u(P1, P2) = u(P1, P2 ∪ PI) = u(P1, Pn ∪ PJ)

for all proper subsets I and J of [3, n− 1].



6 JEREMY AIKIN AND JAMES OXLEY

Proof. Using Lemma 2.1, we get

u(P1, P2) ≤ u(P1, P2 ∪ PI)

≤ u(P1, P2 ∪ P3 ∪ · · · ∪ Pn−1) = u(P1, Pn) = u(P1, P2).

The second-last equality holds by Lemmas 2.2(iv) and 3.1 because

λ(P2 ∪ P3 ∪ · · · ∪ Pn−1) = k − 1 = λ(Pn).

The second equality in the lemma follows by symmetry. �

Lemma 3.4. Let (P1, P2, . . . , Pn) be a k-flower Φ with n ≥ 5. Then
u(P1, P3) = u(Pi, Pj) for all distinct non-consecutive i, j in [n].

Proof. We first show that u(P1, Pm) = u(P1, Pm+1) for all m in [3, n − 2].
By Lemma 2.2(ii),

u(P1 ∪ Pm, Pm+1) + u(P1, Pm) = u(P1 ∪ Pm+1, Pm) + u(P1, Pm+1).

By Lemma 3.3 and symmetry,

u(P1 ∪ Pm, Pm+1) = u(Pm, Pm+1) = u(Pm+1, Pm) = u(P1 ∪ Pm+1, Pm).

Hence u(P1, Pm) = u(P1, Pm+1) as asserted. Using this and symmetry,
we have u(P1, P3) = u(P1, P4) = u(P2, P4). The lemma follows without
difficulty. �

Let (P1, P2, . . . , Pn) be a k-flower Φ with n ≥ 2. Define c(Φ) = u(P1, P2).
Then, by Lemma 3.2, c(Φ) is the local connectivity between any two consec-
utive petals of Φ. When n ≥ 5, let d(Φ) = u(P1, P3). By Lemma 3.4, d(Φ)
is the local connectivity between any two non-consecutive petals of Φ. As
noted already, if (P1, P2, P3, P4) is a k-flower, then u(P1, P3) and u(P2, P4)
may differ and this will require us to introduce a new local connectivity
parameter in Section 6. But for k-flowers with at least five petals, the two
parameters c(Φ) and d(Φ) will suffice. When the underlying flower is clear,
we shall frequently abbreviate c(Φ) and d(Φ) to c and d. For notational
convenience, we shall call a k-flower with local connectivity parameters c
and d a (k, c, d)-flower.

Lemma 3.5. Let (P1, P2, . . . , Pn) be a k-flower Φ with n ≥ 3. For some m
in [3, n], let Φ′ = (P1, P2, . . . , Pm−1, P[m,n]). Then

(i) Φ′ is a k-flower;
(ii) c(Φ) = c(Φ′); and
(iii) if m ≥ 5, then d(Φ) = d(Φ′).

Proof. Part (i) follows easily from Lemma 3.1 since each union of a consec-
utive pair of petals of Φ′ is the union of a consecutive set of petals of Φ. To
prove part (ii), note that

c(Φ′) = u(P1, P2) = c(Φ).

The hypothesis that m ≥ 5 in part (iii) guarantees that both Φ and Φ′

will have at least 5 petals. Hence we can use Lemma 3.4 to get d(Φ) =
u(P1, P3) = d(Φ′). �
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We shall say that a k-flower Φ′ that is obtained from Φ by combining some
set of consecutive petals of the latter into a single petal has been obtained
from Φ by concatenation. Next, we determine the local connectivity of P[1,t]

relative to any union of petals disjoint from P[1,t].

Lemma 3.6. Let (P1, P2, . . . , Pn) be a k-flower Φ with n ≥ 5. If t ∈ [n−3],
then, for all subsets I of [t + 2, n− 1], the following hold:

(i) u(P[1,t], PI) = d, provided I is non-empty;
(ii) u(P[1,t], Pt+1 ∪ PI) = c;
(iii) u(P[1,t], Pt+1 ∪ Pn ∪ PI) = 2c− d, provided I 6= [t + 2, n− 1]; and
(iv) u(P[1,t], P[t+1,n]) = k − 1.

Proof. Lemma 3.1 immediately gives (iv). For (ii), let Φ′ = (P[1,t], Pt+1, Pt+2,
. . . , Pn). By Lemma 3.5(ii), c(Φ) = c(Φ′) and (ii) follows by Lemma 3.3.

To prove (i), note that, as n ≥ 5, either |[1, t]| ≥ 2 or |[t + 2, n− 1]| ≥ 2.
We shall complete the proof in the former case, noting that a symmetric
argument gives the latter case. Let Φ′ = (P[1,t−1], Pt, Pt+1, P[t+2,n−1], Pn).
Then, by Lemma 3.5, c(Φ′) = c(Φ) = c and d(Φ′) = d(Φ) = d. By Lemma
2.2(iii),

u (P[1,t−1] ∪ Pt, P[t+2,n−1]) + u(P[1,t−1], Pt)

= u(P[1,t−1] ∪ P[t+2,n−1], Pt) + u(P[1,t−1], P[t+2,n−1]).

By Lemma 3.3, u(P[1,t−1], Pt) = c = u(P[1,t−1] ∪ P[t+2,n−1], Pt). Hence
u(P[1,t−1] ∪ Pt, P[t+2,n−1]) = u(P[1,t−1], P[t+2,n−1]) = d, that is,

u(P[1,t], P[t+2,n−1]) = d.

Therefore, if i ∈ I, then

d = u(P1, Pi) ≤ u(P[1,t], PI) ≤ u(P[1,t], P[t+2,n−1]) = d,

so (i) holds.
To prove (iii), let j ∈ [t + 2, n− 1]− I. Then

u(P[1,t], Pt+1 ∪ Pn) ≤ u(P[1,t], Pt+1 ∪ Pn ∪ PI) ≤ u(P[1,t], P[t+1,n] − Pj).

By parts (i) and (ii) above and Lemma 2.2(iii),

u(P[1,t], P[t+1,n] − Pj) = u(P[1,t], P[t+1,j−1] ∪ P[j+1,n])

= u(P[1,t] ∪ P[t+1,j−1], P[j+1,n]) + u(P[1,t], P[t+1,j−1])

− u (P[t+1,j−1], P[j+1,n])
= c + c− d = 2c− d.

Similarly, u(P[1,t], Pt+1 ∪ Pn) = 2c− d, so u(P[1,t], Pt+1 ∪ Pn ∪ PI) = 2c− d,
as required. �
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4. k-anemones and k-daisies

In this section, we prove Theorem 1.1, which identifies the two main types
of k-flowers. The proof extends the argument used to establish Lemma 4.4
of [7].

Proof of Theorem 1.1. The result is trivial if n ≤ 3. By Lemma 3.1, all
unions of consecutive non-empty proper sets of petals are exactly k-separat-
ing. Assume that Φ is not a k-daisy. The main part of the proof of this
theorem is contained in the proofs of the next two lemmas.

Lemma 4.1. The k-flower Φ has a pair of non-consecutive petals whose
union is exactly k-separating.

Proof. Since Φ is not a k-daisy, there is certainly a non-consecutive set of
petals whose union B is exactly k-separating. Assume that such a set B is
chosen to contain the minimum number p of petals. Then we may suppose
that p ≥ 3. Let G = E − B. We call the petals contained in B black
and those contained in G grey. This coloring breaks (P1, P2, . . . , Pn) into a
collection of monochromatic arcs, that is, maximal collections of consecutive
petals all of which are the same color. Suppose that Pi and Pj are black
but each of Pi+1, Pi+2, . . . , Pj−1 is grey. Let G0 = Pi+1 ∪ Pi+2 ∪ · · · ∪ Pj−1.
Traversing the petals of Φ from Pj to Pi cyclically in the direction avoiding
G0, we see alternating black and grey arcs beginning with a black one. Let
the union of the petals in these arcs, in order, be B1, G1, B2, G2, . . . , Bm+1

where Pi ⊆ Bm+1. Since B is not the union of a consecutive set of petals,
m ≥ 1. Moreover, E = G0 ∪ B1 ∪ G1 ∪ · · · ∪ Bm ∪ Gm ∪ Bm+1. Let
C = B1 ∪ G1 ∪ · · · ∪ Bm ∪ Gm. Clearly C is the union of a consecutive set
of petals of Φ. An illustration of this situation is shown in Figure 1.

Figure 1. Monochromatic arcs in Φ.

By assumption, λ(B) = k − 1 and, by construction, λ(C) = k − 1 =
λ(B ∪ C). Therefore, by submodularity, λ(B ∩ C) ≤ k − 1. We show next
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that λ(B ∩ C) = k − 1. By submodularity, we see that

λ(B ∩ C) + λ(B1 ∪G1 ∪ · · · ∪Bm−1 ∪Gm−1)

≥ λ(C −Gm) + λ(B1 ∪ · · · ∪Bm−1)

and

λ(B1 ∪ · · · ∪Bm−1) + λ(B1 ∪G1 ∪ · · · ∪Bm−2 ∪Gm−2) ≥
λ(B1 ∪G1 ∪ · · · ∪Gm−2 ∪Bm−1) + λ(B1 ∪ · · · ∪Bm−2).

But

λ(B1 ∪G1 ∪ · · · ∪Bm−1 ∪Gm−1) = λ(C −Gm)

= λ(B1 ∪G1 ∪ · · · ∪Bm−2 ∪Gm−2)

= λ(B1 ∪G1 ∪ · · · ∪Gm−2 ∪Bm−1)
= k − 1.

By continuing this process, we get the following chain of inequalities:

λ(B ∩ C) ≥ λ(B1 ∪ · · · ∪Bm−1) ≥ λ(B1 ∪ · · · ∪Bm−2)

≥ λ(B1 ∪ · · · ∪Bm−3)

≥ · · · ≥ λ(B1 ∪B2) ≥ λ(B1) = k − 1.

We conclude that λ(B ∩ C) = k − 1.
If m > 1, then B ∩C contradicts the choice of B. Hence m = 1. Now let

C ′ = Pi ∪G0 ∪ Pj . This situation is illustrated in Figure 2.

Figure 2. Φ has two black arcs and two grey ones.

Since λ(B) = λ(C ′) = λ(B∪C ′) = k−1, it follows by submodularity that
λ(B ∩C ′) = λ(Pi ∪ Pj) ≤ k − 1. To see that λ(Pi ∪ Pj) = k − 1, we observe
that λ(C ′−Pi) = λ(Pj) = k−1 and λ(Pi∪Pj)+λ(C ′−Pi) ≥ λ(C ′)+λ(Pj).
We conclude that Lemma 4.1 holds. �

Lemma 4.2. Every union of a pair of petals of Φ is exactly k-separating.
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Proof. From Lemma 4.1, we know that λ(Pi ∪ Pj) = k − 1 for some non-
consecutive i and j. We first show that λ(Pi ∪ Pj−1) = k − 1 by getting
inequalities in both directions. By submodularity,

λ(Pi ∪ Pj) + λ(Pj−1 ∪ Pj) ≥ λ(Pj) + λ(Pi ∪ Pj ∪ Pj−1)

and

λ(Pi ∪ Pj−1 ∪ Pj) + λ(Pi+1 ∪ Pi+2 ∪ · · · ∪ Pj)

≥ λ(Pj−1 ∪ Pj) + λ(Pi ∪ Pi+1 ∪ · · · ∪ Pj).

Thus λ(Pi ∪ Pj−1 ∪ Pj) = k − 1. Now,

λ(Pi ∪ Pj−1) + λ(Pi ∪ Pj) ≥ λ(Pi ∪ Pj−1 ∪ Pj) + λ(Pi).

Therefore, λ(Pi ∪ Pj−1) ≥ k − 1. Moreover, the inequality

λ(Pi ∪ Pi+1 ∪ · · · ∪ Pj−1) + λ(Pi ∪ Pj−1 ∪ Pj)

≥ λ(Pi ∪ Pi+1 ∪ · · · ∪ Pj) + λ(Pi ∪ Pj−1)

implies that λ(Pi ∪ Pj−1) ≤ k − 1. Hence λ(Pi ∪ Pj−1) = k − 1. By a
symmetric argument, one can prove that λ(Pi ∪ Pj+1) = k − 1. Thus every
union of two petals containing Pi is exactly k-separating. By symmetry,
every union of two petals containing Pj is exactly k-separating. It is now
straightforward to show, as in the proof of Lemma 4.4 of [7], that every
union of two petals is exactly k-separating. �

To complete the proof, we note that every cyclic ordering of the petals of
Φ is a k-flower. Therefore, by Lemma 3.1, every union of a proper non-empty
set of petals is exactly k-separating. Hence Φ is a k-anemone. �

The following lemma proves statement (ii) of Theorem 1.3.

Lemma 4.3. Let (P1, P2, . . . , Pn) be a k-flower Φ with n ≥ 4. Then Φ is a
k-anemone if and only if u(Pi, Pj) = c for all distinct i, j in [n].

Proof. Suppose u(Pi, Pj) = c for all distinct i, j in [n]. By Lemma 2.2(ii)
and Lemma 3.6(i), u(P1∪P3, P2) = c and u(P4∪· · ·∪Pn, P2) = c. Moreover,
by Lemma 2.2(iv),

λ(P4 ∪ · · · ∪ Pn) + u(P2, P1 ∪ P3) = λ(P1 ∪ P3) + u(P4 ∪ · · · ∪ Pn, P2),

so λ(P1 ∪ P3) = k − 1. Thus, by Theorem 1.1, Φ is a k-anemone.
Conversely, let Φ be a k-anemone. If i and j are distinct elements of [n]

and j ∈ {i−1, i+1}, then u(Pi, Pj) = c. If j /∈ {i−1, i+1}, then, as Φ is a k-
anemone, we may re-order the petals of Φ and retain a k-flower. By making
Pi−1, Pi, and Pj consecutive, we see that u(Pi, Pj) = u(Pi−1, Pi) = c. �

If Φ is not a k-anemone, then Theorem 1.1 tells us that Φ is a k-daisy.
Therefore, the k-daisies are precisely those k-flowers that have non-consecu-
tive petals Pi and Pj with u(Pi, Pj) = d 6= c. The next lemma gives us a
lower bound for d. In the next section, we will give a method for constructing
k-daisies for all allowed values of d. We note that, from the inequality in
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the next lemma, one can determine precisely how many k-anemones and
k-daisies there are for a fixed value of k.

Lemma 4.4. Let (P1, P2, . . . , Pn) be a k-flower Φ with n ≥ 5. Then

(4.1) k − 1 ≥ c ≥ d ≥ max{2c− (k − 1), 0}.

Proof. Since c = u(P1 ∪ P2, P3) ≥ u(P1, P3) = d, we see that c ≥ d. Since f
is submodular and non-negative, d ≥ 0. Also, by Lemma 2.2(iii),

u(P1, P3) ≥ u(P1, P2) + u(P3, P2)− u(P1 ∪ P3, P2).

As u(P1 ∪ P3, P2) ≤ u(E − P2, P2) = k − 1, it follows that

d = u(P1, P3) ≥ 2c− (k − 1). �

5. Constructions of k-anemones and k-daisies

In this section, we prove Theorem 1.4. In particular, we provide a method
for constructing examples of k-anemones and k-daisies for all values of c and
d satisfying the inequalities in the theorem. All of the examples we construct
will be matroids. The method for constructing these examples is similar to
the methods used to construct paddles, copaddles, spike-like, and swirl-like
flowers in [7], but it also relies heavily on the matroid operation of truncation.
The truncation T (M) of a matroid M is the matroid that is obtained by
freely extending M by an element p, and then contracting p. In particular,
for X ⊆ E(M), we have

(5.1) rT (M)(X) =

{
r(X), if r(X) < r(M);
r(X)− 1, if r(X) = r(M).

We omit the routine proof of the next lemma.

Lemma 5.1. For some n ≥ 3, let (P1, P2, . . . , Pn) be a (k, c, d)-flower Φ in a
matroid M . If r(E(M)−Pi) < r(M) for all i, then Φ is a (k+1, c, d)-flower
in T (M).

The core of the proof of Theorem 1.4 is contained in the following result.

Lemma 5.2. Let c, d, n, and m be non-negative integers such that c ≥ d
and n ≥ 4. Then, for k = 2c − d + 1, there is a k-flower (P1, P2, . . . , Pn)
in a matroid M with u(P1, P2) = c and u(P1, P3) = d such that r(M) −
r(E(M)− Pi) = m for all i.

Proof. Begin with a basis B for an (n(c− d) + nm + d)-dimensional vector
space V over R. Partition B into n subsets, A1, A2, . . . , An, each of size
c− d; n subsets, E1, E2, . . . , En, each of size m; and one subset D of size d.
For all i in [n], let Fi = Ai ∪ Ai+1 ∪ Ei ∪D. Then |Fi| = 2(c− d) + m + d.
Let N be the vector matroid on V |B. Then each Fi is a flat of N . For
each i, freely add a set Gi of |Fi| elements to Fi. Then Gi spans Fi. Now
delete A1 ∪ A2 ∪ · · · ∪ An ∪ D to get a matroid M whose ground set E
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is P1 ∪ P2 ∪ · · · ∪ Pn, where Pi = Gi ∪ Ei for all i. Then r(M) = |B| =
n(c−d)+nm+d, while |Pi| = 2(c−d)+2m+d and r(Pi) = 2(c−d)+m+d.

We now show that (P1, P2, . . . , Pn) is the required k-flower. If I is the
union of t consecutive elements in the cyclic order (1, 2, . . . , n), then

r(PI) = (t + 1)(c− d) + tm + d if t ≤ n− 1.

Thus, for all such I and all i in [n], we have λ(PI) = 2c − d = λ(Pi). Also
u(Pi, Pi+1) = c and u(Pi, Pi+t) = d for all t such that 2 ≤ t ≤ n − 2. We
conclude that (P1, P2, . . . , Pn) is a (k, c, d)-flower with k = 2c−d+1. Finally,
we note that r(M)− r(E(M)− Pi) = m for all i. �

Figure 3. Constructing a (k, c, d)-flower.

An illustration, which might aid in visualizing the construction in Lemma
5.2, is given in Figure 3. Note that, when c > d, each Ai is non-empty and
the construction produces a k-daisy; when c = d, each Ai is empty and we
get a k-anemone.

Proof of Theorem 1.4. In the last lemma, we constructed (P1, P2, . . . , Pn), a
(2c−d+1, c, d)-flower Φ in a matroid M such that r(M)−r(E(M)−Pi) = m
for all i. We note that 2c − d + 1 is the smallest value of k allowed by
inequality (4.1). To obtain a (k, c, d)-flower for a larger value of k, take
m = k − (2c − d + 1). Then, by Lemma 5.1, if we truncate M m times,
we obtain a matroid in which Φ is a (2c− d + 1 + m, c, d)-flower, that is, a
(k, c, d)-flower. �
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6. k-flowers with four petals

Let Φ be a k-flower (P1, P2, . . . , Pn). If n ≥ 5, then Lemma 3.4 establishes
that the local connectivity between any two non-consecutive petals is a well-
defined invariant of Φ. In this section, we consider what happens when
n = 4. In this case, we define u(P1, P3) = d1(Φ) and u(P2, P4) = d2(Φ)
where we may assume that d1(Φ) ≥ d2(Φ). As before, c(Φ) = u(P1, P2)
and, when the underlying flower is clear, we abbreviate these parameters to
d1, d2 and c. If Φ is a k-daisy, then d1 = d2 = d. But, for example, if Φ is a
Vámos-like flower in a matroid [7], then (c, d1, d2) = (1, 1, 0). Such a flower
is an example of a (3, 1, 1, 0)-flower, where we call a k-flower with parameters
c, d1, and d2 a (k, c, d1, d2)-flower. In this section, we prove Theorem 1.5,
showing, in particular, that, for all k ≥ 3, there is a matroid having a 4-
petal (k, c, d1, d2)-flower with d1 > d2. The last inequality will be assumed
throughout this section. The following theorem [6] will be used to verify
that our constructions do, in fact, yield matroids.

Theorem 6.1. Let C be a collection of subsets of a set E and m be a non-
negative integer. Then C is the set of non-spanning circuits of a rank-m
matroid on E if and only if C has the following properties:

(i) No member of C properly contains another.
(ii) If e ∈ C1 ∩ C2 where C1 and C2 are distinct members of C and

|(C1 ∪ C2)− e| ≤ m, then (C1 ∪ C2)− e contains a member of C.
(iii) All members of C have at most m elements.
(iv) E has an m-element subset that contains no member of C.

The proof of Theorem 1.5 will also use the Higgs lift, the dual operation of
truncation. Formally, for a matroid M , its Higgs lift L(M) is (T (M∗))∗. To
construct L(M) directly, we first freely coextend M by a non-loop element
p, and then delete p. The rank function of L(M) is

(6.1) rL(M)(X) =

{
r(X), if r(X) = |X| ;
r(X) + 1, if r(X) < |X| .

The next lemma shows how the Higgs lift can be used to transform a
(k, c, d1, d2)-flower into a (k + 1, c + 1, d1 + 1, d2 + 1)-flower. We omit the
routine proof.

Lemma 6.2. For some n ≥ 3, let (P1, P2, . . . , Pn) be a k-flower Φ in a
matroid M with n ≥ 4. If every petal of Φ is dependent, then Φ is a (k +1)-
flower in L(M). Moreover, uL(M)(Pi, Pj) = uM (Pi, Pj) + 1 for all distinct
i and j in [n].

Proof of Theorem 1.5. Inequality (1.1) follows by the same argument used
to prove Lemma 4.4.

Now assume that c, d1, and d2 are integers such that c ≥ d1 > d2 ≥ 0.
First we construct a 4-petal (k, c, d1, d2)-flower with k = 2c + 1. Observe
that c ≥ 1, so k ≥ 3. Begin with a 4(k − 1)-element set E partitioned into
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four (k− 1)-element sets P1, P2, P3, and P4. Let F = {P1 ∪P2, P2 ∪P3, P3 ∪
P4, P4 ∪ P1}. Now let C be the collection of all (3c + 1)-element subsets of
members of F along with all (4c − d1 + 1)-element subsets of P1 ∪ P3 and,
when d2 > 0, all (4c−d2+1)-element subsets of P2∪P4. We use Theorem 6.1
with m = 4c to show that C is the set of non-spanning circuits of a rank-(4c)
matroid M on P1 ∪ P2 ∪ P3 ∪ P4.

Clearly no member of C properly contains another. Next, we let C1 and
C2 be distinct members of C, with e ∈ C1∩C2. If C1 and C2 are contained in
the same member of F ∪{P1∪P3, P2∪P4}, then it is easily checked that (ii)
holds. Therefore, by symmetry, we may assume that C1 ⊆ P1 ∪ P2 and C2

is contained in one of P1∪P4, P1∪P3, and P2∪P4. Thus |C1∩C2| ≤ |P1| =
|P2| = 2c and |C2| ∈ {3c + 1, 4c− d1 + 1, 4c− d2 + 1}. Hence |C2| ≥ 3c + 1
since c ≥ d1 > d2. Therefore,

|(C1 ∪ C2)− e| = |C1|+ |C2| − |C1 ∩ C2| − 1
≥ (3c + 1) + (3c + 1)− 2c− 1
= 4c + 1 > 4c.

We deduce that, in this case, the hypothesis in (ii) of Theorem 6.1 never
holds, so (ii) holds vacuously. Statement (iii) of Theorem 6.1 clearly holds
since all members of C have at most 4c members. Finally, M has a (4c)-
element set that contains no member of C; for example, we can obtain such
a set by taking, for arbitrary i, the union of a c-element subset of Pi+1, a
(2c)-element subset of Pi+2, and a c-element subset of Pi+3.

We conclude, by Theorem 6.1, that M is indeed a rank-(4c) matroid on
P1∪P2∪P3∪P4 having C as its set of non-spanning circuits. Thus, for all i,
we have r(Pi) = |Pi| = k−1 = 2c and r(Pi∪Pi+1) = 3c. Hence λ(Pi∪Pi+1) =
2c. Moreover, one easily checks that (u(P1, P2),u(P1, P3),u(P2, P4)) =
(c, d1, d2). Finally, we note, from the last sentence of the previous para-
graph, that r(Pi+1∪Pi+2∪Pi+3) = 4c = r(M) for all i. Hence λ(Pi) = k−1
and (P1, P2, P3, P4) is indeed a (2c + 1, c, d1, d2)-flower.

We now construct a 4-petal (k, c, d1, d2)-flower with k = 2c+1−j and j in
[d2]. First, as above, construct a (k′, c−j, d1−j, d2−j)-flower (P1, P2, P3, P4)
in a matroid M with k′ = 2(c − j) + 1. Then each petal Pi is indepen-
dent. Form M ′ from M by, for all i in {1, 2, 3, 4}, freely adding a j-element
set Xi of elements to Pi. Let P ′

i = Pi ∪ Xi. Then (P ′
1, P

′
2, P

′
3, P

′
4) is a

(2c + 1− 2j, c− j, d1 − j, d2 − j)-flower Φ′ in M ′. Moreover, by Lemma 6.2,
Φ′ is a (2c+1− j, c, d1, d2)-flower in the matroid Lj(M ′) that is obtained by
performing a sequence of j Higgs lifts starting with M ′. Since k = 2c+1−j,
we conclude that Φ′ is a (k, c, d1, d2)-flower in Lj(M ′). �

An attractive property of a 4-petal k-flower in which the local connec-
tivity between non-consecutive pairs of petals differs is that the matroid in
which it is found must be non-representable. This theorem generalizes [7,
Corollary 6.2], which shows that a matroid with a Vámos-like 3-flower is
non-representable.
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Theorem 6.3. Let M be a matroid having a k-flower (P1, P2, P3, P4) such
that u(P1, P3) 6= u(P2, P4). Then M is non-representable.

Proof. Ingleton [4] (see also [5, Exercise 6.1.8(v)]) proved a rank inequality
that must hold for four subsets X1, X2, X3, and X4 of a representable ma-
troid. This inequality can be rewritten in terms of local connectivity using
Lemma 2.2(ii) as

u (X1, X2) + u(X2, X3) + u(X1, X4)

≤ u(X1 ∪X3, X2) + u(X2 ∪X4, X1) + u(X3, X4).

We may assume that u(P1, P3) > u(P2, P4). By taking (P1, P2, P3, P4) =
(X1, X3, X2, X4), we get a contradiction to Ingleton’s inequality. �

7. A general formula for local connectivity

Let (P1, P2, . . . , Pn) be a k-flower Φ in a polymatroid f on a set E. One
can view the complete structural information associated with Φ as consisting
of a listing of the values of u(B,G) for all non-empty disjoint sets B and G
each of which is a union of petals of Φ. In this section, we prove that this
set of values is uniquely determined by the set of values u(Pi, Pj), where
i and j are distinct elements of [n]. In particular, when n ≥ 5, the set of
values u(B,G) is uniquely determined by c and d, while, when n = 4, it is
determined by c, d1, and d2. Part (iii) of Theorem 1.3 will follow from these
results.

As in the proof of Theorem 1.1, we color the petals in B and G black and
grey. Those petals in E− (B∪G) are colored white, respectively. As before,
we shall be interested in the monochromatic arcs into which this coloring
breaks the k-flower (P1, P2, . . . , Pn).

Theorem 7.1. For some n ≥ 5, let (P1, P2, . . . , Pn) be a k-flower Φ in a
polymatroid f on a set E. For all non-empty disjoint unions of petals B
and G of Φ,

u(B,G) =

{
(k − 1) + (c− d)(b + g − 2) if w = 0;
d + (c− d)(b + g − w) if w > 0;

where b, g, and w are the numbers of black, grey, and white arcs.

Proof. Suppose first that w = 0. Then b = g. In this case, we shall prove
the result by induction on b. If b = 1, then (B,G) is an exact k-separation
of f , so u(B,G) = k − 1 and the theorem holds. Now assume the result
holds for b < m and let b = m ≥ 2. Let B′ be the union of the petals in
some black arc of Φ. Then, by Lemma 2.2(ii), we have

u(B,G) + u(B′, B −B′) = u(B′ ∪G, B −B′) + u(B′, G).

Now, by Lemma 3.6, u(B−B′, B′) = d and u(B′, G) = 2c− d. To calculate
u(B′ ∪G, B−B′), we can apply the induction assumption to the recoloring
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of Φ in which the petals of B′ are grey. This recoloring has b− 1 black arcs
and g − 1 grey arcs. Hence

u(B′ ∪G, B −B′) = (k − 1) + (c− d)((b− 1) + (g − 1)− 2),

so

u(B,G) = (k − 1) + (c− d)(b + g − 4) + (2c− d)− d

= (k − 1) + (c− d)(b + g − 2),

as required. We deduce that the theorem holds for w = 0.
We complete the proof by arguing by induction on w. Assume the theorem

holds for w < m and let w = m ≥ 1. Take a white arc, the union of whose
petals is W ′ and consider the colors of the two arcs adjacent to it. Clearly
there are two cases:

(a) these arcs differ in color;
(b) these arcs are the same color.

In case (a), we recolor the petals in W ′ black. In the new coloring, we
have b black arcs, g grey arcs, and w − 1 white arcs. By Lemma 2.2(ii),
u(B,G) = u(B ∪W ′, G) + u(B,W ′) − u(B ∪ G, W ′). Now, by Lemma 3.6
and the induction assumption, u(B,W ′) = c and

u (B ∪W ′, G)− u(B ∪G, W ′)

=

{
(k − 1) + (c− d)(b + g − 2)− (k − 1) if w = 1;
d + (c− d)(b + g − (w − 1))− (2c− d) if w > 1.

Thus u(B ∪W ′, G)−u(B ∪G, W ′) = d + (c− d)(b + g − w)− c so, in case
(a), u(B,G) = d + (c− d)(b + g − w), as required.

Now consider case (b). Without loss of generality, we may assume that
the two arcs adjacent to our distinguished white arc are both black. In this
case, we recolor the petals in W ′ black. In the new coloring, we have b− 1
black arcs, g grey arcs, and w − 1 white arcs. By Lemma 2.2(ii) again,
u(B,G) = u(B ∪ W ′, G) + u(B,W ′) − u(B ∪ G, W ′). By Lemma 3.6 and
the induction assumption, u(B,W ′) = 2c− d and

u (B ∪W ′, G)− u(B ∪G, W ′)

=

{
(k − 1) + (c− d)((b− 1) + g − 2)− (k − 1) if w = 1;
d + (c− d)((b− 1) + g − (w − 1))− (2c− d) if w > 1.

Thus u(B ∪W ′, G)− u(B ∪G, W ′) = d + (c− d)(b + g − w)− (2c− d) so,
in case (b), u(B,G) = d + (c− d)(b + g − w), and the theorem follows. �

The next result establishes part (iii) of Theorem 1.3. For n ≥ 5, this
corollary is an immediate consequence of the last theorem. For n ∈ {2, 3, 4},
the corollary is easily verified using Lemma 2.2 and we omit the details.

Corollary 7.2. Let (P1, P2, . . . , Pn) be a k-flower Φ in a polymatroid f on
a set E. Let I and J be disjoint non-empty subsets of [n]. Then u(PI , PJ)
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can be expressed in terms of I, J, k,u(P1, P2), and u(P1, P3) unless n = 4.
In the exceptional case, u(P2, P4) may also be required to specify u(PI , PJ).

8. Flowers for connectivity functions

Let f be a polymatroid on a set E. The connectivity function λ of f
is an integer-valued, submodular function such that λ(∅) = 0 and λ(X) =
λ(E − X) for all X ⊆ E. Now let λ be an arbitrary function satisfying
these conditions. A k-flower for λ is a partition (P1, P2, . . . , Pn) of E into
petals P1, P2, . . . , Pn such that, for all i in [n], both λ(Pi) and λ(Pi ∪ Pi+1)
equal k − 1. As the reader can easily check, the proofs of Lemma 3.1 and
Theorem 1.1 immediately give that, in a k-flower for λ, we have λ(PI) = k−1
for all proper non-empty consecutive subsets I of (1, 2, . . . , n). Moreover,
either this equation holds only for such consecutive subsets I, or it holds for
all proper non-empty subsets I of (1, 2, . . . , n).
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