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Abstract. The class of cographs or complement-reducible graphs is
the class of graphs that can be generated from K1 using the operations
of disjoint union and complementation. By analogy, this paper intro-
duces the class of binary comatroids as the class of matroids that can be
generated from the empty matroid using the operations of direct sum
and taking complements inside of binary projective space. We show that
a proper flat of a binary comatroid is a binary comatroid. Our main
result identifies those binary non-comatroids for which every proper flat
is a binary comatroid. The paper also proves the corresponding results
for ternary matroids.

1. Introduction

The notation and terminology used in this paper follow [9] and [17] except
where otherwise indicated. All graphs and matroids considered here are
simple. A cograph is defined recursively as follows:

(i) K1 is a cograph;
(ii) if G1 and G2 are cographs, then so is their disjoint union; and
(iii) if G is a cograph, then so is its complement.

The class of cographs has been extensively studied over the last fifty years
(see, for example, [1, 2, 3, 5, 6, 7, 8, 11, 20, 21, 23]). In particular, there are
numerous equivalent characterizations of cographs including that a cograph
is a graph in which every connected induced subgraph has a disconnected
complement.

Our goal in this paper is to give a matroid analogue of cographs by, loosely
speaking, considering the smallest class of matroids that is closed under
direct sums and complementation. One immediate obstacle to achieving
this goal is that matroids in general do not have complements. However,
if M is a simple uniquely GF (q)-representable matroid and k ≥ r(M),
the (GF (q), k)-complement of M is the matroid PG(k − 1, q)\T where
M ∼= PG(k − 1, q)|T . Brylawski and Lucas [4] (see also [16, Proposi-
tion 10.1.7]) showed that this (GF (q), k)-complement of M is well-defined.
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By convention, we write M c for the (GF (q), r(M))-complement of M . Al-
though a GF (q)-representable matroid need not be uniquely representable
when q ≥ 4, it is uniquely representable for q in {2, 3}. Thus we only intro-
duce analogues of cographs for binary and ternary matroids. In particular,
for q in {2, 3}, we define a GF (q)-comatroid recursively as follows:

(i) U0,0 is a GF (q)-comatroid;
(ii) if M1 and M2 are GF (q)-comatroids, then so is their direct sum; and
(iii) if M is a GF (q)-comatroid, then so is its (GF (q), t)-complement for

all t ≥ r(M).

As PG(r − 1, q) is the (GF (q), r)-complement of U0,0, every projective
geometry PG(r − 1, q) for r ≥ −1 is a GF (q)-comatroid. In particular,
as U1,1 is PG(0, q), we see that Un,n is a GF (q)-comatroid for all n ≥
0. We sometimes call GF (2)- and GF (3)-comatroids, binary and ternary
comatroids, respectively.

The following characterization of GF (q)-comatroids is particularly useful.

Theorem 1.1. For q in {2, 3}, a simple GF (q)-representable matroid M is
a GF (q)-comatroid if and only if M is U0,0 or, for all flats F of PG(r(M)−
1, q) with r(F ∩E(M)) = r(F −E(M)), the restriction of PG(r(M)− 1, q)
to either F ∩ E(M) or F − E(M) is disconnected.

Corneil, Lerchs, and Stewart [6] proved that a graph G is a cograph if and
only if G does not have the 4-vertex path as an induced subgraph. The next
two theorems, which are our main results, prove matroid analogues of this
theorem for binary and ternary comatroids by using the fact that a set X of
edges in a graph H is the edge set of an induced subgraph of H if and only
if X is a flat of M(H). The matroid P (U3,4, U3,4), the parallel connection
of two 4-circuits, is the cycle matroid of a 6-cycle with a single chord where
this chord lies in two 4-cycles.

Theorem 1.2. A binary matroid M is a binary comatroid if and only if
neither M nor M c has a flat isomorphic to a circuit of size exceeding five,
to P (U3,4, U3,4), or to the cycle matroid of one of the six 5-vertex graphs
shown in Figure 1.

Theorem 1.3. A ternary matroid M is a ternary comatroid if and only if
neither M nor M c has a flat isomorphic to a circuit of size exceeding three,
to a matroid that can be obtained from a circuit of size at least three by
2-summing a copy of U2,4 to at least one of the elements of the circuit, or
to one of the five rank-3 matroids P (U2,3, U2,3), U2,4 ⊕2 U2,4, P (U2,4, U2,3),
M(K4), and W3.

The proofs of these theorems are given in Sections 4 and 5, respectively.
In Section 2, we prove a number of preliminary results including Theo-
rem 1.1. In particular, we show that if we contract an element from a
GF (q)-comatroid and simplify the resulting matroid, then we get another
GF (q)-comatroid. A simple matroid N is an induced minor of a simple
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Figure 1. The cycle matroids of these graphs are induced-
restriction-minimal binary non-comatroids.

matroid M if N can be obtained from M by a sequence of operations each
of which consists of restricting to a flat, or contracting an element and then
simplifying. As consequences of Theorems 1.2 and 1.3, we have the follow-
ing characterizations of binary and ternary comatroids in terms of forbidden
induced minors.

Corollary 1.4. A binary matroid is a binary comatroid if and only if it has
no induced minor isomorphic to the complement of a circuit of size exceeding
five, to P (U3,4, U3,4), to the cycle matroid of one of the six 5-vertex graphs
in Figure 1, or to the complements of these cycle matroids in PG(3, 2).

Corollary 1.5. A ternary matroid is a ternary comatroid if and only if it
has no induced minor isomorphic to any of the following: the complements
of all matroids that can be obtained from a circuit of size at least three by
2-summing a copy of U2,4 to some, possibly empty, set of elements of the cir-
cuit; the matroids, U3,4, P (U2,3, U2,3), U2,4⊕2U2,3, U2,4⊕2U2,4, P (U2,4, U2,3),
M(K4), and W3; or the complements of these matroids in PG(2, 3).

The proofs of Theorems 1.2 and 1.3 will rely on results concerning the ex-
istence of connected hyperplanes in connected binary and connected ternary
matroids. These results appear in Section 3. The results for ternary ma-
troids are new and are of independent interest.

2. Preliminary results

Throughout the paper, we call cocircuits, flats, and hyperplanes of PG(r−
1, q) projective cocircuits, projective flats, and projective hyperplanes, re-
spectively. Viewing a GF (q)-representable matroid M as a restriction of
PG(r(M)− 1, q), we color the elements of E(M) green while assigning the
color red to the elements of PG(r(M) − 1, q) not in E(M). We will fre-
quently use G and R to denote both the sets of green and red elements
and the matroids obtained by restricting PG(r(M) − 1, q) to these sets of
elements. The next lemma is an immediate consequence of the fact that the
elements of a projective geometry are not all contained in two hyperplanes.
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Lemma 2.1. For an arbitrary prime power q, let (G,R) be a 2-coloring of
PG(r − 1, q). Then r(G) = r or r(R) = r.

Proposition 2.2. For an arbitrary prime power q, let (G,R) be a 2-coloring
of PG(r − 1, q). Let j and k be the vertical connectivities of G and R,
respectively. Then j+k ≥ r unless (q, r) = (2, 3) and {G,R} = {U3,3, U2,3⊕
U1,1}.

Proof. Assume that the result fails, so j + k < r and the exceptional case
does not occur. If R is empty, then k = 0 and j = r, a contradiction. Thus
we may assume that G and R are both non-empty. Then j and k are both
non-zero, so we may assume that j, k ∈ {1, 2, . . . , r − 2}. Observe that if
r(R) < r, then G contains AG(r−1, q) and hence j ≥ r−1, a contradiction.
Therefore r(G) = r(R) = r. Thus G has an exact vertical j-separation
(A,B) with r(A) ≥ r(B), and R has an exact vertical k-separation (X,Y )
with r(X) ≥ r(Y ). Let r(A) = a. Then G is contained in (A′−(A′∩B′))∪B′
where A′ and B′ are the closures of A and B, respectively, in PG(r − 1, q).
As r(A′ ∩B′) = j − 1, we see that

(2.1) |G| ≤ qa − 1

q − 1
+

qa − 1

q − 1
− qj−1 − 1

q − 1
=

2qa − qj−1 − 1

q − 1
.

By symmetry, with r(X) = x, we have

(2.2) |R| ≤ 2qx − qk−1 − 1

q − 1
.

First suppose that x = r − 1. Then r(Y ) = k. Let HX be the projective
hyperplane spanned by X. Observe that the intersection of HX with the
projective flat FY spanned by Y is a projective flat of rank k − 1. Thus, as
R−HX ⊆ FY − (FY ∩HX), we have

(2.3) |R−HX | ≤
qk − 1

q − 1
− qk−1 − 1

q − 1
= qk−1.

Suppose that a = r − 1. Then r(B) = j and so, as for (2.3), we have

(2.4) |G−HA| ≤ qj−1

where HA is the projective hyperplane spanned by A. Note that E(PG(r−
1, q))− (HA ∪HX) has at least qr−2 elements and so it follows by (2.3) and
(2.4) that qk−1 + qj−1 ≥ qr−2. Since j and k are in {1, 2, . . . , r − 2} and
j + k < r, this is a contradiction unless (q, r) = (2, 3) and k = 1 = j. In the
exceptional case, it is straightforward to check that {G,R} = {U3,3, U2,3 ⊕
U1,1}, and we get the exception noted in the proposition.
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We may now assume that a < r−1. Let FA be the projective flat spanned
by A. Observe that FA ∩HX is a projective flat of rank a or a− 1. Thus

|(R ∪G)−HX | = |R−HX |+ |G−HX |
≤ |R−HX |+ |G| − |FA ∩HX |

≤ qk−1 +
2qa − qj−1 − 1

q − 1
− qa−1 − 1

q − 1

where the last step follows by (2.3) and (2.1). As |(R∪G)−HX | = |E(AG(r−
1, q)| = qr−1, we have qk−1 + 2qa−qj−1−1

q−1 − qa−1−1
q−1 ≥ qr−1. As the left-hand

side of the last inequality is bounded above by qr−3 + qr−3(2q−1)
q−1 − qj−1−1

q−1 ,

we deduce that 1 + 2q−1
q−1 > q2. This is a contradiction as q ≥ 2. We

conclude that x < r− 1. By symmetry, a < r− 1. Then, by (2.2) and (2.1),

|R|+ |G| < qr−1
q−1 , which is a contradiction. �

Next, we move towards proving Theorem 1.1. We omit the straightfor-
ward proof of the following result.

Lemma 2.3. Let M be a simple GF (q)-representable matroid.

(i) If q = 2 and r(M) ≤ 3, then M is a GF (q)-comatroid.
(ii) If q = 3 and r(M) ≤ 2, then M is a GF (q)-comatroid.

Lemma 2.4. Let M be a GF (q)-comatroid and suppose that M is discon-
nected. Then each of its components is a GF (q)-comatroid.

Proof. By Lemma 2.3, we may assume that r(M) ≥ 4. Take a shortest
sequence of direct sums and complements that shows that M is a GF (q)-
comatroid. Assume that the final step in creating M is not a direct sum.
Then this final step involves taking the (GF (q), t)-complement of some ma-
troid N1 where t ≥ r(N1). As M is disconnected, t = r(N1) ≥ r(M),
otherwise M has AG(t − 1, q) as a restriction and so is connected. Thus
N c

1 = M . Moreover, as the vertical connectivity of M is one, Proposition
2.2 implies that N1 is connected. Since N c

1 = M , the predecessor of N1 in the
construction of M is its (GF (q), s)-complement N2 for some s ≥ r(N1) + 1.
Then N2 has AG(s− 1, q) as a restriction, so it is connected. The predeces-
sor of N2 in the production of M must again be a connected matroid N3 of
rank exceeding r(N2). Tracing back the predecessors of M in its creation as
a GF (q)-comatroid, we obtain an infinite sequence of matroids of increasing
ranks. This contradicts the fact that M is created by a finite process. We
conclude that, when M is a disconnected GF (q)-comatroid, the final step in
constructing it is taking the direct sum of two GF (q)-comatroids. Thus if M
has exactly two components, then each component is a GF (q)-comatroid.
We now argue by induction on the number of components of M . As the
final step in creating M is taking a direct sum of two GF (q)-comatroids, it
follows by induction that each component of M is a GF (q)-comatroid. �
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Lemma 2.5. For q in {2, 3}, a GF (q)-representable matroid M such that
r(M) = r(M c) and both M and M c are connected is not a GF (q)-comatroid.

Proof. For M to satisfy the hypotheses of the lemma, we must have r(M) ≥
3. Moreover, r(M) ≥ 4 if q = 2. Assume that M is a GF (q)-comatroid.
Then the final step in creating M via a shortest sequence of direct sums
and complements must have been taking a complement. As r(M) = r(M c),
for some N0 in {M,M c}, the predecessor of N0 in the creation of M is
the (GF (q), t)-complement N1 of N0 for some t > r(M). This matroid is
also connected. Its predecessor in the construction of M is the (GF (q), s)-
complement N2 of N1 for some s > r(N1). Again, N2 is connected and this
process must continue indefinitely, a contradiction. �

As an immediate consequence of the last lemma, we have the following.

Corollary 2.6. A k-circuit is a GF (q)-comatroid if and only if q + k ≤ 6.

Lemma 2.7. The restriction of a GF (q)-comatroid to one of its flats is a
GF (q)-comatroid.

Proof. We argue by induction on the rank of the GF (q)-comatroid M . The
result holds by Lemma 2.3 if r(M) ≤ 2. Now assume it holds for every
GF (q)-comatroid of rank less than n and let M be a GF (q)-comatroid of
rank n where n ≥ 3. Then M is obtained by taking complements and direct
sums. Let F be a proper flat of M . Assume first that M is disconnected.
Then, by Lemma 2.4 and the induction assumption, M |(F ∩ E(Mi)) is a
GF (q)-comatroid for each component Mi of M . Thus M |F is a GF (q)-
comatroid. We may now assume that M is connected. Suppose N = M c.
Then N is a GF (q)-comatroid. Let FP be the projective flat of PG(r(M)−
1, q) that is spanned by F . Then FP − F is a flat of N . The complement
of N |(FP − F ) in FP is M |F . Assume first that r(N) < r(M). Then, by
the induction assumption, N |(FP − F ) is a GF (q)-comatroid. Thus M |F
is also a GF (q)-comatroid. Hence we may assume that r(N) = r(M). By
Lemma 2.5, N is not connected, so, by the induction assumption, N |(FP−F )
and hence M |F is a GF (q)-comatroid. �

Proof of Theorem 1.1. Suppose M is a non-empty GF (q)-comatroid. By
Lemma 2.7, if F is a flat of PG(r(M)−1, q), then M |(F ∩E(M)) is a GF (q)-
comatroid. Hence so is its complement in F , namely PG(r(M)− 1, q)|(F −
E(M)). By Lemma 2.1, at least one of r(F ∩ E(M)) and r(F − E(M))
is r(F ). Thus, by Lemma 2.5, if r(F ∩ E(M)) = r(F − E(M)), then the
restriction of PG(r(M)− 1, q) to F ∩ E(M) or F − E(M) is disconnected.

Conversely, suppose that M is non-empty and that, for all flats F of
PG(r(M) − 1, q) with r(F ∩ E(M)) = r(F − E(M)), the restriction of
PG(r(M) − 1, q) to either F ∩ E(M) or F − E(M) is disconnected. We
argue by induction on r(M) that M is a GF (q)-comatroid. By Lemma 2.3,
this is true if r(M) ≤ 2. Assume it is true for r(M) < n and let r(M) = n.
If M is disconnected, then, by the induction assumption, each component
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is a GF (q)-comatroid. Hence so too is M . Thus M is connected. Sup-
pose r(M) = r(M c). Then, by the hypothesis, M c is disconnected. Since
M c obeys the same condition as M , each of its components is a GF (q)-
comatroid. Thus so is M c. Hence M is a GF (q)-comatroid. We may
now assume that r(M) > r(M c). Take F0 to be the flat of PG(r(M)− 1, q)
spanned by M c. Let F1 be a flat of F0 with r(F1∩E(M c)) = r(F1−E(M c)).
Then r(F1 ∩ E(M)) = r(F1 − E(M)) so the restriction of PG(r(M)− 1, q)
to F1 ∩ E(M) or F1 − E(M) is disconnected. Thus the restriction of F0

to F1 ∩ E(M c) or F1 − E(M c) is disconnected. We conclude that M c

obeys the same condition as M , so, by the induction assumption, M c is
a GF (q)-comatroid. The (GF (q), r(M))-complement of M c is M so it too
is a GF (q)-comatroid, as required. �

In the following result, we note that if a GF (q)-comatroid is connected,
it is highly connected.

Proposition 2.8. Let M be a connected GF (q)-comatroid of rank r. Then
M is vertically (r − 1)-connected.

Proof. By Lemma 2.5, M c is either disconnected or has rank less than r.
If M c is disconnected, then, by Proposition 2.2, M is vertically (r − 1)-
connected. We may now assume that M c has rank less than r. Then M is
an extension of AG(r− 1, q). Since this affine geometry is vertically (r− 1)-
connected, the result follows. �

Next we show that the class of GF (q)-comatroids is closed under induced
minors. For a subset X of the ground set of a simple GF (q)-representable
matroid M , we say X is connected if M |X is connected. When X is a
flat of M , we denote by Xc the matroid (M |X)c that is obtained from the
projective closure of X by deleting X.

Proposition 2.9. Every induced minor of a GF (q)-comatroid is a GF (q)-
comatroid.

Proof. By Lemma 2.7, the restriction of a GF (q)-comatroid M to one of
its flats is a GF (q)-comatroid. Now take an element e of M and assume
that si(M/e) is not a GF (q)-comatroid. View si(M/e) as a restriction of
PG(r(M) − 2, q). Then, by Theorem 1.1, there is a flat F of si(M/e) such
that F and F c are both connected and each has rank k, say. Observe that
clM (F ∪ e) is a connected flat of M of rank k + 1 unless e is a coloop of
M |(F ∪ e). In the exceptional case, F is a flat of M and, therefore, M has a
flat F such that both F and F c are connected of rank k, which contradicts
the fact that M is a GF (q)-comatroid. We deduce that clM (F ∪ e) is a
connected flat of rank k + 1. We complete the proof by establishing the
contradiction that the complement of clM (F ∪ e) is also connected of rank
k+1. To see this, note that, for each element g of F c, all the elements apart
from e that are on the projective line containing {e, g} in PG(r(M)− 1, q)
are in the complement of clM (F ∪ e). Thus, for {g, h} ⊆ F c such that
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PG(r(M) − 1, q) has {e, g, h} as a circuit, the complement of clM (F ∪ e)
contains a set of rank k + 1 that is a union of 4-circuits each containing
{g, h}. Hence this complement is connected. �

3. Connected hyperplanes

Kelmans [12] and Seymour (in [15]) independently established that if M
is a simple connected binary matroid that has no cocircuits of size less than
three, then M has a connected hyperplane. That theorem was extended
in several ways by McNulty and Wu [14]. In this section, we note two of
these extensions and prove an analogue for ternary matroids of the result
of Kelmans and Seymour. These results on connected hyperplanes will be
crucial in proving our characterizations of binary and ternary comatroids.

We begin the section by identifying when there is a free element in a
binary or ternary matroid, where an element e is free in a matroid M if
e is not a coloop of M and the only circuits that contain e are spanning.
Doubtless, the results in the next lemma are known but we include the
proofs for completeness. In a rank-zero matroid, every element is free. In a
rank-one matroid, the free elements are the non-loops unless the matroid has
a coloop in which case there are no free elements. Thus the next result only
considers matroids M of rank at least two. Note that, in such a matroid, e
is free in M if and only if e is free in si(M) and e is in no 2-circuits of M .

Lemma 3.1. Let M be a simple GF (q)-representable matroid of rank at
least two and let e be a free element of M . Then

(i) M is a circuit when q = 2; and
(ii) when q = 3, either M ∼= U2,4, or M can be obtained from a circuit

C containing e by, for some subset D of C − e, 2-summing a copy
of U2,4 across each element of D.

Proof. Since e is free in M , there is a spanning circuit C0 of M containing
e. Then M |C0 is represented over GF (q) by [Ir|1] where 1, the column of
all ones, is labelled by e. When q = 2, we cannot add any further elements
without creating either a 2-circuit, or a circuit that contains e and has fewer
than r + 1 elements. Thus (i) holds.

Now suppose that q = 3. If r(M) = 2, then M is isomorphic to U2,3 or
U2,4. Assume that r(M) ≥ 3. Let Z be a matrix representing M over GF (3)
and having [Ir|1] as its first r + 1 columns. We will write the elements of
GF (3) as 0, 1, and −1. Let f be a column of Z other than one of the first
r + 1 columns. As M is simple, f has at least two non-zero entries. If f
has at least two non-zero entries with a common sign, then there is a circuit
containing {e, f} having at most r elements, contradicting the fact that e
is free in M . It follows that f has exactly two non-zero entries and that
these entries have different signs. If columns f and g have their non-zero
entries in, respectively, rows 1 and 2, and rows 1 and 3, then M has an r-
element circuit containing {e, f, g}. We conclude that two distinct columns
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of Z that are not columns of [Ir|1] must have disjoint sets of rows containing
their non-zero entries. It follows that M can be obtained from a circuit C
containing e by, for some subset D of C−e, 2-summing a copy of U2,4 across
each element of D. To see this, for each column of Z with two entries of
opposite signs, add an additional column to Z obtained by changing the
sign of one of these entries. These added elements form the basepoints of
the 2-sums. �

The following technical result will be helpful in proving our results on
connected hyperplanes.

Lemma 3.2. In a simple connected matroid M , let e be an element and A
be a maximal subset of E(M) that is connected, non-spanning and contains
e. Let C be a circuit of M that meets both A and E(M)−A such that C−A
is minimal. Then A is a flat, r(A ∪ C) = r(M), the set C − A is a series
class of M |(A ∪ C),

r(M) = r(A) + |C −A| − 1,

and one of the following holds:

(i) A is a connected hyperplane of M ; or
(ii) C −A is a series class of M with at least three elements; or

(iii) |C −A| ≥ 3 and E(M)− (A ∪ C) is non-empty.

Proof. The minimality of C − A implies that, in M |(A ∪ C), a circuit that
meets C−A must contain C−A, so C−A is a series class. The maximality
of A implies that A is a flat of M and that r(A ∪ C) = r(M). Thus
r(M) = r(A) + |C − A| − 1, so |C − A| ≥ 2. If |C − A| = 2, then A is a
connected hyperplane of M . Thus we may assume that |C−A| ≥ 3. In that
case, (ii) or (iii) holds. �

The next result extends the theorem of Kelmans and Seymour, borrowing
much from Seymour’s proof.

Theorem 3.3. Let e be an element of a simple connected binary matroid
M . Then

(i) M is a circuit; or
(ii) M has a connected hyperplane containing e; or

(iii) M has a series class of size at least three that avoids e.

Proof. Assume that the theorem fails. By Lemma 3.1, e is not free in M .
Thus M has a subset A that contains a circuit containing e and is maximal
with respect to being connected and non-spanning. We take a circuit C1

that meets both A and its complement such that |C1 − A| is minimal. By
Lemma 3.2, |C1 − A| ≥ 3 and E(M) − (C1 ∪ A) contains an element, say
x. Moreover, for y in C1 − A, the set A ∪ (C1 − y) contains a basis B of
M . Let C2 = C(x,B). Then C2 meets A otherwise, as M is binary and
|C2−C1| = 1, we deduce that C14C2 is a circuit that contradicts the choice
of C1. Now |C2 − A| ≥ |C1 − A|. Hence C2 contains exactly |C1 − A| − 1
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elements of C1−A. Thus C14C2 contains a circuit D that contains x, meets
A, and has exactly two elements not in A. Then D contradicts the choice
of C1. �

As an immediate consequence of this theorem, we have the following.

Corollary 3.4. Let M be a simple connected binary matroid M . Then

(i) M is a circuit; or
(ii) M has a connected hyperplane; or

(iii) M has at least two distinct series classes of size at least three.

The next two results, which were proved by McNulty and Wu [14, The-
orem 1.4 and Lemma 2.10], are much more substantial extensions of the
theorem of Kelmans and Seymour. Both of these results will be used in the
proof of Theorem 1.2.

Theorem 3.5. Let M be a simple connected binary matroid with no co-
circuits of size less than three. Then every element of M is in at least
two connected hyperplanes. Moreover, M has at least four connected hyper-
planes.

Lemma 3.6. Let M be a 3-connected binary matroid with at least four
elements. Then, for any two distinct elements e and f of M , there is a
connected hyperplane containing e and avoiding f .

McNulty and Wu [14, Fig. 1] also showed that a simple connected binary
matroid with no cocircuits of size less than three may have exactly four con-
nected hyperplanes. In addition, they noted that Joseph Bonin has pointed
out that the dual of PG(2, 3) is a 3-connected ternary matroid having no
connected hyperplanes. Of course, the same is true for the duals of all of the
matroids PG(r−1, 3) with r ≥ 3. As another example of a simple connected
ternary matroid with no cocircuits of size less than three and no connected
hyperplanes, take a circuit with at least three elements and 2-sum a copy of
U2,4 across each element. Each of these examples has numerous triads. As
we shall see, by confining our attention to simple connected ternary matroids
having no cocircuits of size less than four, we can establish the existence of
at least two connected hyperplanes. The next result is key to proving this.

Theorem 3.7. Let M be a simple connected matroid having no cocircuits
of size less than four. Assume that M has no U2,5-minor and no U3,5-
minor. Let e be an element of M that is not free. Then M has a connected
hyperplane containing e.

Proof. Since e is not free, E(M) has a subset A that contains a circuit con-
taining e and is maximal with respect to being connected and non-spanning.
Assume that the theorem fails.

As M is connected, it has a circuit meeting both A and its complement.
Choose such a circuit C1 for which |C1 −A| is a minimum. By Lemma 3.2,
A is a flat of M , while C1−A is a series class in M |(A∪C1), and r(A∪C1) =
r(M). Moreover,
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3.7.1. r(M) = r(A) + |C1 −A| − 1.

As M has no cocircuits of size less than four, |E(M)−(A∪C1)| ≥ 2. Take
s in C1 − A. Then M has a basis B that contains C1 − s and is contained
in A ∪ (C1 − s). Choose x in E(M)− (A ∪ C1) and let C2 be C(x,B).

Next we show the following.

3.7.2. If C2 ∩A = ∅, then |C2| = 3.

Let C1 ∩ C2 = {y1, y2, . . . , yk}. By strong circuit elimination, M has a
circuit Di that contains x and not yi such that Di ⊆ C1∪x. Then the choice
of C1 implies that Di−A = ((C1−A)−yi)∪x. Thus Di = (C1−yi)∪x. From
M |(C1 ∪ x), contract C1 − {y1, y2, . . . , yk, s}. The resulting matroid N has
ground set {y1, y2, . . . , yk, s, x} and has every subset of size k+1 as a circuit
except possibly {y1, y2, . . . , yk, x}. If a proper subset of {y1, y2, . . . , yk, x} is
a circuit of N , then this circuit is a proper subset of a (k+1)-element circuit
of N , which is a contradiction. Thus N ∼= Uk,k+2. As M has no U3,5-minor
and M is simple, we deduce that k = 2, so |C2| = 3. Hence 3.7.2 holds.

We now show that

3.7.3. |C1 −A| ≥ 4.

Since we have assumed that the theorem fails, |C1 − A| > 2, by 3.7.1.
Assume that |C1 − A| = 3. Thus r(M/A) = 2. Moreover, |E(M/A)| ≥ 5 as
|E(M) − (A ∪ C1)| ≥ 2. Since A is a flat of M , the matroid M/A has no
loops. Suppose it has a 2-circuit {u, v}. Then M has a circuit C ′ such that
{u, v} ⊆ C ′ ⊆ {u, v} ∪A. Thus C ′ contradicts the choice of C1. We deduce
that M/A is simple, so M/A has U2,5 as a restriction, contradicting the fact
that M has no U2,5-minor. Thus 3.7.3 holds.

3.7.4. For x in E(M) − (A ∪ C1), there is an element s of C1 − A such
that M has a triangle that contains x and has its other two elements in
C1 − (A ∪ s).

Assume that M has no such triangle. For s in C1−A, let Bs be a basis of
M containing C1 − s and let Cs = C(x,Bs). By 3.7.2, Cs meets A. By the
choice of C1, we deduce that Cs−A = (C1−A−s)∪x. Let |C1−A| = m and
N ′ = M |(A∪C1 ∪ x). Then, for every m-element subset Y of (C1 −A)∪ x,
there is a circuit of N ′ that meets (C1 − A) ∪ x in Y and also meets A.
When Y = C1 − A, this circuit is C1; when Y = (C1 − A− s) ∪ x for some
s in C1 − A, this circuit is Cs. Now r(N ′) = r(M) = r(A) + |C1 − A| − 1.
Contracting A from N ′ gives a matroid of rank m−1 having m+1 elements.
Take an m-element subset Y of (C1 − A) ∪ x. Then Y contains a circuit
Y ′ of N ′/A. Thus Y ′ ∪ A contains a circuit Y ′′ of M containing Y ′. Then
Y ′′ meets A otherwise Y ′′ = Y ′ ⊆ Y , a contradiction as Y is independent
in M . Thus, by the choice of C1, we must have that |Y ′′ − A| = m. Hence
m = |Y | ≥ |Y ′| ≥ |Y ′′−A| ≥ m, so Y ′ = Y and Y is a circuit of N ′/A. Thus
N ′/A ∼= Um−1,m+1. By 3.7.3, m ≥ 4, so M has a U3,5-minor, a contradiction.
Thus 3.7.4 holds.
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3.7.5. There is no 4-element set X in M with exactly two elements in C1−A
and exactly two elements in E(M)− (A ∪ C1) such that M |X ∼= U2,4.

Assume that {y1, y2, x1, x2} is such a 4-element subset X of E(M) where
{y1, y2} ⊆ C1 − A. Then r(A ∪ (C1 − {y1, y2})) = r(M)− 1 and r(X) = 2.
Thus, in M |(A ∪ C1 ∪ {x1, x2}), which is connected, X is 2-separating.
Therefore, M |(A∪C1∪{x1, x2}) is the 2-sum, with basepoint p of connected
matroids M1 and M2 with ground sets A ∪ (C1 − {y1, y2}) ∪ p and X ∪ p.
Since |X ∪ p| = 5 and M2 has rank 2, we must have that p is parallel
to some element of X otherwise M has a U2,5-minor. Thus a member of
{y1, y2, x1, x2} is in the closure of A ∪ (C1 − {y1, y2}). Neither y1 nor y2 is
in this closure. If x1 or x2 is, then there is a circuit D containing xi for
some i in {1, 2} such that D ⊆ A ∪ (C1 − {y1, y2}) ∪ xi. The choice of C1

implies that D does not meet A. Thus D ⊆ (C1 −A)∪ xi. Then, by circuit
elimination, (D ∪ {xi, y1, y2}) − xi contains a circuit. But this circuit is
properly contained in C1, which is a contradiction. We conclude that 3.7.5
holds.

3.7.6. The matroid M does not have two triangles {y1, y2, x2} and {y1, y3, x3}
where y1, y2, and y3 are distinct elements of C1−A, and x2 and x3 are dis-
tinct elements of E(M)− (A ∪ C1).

Assume that M does have two such triangles. Then M has (C1 − y1) ∪
x2 as a circuit, C ′1 say. By 3.7.5, {y2, x2, y3, x3}, which is ({y1, y2, x2} ∪
{y1, y3, x3})− y1, is a circuit of M having exactly three elements in C ′1−A.
This is the fundamental circuit of x3 with respect to a basis of M that
contains C ′1 − t where t ∈ C ′1 − A − {x2, y2, y3}, the existence of such an
element t being a consequence of 3.7.3. Thus, using C ′1 in place of C1 in
3.7.2, we get a contradiction. Hence 3.7.6 holds.

By 3.7.4, for each element x in E(M)− (A∪C1), there is a triangle of M
that contains x and two elements of C1−A. Moreover, by 3.7.5 and 3.7.6, if
x1 and x2 are distinct elements of E(M)− (A∪C1), then the corresponding
triangles are disjoint.

Suppose that there are exactly k elements, x1, x2, . . . , xk, in E(M) −
(A ∪ C1) and that the corresponding triangles are {xi, yi, zi} for 1 ≤ i ≤ k
where {yi, zi} ⊆ C1 − A. By 3.7.1 and the fact that C1 − A is a series
class in M |(A ∪ C1), we deduce that the set (A ∪ C1) − {y1, z1} has rank
r(M)−1. The closure of this set contains {x2, x3, . . . , xk}. The complement
of this closure is {x1, y1, z1}. Therefore M has a triad. This contradiction
completes the proof of the theorem. �

Corollary 3.8. Let M be a simple connected ternary matroid having no
cocircuits of size less than four. Then M has at least two connected hyper-
planes.

Proof. By Lemma 3.1(ii), since M has no cocircuits of size less than four,
M has no free elements. Let e be an element of M . Then, by Theorem 3.7,
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M has a connected hyperplane He containing e. For f in E(M)−He, there
is a connected hyperplane Hf containing f , so the corollary holds. �

In view of Theorem 3.5, it is of interest to specify the minimum number
of connected hyperplanes in a simple connected ternary matroid with no
cocircuits of size less than four. There are infinitely many examples of such
matroids with exactly four connected hyperplanes but we do not know if four
is indeed the minimum number of connected hyperplanes. To get a family
of examples with exactly four connected hyperplanes, first take a graph G
formed from two vertex-disjoint paths x1x2 . . . xn and y1y2 . . . yn for some
n ≥ 1 by adding the n edges xiyi, the n − 1 edges of the form xiyi+1 for
1 ≤ i ≤ n−1, and the n−1 edges of the form xj+1yj for 1 ≤ j ≤ n−1. Then
take two copies, N1 and N2, of M(K4), pick a point pi of Ni and freely add
a point qi to one of the triangles of Ni not containing pi. Finally, take the
parallel connection of N1 and M(G) with respect to the basepoints p1 and
x1y1, and then attach N2 to the resulting matroid via parallel connection
with respect to the basepoints xnyn and p2. The resulting simple connected
ternary matroid has 5n + 8 elements, rank 2n + 3, and has no cocircuits of
size less than four. It also has exactly four connected hyperplanes.

4. Induced-restriction-minimal non-GF (2)-comatroids

An induced-restriction-minimal non-GF (q)-comatroid is a GF (q)-repre-
sentable matroid M that is not a GF (q)-comatroid such that every proper
flat of M is a GF (q)-comatroid. The collection of such matroids M will be
denoted byMq. Clearly, M c ∈Mq for every matroid M inMq. This section
begins with some preliminary results that will be used in the proofs of the
main theorems. It concludes with proofs of Theorem 1.2 and Corollary 1.4.

Lemma 4.1. Let q be an arbitrary prime power and X be a subset of PG(r−
1, q) having at least qr−1 + 1 elements. Then the matroid PG(r− 1, q)|X is
connected and has rank r.

Proof. Observe that X has more elements than a hyperplane of PG(r−1, q),
so PG(r− 1, q)|X has rank r. Assume that PG(r− 1, q)|X is disconnected.
Then, for some j with 1 ≤ j ≤ r−1, the matroid PG(r−1, q)|X is contained

in PG(j − 1, q)⊕ PG(r − j − 1, q). Thus |X| ≤ qj−1
q−1 + qr−j−1

q−1 = qj+qr−j−2
q−1 .

This function of j is maximized when j is 1 or r − 1, so |X| ≤ qr−1, which
violates the choice of X. �

Lemma 4.2. Let q be an arbitrary prime power and N be the parallel con-
nection of PG(j − 1, q) and PG(k− 1, q) where 2 ≤ j ≤ k and k ≥ 3. Then
the complement N c of N has rank equal to r(N).

Proof. Assume that r(N c) < r(N). Then N has AG(r(N) − 1, q) as a
restriction. Now AG(r(N) − 1, q) is 3-connected since r(N) ≥ 4 so N is
3-connected, a contradiction. �

The next result is from [18].
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Theorem 4.3. Let n be an integer exceeding one and X and Y be subsets of
the ground set of a matroid M . Suppose M |X and M |Y are both vertically
n-connected and r(X) + r(Y ) − r(X ∪ Y ) ≥ n − 1. Then M |(X ∪ Y ) is
vertically n-connected.

The following is a straightforward consequence of Proposition 2.2.

Lemma 4.4. Let r ≥ 4. For an arbitrary prime power q, color the elements
of PG(r− 1, q) red or green. Then either PG(r− 1, q)|G or PG(r− 1, q)|R
is connected of rank r.

Recall that, for a flat F in a simple GF (q)-represented matroid M , we
write F c for the matroid (M |F )c.

Lemma 4.5. Let M be a matroid in M2 such that r(M) ≥ 5 and M has a
2-cocircuit. Then M is isomorphic to a circuit or to P (U3,4, U3,4).

Proof. Assume that the result fails. Since M has a 2-cocircuit, it has a
maximal non-trivial series class S. Thus M = M1 ⊕2 M2 where M2 is a
circuit with ground set S ∪ p, and p is the basepoint of the 2-sum. If p is
parallel to an element s in M1, then we move s into M2 so that it become
parallel to p there.

Suppose that p is free in M1. Then, by Lemma 3.1(i), M1 is a circuit.
As M is not a circuit and r(M) ≥ 5, we deduce that the element s exists.
Thus M is the parallel connection of two circuits. By Corollary 2.6, neither
of these circuits has more than four elements. Hence M ∼= P (U3,4, U3,4),
which is a contradiction. We deduce that p is not free in M1. Thus M1 has
a non-spanning circuit Cp that contains p. If r((Cp ∪ S)− p) ≥ 4, then the
closure, F , of (Cp ∪ S) − p is a connected proper flat in M . Moreover, by
Proposition 2.2 and Lemma 4.2, F c is also connected of rank r(F ). Because
M ∈ M2, this contradicts the minimality of M . We deduce that r((Cp ∪
S) − p) = 3. Hence every non-trivial series class of M has exactly two
elements. Now, by Theorem 3.3, as M1 is not a circuit and does not have a
series class of size at least three avoiding p, it has a connected hyperplane H
containing p. Then clM ((H ∪ S)− p) is a connected proper flat, F , of M of
rank r(M)−1. As above, F c is connected of rank r(F ), a contradiction. �

Lemma 4.6. Let M be a matroid in M2 such that r(M) ≥ 5. Then

(i) M is a circuit; or
(ii) M ∼= P (U3,4, U3,4); or

(iii) M is 3-connected.

Proof. Assume that neither (i) nor (ii) holds. Then, by Lemma 4.5, we may
assume that M is cosimple. Suppose that M is not 3-connected. Then
M = M1 ⊕2 M2 where r(M1) ≥ r(M2) and one of M1 and M2 may have an
element parallel to the basepoint p of the 2-sum. When this occurs, we may
assume, by moving an element from M1 to M2 if needed, that the element
is parallel to p in M2. Since M is cosimple, neither M1 nor M2 is either a
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circuit or a circuit with an element parallel to p. Hence r(M2) ≥ 3. As M2

is not a circuit, by Lemma 3.1, M2 has a non-spanning circuit Cp containing
p. Then the closure F of (E(M1) ∪ Cp) − p is a connected proper flat of
M . By Proposition 2.2 and Lemma 4.2, F c is connected of rank r(F ), a
contradiction. �

The next result shows that a matroid M in M2 such that neither M nor
M c is a circuit has rank at most five.

Theorem 4.7. Let M be a matroid in M2 such that r(M) ≥ 6. Then M
or M c is a circuit.

Proof. Let Pr(M) denote the binary projective geometry of rank r(M) such
that the set G of green elements of Pr(M) corresponds to M and the set
R of red elements of Pr(M) corresponds to M c. Observe that, for each
projective flat F of Pr(M) with 4 ≤ r(F ) < r(M), it follows by Lemma 4.4,
Theorem 1.1, and the minimality of M that exactly one of F |R and F |G
is connected of rank r(F ). We call F red or green depending on whether
F |R or F |G is connected of rank r(F ). We may assume that both M and
M c are cosimple otherwise we have our result by Lemma 4.5. Let F be a
rank-(r(M) − 2) flat of Pr(M). Note that F is contained in exactly three
hyperplanes, say H1, H2, and H3 of Pr(M). We note the following.

4.7.1. At least two of H1, H2, and H3 have the same color as F .

Suppose that F is green and assume that H1 and H2 are red. It follows
that each of H1 − F and H2 − F contains at most one green element and
so the green elements in (H1 ∪H2)− F form a cocircuit of M with at most
two elements, a contradiction to Lemma 4.6. Similarly, if F is red, we get a
cocircuit of M c of size at most two, a contradiction.

Now let G1 and R1 be the sets of green and red hyperplanes, respectively,
of Pr(M). We note the following.

4.7.2. At most one of the rank-(r(M) − 2) projective flats contained in a
projective hyperplane H has a color different from that of H.

Observe that if two rank-(r(M)− 2) projective flats contained in H have
the same color, then, by taking n = 2 in Theorem 4.3, we deduce that their
join is colored the same as the two flats, a contradiction. Thus 4.7.2 holds.

Let G2 and R2 be the sets of green and red projective flats of Pr(M) of
rank r(M)− 2. We consider the bipartite graph B with vertex sets G1 ∪R1

and G2 ∪ R2 such that a vertex X in G1 ∪ R1 is adjacent to a vertex Y in
G2∪R2 if Y ⊆ X. We count the number of cross edges of this graph, that is,
the G1R2-edges and G2R1-edges. By 4.7.2, the number of G1R2-edges is at
most |G1|, and the number of G2R1-edges is at most |R1|. Observe that each
pair {HG, HR} where HG ∈ G1 and HR ∈ R1 corresponds to either a G1R2-
edge or a G2R1-edge e depending on whether HG∩HR is red or green. Note
that there is a third projective hyperplane H ′ such that H ′∩HG = H ′∩HR
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and, by 4.7.1, has the same color as HG∩HR. Observe that either {H ′, HG}
or {H ′, HR} corresponds to the cross edge e depending on whether HG∩HR

is red or green. Hence each cross edge corresponds to exactly two pairs
{HG, HR} where HG ∈ G1 and HR ∈ R1. Thus the number of cross edges is
1
2 |G1||R1|. Since the number of cross edges is bounded above by |G1|+ |R1|,
we have 1

2 |G1||R1| ≤ |G1| + |R1|. We may assume that |R1| ≥ |G1|. Then

|G1| ≤ 2|G1|
|R1| +2 ≤ 4. It follows by Theorem 3.5 that |G1| = 4 so |G1| = |R1|.

Hence Pr(M) has exactly eight hyperplanes, which contradicts the fact that
r(M) ≥ 6. �

It remains to determine the members of M2 of rank 4 or 5. The next
lemma takes care of the rank-4 case.

Lemma 4.8. A rank-4 binary matroid M is a member of M2 if and only
if M or M c is the cycle matroid of one of the six graphs in Figure 1.

Proof. First assume that M ∈M2. We may assume that |E(M)| ≤ |E(M c)|,
so |E(M)| ≤ 7. If M has a 5-circuit, then M is a 5-circuit or a 1- or 2-element
extension thereof. One can now check that M is the cycle matroid of one of
the graphs on the first line of Figure 1. We may now assume that M has no
5-circuits. Thus |E(M)| is 6 or 7. If |E(M)| = 6, then M∗ is connected of
rank two, so M is the cycle matroid of K2,3. Finally, if |E(M)| = 7, then M
is the cycle matroid of the last graph in Figure 1. The proof of the converse
is immediate as every rank-3 binary matroid is a binary comatroid. �

The following result from [13] will be used to simplify the computational
task of finding the rank-5 members of M2. The matroids in this theorem
will only appear in the proof of Lemma 4.10 and they will be defined there.

Theorem 4.9. An internally 4-connected binary matroid has no M(K3,3)-
minor if and only if it is

(i) cographic; or
(ii) isomorphic to a triangular or triadic Möbius matroid; or

(iii) isomorphic to one of 18 sporadic matroids of rank at most 11.

Lemma 4.10. Let M be a matroid in M2 such that r(M) = 5. Then M or
M c is not cosimple.

Proof. Assume that M and M c are cosimple. Then, by Lemma 4.6, both
M and M c are 3-connected. By Lemma 4.4 and Theorem 1.1, for every
hyperplane H of the rank-5 binary projective geometry, exactly one of H|G
or H|R is connected of rank four. We call H red or green depending on
whether H|R or H|G is connected of rank four. We first show that

4.10.1. E(M) has no set X of rank 3 such that r(E(M)−X) = 4.

Denote E(M) − X by Y and assume that r(X) = 3 and r(Y ) = 4. Let
YP and XP denote the projective flats spanned by Y and X, respectively.
Observe that YP ∩XP is a projective line, say, L = {x, y, z}. As M has no
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2-cocircuits, it follows that E(M)−YP has at least three elements, including
say b1, b2, and b3 such that {x, b1, b2} is a projective line, say L1. Let M ′

be the matroid obtained from M |YP by adding x, y, and z if they are not
already in E(M). Note that, for k in {1, 2}, a k-separation of M ′ induces
a k-separation of M and therefore M ′ is 3-connected. By Lemma 3.6, M ′

has a connected hyperplane H that contains x but not y or z. Observe that
either the parallel connection or the 2-sum of H and L1 with respect to the
basepoint x is a connected hyperplane H ′ of M depending on whether or
not x is an element of E(M). By Proposition 2.2 and Lemma 4.2, it follows
that the complement of H ′ is connected of rank four, a contradiction to
Theorem 1.1.

4.10.2. A connected hyperplane of M has at least seven elements.

Suppose such a connected hyperplane has at most six elements. Then
its complement in PG(3, 2) has at least nine elements. By Lemma 4.1, this
complement is connected of rank four, a contradiction to Theorem 1.1. Thus
4.10.2 holds.

By 4.10.1, it follows that M is internally 4-connected and has no triads.
By Theorem 3.5, M has a connected hyperplane, so |E(M)| ≥ 11 by 4.10.2.

Suppose that M has no M(K3,3)-minor. By Theorem 4.9, we first sup-
pose that M is cographic and therefore, by a result of Jaeger [10], we have
that |E(M)| ≤ 12. Since M has no cocircuits of size less than four, it fol-
lows that every hyperplane of M has at most eight elements. Therefore,
for a connected hyperplane H of M , by 4.10.2, |H| is either seven or eight.
It follows that Hc has seven or eight elements. As this complement is ei-
ther disconnected or has rank at most three, it is either F7 or F7 ⊕ U1,1.
This implies that H has F ∗7 as a restriction. Thus M is not cographic, a
contradiction.

Next suppose that M is a triangular or a triadic Möbius matroid. Since
M has no triads, M is the rank-5 triangular Möbius matroid, ∆5, and, by
Mayhew et al. [13], M has the reduced representation shown on the left
of Figure 2. Observe that {e, j, k, l,m} is a connected hyperplane of M
of size five, a contradiction to 4.10.2. We may now assume that M is a
rank-5 sporadic matroid, so, by [13] again, M is isomorphic to a matroid
in {M5,11, T12/e,M

a
5,12,M

b
5,12,M5,13}. Since M5,11 has a triad, M is not iso-

morphic to M5,11. When M is isomorphic to T12/e, it has the representation
shown on the right of Figure 2. Then {f, g, h, i, j} is a connected hyperplane
of M , a contradiction to 4.10.2.

If M is isomorphic to Ma
5,12, then M has the representation shown on the

left of Figure 3. Then M has {f, g, h, i, j, l} as a connected hyperplane of
M , contradicting 4.10.2. Similarly, if M is isomorphic to M b

5,12, then M has

the representation shown on the right of Figure 3. Then {f, g, h, i, j, l} is a
connected hyperplane of M , again contradicting 4.10.2.
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

f g h i j k l m

a 1 0 0 0 1 0 0 1
b 0 1 0 0 1 1 0 0
c 0 0 1 0 0 1 1 0
d 0 0 0 1 0 0 1 1
e 1 1 1 1 0 0 0 1




f g h i j k

a 1 0 0 0 1 1
b 1 1 0 0 0 1
c 0 1 1 0 0 1
d 0 0 1 1 0 1
e 0 0 0 1 1 1


Figure 2. ∆5 and T12/e.

We may now assume that M is isomorphic to M5,13 and therefore has the
representation in Figure 4. Observe that {a, b, d, e, f, i, j} is a connected hy-
perplane, H, of M such that Hc is also connected of rank 4, a contradiction.
We conclude that M is not one of the five rank-5 sporadic matroids.

We may now assume that M has an M(K3,3)-minor and so M is an
extension of M(K3,3). By symmetry, M c is also an extension of M(K3,3).
Since P5 has 31 hyperplanes and M(K3,3) has six connected hyperplanes,
we deduce that

4.10.3. M has at most 25 connected hyperplanes.

Figure 5 shows the vertex-edge incidence matrix of K3,3, which is a bi-
nary representation for M(K3,3). Although r(M(K3,3)) = 5, we use this
representation because it displays the symmetries of M(K3,3) well. The P5

into which M is embedded is spanned by {a, b, c, d, e, f, g, h, i}.



f g h i j k l

a 1 0 0 0 1 1 0
b 1 1 0 0 0 0 1
c 0 1 1 0 0 1 0
d 0 0 1 1 0 0 1
e 0 0 0 1 1 1 0




f g h i j k l

a 1 0 0 0 1 1 0
b 1 1 0 0 0 1 1
c 0 1 1 0 0 1 1
d 0 0 1 1 0 1 1
e 0 0 0 1 1 1 1


Figure 3. Ma

5,12 and M b
5,12.



f g h i j k l m

a 1 0 0 0 1 1 0 1
b 1 1 0 0 0 1 1 1
c 0 1 1 0 0 1 1 1
d 0 0 1 1 0 1 1 1
e 0 0 0 1 1 1 1 0


Figure 4. M5,13.
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For 1 ≤ i ≤ 6, let Hi be the connected hyperplane of M(K3,3) that is
complementary to the vertex bond of vi in K3,3, and let H ′i be the hyper-
plane of P5 spanned by Hi. As H ′1|G is an extension of M(K2,3), it follows
that H ′1|R is a restriction of the complement of M(K2,3) in P4. This com-
plement is isomorphic to P (F7, U2,3), where p is the basepoint of the parallel
connection. The K2,3 corresponding to H1 is shown in Figure 6. The ma-
troid P (F7, U2,3) that is the complement of this M(K2,3) is labelled as in
Figure 7. Here elements are labelled by the corresponding vectors. Because
H ′1|R is not connected of rank 4, it is isomorphic to a restriction of either
U2,3 ⊕ U2,3 or F7 ⊕ U1,1. Assume the former. Then the red elements of H ′1
are contained in the 2-separating triangle in P (F7, U2,3) and one of the four
triangles of F7 that avoid p, where p corresponds to the vector d + g. Thus
we have the following four cases:

(i) e + g, e + i, and d + i are green;
(ii) e + g, g + i, and e + f are green;
(iii) d + e, g + i, and e + i are green;
(iv) d + e, d + i, and e + f are green.

By permuting the vertices v4, v5, and v6, we see that the last three cases
are symmetric. Thus M is an extension of one of the two matroids whose
representations are shown in Figure 8.

Algorithm Counting hyperplanes of M and M c

Require: Input a simple binary matroid N of rank five
Set i← 0, j ← 0
for a subset S of P5 − E(N) do

Set i← 0, j ← 0
Set M = P5|(E(N) ∪ S)
i← number of connected hyperplanes of M .
if i < 26 then

j ← number of connected hyperplanes of M c.
if i + j < 32 then

print M

a b c d e f g h i


v1 1 1 1 0 0 0 0 0 0
v2 0 0 0 1 1 1 0 0 0
v3 0 0 0 0 0 0 1 1 1
v4 1 0 0 1 0 0 1 0 0
v5 0 1 0 0 1 0 0 1 0
v6 0 0 1 0 0 1 0 0 1

Figure 5. The vertex-edge incidence matrix of K3,3.
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d

f

e h

i

g

Figure 6. The labelled K2,3 corresponding to the hyperplane H1.

e+ gd+ e+ f

g + h+ i
e+ f

e+ i

d+ i

g + i
d+ g

d+ e

Figure 7. The labelled P (F7, U2,3) corresponding to the
complement of H1 in P4.

Using SageMath [22], we apply the given hyperplane-counting algorithm
to the two matroids whose representations are given in Figure 8. This shows
that, for every extension of these matroids, either

(i) the number of green hyperplanes exceeds 25, a contradiction to
4.10.3; or

(ii) the sum of the number of red and green hyperplanes exceeds 31, the
number of hyperplanes of P5, and again we have a contradiction.

Note that, when we run the above algorithm with |S| = 10, we do not obtain
any matroids. Thus the search can be restricted to sets S with at most ten
elements.

Next suppose that H ′1|R is a restriction of a copy of F7 ⊕ U1,1. First
we assume that these red elements are contained in the union of the 2-
separating triangle of P (F7, U2,3) with another triangle through p and one
further point, z. Although there are three such lines through p and four
choices for z for each, permuting v4, v5, and v6 reduces these twelve cases to
the following two cases:

(i) e + i, e + f, and g + i are green;
(ii) e + i, e + f and d + i are green.
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

a b c d e f g h i g + e d + i i + e

1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1
1 0 0 1 0 0 1 0 0 1 1 0
0 1 0 0 1 0 0 1 0 1 0 1
0 0 1 0 0 1 0 0 1 0 1 1




a b c d e f g h i g + e g + i e + f

1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 1 0 0
0 0 0 0 0 0 1 1 1 1 0 0
1 0 0 1 0 0 1 0 0 1 1 0
0 1 0 0 1 0 0 1 0 1 0 1
0 0 1 0 0 1 0 0 1 0 1 1


Figure 8. Two extensions of M(K3,3).



a b c d e f g h i e + i e + f g + i

1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 1 0 0
0 0 0 0 0 0 1 1 1 1 0 0
1 0 0 1 0 0 1 0 0 0 0 1
0 1 0 0 1 0 0 1 0 1 1 0
0 0 1 0 0 1 0 0 1 1 1 1




a b c d e f g h i e + i e + f d + i

1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 1 0 1
0 0 0 0 0 0 1 1 1 1 0 1
1 0 0 1 0 0 1 0 0 0 0 1
0 1 0 0 1 0 0 1 0 1 1 0
0 0 1 0 0 1 0 0 1 1 1 1


Figure 9. Two more extensions of M(K3,3).

Thus M is an extension of one of the two matroids whose representations
are shown in Figure 9. Again using SageMath [22] and applying the given
hyperplane-counting algorithm to these two matroids, we see that, for every
extension of these matroids, either the number of green hyperplanes exceeds
25, or the sum of the number of red and green hyperplanes exceeds 31, so
we obtain a contradiction. As in the previous case check, we find that we
can restrict the search to sets S with at most ten elements.
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We may now assume that, for 1 ≤ i ≤ 6, each H ′i|R is a restriction of
F7 ⊕ U1,1 where the coloop in F7 ⊕ U1,1 is one of the elements d + e + f or
g +h+ i. Then, for the red elements of each of H ′1, H

′
2, H

′
3 to behave in this

way, we must have at least two points in {a + b + c, d + e + f, g + h + i}
colored green. Similarly, for H ′4, H

′
5, H

′
6, we must have at least two points

in {a + d + g, b + e + h, c + f + i} colored green. Using symmetry, we may
assume that a + b + c, d + e + f, a + d + g, b + e + h are green. Thus M
is an extension of the matroid whose representation is shown in Figure 10.
Using SageMath [22], we see that this matroid has exactly 27 connected
hyperplanes, a contradiction. Hence the lemma holds. �

We can now prove our main results for binary comatroids.

Proof of Theorem 1.2. Let M be a binary comatroid. Then, by Theorem 1.1,
every flat of each of M and M c is a binary comatroid. Thus, by Corollary 2.6,
none of these flats is a circuit of size exceeding five. By Proposition 2.2 and
Lemma 4.2, none of the flats is isomorphic to P (U3,4, U3,4). Finally, by
Lemma 4.8, none of the flats is isomorphic to the cycle matroid of one of
the six graphs in Figure 1.

Conversely, suppose that M is a binary matroid that is not a comatroid.
Then M has a flat N that is a member of M2. By Lemma 2.3, r(N) ≥ 4.
By Lemma 4.8, if r(N) = 4, then N or N c is isomorphic to the cycle
matroid of one of the six graphs in Figure 1. Thus M or M c has a flat
that is isomorphic to one of these cycle matroids. We may now assume that
r(N) ≥ 5. If r(N) ≥ 6, then, by Theorem 4.7, N or N c is a circuit, so M
or M c has a circuit as a flat. Finally, if r(N) = 5, then, by Lemmas 4.6 and
4.10, we get that M or M c has as a flat either a circuit or P (U3,4, U3,4). �

Because we are only dealing with simple matroids, in the next proof and
from now on, whenever we write M/e, we shall mean si(M/e).

Proof of Corollary 1.4. By Lemma 2.3, every binary matroid of rank at most
three is a comatroid. Thus, in view of Theorem 1.2, it suffices to prove that
M is an induced-minor-minimal binary non-comatroid when M c is either a



a b c d e f g h i

1 1 1 0 0 0 0 0 0 1 0 1 1
0 0 0 1 1 1 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1 0 0 1 1
1 0 0 1 0 0 1 0 0 1 1 1 0
0 1 0 0 1 0 0 1 0 1 1 0 1
0 0 1 0 0 1 0 0 1 1 1 0 0


Figure 10. M is an extension of this matroid whose last
four columns are a+ b+ c, d+ e+ f , a+ d+ g, and b+ e+h.
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circuit of size at least six or is isomorphic to P (U2,3, U2,3). Consider the first
case. Since both M and M c are connected, M is not a binary comatroid.
Observe that, for any proper flat F of M , the matroid (M |F )c is free and so,
by Lemma 2.7, M |F is a binary comatroid. Note that, in view of Lemma 2.7
and Proposition 2.9, it is enough to show that M/e is a binary comatroid
for all e in E(M). Because there is at most one red element on any line
though e, we see that (M/e)c has a most one point, so M/e is a comatroid.

Now suppose that M c ∼= P (U2,3, U2,3). Again, it is enough to show that
M/e is a binary comatroid for all e in E(M). If e is in the projective closure
of one of the 4-circuits of P (U2,3, U2,3), then (M/e)c has a coloop. Thus
(M/e)c is disconnected with each component having rank at most three, so
it is a comatroid. If e is not in one of these projective closures, then (M/e)c

has a most one point and, again, M/e is a comatroid. �

5. Induced-restriction-minimal non-GF (3)-comatroids

In this section, we prove Theorem 1.3 and Corollary 1.5.

Lemma 5.1. Let M be a matroid in M3 such that r(M) ≥ 4 and M has
a cocircuit of size less than four. Then M can be obtained from a circuit of
size at least three by 2-summing a copy of U2,4 to some, possibly empty, set
of elements of the circuit.

Proof. First we show the following.

5.1.1. M has no non-spanning circuit C of rank at least three such that C
intersects a cocircuit of M of size less than four.

Assume that such a circuit C exists and let F be the projective flat
spanned by C. Observe that F has a cocircuit AF that has at most three
green elements and so F |R contains AF minus three points. Since AF is
a ternary affine geometry of rank at least three, F |R is connected of rank
r(F ), a contradiction to the minimality of M . Thus 5.1.1 holds.

Now suppose that M has a 2-cocircuit {a, b}, say. Then M = N⊕2U2,3. If
N has an element s parallel to the basepoint p of the 2-sum, then we move s
so that it is parallel to p in U2,3. Observe that if the basepoint p is contained
in a non-spanning circuit D of N , then there is a non-spanning circuit D′

of M that contains {a, b} and has rank at least three, a contradiction to
5.1.1. Therefore p is free in N . Thus, by Lemma 3.1(ii), N is obtained from
a circuit of size at least three by 2-summing a copy of U2,4 to some of the
elements of the circuit. If {a, b} is in a triangle of M , then M has a flat
isomorphic to N . Thus N is either a circuit of size at least four, or N breaks
up as a 2-sum. By Corollary 2.6, or by Proposition 2.2 and Lemma 4.2, N
is not a ternary comatroid, contradicting the minimality of M . Thus {a, b}
is not in a triangle of M , so M satisfies the lemma.

Next suppose that M has a triad {a, b, c}, say. Observe that if {a, b, c} is
a triangle, we get our result as above. We may now assume that {a, b, c} is
independent. Let Π be the projective plane spanned by {a, b, c} and let H
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be the projective hyperplane spanned by E(M c)− {a, b, c}. It is clear that
Π|R is connected of rank three. Suppose that the projective lines spanned
by {a, b}, {a, c}, and {b, c} meet H at p, q, and s, respectively. Note that
at most one of the points in {p, q, s} is green otherwise Π|G is connected
of rank three, a contradiction. Thus we may assume that q and s are red.
We may also assume that c is not free in M otherwise we have the result
by Lemma 3.1(ii). Let D be a non-spanning circuit of M containing c. By
orthogonality, D contains either a or b and so D has rank at least three.
The result now follows by 5.1.1. �

Lemma 5.2. Let M be a matroid in M3 such that r(M) = 4. Then M or
M c has a cocircuit of size less than four.

Proof. Assume that neither M nor M c has a cocircuit of size less than four.

5.2.1. A rank-3 simple ternary matroid N that is connected either has a
connected rank-3 ternary complement or is AG(2, 3)\e or an extension of it.

Assume that N c is not connected or that r(N c) < 3. Then N c is a
restiction of U2,4 ⊕ U1,1. Thus N is AG(2, 3)\e or an extension of it. Hence
5.2.1 holds.

The next assertion is an immediate consequence of Corollary 3.8.

5.2.2. Both M and M c have a connected hyperplane.

By 5.2.1 and 5.2.2, it follows that we have both a red and a green trian-
gle. In the arguments that follow, we will frequently exploit the symmetry
between R and G.

5.2.3. If a red triangle T is contained in exactly t red hyperplanes, then
|R| ≥ 5t + 3.

By 5.2.1, each red hyperplane containing T has at least five red points
not in the projective closure of T . The result is immediate.

5.2.4. Every red triangle T is contained in exactly three red hyperplanes.
Moreover, |R| ≥ 18 and |G| ≥ 18.

Note that T is in at least two red hyperplanes otherwise we get a red cocir-
cuit of size less than four. Assume that T is in exactly two red hyperplanes,
H1 and H2. Because each of H1 and H2 is AG(2, 3)\e or an extension of it,
one can check that each element t of T is in a red triangle Ti in Hi that meets
T in t. Now consider the projective plane Π that is spanned by T1 and T2.
There are two green planes that contain T . Each of these has AG(2, 3)\e as
a restriction and meets Π in a line through t. This line contains at least two
green points. Hence Π contains both a red 4-circuit and a green 4-circuit,
a contradiction. We conclude that T is in at least three red hyperplanes.
Thus, by 5.2.3, |R| ≥ 18. By symmetry, |G| ≥ 18, so |R| ≤ 22. Hence, by
5.2.3 again, T is not in four red hyperplanes. Therefore 5.2.4 holds.

5.2.5. There is a red triangle that is not contained in a red 4-point line.
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Suppose every red triangle is contained in a red 4-point line. As every red
hyperplane has AG(2, 3)\e as a restriction, one easily checks that every red
hyperplane is a PG(2, 3). Since every red triangle is in three red hyperplanes,
it follows that |R| ≥ 31, a contradiction to 5.2.4.

We now take a red triangle T for which the fourth point, g, on the projec-
tive line spanned by T is green. Now T is in exactly three red hyperplanes,
R1, R2, and R3, and one green hyperplane, G0. Because G0 contains at most
one red point not in T , there are three lines, G1, G2, and G3, in G0 that
contain g and at least two other green points.

We may assume that |R| ≤ |G|, so |R| ∈ {18, 19, 20}. We may also assume
that |R1−T | ≥ |R2−T | ≥ |R3−T | ≥ 5. As |R1−T |+ |R2−T |+ |R3−T | ∈
{15, 16, 17}, we see that |R3 − T | = 5, that |R2 − T | ∈ {5, 6}, and that
|R1 − T | ∈ {5, 6, 7}. Thus R3 contains a green triangle T1 containing g,
so each of the projective planes spanned by T1 ∪ G1, T1 ∪ G2, and T1 ∪ G3

contains a green 4-circuit. Moreover, each such plane meets each of R1 and
R2 in a line through g. For each i in {1, 2}, the plane Ri has at most one line
through g that does not contain at least two red points. Hence, for some j
in {1, 2, 3}, the projective plane spanned by T1 ∪Gj meets both R1 and R2

in a line through g containing at least two red points. Then T1∪Gj contains
a red 4-circuit. As it contains a green 4-circuit, we have a contradiction. �

Theorem 5.3. Let M be a matroid in M3 such that r(M) ≥ 4. Then M
or M c has a cocircuit of size less than four.

Proof. By Lemma 5.2, the result holds when r(M) = 4. Therefore we may
assume that r(M) ≥ 5. Further assume that neither M nor M c has a cocir-
cuit of size less than four. We now let Pr(M) denote the ternary projective
geometry of rank r(M). A flat F of Pr(M) with 3 ≤ r(F ) < r(M) is red or
green depending on whether F |R or F |G is connected of rank r(F ). Let F
be a rank-(r − 2) flat of Pr(M). Then F is contained in exactly four hyper-
planes, say H1, H2, H3, and H4 of Pr(M). Moreover, as neither M nor M c

has a cocircuit of size less than four, we deduce the following.

5.3.1. At least two of H1, H2, H3, and H4 have the same color as F .

Now let G1 and R1 be the sets of green and red hyperplanes, respectively,
of Pr(M). The following is a straightforward consequence of Theorem 4.3.

5.3.2. If H ∈ G1, then at most one of the rank-(r − 2) projective flats
contained in H is red.

Let G2 and R2 be the sets of green and red projective flats of Pr(M) of
rank r − 2. We consider the bipartite graph B with vertex classes G1 ∪ R1

and G2 ∪ R2 such that a vertex X in G1 ∪ R1 is incident to a vertex Y in
G2 ∪R2 if Y ⊆ X. As in the proof of Theorem 4.7, by 5.3.2, the number of
cross edges of this graph is at most |G1|+ |R1|.

Each pair (HG, HR), where HG ∈ G1 and HR ∈ R1, corresponds to a
cross edge e. Note that at most three such pairs can correspond to this
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edge e. Thus the number of cross edges is at least 1
3 |G1||R1|, so 1

3 |G1||R1| ≤
|G1| + |R1|. By symmetry, we may suppose that |G1| ≥ |R1|. Thus |R1| ≤
3 + 3|R1|

|G1| ≤ 6. Since |G1| + |R1| = 3r(M)−1
2 and r(M) ≥ 5, we see that

|G1| ≥ 115, so |R1| ≤ 3 + 3|R1|
|G1| . Hence |R1| ≤ 3 and |G1| ≥ 118, so

|R1| < |G1|. Since every red projective flat of rank r(M)− 2 is contained in
at least two red projective hyperplanes, it follows that |R2| ≤ 3. By 5.3.1, a
flat in R2 is contained in at most two hyperplanes in G1 and so the number
of G1R2-edges is at most six. Thus 1

3 |G1||R1| ≤ |R1| + 6. As |R1| < |G1|,
we deduce that |R1| ≤ 3|R1|+18

|G1| . Since |R1| ≤ 3 and |G1| ≥ 118, it follows

that |R1| = 0, a contradiction to Lemma 3.8. �

Proof of Theorem 1.3. A routine check shows that, up to complementation,
U3,4, P (U2,3, U2,3), U2,4 ⊕2 U2,3, R6, P (U2,4, U2,3), M(K4), and W3 are
the only connected ternary matroids of rank three whose complements are
also connected of rank three. Theorem 1.3 now follows from Lemma 2.3,
Lemma 5.1, Lemma 5.2, and Theorem 5.3. �

Proof of Corollary 1.5. In view of Lemma 2.3 and Theorem 1.3, it suffices to
show that if M c is obtained from a circuit of size at least three by 2-summing
a copy of U2,4 to some, possibly empty, set of elements of the circuit, then
M is an induced-minor-minimal ternary non-comatroid. But, when M c is
as specified, M/e has at most one point and so is a ternary comatroid. �
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