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Abstract

Jim Geelen and Peter Nelson proved that, for a loopless connected binary ma-
troid M with an odd circuit, if a largest odd circuit of M has k elements, then a
largest circuit of M has at most 2k − 2 elements. The goal of this note is to show
that, when M is 3-connected, either M has a spanning circuit, or a largest circuit
of M has at most 2k− 4 elements. Moreover, the latter holds when M is regular of
rank at least four.

Mathematics Subject Classifications: 05B35

1 Introduction

We assume familiarity with matroid theory. Our notation and terminology will follow
Oxley [9] except where otherwise indicated. For a positive integer n, we use [n] to denote
the set {1, 2, . . . , n}. A circuit C in a matroid is even if |C| is even; otherwise C is odd. A
binary matroid is affine if all of its circuits are even. Let M be a matroid having at least
one circuit. The circumference, c(M), of M is the cardinality of a largest circuit of M . If
M has an odd circuit, its odd-circumference, codd(M), is the cardinality of a largest odd
circuit of M . In a private communication to the second author, Jim Geelen and Peter
Nelson proved the following result. The proof appears in [10].

Theorem 1. Let M be a loopless connected binary matroid. If M is non-affine, then

c(M) 6 2codd(M)− 2.

The purpose of this note is to prove the next theorem, a refinement of the last result
for 3-connected matroids.
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Theorem 2. Let M be a 3-connected binary matroid. If M is non-affine, then either M
has a spanning circuit, or

c(M) 6 2codd(M)− 4.

As we shall show at the end of Section 4, the bound in the last theorem is sharp for
infinitely many ranks. In the next section, we note some preliminary results that will be
used in the proof of Theorem 2. The proof of the theorem will be given in Section 3. In
Section 4, we show how Theorem 1 can be combined with results concerning matroids
of small circumference due to Maia [7], Maia and Lemos [8], and Cordovil, Maia, and
Lemos [2] to yield results of Oxley and Wetzler [11] and of Chun, Oxley, and Wetzler [1]
up to some small-rank matroids. In Section 5, we conjecture a strengthening of Theorem 2
and we prove this conjecture when M is regular.

2 Preliminaries

Seymour [12] gave conditions under which a k-separation of a restriction of a matroid
could be extended to a k-separation of the whole matroid. In particular, he proved the
following result [12, (3.8)].

Theorem 3. Let Z be a set in a matroid M and let (P1, P2) be a partition of Z. Then
either M/Z has a circuit that is not a circuit of M/P1 or of M/P2, or E(M) has a
partition (X1, X2) such that Xi ∩ Z = Pi for each i in {1, 2} and

r(X1) + r(X2)− r(M) = r(P1) + r(P2)− r(Z).

For a matroid M , recall that C(M) denotes the set of circuits of M . A subset L of
E(M) is a Tutte-line of M if (M |L)∗ has rank two and has no loops [13]. As Tutte showed
and is easily checked, a Tutte-line L has a partition into sets P1, P2, . . . , Pn for some n > 2
such that C(M |L) = {L− P1, L− P2, . . . , L− Pn}. A Tutte-line L is connected if M |L is
connected or, equivalently, if n > 3.

For a matroid M , a subset S of C(M) is a linear subclass of circuits of M provided
that, for each Tutte-line L of M , either |C(M |L) ∩ S| 6 1, or C(M |L) ⊆ S. Tutte [13,
(4.34)] proved the following result. We shall apply this result here by using the easily
verified fact that, when M is binary, the set of all even circuits of M is a linear subclass
of circuits of M .

Theorem 4. Let S be a linear subclass of circuits of a connected matroid M . If C and
D are circuits of M such that D 6∈ S, then there is a sequence X0, X1, . . . , Xm of distinct
circuits of M with X0 = C and Xm = D such that {X1, X2, . . . , Xm} ∩ S = ∅ and, for
each i in [m], the set Xi−1 ∪Xi is a connected Tutte-line of M .

3 Proof of the Main Theorem

Throughout this section, we assume that M is a connected non-affine binary matroid such
that

codd(M) = 2k + 1,
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for some integer k > 1. By Theorem 1, c(M) 6 4k.

Lemma 5. Let C be a circuit of M such that |C| = 4k. If C1 and C2 are odd circuits of
M such that C = C14 C2, then |C1| = |C2| = 2k + 1 and |C1 ∩ C2| = 1.

Proof. As C1 and C2 are not properly contained in C, it follows that |C1 ∩ C2| > 1.
Therefore

4k = |C| = |C1|+ |C2| − 2|C1 ∩ C2| 6 2(2k + 1)− 2 = 4k, (1)

so equality holds throughout (1). Thus |C1| = |C2| = 2k + 1 and |C1 ∩ C2| = 1.

Let C,C1, C2 be as in Lemma 5. If e ∈ C1 ∩ C2, then we say that e is a good chord of
C having C1 and C2 as its associated circuits.

Lemma 6. If C is a circuit of M such that |C| = 4k, then there are circuits C1 and C2

of M with C = C14 C2 such that |C1 ∩ C2| = 1 and |C1| = |C2| = 2k + 1.

Proof. As noted above, the set S of even circuits of M is a linear subclass of circuits of
M . Choose D 6∈ S. By Theorem 4, M has a sequence X1, X2, . . . , Xm of distinct odd
circuits with Xm = D such that Xi−1 ∪Xi is a connected Tutte-line of M for all i in [m],
where X0 = C. Take C1 = X1 and C2 = C14C. Then C = C14C2. As |C| is even and
|C1| is odd, |C2| is odd. The result follows from Lemma 5.

The last lemma can also be proved by applying Lemma 3.2 of [10]. We have presented
the proof above to recognize Tutte’s contribution to this area.

For a subset F of E(M), an F -arc [12, Section 3] is a circuit of M/F that is not a
circuit of M . Let C be a circuit of M such that |C| = 4k. By Lemma 6, there is a
good chord e for C. Note that {e} is a C-arc of M . Thus {e} is the only C-arc of M
containing e. Let A be a C-arc of M . Then there are circuits CA and DA of M such
that CA ∩DA = A and CA4DA = C. We say that A crosses e provided M |(C ∪ A ∪ e)
is obtained from M(K4) by a sequence of series extensions. In particular, if A crosses e,
then A 6= {e}.

Lemma 7. For a circuit C of M with |C| = 4k, let e be a good chord of C having C1 and
C2 as its associated circuits. Let A be a C-arc of M and let CA and DA be circuits of M
such that CA ∩DA = A and CA4DA = C. Then A crosses e if and only if

∅ 6∈ {CA ∩ C1, CA ∩ C2, DA ∩ C1, DA ∩ C2}. (2)

Moreover, when A crosses e, the circuit space of M |(C ∪ A ∪ e), which is spanned by
{C,C1, CA}, contains seven non-zero members each of which is the support of a circuit of
M |(C ∪ A ∪ e).

Proof. We may assume that e 6∈ A otherwise the result follows easily. Let N = M |(C ∪
A ∪ e) and P = {CA ∩ C1, CA ∩ C2, DA ∩ C1, DA ∩ C2}. As {e} and A are circuits of
N/C, we see that N/C = [(N/C)|A] ⊕ [(N/C)|{e}] and r∗(N/C) = 2. Thus r∗(N) = 3.
Moreover, A and {e} are series classes of N because C is a circuit of N , and A and {e}
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are series classes of N/C. Now the circuit space of N has dimension 3 and is spanned
by {C1, CA, C}. Thus N∗ is represented over GF (2) by the matrix whose columns are
labelled by the elements of E(N) and whose rows are the incidence vectors of C1, CA,
and C. One can now check that the parallel classes of N∗ are A, {e}, and the non-empty
members of P . We deduce that N∗ is isomorphic to a parallel extension of M(K4) if and
only if (2) holds.

Lemma 8. For a circuit C of M satisfying |C| = 4k, let A be a C-arc of M and let e be
a good chord of C. Suppose that CA and DA are circuits of M such that CA ∩ DA = A
and CA4DA = C. If A crosses e, then |A| = 1 and |CA| = |DA| = 2k + 1.

Proof. As CA 4 DA = C, the parities of |CA| and |DA| are the same. We may assume
that CA and DA are even otherwise the result follows by Lemma 5. Let C1 and D1 be the
associated circuits of e with respect to C. We may assume that

|D1 ∩ CA| 6 |C1 ∩ CA|.

By the last part of Lemma 7, CA4C 4C1 is a circuit D of M . Then D = CA4D1.
As CA is even and D1 is odd, D is odd. Observe that

|D| = |A|+ |{e}|+ |C1 ∩ CA|+ |(D1 ∩ C)− CA|
= |A|+ 1 + |C1 ∩ CA|+ (|D1 ∩ C| − |D1 ∩ CA|)
= |A|+ 1 + |D1 ∩ C|+ (|C1 ∩ CA| − |D1 ∩ CA|)
> |A|+ 1 + 2k

where the last step follows because |C1 ∩ CA| > |D1 ∩ CA|. As A is non-empty and D is
odd, we have a contradiction to the assumption that codd(M) = 2k + 1.

Lemma 9. Let M be 3-connected. For a circuit C of M having 4k elements, let e1, e2, . . . , en
be the good chords of C, and let N = M |(C ∪ {e1, e2, . . . , en}). For each i in [n], let Ci

and Di be the associated circuits of ei with respect to C.

(i) If S be a series class of N contained in C, then, for each i in [n], there is an Xi in
{Ci, Di} such that S = C ∩X1 ∩X2 ∩ · · · ∩Xn.

(ii) Every series class of N is trivial.

Proof. By Lemma 6, n > 1. Clearly the circuit space of N has {C,C1, C2, . . . , Cn} as a
basis. We shall first show (i) and use this to deduce (ii).

Let S be a series class of N contained in C. Choose a in S. For each i in [n], there is
an Xi in {Ci, Di} such that a ∈ Xi. Hence S ⊆ Xi and so S ⊆ C ∩X1 ∩X2 ∩ · · · ∩Xn.
Let Z be the matrix whose columns are labelled by the elements of E(N) and whose rows
are the incidence vectors of C,X1, X2, . . . , Xn. Then Z represents N∗ over GF (2). As
C ∩ X1 ∩ X2 ∩ · · · ∩ Xn is non-empty, it is a parallel class of N∗. Hence S = C ∩ X1 ∩
X2 ∩ · · · ∩Xn, so (i) holds.

the electronic journal of combinatorics 29 (2022), #P00 4



Now assume that (ii) fails, and let S be a series class of N such that |S| > 2. By (i),
for each i in [n], there is an Xi in {Ci, Di} such that

S = C ∩X1 ∩X2 ∩ · · · ∩Xn. (3)

Note that {S,E(N)−S} is a 2-separation for N . As M is 3-connected, Theorem 3 implies
that there is a circuit A of M/E(N) that is not a circuit of M/S or of M/(E(N) − S).
As e1, e2, . . . , en are loops of M/C, it follows that A is a circuit of M/C. Then there are
circuits CA and DA of M such that CA ∩DA = A and CA 4DA = C. Choose CA such
that |CA ∩ C| 6 2k. Now CA − E(N) = A and CA ∩ E(N) 6= ∅. As A is not a circuit of
M/S, it follows that

(CA ∩ C)− S 6= ∅.

Likewise, as A is not a circuit of M/(E(N)− S),

CA ∩ S 6= ∅.

Take a in (CA∩C)−S and s in S∩CA. Then a 6∈ Xj for some j in [n]. Let Yj = Xj4C.
Then a ∈ Yj ∩ CA and s ∈ Xj ∩ CA. Hence

∅ 6∈ {Xj ∩ CA, Yj ∩ CA}. (4)

If S ⊆ CA, then DA is a circuit of M such that A ⊆ DA ⊆ C ∪ A and DA ∩ S = ∅.
Thus A is a circuit of M/(E(N)− S), a contradiction. Therefore

S 6⊆ CA. (5)

As |Yj∩C| = 2k > |CA∩C| and s ∈ CA−Yj, it follows that Yj∩DA = (Yj∩C)−CA 6= ∅.
We also have that Xj ∩DA = (C−Yj)−CA 6= ∅ because S ⊆ C−Yj and S 6⊆ CA, by (5).
We deduce that

∅ 6∈ {Xj ∩DA, Yj ∩DA}. (6)

By (4), (6), and Lemma 7, A crosses {ej}. Thus, by Lemma 8, |A| = 1 and |CA| =
|DA| = 2k + 1. If A = {f}, then f is a good chord of C. This is a contradiction as
f 6∈ {e1, e2, . . . , en}. Hence (ii) holds.

Next we prove the main result.

Proof of Theorem 2. We continue to assume that M is a non-affine binary matroid for
which codd(M) = 2k + 1. In addition, we assume that M is 3-connected and that C is
a circuit of M with 4k elements. We shall prove that C spans M . Let e1, e2, . . . , en be
the good chords of C. By Lemma 6, n > 1. For i in [n], let Ci and Di be the associated
circuits of ei with respect to C. Let N = M |(C ∪ {e1, e2, . . . , en}).

We may assume that E(M)−E(N) 6= ∅ otherwise the result holds. Let A be a circuit
of M/E(N) that is not a circuit of M . Note that A is a circuit of M/C because C spans
N . Let CA and DA be circuits of M such that A = CA ∩DA and C = CA4DA. Choose
CA such that |CA ∩ C| 6 2k.

the electronic journal of combinatorics 29 (2022), #P00 5



Suppose that |CA ∩ C| < |A|. Then |DA| = [|C| − |CA ∩ C|] + |A| > |C| = 4k, a
contradiction. We conclude that

|CA ∩ C| > |A|.

Therefore |CA∩C| > 2, otherwise |CA∩C| = 1, so |A| = 1 and |CA| = 2, a contradiction.
Let a and b distinct elements of CA∩C. By Lemma 9(ii), {a} is a series class of N . By

Lemma 9(i), for each i in [n], there is an Xi in {Ci, Di} such that {a} = C∩X1∩X2∩· · ·∩
Xn. Thus b 6∈ Xj for some j in [n]. Take Yj = C4Xj. Thus CA∩Xj 6= ∅ and CA∩Yj 6= ∅.
As |CA ∩ C| 6 2k = |Xj ∩ C| = |Yj ∩ C|, it follows that Xj ∩DA = (Xj ∩ C) − CA 6= ∅
and Yj ∩ DA 6= ∅. By Lemma 7, A crosses {ej}. By Lemma 8, |A| = 1, say A = {f},
and f is a good chord of C in M , a contradiction. Thus C spans M and the theorem is
proved.

4 Consequences

In this section, we note some implications of Theorem 1. We begin with a quick proof of
this theorem based on the following 2007 result of Lemos [4, Corollary 1]. For an element
e of a connected matroid M other than U1,1, let ce(M) be the size of a largest circuit of
M containing e.

Theorem 10. Let e be an element of a connected matroid M such that r(M) > 3. If
M/e is connected, then

ce(M) >

⌈
c(M)

2

⌉
+ 2.

Proof of Theorem 1. As M is non-affine, connected, and loopless, r(M) > 2. Let [Ir|Z]
be a binary representation of M . Adjoin a new column to [Ir|Z] labelled by e and a new
row consisting entirely of ones. Every entry in the column labelled by e is zero except
for the entry in the new row, which is one. Let N be the binary matroid represented by
this new matrix. Clearly N is affine. Moreover, since N/e is connected, N is connected
otherwise N has e as a loop or a coloop. But e is clearly not a loop of N , and e is not a
coloop of N because N/e has an odd circuit K, and K∪e is a circuit of the affine matroid
N . Now

{C ∈ C(N) : e ∈ C} = {D ∪ e : D ∈ C(M) and D is odd}, and

{C ∈ C(N) : e 6∈ C} ⊇ {D : D ∈ C(M) and D is even}.

By Theorem 10,

codd(M) + 1 = ce(N) > d c(N)
2
e+ 2 > d c(M)

2
e+ 2.

Therefore codd(M)− 1 > c(M)
2

and the theorem follows.
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Theorem 1 was motivated in part by results of Oxley and Wetzler [11] and Chun, Oxley,
and Wetzler [1] determining the simple connected binary matroids with odd-circumference
three and the 3-connected binary matroids with odd-circumference five. As Theorem 1
bounds the circumference of a matroid in terms of its odd-circumference, the first of
these results can be derived from theorems that determine all simple connected matroids
of small circumference. Such matroids having circumference in {3, 4, 5} were found by
Maia [7] and Maia and Lemos [8]. We begin with the 3-connected case [8, Theorem 1.2].
The matroid Z5 is the rank-5 binary spike with tip t.

Theorem 11. Let M be a 3-connected matroid that is not isomorphic to U1,1, F
∗
7 , AG(3, 2),

Z5\{e, t}, or Z5\t, where e is an element of Z5 other than t. If r(M) 6 5, then
c(M) = r(M) + 1.

In [5, Theorem 1.5], we proved the following.

Theorem 12. For a 3-connected matroid M of rank at least six, c(M) > 6.

A matroid M is an e-book if, for some n > 1, there are 3-connected rank-2 matroids
M1,M2, . . . ,Mn and an element e such that E(Mi)∩E(Mj) = {e}, when i 6= j, and M is
Pe(M1,M2, . . . ,Mn), the parallel connection, with basepoint e, of M1,M2, . . . ,Mn. The
next result combines Propositions 1, 3, and 4 and Theorem 8 of Maia [7].

Theorem 13. Let M be a simple connected matroid that is not 3-connected. If c(M) 6 5,
then there are matroids N , B1, and B2 such that N is 3-connected, B1 is an e-book, B2 is
an f -book, E(B1) and E(B2) are disjoint, E(B1)∩E(N) = {e}, and E(B2)∩E(N) = {f}.
Moreover,

(i) r(N) ∈ {2, 3} and M = Pe(N,B1)\X, for some X ⊆ {e}; or

(ii) N is isomorphic to F ∗7 or to AG(3, 2) and M = Pe(N,B1)\X, for some X ⊆ {e};
or

(iii) r(N) = 2 and M = Pf (Pe(N,B1), B2)\X, for some X ⊆ {e, f}.

These results can now be used to prove the following result of Oxley and Wetzler’s [11]
that determines all connected binary matroids with odd-circumference three. We denote
by K ′2,n the graph obtained from K2,n by adding an edge joining the vertices in the 2-vertex
class.

Theorem 14. A connected simple binary matroid M has no odd circuits other than
triangles if and only if

(i) M is affine; or

(ii) M is isomorphic to M(K4) or F7; or

(iii) M is isomorphic to M(K ′2,n) for some n > 1.
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Proof. If codd(M) = 3, then, by Theorem 1, c(M) 6 4. The theorem now follows from
Theorems 11, 12, and 13.

For n > 2, a binary matroid M is a book having pages M1,M2, . . . ,Mn and spine T
provided that

(i) M1,M2, . . . ,Mn are binary matroids; and

(ii) T = E(M1) ∩ E(M2) ∩ · · · ∩ E(Mn); and

(iii) E(M1)− T,E(M2)− T, . . . , E(Mn)− T are pairwise disjoint sets; and

(iv) T is a triangle of each Mi; and

(v) M is PT (M1,M2, . . . ,Mn), the generalized parallel connection across the triangle T
of M1,M2, . . . ,Mn.

Theorem 15 (Cordovil, Maia, and Lemos [2]). Let M be a 3-connected binary matroid
such that r(M) > 8. Then c(M) = 6 if and only if, for n = r(M)− 2, there is a book M ′

with pages M1,M2, . . . ,Mn and spine T such that each Mi is isomorphic to M(K4) or F7,
and M = M ′\S for some S ⊆ T .

This theorem can be combined with Theorem 2 to prove the following result of Chun,
Oxley, and Wetzler [1] for matroids of rank at least eight. Note that all of the matroids
described in (iii) of this theorem attain the bound in Theorem 2.

Theorem 16. A 3-connected binary matroid M has no odd circuits of size exceeding five
if and only if

(i) M is affine; or

(ii) r(M) 6 5; or

(iii) M is obtained from an n-page book, whose pages are isomorphic to M(K4) or F7,
for some n > 4 by deleting up to two elements of its spine; or

(iv) M has rank six and is one of nine non-regular matroids.

Proof for r(M) > 8. By Theorem 14, we may assume that codd(M) = 5. Then, by Theo-
rem 2, either c(M) = r(M) + 1, or c(M) 6 6. If c(M) = r(M) + 1, then, by Theorem 1,
r(M) 6 7, a contradiction. If c(M) 6 6, then, by Theorem 12, c(M) = 6 and the theorem
follows by Theorem 15.

One may hope to be able to bound the circumference of a binary matroid in terms
of the maximum size of an even circuit. But this is not possible. For positive integers c
and d such that c < d and d is odd, Lemos, Reid, and Wu [6, Theorem 1.3] describe all
connected binary matroids such that

{c, d} = {|C| : C ∈ C(M)}.

Their results show that the number c must be even. Moreover, it is possible to construct
these matroids keeping c fixed and taking d as large as one desires.
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5 Extensions

We believe that the following extension of Theorem 2 holds.

Conjecture 17. Let M be a 3-connected binary matroid. If M is non-affine, then either
M is isomorphic to U0,1, U2,3, M(K4), or F7, or

c(M) 6 2codd(M)− 4.

We show next that the conjecture holds when M is regular.

Theorem 18. Let M be a 3-connected regular matroid. If M has an odd circuit, then
either M is isomorphic to U0,1, U2,3, or M(K4), or

c(M) 6 2codd(M)− 4.

Proof. As M is regular and 3-connected having an odd circuit, we may assume that
codd(M) > 5 otherwise, by Theorem 14, M is isomorphic to U0,1, U2,3, or M(K4). We may
also assume that c(M) > 2codd(M)−4 and, by Theorem 2, that M has a spanning circuit.
By Theorem 1, c(M) 6 2codd(M) − 2. Moreover, equality holds here since codd(M) > 5.
Thus, for some k > 2, the matroid M has a spanning circuit C having 4k elements, and
codd(M) = 2k + 1.

Let e1, e2, . . . , en be the good chords of C. Then, by Lemma 6, n > 1. Let N =
M |(C ∪ {e1, e2, . . . , en}). Then N has a binary representation of the form [I4k−1|1|D]
where the columns of I4k−1 are labelled by the elements of C − z for some z in C, the
column 1 of all ones is labelled by z, and the columns of D are labelled by {e1, e2, . . . , en}.
Then each column of D has exactly 2k ones. Moreover, since by Lemma 9, all series
classes of N are trivial, all of the rows of D are distinct and non-zero. Since k > 2, it
follows that D has at least seven rows, so D has at least three columns.

For columns a, b, and c of D, let D[a, b, c] be the submatrix of D whose columns
are labelled by a, b, and c. Evidently, D[a, b, c] has exactly eight possible different rows.
Let xi be the number of rows equal to (t2, t1, t0) where i = t22

2 + t12 + t0. Hence, by
permuting rows, the matrix that is obtained from D[a, b, c] by adjoining the column sums
a + b + c and a + b + c + z is as shown in Figure 1 where the labels on the rows indicate
the multiplicities of the rows and may be zero.

Because each of a, b, and c has exactly 2k ones, we have

x4 + x5 + x6 + x7 = 2k,

x2 + x3 + x6 + x7 = 2k,

x1 + x3 + x5 + x7 = 2k.

Thus
x1 + x2 + x4 + x7 + 2(x3 + x5 + x6) = 6k − 2x7,

so
x1 + x2 + x4 + x7 ≡ 0 mod 2.
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As
∑7

i=0 xi = 4k − 1, we deduce that

x0 + x3 + x5 + x6 ≡ 1 mod 2.

We will be interested in the sets C ′{a, b, c} and C ′{a, b, c, z} where, for example, the
first of these is the union of {a, b, c} and all of the elements of C − z in which the
corresponding row of a + b + c is one. Clearly

|C ′{a, b, c}| = x1 + x2 + x4 + x7 + 3,

and
|C ′{a, b, c, z}| = x0 + x3 + x5 + x6 + 4.

Because the sum of the columns in each of the sets C ′{a, b, c} and C ′{a, b, c, z} is the zero
vector, each set is a disjoint union of circuits of M .

18.1. At most one of C ′{a, b, c} and C ′{a, b, c, z} is a circuit of M

Assume that both sets are circuits of M . As each is odd, each has at most 2k + 1
elements. Thus

(4k − 1) + 7 =
7∑

i=0

xi + 7 = |C ′{a, b, c}|+ |C ′{a, b, c, z}| 6 (2k + 1) + (2k + 1),

a contradiction. Thus 18.1 holds.

18.2. For every two columns a and b of D, each of (1, 1), (1, 0), and (0, 1) must occur as a
row of D[a, b]. Moreover, the number s of rows equal to (1, 0) equals the number of rows
equal to (0, 1). The number t of rows equal to (1, 1) is in [2k − 1], and number of rows
equal to (0, 0) is 4k − 1− 2s− t.

This follows because each column of D has 2k ones and 2k − 1 zeros.

18.3. D[a, b, c] does not have as a submatrix either the matrix F in Figure 2 or any row
or column pemutation of F .



a b c a + b + c a + b + c + z

x0 0 0 0 0 1
x1 0 0 1 1 0
x2 0 1 0 1 0
x3 0 1 1 0 1
x4 1 0 0 1 0
x5 1 0 1 0 1
x6 1 1 0 0 1
x7 1 1 1 1 0


Figure 1: D[a, b, c] with a + b + c and a + b + c + z adjoined.
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Assume that D[a, b, c] has F as a submatrix. Observe that a circuit of M contained in
C ′{a, b, c} and containing c must also contain a and b. As C− z is independent, it follows
that C ′{a, b, c} is a circuit of M . Moreover, a circuit of M contained in C ′{a, b, c, z} and
containing z must also contain a and b, and hence c. Thus C ′{a, b, c, z} is a circuit of M ,
so we have a contradiction to 18.1. Hence 18.3 holds.

18.4. D[a, b] does not have exactly one row in which both entries are one.

Assume that D[a, b] has exactly one row, say row 2k, equal to (1, 1). Then we may
assume that the first 2k − 1 rows of D[a, b] equal (1, 0) and the last 2k − 1 rows equal
(0, 1). Suppose that D has a column c other than a or b such that its entry in row 2k is
equal to one. Then, because D[b, c] has (0, 1) as a row, there must be a one in column c
among the first 2k− 1 rows. By symmetry, as D[a, c] has (0, 1) as a row, there is a one in
column c among the last 2k − 1 rows. Because c has exactly 2k ones, it must also have a
zero among each of its first 2k − 1 and last 2k − 1 rows. It follows that, after a possible
row permutation, D[a, b, c] has F as submatrix, a contradiction to 18.3.

We may now assume that, for every column c other than a and b, the entry in row 2k
is 0. As c has rows among its first 2k − 1 and last 2k − 1 having entries equal to one, it
follows that D[a, b, c] has as a submatrix the 3×3 matrix whose rows are (1, 0, 1), (1, 1, 0)
and (0, 1, 1). Since z is a column of all ones, it follows that N has the Fano matroid as a
minor, a contradiction. We conclude that 18.4 holds.

We may now assume that D[a, b] has at least two rows equal to (1, 1). As the corre-
sponding rows of D are distinct, there is a column c in which the entries in these two rows
are distinct. Hence D[a, b, c] has (1, 1, 1) and (1, 1, 0) as rows. Since D[a, c] has (0, 1) as
a row, D[a, b, c] has (0, 1, 1) or (0, 0, 1) as a row. Consider the first case. As D[b, c] has
(0, 1) as a row, D[a, b, c] has (1, 0, 1) or (0, 0, 1) as a row. The first of these options yields
F ∗7 as a minor of M . Thus D[a, b, c] has (0, 0, 1) as a row. As D[a, b] has (1, 0) as a row,
D[a, b, c] has (1, 0, 1) or (1, 0, 0) as a row. Again, the first of these options yields F ∗7 as a
minor of M . Thus D[a, b, c] has (1, 0, 0) as a row. Hence D[a, b, c] has as a submatrix a
row and column permutation of F , a contradiction to 18.3.

It remains to consider the case when D[a, b, c] has (1, 1, 1), (1, 1, 0), and (0, 0, 1) as
rows. We showed above that D[a, b, c] does not have (0, 1, 1) as a row. By symmetry
between the first two columns, D[a, b, c] does not have (1, 0, 1) as a row. As D[a, b] has
(1, 0) as a row, D[a, b, c] has (1, 0, 0) as a row. Also, as D[a, b] has (0, 1) as a row, D[a, b, c]
has (0, 1, 0) as a row since it does not have (0, 1, 1) as a row. It follows that, after adjoining



a b c

1 0 1
1 0 0
1 1 1
0 1 0
0 1 1


Figure 2: F does not occur as a submatrix of D[a, b, c].
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column z to D[a, b, c], we obtain a matrix that has, as a submatrix, a row permutation of
the matrix

D′ =


z a b c

1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1

.
Then [I4|D′] represents a minor of M . This minor is the non-regular matroid S8, so we
have a contradiction that completes the proof.
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