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Abstract. Let H be a graph with κ1 components and κ2 blocks, and let

G be a minor-minimal 2-connected graph having H as a minor. This paper

proves that |E(G)| − |E(H)| ≤ α(κ1 − 1) + β(κ2 − 1) for all (α, β) such that
α + β ≥ 5, 2α + 5β ≥ 20, and β ≥ 3. Moreover, if one of the last three

inequalities fails, then there are graphs G and H for which the first inequality
fails.

1. Introduction

A telephone network in a town is disrupted when one of the optical-fibre cables
is accidentally cut. The telephone company wishes to augment its network to
ensure that it will still function in such a situation, or when a node fails after,
say, a lightning strike. Modelling the existing network by a graph H, we seek a 2-
connected graph G that has H as a subgraph. Moreover, in order to minimize cost,
we want G to be a minimal such graph. What can be said about |E(G)| − |E(H)|?
As another example, let H be the vertex-disjoint union of a collection of cliques,
cycles, and stars, and let G be a 2-connected graph that is minor-minimal having H
as a minor. Again, what can be said about |E(G)|−|E(H)|? Both of these problems
are special cases of the problem of finding a sharp upper bound on |E(G)|− |E(H)|
when G is a minor-minimal n-connected graph having some fixed graph H as a
minor. In this paper, we completely solve this problem in the case that n = 2.
When n = 1, it is not difficult to see that |E(G)| − |E(H)| can be bounded by a
linear function in κ1(H), the number of connected components of H. In particular,
|E(G)| − |E(H)| = κ1(H) − 1. When n = 2, we again seek a linear bound, this
time in κ1(H) and κ2(H), where the latter is the number of blocks of H. By
considering several families of examples, we derive certain necessary conditions on
the coefficients in such a bound. Our main result is that these necessary conditions
are also sufficient.

1.1. Theorem. Let α and β be real numbers. Then, for all graphs G and H such
that G is a minor-minimal 2-connected graph having H as a minor,

|E(G)| − |E(H)| ≤ α(κ1(H)− 1) + β(κ2(H)− 1)

if and only if
α+ β ≥ 5, (C1)

2α+ 5β ≥ 20, and (C2)

β ≥ 3. (C3)
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A block of a graph is a maximal connected subgraph H of G such that every two
distinct edges of H lie in a cycle. In particular, each loop is a block of G as is each
isolated vertex. It is well-known (see, for example, [6, Proposition 4.1.8]) that, for
a graph G with at least three vertices, G is a block if and only if G is 2-connected
and loopless.

The three inequalities (C1)–(C3) define an unbounded convex polyhedron A in
the αβ-plane (see Figure 1). The following is a variant of the first theorem.

1.2. Theorem. Let α and β be real numbers. Then, for all graphs G and H such
that G is a minor-minimal block having H as a minor,

|E(G)| − |E(H)| ≤ α(κ1(H)− 1) + β(κ2(H)− 1)

if and only if (α, β) ∈ A.

For all (α, β) not in the polyhedron A, we shall describe examples in which the
bound on |E(G)| − |E(H)| fails. We remark that both of the last two theorems
remain valid if we insist that G and H are simple graphs. Both theorems will be
derived from a more general, but slightly technical, result, which will be stated
in the next section (Theorem 2.1). We now address a technicality that has been
glossed over in the last two theorems. A minor of a graph G is a graph that can
be obtained from G by a sequence of edge deletions, edge contractions, and vertex
deletions. We shall say that such a minor H ′ equals some fixed graph H if H ′ and
H are the same up to vertex labels or, more precisely, E(H ′) = E(H) and there is
a bijection f : V (H ′) → V (H) such that an edge e in H ′ joins vertices u and v if
and only if e joins f(u) and f(v) in H.

The polyhedron A has exactly two vertices, namely ( 5
3 ,

10
3 ) and ( 5

2 , 3). We get
the next result by applying Theorem 1.1 to the two vertices of A. As we shall see,
the fact that the bound on |E(G)| − |E(H)| holds for these two points implies that
it holds for all (α, β) in A. The difficulty of proving the main results of this paper
is increased significantly because A has two vertices instead of just one. However,
we believe that the curious, and apparently counterintuitive, shape of A increases
the interest of the main theorems.

1.3. Corollary. For all graphs G and H such that G is a minor-minimal 2-
connected graph having H as a minor,

|E(G)| − |E(H)| ≤ 5
3κ1(H) + 10

3 κ2(H)− 5 and

|E(G)| − |E(H)| ≤ 5
2κ1(H) + 3κ2(H)− 5.

Part of the motivation for seeking a bound on |E(G)| − |E(H)| that is linear in
κ1(H) and κ2(H) derives from the solution to the corresponding matroid problem,
which we state in the next result [5].

1.4. Theorem. Let N be a matroid having k 2-connected components and M be a
minor-minimal 2-connected matroid having N as a minor. Then

|E(M)| − |E(N)| ≤ 2k − 2

unless N or its dual is free, in which case,

|E(M)| − |E(N)| ≤ k − 1.

Moreover, these bounds are attained for all choices of N .
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Figure 1. The unbounded polyhedron A.

When M is a non-empty graphic matroid, M ∼= M(G) for some graph G having
no isolated vertices. Moreover, M is 2-connected if and only if G is a block. Thus
if H is a graph without isolated vertices, then the number of blocks of H equals
the number k of 2-connected components of the matroid M(H). Suppose that
every connected component of the graph H is also a block. Then a minor-minimal
2-connected matroid having M(H) as a minor has at most 2k − 2 more elements
than H. This may suggest that a minor-minimal block having H as a minor should
satisfy the bound

|E(G)| − |E(H)| ≤ 2κ2(H)− 2.

However, this is not so. For example, consider the graph G in Figure 2 that is
constructed from the vertex-disjoint union of n 6-cycles where n ≥ 2. Let X be the
set of dashed edges, Y be the set of dotted edges, and H = G\X/Y , the graph that
is obtained from G by deleting X and contracting Y . Then H is the vertex-disjoint
union of two 5-cycles and n − 2 4-cycles. It is straightforward to see that G is a
minor-minimal block having H as a minor and

|E(G)| − |E(H)| = 4(n− 1) = 4κ2(H)− 4.

As we shall show in Theorem 3.5, the last bound holds for all graphs H having
κ1(H) = κ2(H) provided G is a minor-minimal 2-connected graph having H as a
minor.

The disparity above between the graph and matroid bounds arises because the
matroids of two graphs are equal provided the graphs have the same blocks. This
does not mean that the graphs themselves must be equal. Indeed, the precise
relationship between the graphs is described in Whitney’s 2-Isomorphism Theorem
[9] (see, for example, [6, Theorem 5.3.1]). In our example above, a minor-minimal
2-connected graphic matroid having M(H) as a minor is the cycle matroid of the
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Figure 2. The graph G.

graph that is obtained from G by contracting all dashed edges and then deleting
one edge from each resulting 2-cycle.

The reader may feel that, instead of the bound in our main results, we should
be seeking a more general linear bound of the form

|E(G)| − |E(H)| ≤ ακ1 + βκ2 + γ. (1)

But if, for example, in Theorem 1.2, the graph H is a block, then G = H and
κ1(H) = κ2(H) = 1. Thus, the more general bound yields −α−β ≥ γ. The bound
in Theorem 1.2 has −α− β = γ and so is at least as sharp as the bound in (1)

For graphs, considerable effort has been expended on the problems of determining
the minimum number of edges that need to be added to a graph H to obtain a graph
G with specified edge- or vertex-connectivity, and of algorithmically finding G (see,
for example, [4, 3, 8]). In particular, Eswaran and Tarjan [3] solved the problem of
bounding |E(G)| − |E(H)| when G is required to be 2-connected. This differs from
the problem we solve in two significant ways. Firstly, this variant of the problem
requires that H is a spanning subgraph, rather than an arbitrary minor, of G.
Secondly, and more significantly, this problem imagines a friendly constructor who
wants to minimize the number of edges that need to be added to H to achieve
2-connectedness. The corresponding subgraph version of our problem imagines an
adversarial constructor who wants to maximize the number of edges that can be
added while still achieving a 2-connected graph that is minimal with the properties
of being 2-connected and having H as a spanning subgraph.

2. Preliminaries

The graph and matroid terminology used here will follow Bondy and Murty [1]
and Oxley [6], respectively. For a graph G, we denote by L(G) and ι(G) the set of
loops of G and the number of isolated vertices of G. Moreover, if Z is a non-empty
subset of V (G) or of E(G), then G[Z] denotes the subgraph of G induced by Z.

In order to be able to prove Theorems 1.1 and 1.2 at the same time, we shall prove
a more general result that has both theorems as special cases. Let H be a graph
and L be a subset of L(H). We denote by GL(H) the class of all minor-minimal
graphs G having the following properties:

(a) G\L(G) is a block;
(b) G has H as a minor; and
(c) L(G) ⊆ L.

When L = ∅ and H is not the graph consisting of a single loop, a graph G ∈ GL(H)
if and only if G is a minor-minimal block having H as a minor. When L = L(H) and
|V (H)| ≥ 3, a graph G ∈ GL(H) if and only if G is a minor-minimal 2-connected
graph having H as a minor.
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The next result is the main result of the paper.

2.1. Theorem. Let α and β be real numbers. Then, for all graphs G and H such
that G ∈ GL(H) and L is a set of loops of H,

|E(G)| − |E(H)| ≤ α(κ1(H)− 1) + β(κ2(H)− 1)

if and only if (α, β) ∈ A.
We observe that if H is a simple graph and G ∈ GL(H), then G must also be

simple. Thus the theorem remains valid if we add the requirement that both G and
H are simple.

We now outline the structure of the paper. In the remainder of this section,
we note some useful preliminary lemmas. Section 3 bounds |E(G)| − |E(H)| when
G ∈ GL(H) and H is either a deletion or a contraction of G. In Section 5, we
describe examples to prove that it is necessary that (α, β) lie in A for the specified
bound on |E(G)| − |E(H)| to hold for all G in GL(H). These examples are based
on constructions introduced in Section 4. The proof that (α, β) being in A is
sufficient to yield the specified bound on |E(G)| − |E(H)| will make frequent use
of a decomposition described in Section 6, while Section 7 contains three technical
lemmas that will be needed in the proof. In Section 8, we begin the proof that,
when (α, β) ∈ A,

|E(G)| − |E(H)| ≤ α(κ1(H)− 1) + β(κ2(H)− 1)

for all G in GL(H). The proof begins by establishing that it is sufficient to prove this
result when (α, β) is one of the two vertices of A. It then chooses a counterexample
G that is minimal with respect to some carefully chosen criteria, and shows that
both G and H are loopless and that Y is non-empty where H = G\X/Y . As one
would expect from the shape of A, the rest of the proof is quite complex; an outline
of it is given in Section 9.

The following elementary but useful graph-theoretic result is a special case of a
well-known matroid result [7] (see, for example, [6, Theorem 4.3.1]).

2.2. Lemma. If G is a block and e ∈ E(G), then G\e or G/e is a block.

The next three lemmas will be used repeatedly throughout the paper. The first
shows that H can be obtained in just one way from a member of GL(H).

2.3. Lemma. Let H be a graph and L be a subset of L(H). If G ∈ GL(H), then
there are unique subsets X and Y of E(G) such that H = G\X/Y . Hence G[Y ] is
a forest and X does not contain a loop of G/Y .

Proof. We know that H can be obtained from G by a sequence of edge deletions,
edge contractions, and vertex deletions. By choosing such a sequence in which the
number of vertex deletions is minimized, it is not difficult to show that H = G\X/Y
for some subsets X and Y of E(G).

Now suppose that there is an edge e of G such that H is a minor of both G\e
and G/e. Then e 6∈ L(G), so L(G\e) = L(G). Now either (G\L(G))\e is or is not a
block. In the first case, (G\e)\L(G\e) is a block and the choice of G is contradicted.
In the second case, by Lemma 2.2, (G\L(G))/e is a block and, since (G\L(G))\e
is not, L(G/e) = L(G). Hence (G/e)\L(G/e) is a block contradicting the choice of
G. We conclude that G has no edge e such that H is a minor of both G\e and G/e.
Hence the sets X and Y are unique. It follows immediately from this that G[Y ] is
a forest and that X does not contain a loop of G/Y . �
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2.4. Lemma. Suppose that G ∈ GL(H) and H = G\X/Y . If G′ is a connected
component of G\X, then G′ has no pendant edge that belongs to Y .

Proof. Suppose that G′ has a pendant edge f that belongs to Y . Let v be a degree-
1 vertex in G′ incident with f . Then Ev − f ⊆ X where Ev is the set of edges of
G meeting v. Let H ′ = G\(X ∪ f)/(Y − f). Then H ′ can be obtained from H by
adjoining v as an isolated vertex. Now suppose we can choose e in Ev − f , and let
H ′′ = G\[(X ∪ f)− e]/[(Y ∪ e)− f ]. Then the only difference between H ′′ and H ′

is that v is an isolated vertex of the latter. Thus H ′′ = H. This contradiction to
the uniqueness of X and Y implies that Ev − f = ∅. In that case, G/f contradicts
the minimality of G. �

2.5. Lemma. Suppose that G and G′ are blocks and that there are unique subsets
X ′ and Y ′ of E(G) such that G′ = G\X ′/Y ′. Then, for all x in X ′ and all y in
Y ′, both G\x and G/y are blocks.

Proof. Suppose that G\x is not a block for some x in X ′. Then G\x has an endblock
that contains no edges of G′. Since G′ arises uniquely from G and G is a block,
it follows that this endblock is a path P , one end of which is adjacent to x in G.
Clearly P ⊆ Y ′. Choose y ∈ P . Then G′ also arises from G by deleting (X ′−x)∪y
and contracting (Y ′ − y)∪ x; a contradiction. We conclude that G\x is a block for
all x in X ′.

Suppose that G/y is not a block for some y in Y ′. Then, as G′ is a block, G/y
has a block G′′ that contains no edges of G′. Since G′ arises uniquely from G and
G is a block, G′′ must be a loop z at the vertex that arises from identifying the
endpoints of y. But then G′ can be obtained as a minor of both G\z and G/z; a
contradiction. �

3. The deletion and contraction cases

In this section, we first bound |E(G)| − |E(H)| when G is a minor-minimal
2-connected graph having H as a subgraph. This result will be deduced from a
more general theorem about GL(H). We omit the proof of the following elementary
result.

3.1. Lemma. Let e be an edge of a graph K. If K\e has more connected components
than K, then κ2(K) = κ2(K\e) + 1 + [ι(K)− ι(K\e)].

3.2. Theorem. Let H be a graph and L be a subset of L(H). If G ∈ GL(H) and
H = G\X, then |X| ≤ κ1(H) + κ2(H)− 2.

Proof. As every loop of H must be a loop of G, it follows that L = L(H) = L(G).
Clearly

κ1(H) = κ1(H\L) and κ2(H) ≥ κ2(H\L). (2)
Observe that G\L ∈ G∅(H\L). Thus, by (2), we need only to prove that |X| ≤
κ1(H\L) + κ2(H\L)− 2. Hence we may assume that neither H nor G has loops.

We prove the theorem by induction on |X|. Evidently it holds when |X| = 0 for,
in that case, G = H and κ1(H) = κ2(H) = 1. Assume the result holds for |X| < n
and let |X| = n ≥ 1. Let e be an edge in X and let v and w be its endpoints. We
distinguish the following three cases:

(i) v and w belong to the same component K of H;
(ii) v is an isolated vertex of H; and
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(iii) v and w belong to different components of H both having at least two
vertices.

In case (i), κ2(K + e) < κ2(K) otherwise v and w belong to the same block of
H so G\e is a block that contradicts the choice of G. Thus κ2(H + e) < κ2(H).
Moreover, κ1(H + e) = κ1(H). Hence, by the induction assumption,

|X − e| ≤ κ1(H + e) + κ2(H + e)− 2 < κ1(H) + κ2(H)− 2.

Thus, in case (i), |X| ≤ κ1(H) + κ2(H)− 2, as required.
In case (ii), κ1(H + e) = κ1(H)− 1 and, by Lemma 3.1,

κ2(H + e) = κ2(H) + 1 + [ι(H + e)− ι(H)] ≤ κ2(H).

Thus, by the induction assumption,

|X − e| ≤ κ1(H + e) + κ2(H + e)− 2 ≤ [κ1(H)− 1] + κ2(H)− 2.

Hence, in case (ii), |X| ≤ κ1(H) + κ2(H)− 2, as required.
In case (iii), let G′ = G/e and let H ′ = G/e\(X − e), so H ′ is a spanning

subgraph of G′. Since G\e is not a block, Lemma 2.2 implies that G′ is a loopless
block. Now suppose that G′\f is a block for some f in X − e. Then G/e\f is a
block but G\f is not. Thus e is a pendant edge of G\f and hence of H + e; a
contradiction. We conclude that G′\f is not a block. Thus G′ is a minor-minimal
block having H ′ as a minor. Evidently κ1(H ′) = κ1(H) − 1 and κ2(H ′) = κ2(H).
Thus, by applying the induction assumption to the subgraph H ′ of G′, we deduce
that |X − e| ≤ κ1(H ′) + κ2(H ′)− 2 = [κ1(H)− 1] + κ2(H)− 2 and again, just as
in the first two cases, it follows that |X| ≤ κ1(H) + κ2(H)− 2, as required. �

The next result follows immediately from the last theorem by using the remarks
following the definition of GL(H).

3.3. Corollary. Let H be a graph. If G is a 2-connected graph that is minimal
having H as a subgraph, then |E(G)| − |E(H)| ≤ κ1(H) + κ2(H)− 2.

Next we bound |E(G)| − |E(H)| when G ∈ GL(H) and H is a contraction of G.

3.4. Theorem. Let H be a graph and L be a subset of L(H). If G ∈ GL(H) and
H = G/Y , then

|Y | ≤ κ2(H)− 1
unless H is the graph consisting of a single loop and L = ∅.

Proof. Since G is connected, so too is H. The proof can be completed by arguing by
induction on |Y |. In particular, one shows, for any edge e of Y , that κ2(G/(Y −e)) <
κ2(G/Y ). The details are omitted. �

The reader may suspect that the general result bounding |E(G)| − |E(H)| when
G ∈ GL(H) may be obtained by combining the contraction case above with the
deletion case considered earlier in the section. This approach, which is successfully
applied in the special case considered in the next result, turns out to be problem-
atic in general with much of the difficulty stemming from the possible presence of
isolated vertices.

3.5. Theorem. If G ∈ GL(H) and κ1(H) = κ2(H), then

|E(G)| − |E(H)| ≤ 4κ2(H)− 4.
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Proof. Recall that H = G\X/Y . We get the result by summing separate bounds on
|X| and |Y |. Suppose that G\X has connected components G1, G2, . . . , Gk. Since
κ1(H) = κ2(H), it follows that Gi/(Y ∩E(Gi)) is a block for all i. By Lemmas 2.3
and 2.4, G\X has no cycles with edge-set contained in Y and has no pendent edges
belonging to Y . Thus each Gi is a block. Hence κ2(G\X) = κ2(H). Now, by
Theorem 3.2, |X| ≤ κ1(G\X) + κ2(G\X)− 2. Thus

|X| ≤ 2κ2(H)− 2. (3)

To get the bound on |Y |, we shall use the bound from the contraction case
(Theorem 3.4). Thus we want a bound on κ2(G/Y ). Clearly G/Y is connected. If
B is a block of G/Y , then we have two possibilities for it:

(i) B contains an edge of H. Then B\[X ∩ E(B)] contains some block of H.
(ii) B does not contain any edge of H. Then E(B) ⊆ X.

Let b be the number of blocks of G/Y of the second type. Then

κ2(G/Y ) ≤ κ2(H) + b.

Now observe that a block B whose edge-set is contained in X must have at least
two edges, otherwise this block is an isthmus in G/Y and so in G. Hence, by (3),
b ≤ |X|2 ≤ κ2(H)− 1. Thus,

κ2(G/Y ) ≤ 2κ2(H)− 1.

Now, by Theorem 3.4, |Y | ≤ κ2(G/Y )− 1. Hence

|Y | ≤ 2κ2(H)− 2. (4)

The lemma follows by summing the bounds on |X| and |Y | in (3) and (4). �

To see that the bound in the last theorem is sharp, consider the example given
in Figure 2.

4. Replacements

Throughout this section, G will be a graph in G∅(H) where H = G\X/Y and
L(H) = ∅. The graphs and the constructions that are described in this section
will be used in the next section to prove that (α, β) must be in the polyhedron A
if |E(G)| − |E(H)| ≤ α(κ1(H) − 1) + β(κ2(H) − 1) for all graphs G and H with
G ∈ GL(H).

In the next paragraphs, we set more notation that we shall use in this section.
Suppose that e ∈ Y , say e = uv. Then G/e is not a block. We can write G as the

union of two blocks G1 and G2 such that V (G1)∩V (G2) = {u, v}, E(G1)∩E(G2) =
{e} and, for i ∈ {1, 2}, Gi/e has at least one block of G/e as a block. We say
that (G1, G2) is an admissible decomposition of G with respect to e. We define
Xi = X ∩E(Gi), Yi = Y ∩E(Gi) and Hi = Gi\Xi/Yi, for i ∈ {1, 2}. Observe that
H is the union of H1 and H2, provided that the vertices in these three graphs that
arise after the contraction of e are considered to be the same.

An element of a graph is a vertex or an edge of the graph. Now let F be a graph
and let XF and YF be disjoint subsets of E(F ) such that e is an edge of F joining
u and v, and e, u, and v are the only common elements of G and F . Suppose
that e ∈ YF and let HF = F\XF /YF . We say that G′ is obtained from G by the
replacement of (G1, X1, Y1) by (F,XF , YF ) if G′ is the union of F and G2. In this
case, we define X ′ = XF ∪X2, Y

′ = YF ∪ Y2, and H ′ = G′\X ′/Y ′. Note that H ′
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is the union of HF and H2, provided that the vertices in these three graphs that
arise after the contraction of e are identified. For each lemma in this section, we
shall choose a graph F to replace G1.

We say that (S,XS , YS) is a snake on e if S is a 4-cycle labelled as follows:
V (S) = {w, x, u, v}, E(S) = {wx,wv, xu, uv}, XS = ∅, and YS = {e}.

4.1. Lemma. If G′ is obtained from G by replacing (G1, X1, Y1) by (S,XS , YS),
then G′ ∈ G∅(H ′).

Proof. Suppose that G′\X ′′/Y ′′ = H ′. We shall show first that X ′′ = X2 and
Y ′′ = Y2. The edges xu and wv are adjacent in H ′ so the vertices u and v must
be identified in G′\X ′′/Y ′′ = H ′. Suppose that e 6∈ Y ′′. Then e ∈ X ′′ and there
is a path from u to v in G2\e all of whose edges are in Y ′′. Now H1 can be
obtained from G1\X1/(Y1 − e) by identifying u and v and deleting e. It follows
that [G\X1/(Y1 − e)]\X ′′/Y ′′ is the union of H1 and H2, when we use the same
label for the vertex that we get after the contraction of e in these two graphs. Thus
G\(X1 ∪X ′′)/((Y1− e)∪Y ′′) = G\X/Y ; a contradiction to the fact that H occurs
uniquely as a minor of G. Thus e ∈ Y ′′. But again G\(X1 ∪ X ′′)/(Y1 ∪ Y ′′) =
G\X/Y and so X ′′ = X2 and Y ′′ = Y2.

It is not difficult to see that, for all x in X2 and all y in Y2, both G′\x and G′/y
have cut-vertices that prevent either graph from having a block containing E(H ′).
Hence G′ ∈ G∅(H ′). �

Figure 3. (a) A dog. (b) A pig.

Let P be the graph in Figure 3(b), so V (P ) = {u1, v1, w1, u2, v2, u
′, v′, u, v} and

E(P ) is partitioned into subsets XP , YP , and ZP , where XP = {u′v, v′u, v′w1, vv1},
YP = {uv, u′v′, vw1}, and ZP = {u′u2, u2v2, v2v

′, u1v1, v1w1, w1u1}. Observe that
the edges of XP , YP , and ZP are, respectively, dashed, dotted, and solid. We shall
call (P,XP , YP ) a pig on e = uv and say that TP = {u1v1, v1w1, w1u1} is the head
of the pig which is at v. Note that v is not a vertex of TP ; it is a vertex of e.

We say that (D,XD, YD) is a dog on e = uv if D is a single-edge deletion of K4

labelled as follows: V (D) = {u, v, w, x}, E(D) = {wx,wv, xu, xv, uv}, XD = {xu},
and YD = {uv} (see Figure 3(a)). The triangle TD = {wx,wv, xv} is said to be the
head of the dog which is at v.
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G′ is obtained from G by replacing a dog by a pig on e if (G1, X1, Y1) = (D,XD,
YD) and this is replaced by (P,XP , YP ). Note that both the dog and the pig must
have their heads at the same vertex of e. Observe also that (P [{u1, v1, w1, v}], {v1v},
{w1v}) is a dog on w1v. Thus, we can repeat the process of replacing a dog by a
pig as many times as we wish. The next lemma asserts that the replacement of a
dog by a pig creates a graph that still belongs to the family that we are interested
in studying. The proof will use the notation of the last two paragraphs.

Figure 4. (a) A bull. (b) A (symmetric) rhino.

4.2. Lemma. If G′ is obtained by the replacement of a dog by a pig on e, then
G′ ∈ G∅(H ′).

Proof. Let G′\X ′′/Y ′′ = H ′. We shall show first that X ′′ = X ′ and Y ′′ = Y ′.
Observe that v′w1 ∈ X ′′ because v′ and w1 are incident to edges of ZP which are
not adjacent in H ′. Now consider the connected component Qe containing e of the
subgraph of G\X induced by Y . Since G[Y ] is a forest, Qe is a tree. As G\X has
no pendent edges belonging to Y , every degree-one vertex of Qe is incident with
an edge of H. It follows that when the edges of Qe are contracted in the formation
of H, the connected component of H that contains TD must have at least two
blocks. Now H ′ can be obtained from H by identifying the edges of TD with the
edges of TP and adding a new connected component, which is a triangle. Thus the
connected component of H ′ that contains TP must have at least two blocks. Hence,
as {w1v, v1v} ⊆ X ′′ ∪ Y ′′, at least one of w1v and v1v is in Y ′′. If both w1v and
v1v are in Y ′′, then the triangle TP is destroyed. Thus one of w1v and v1v is in Y ′′

and the other is in X ′′. Since both ends of u1v1 have degree two in H ′, it follows
that v1v ∈ X ′′ and w1v ∈ Y ′′. By considering G\{v′w1, vv1}/{vw1}, we deduce,
since the edges v1w1 and u′u2 do not become adjacent in H ′, that u′v ∈ X ′′. Then,
since u′u2 and v′v2 are adjacent in H ′, it follows that u′v′ ∈ Y ′′.

We prove next that v′u ∈ X ′′. Assume the contrary. Then v′u ∈ Y ′′. Consider
the graph J = G′\{v′w1, vv1, u

′v}/{vw1, u
′v′, v′u}. This graph can be obtained

from G\xu by identifying the edges of TD with the edges of TP and adding a new
block, which is a triangle T ′′ and which has u as its only common element with
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G\xu. Now J has H ′ as a minor. As TD and T ′′ do not have a common vertex
in H ′, it follows that e is not contracted in producing H ′ from J . Since H ′ is
the disjoint union of H with the triangle T ′′, it follows that H can be obtained
as a minor of G\xu without contracting e. This contradicts the fact that H is
uniquely obtainable from G and implies that v′u ∈ X ′′. A similar argument using
G′\{v′w1, vv1, u

′v, v′u}/{vw1, u
′v′} in place of J establishes that uv ∈ Y ′′. We

conclude that if G′\X ′′/Y ′′ = H ′, then X ′′ = X ′ and Y ′′ = Y ′.
To complete the proof that G′ ∈ G∅(H ′), it suffices, by Lemma 2.5, to show that

if x ∈ X ′ and y ∈ Y ′, then neither G′\x nor G′/y is a block. This is not difficult to
check if x or y is in the pig, and it follows if x or y is in E(G2)− e because neither
G\x nor G/y is a block. �

We call (R,XR, YR) a rhino on e′ = zw2 if R is a graph with V (R) = {z, w2, u
′
1,

v′1, w
′
1, u
′
2, v
′
2, w

′
2, u
′
3, v
′
3, w

′
3, u
′
4, v
′
4, w

′
4, z
′} and the set of edges of R is partitioned

into three sets XR, YR, and ZR, where YR = {e′, w′1z′, w′2z′, w′3w2, w
′
4z}, ZR =

∪4
i=1{u′iv′i, u′iw′i, v′iw′i}, and XR = {u′1z′, u′2z′, u′3w2, u

′
4z, w

′
1z, w

′
3z
′, w′4z

′} ∪ {w′2a},
where a is either w2 or z. The rhino R is symmetric if a = w2 (see Figure 4(b))
and assymmetric otherwise.

We say that (B,XB , YB) is a bull on e if B is the graph in Figure 4(a) with
V (B) = {u, v, u1, v1, w1, u2, v2, w2, u3, v3, w3, z} and the set of edges of B is par-
titioned into three subsets XB , YB , and ZB , where ZB = ∪3

i=1{uivi, uiwi, viwi},
XB = {u1z, u2z, u3v, w1v, w2v, uz, w3z}, and YB = {e, w1z, w2z, w3v}. The head of
B is {u3v3, u3w3, v3w3} which is at v.

Both bulls and rhinos will feature prominently in the proof of the main theorem.
Next we combine a bull B with a symmetric rhino R to produce a graph that
will be important in the next section. Suppose that B − {u2, v2} and R have
z, w2, and e′ = zw2 as their only common elements. The union M of R and
B−{u2, v2} is called a monster on e (see Figure 5). We say that {u3v3, u3w3, v3w3}
is the head of M which is at v. We set XM = XR ∪ [E(B − {u2v2}) ∩ XB ] and
YM = YR ∪ [E(B − {u2v2}) ∩ YB ].
G′ is obtained from G by replacing a dog by a monster on e if (G1, X1, Y1) =

(D,XD, YD) and this is replaced by (M,XM , YM ). Note that both the dog and
the monster must have their heads at the same vertex of e. Observe also that
(M [{u1, v1, w1, z}], {u1z}, {w1z}) is a dog on w1z. Thus, we can repeat the process
of replacing a dog by a monster as many times as we wish. The next lemma asserts
that the replacement of a dog by a monster creates a graph that still belongs to
the family that we are interested in studying. The proof will use the notation of
the last three paragraphs.

4.3. Lemma. If G′ is obtained by the replacement of a dog by a monster on e, then
G′ ∈ G∅(H ′).

Proof. Suppose that G′\X ′′/Y ′′ = H ′. To show that H ′ is uniquely determined as
a minor of G′, one first shows, by arguing as in the last proof, that w′1z ∈ X ′′. Next
one shows that XR ⊆ X ′′ and YR − e′ ⊆ Y ′′ and then that XB − {u2z, zu} ⊆ X ′′

and YB − e ⊆ Y ′′. The straightforward details of these arguments are omitted.
To complete the proof that H ′ is uniquely determined as a minor of G′, let

G0 = G′\(XM − zu)/(YM − e). We shall show that, to produce H ′ from G0,
we must contract e and delete zu. Observe that the connected component G′0 of
G0 that contains the edge e is obtained from G2 by adding five new blocks: one
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Figure 5. A monster.

triangle incident with v, the edge zu, and three triangles incident with z. Observe
that G\X1 is obtained from G2 by adding a block, which is a triangle incident with
v, because the dog G1 has head at v. There is just one way of getting H from
G\X1: by deleting X2 and contracting Y2. Since we can view G\X1 as a subgraph
of G′0, it follows that we must contract e from G0 to get H ′. Finally, we must delete
zu to produce H ′ otherwise the three blocks incident with z in G′0 have a common
vertex with the head of the monster. Hence H ′ is indeed uniquely determined as a
minor of G′.

To get the result, we need only to prove that G′\x and G′/y are not blocks, for
every x ∈ X ′ and y ∈ Y ′. But this is clearly true when x ∈ XM and y ∈ YM .
Thus we may suppose that this is not the case. But, for x in X2 and y in Y2, we
must have that neither G2\x nor G2/y is 2-connected since neither G\x nor G/y is
2-connected. Hence neither G′\x nor G′/y is 2-connected and the lemma holds. �

We say that F is a snake, a dog, a bull, or a rhino on e ∈ Y with respect to
(G,X, Y ), when (F,XF , YF ) is a snake, a dog, a bull, or a rhino on e, respectively,
and there is an admissible decomposition (G1, G2) of G with respect to e such that
(G1, X1, Y1) = (F,XF , YF ).

5. Necessary bounds

We shall break the proof of the main theorem into two parts. In this section,
we establish that conditions (C1)–(C3) are necessary for the specified bound on
|E(G)| − |E(H)| to hold for all G in GL(H).

For real numbers α and β, a graph H and a set L of loops of H, define

G(α,β)
L (H) = {G ∈ GL(H) : |E(G)− E(H)| > α(κ1(H)− 1) + β(κ2(H)− 1)}.
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We are looking for necessary conditions on α and β such that G(α,β)
L (H) = ∅, for

every H and L.

5.1. Theorem. If α and β are real numbers such that

|E(G)| − |E(H)| ≤ α(κ1(H)− 1) + β(κ2(H)− 1)

for all graphs G and H such that G ∈ GL(H) and L is a set of loops of H, then

α+ β ≥ 5, (C1)

2α+ 5β ≥ 20, and (C2)
β ≥ 3. (C3)

Proof. To obtain (C1), we start with a graph with six vertices and then we replace
a dog by a pig, repeating this operation n times to get our graph. Let G be the graph
having a vertex-set {u1, v1, w1, u2, v2, w2} and edge-set {u1v1, u1w1, v1w1, u2v2,
u2w2, v2w2, u1u2, v1u2, u1v2}. Let X = {v1u2, u1v2} and Y = {u1u2}. Observe
that G ∈ G∅(H), where H = G\X/Y . Moreover, the edge u1u2 has two dogs with
respect to (G,X, Y ). By Lemma 4.2, we can replace a dog by a pig getting a graph
G′ such that G′ ∈ G∅(H ′), where H ′ = G′\X ′/Y ′, for some disjoint subsets X ′ and
Y ′ of E(G′). Observe that this pig has an edge in Y ′ with a dog with respect to
(G′, X ′, Y ′). Thus, we can continue replacing dogs by pigs. After n such replace-
ments, we get a graph G#

2 such that G#
2 ∈ G∅(H

#
2 ) for some minor H#

2 of G#
2 .

Observe that

|E(G#
2 )| − |E(H#

2 )| = 5n+ 3, κ1(H#
2 ) = n+ 1, and κ2(H#

2 ) = n+ 2,

since, at each replacement, we increase the number of connected components of the
minor by one, the number of blocks by one, and the difference between the numbers
of edges of the graph and the minor by five. As G#

2 6∈ G
(α,β)
∅ (H#

2 ), it follows that

|E(G#
2 )| − |E(H#

2 )| ≤ α(κ1(H#
2 )− 1) + β(κ2(H#

2 )− 1)

Hence, we get 5n+ 3 ≤ αn+ β(n+ 1) Dividing this inequality by n and taking the
limit as n goes to infinity, we obtain (C1).

To get (C2), we start with the same 6-vertex graph that we used to get (C1).
Instead of replacing dogs by pigs, we shall replace dogs by monsters. At each
replacement, we increase the number of connected components by two, the number
of blocks by five, and the number of edges that belong to the graph and do not
belong to the minor by twenty. As in the previous paragraph, we repeat this
operation n times. At the end, we get a graph G#

3 such that G#
3 ∈ G∅(H

#
3 ), for

some minor H#
3 of G#

3 . Observe that

|E(G#
3 )| − |E(H#

3 )| = 20n+ 3, κ1(H#
3 ) = 2n+ 1, and κ2(H#

3 ) = 5n+ 2.

As G#
3 6∈ G

(α,β)
∅ (H#

3 ), it follows that 20n + 3 ≤ α(2n) + β(5n + 1). Dividing this
inequality by n and taking the limit as n goes to infinity, we get (C2).

To obtain (C3), consider the graph G#
4 constructed as follows. Begin with n+ 1

vertex-disjoint copies of K3 with vertex-sets {u0, v0, w0}, {u1, v1, w1}, . . . , {un, vn,
wn}. The set of edges of G#

4 that join vertices belonging to different K3’s is
partitioned into two sets X and Y , where Y = {uiu0 : 1 ≤ i ≤ n} and X =
∪ni=1{viu0, uiv0}. Let H#

4 = G#
4 \X/Y and L = ∅. Observe that H#

4 has just one
connected component and has n + 1 blocks all of which are triangles. Moreover,
G#

4 ∈ GL(H#
4 ). As G#

4 6∈ G
(α,β)
L (H#

4 ), it follows that 3n ≤ βn and (C3) follows. �
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6. Decompositions

In this section, we begin with a graph G in G∅(H) where H = G\X/Y and we
produce related graphs J2 and H ′2 such that J2 ∈ G∅(H ′2). These constructions will
be used repeatedly in the proof of the main theorem.

Suppose that e ∈ Y , say e = uv. Let (G1, G2) be an admissible decomposition of
G with respect to e. We say that (G1, G2) has type-k with respect to Gi if there are
exactly k vertices in {u, v} that meet edges in E(Gi)∩ (E(H)∪Y ). By convention,
when we say that (G1, G2) has type-k we shall mean that (G1, G2) has type-k with
respect to G1.

For the next three lemmas, let (G1, G2) be an admissible decomposition of G with
respect to e = uv. For i in {1, 2}, recall that Xi = X ∩E(Gi) and Yi = Y ∩E(Gi).
Define H1 = G1\X1/Y1. We shall define two graphs J2 and H ′2 which depend on
the type of (G1, G2). When (G1, G2) has type-0, let H ′2 = H2 = G2\X2/Y2. In
this case, we shall define J2 after the next lemma.

6.1. Lemma. If (G1, G2) has type-0, then G2 or G2/e belongs to G∅(H ′2).

Proof. First, we shall prove that if H ′2 = G2\X ′/Y ′, then X ′ = X2 and Y ′ = Y2.
Observe that both when e ∈ Y ′ and when e ∈ X ′, the graph G\(X1∪X ′)/(Y1∪Y ′)
is the union of the vertex-disjoint graphs H1 and H2. But this union is equal to H.
Hence, as H can be obtained in a unique way as a minor of G, we conclude that
X ′ = X2 and Y ′ = Y2. Thus H ′2 is obtainable in a unique way as a minor of G2.

Suppose that G2\X ′′/Y ′′ belongs to G∅(H ′2). Then G2\X ′′/Y ′′ has H ′2 as a
minor, so X ′′ ⊆ X2 and Y ′′ ⊆ Y2. Now G2\X ′′/Y ′′ is a block. Therefore, whether
or not e ∈ Y ′′, either (i) G2\X ′′/(Y ′′ − e) is a block, or (ii) G2\X ′′/(Y ′′ − e) has e
as a loop or isthmus. Suppose that (ii) occurs. If e is a loop of G2\X ′′/(Y ′′ − e),
then G2\e has H ′2 as a minor; a contradiction. Thus we may assume that e is an
isthmus of G2\X ′′/(Y ′′−e). Let w be the unique endpoint of e that has degree one
in G2\X ′′/(Y ′′ − e). Then some x′′ in X ′′ is incident in G2 with w or with some
vertex in the tree in G2[Y ′′−e] that is contracted to produce the vertex w. Thus w
is incident only with x′′ and e in G2\(X ′′ − x′′)/(Y ′′ − e). Observe that x′′ cannot
be a loop in this graph otherwise it could be contracted instead of being deleted
when H ′2 is obtained. Therefore G2\[(X ′′ − x′′)∪ e]/[(Y ′′ − e)∪ x′′] = G2\X ′′/Y ′′;
a contradiction. We conclude that (ii) does not occur.

We may now suppose that G2\X ′′/(Y ′′ − e) is a block. This block has e as an
edge so its union G′ with G1 is also a block. Clearly G′ has H as a minor. Thus
G′ = G, so X ′′ = Y ′′−e = ∅. We conclude that G2 or G2/e belongs to G∅(H ′2). �

When (G1, G2) is of type-0, let J2 be the graph in {G2, G2/e} that belongs to
G∅(H ′2).

Next we define J2 when (G1, G2) has type-1. Without loss of generality, we may
suppose that, in G1\e, every edge incident with u is in X, while some edge incident
with v is not. Let J2 be obtained from G2 by adding two new vertices w and x
and the edges wx,wv, xv, and xu. We define X ′2 = X2 ∪ xu and H ′2 = J2\X ′2/Y2.
Observe that (J2[{u, v, w, x}], {xu}, {uv}) is a dog on e having its head at v.

6.2. Lemma. If (G1, G2) has type-1, then J2 belongs to G∅(H ′2).

Proof. Suppose that J2\X ′/Y ′ = H ′2. We shall show first that X ′ = X ′2 and
Y ′ = Y2. Since H ′2 is obtained from H2 by adjoining a triangle at v, we can obtain
H from H ′2 by replacing this triangle by H1. Suppose that e ∈ Y ′. Then xu ∈ X ′.
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It follows that G\[(X1 ∪X ′)− xu]/(Y1 ∪ Y ′) = H. As H is uniquely determined as
a minor of G, we conclude that X ′ = X2 and Y ′ = Y2. Thus we may assume that
e ∈ X ′. Now consider the graph H ′′2 that equals G2\(X ′ − {e, xu})/(Y ′ − {xu}).
Observe that E(H ′′2 ) = E(H2) ∪ {e}. Now e is not a loop of H ′′2 otherwise it is not
difficult to see that H can be obtained as a minor of G both from the deletion and
the contraction of e; a contradiction. We shall show next that xu ∈ X ′. Suppose
that u is incident only with e in H ′′2 . Then either (i) H ′′2 \e = H2, or (ii) H ′′2 \e
is obtained from H2 by adding an isolated vertex, namely u. In the first case,
G\[(X1 ∪X ′)−{xu}]/[(Y1 ∪Y ′)−{e, xu}] = H and we have a contradiction to the
fact that H is uniquely obtained as a minor of G. Thus (ii) holds. In that case,
G\[(X1 ∪ X ′) − {xu}]/[(Y1 ∪ Y ′) − {e, xu}] equals the graph that is obtained by
adjoining u to H as an isolated vertex. We could eliminate this isolated vertex by
contracting, rather than deleting, some edge of X1 incident with u in G. Let f be
such an edge. Then G\[(X1 ∪ X ′) − {f, xu}]/[(Y1 ∪ Y ′ ∪ {f}) − {e, xu}] = H, so
H can be obtained in more than one way as a minor of G; a contradiction. We
conclude that u must be incident with some edge g of E(H2) in H ′′2 . It follows that
xu ∈ X ′, as asserted, otherwise xw is adjacent to g in H ′2; a contradiction. Since
{xu, e} ⊆ X ′ and H ′2 = J2\X ′/Y ′, it follows that

H = G\[(X1 ∪X ′)− {xu}]/[(Y1 ∪ Y ′)− {e}].
This is a contradiction since we have now obtained H as a minor of G\e. We
conclude that we do indeed have X ′ = X ′2 and Y ′ = Y2.

We now show that J2 ∈ G∅(H ′2). If this is not so, then we can obtain a block
having H ′2 as a minor by contracting some subset Y3 of Y2 and deleting some subset
X3 of X2 ∪ xu. Clearly we cannot delete xu or contract e to produce this block.
Thus G2\X3/Y3 is a block containing e and having H2 as a minor, so G\X3/Y3 is
a block having H as a minor, so X3 = ∅ = Y3. Hence J2 ∈ G∅(H ′2). �

When (G1, G2) has type-2, J2 is the graph obtained from G2 by adding two new
vertices w and x and the edges wx,wv, and xu; and H ′2 is J2\X2/Y . Observe that
(J2[{u, v, w, x}], ∅, {uv}) is a snake on e with respect to (J2, X2, Y ).

6.3. Lemma. If (G1, G2) has type-2, then J2 belongs to G∅(H ′2).

Proof. The result follows from Lemma 4.1, since we get J2 from G by replacing G1

by a snake. �

7. Some technical lemmas

In this section, we shall prove three technical lemmas that will be used in the
proof of the main result. Throughout, G is a graph in G∅(H) where H = G\X/Y .

In the next lemma, the labelling on the bull is the same as that in Section 4.

7.1. Lemma. Let e be an edge in Y and suppose that (B,XB , YB) is a bull on e
with respect to (G,X, Y ). Then e is not pendent in [G− (V (B)−V (e))]\(X−XB).

Proof. Let e = uv and assume that e is a pendent edge in [G−(V (B)−V (e))]\(X−
XB). Suppose that the head T of the bull is at v and that vw3 is an edge of YB ,
for w3 ∈ V (T ). We show next that d[G−(V (B)−{u,v})]\(X−XB)(v) = 1. If not, then
d[G−(V (B)−{u,v})]\(X−XB)(u) = 1. But e is the only edge in the bull that is incident
with u and does not belong to X. Thus dG\X(u) = 1 and so the edge e of Y is
pendent in G\X. This contradiction implies that d[G−(V (B)−{u,v})]\(X−XB)(v) = 1.
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Thus, in G, every edge incident with v, with the exception of vw3 and e, belongs
to X. Observe that H can be obtained from G by contracting all the edges of XB

that join different connected components of B\XB , deleting all the other edges in
XB ∪ YB , and then deleting all the edges in X − [XB ∪ YB ] and contracting all the
edges in Y − [XB ∪ YB ]. This is a contradiction since we have shown that H can
be obtained in two different ways as a minor of G. �

7.2. Lemma. Suppose that e′ ∈ Y and there is a dog or a rhino P on e′ with respect
to (G,X, Y ). Then there is no connected component of [G− (V (P )− V (e′))]\(X −
XP ) whose edge set is {e′}.

Proof. Suppose that there is a connected component of [G− (V (P )−V (e′))]\(X −
XP ) whose edge-set is {e′}. Observe that P is a connected component of G\(X −
XP ), since this graph is the union of P with [G−(V (P )−V (e′))]\(X−XP ). When
P is a dog, we arrive at a contradiction because e′ is a pendent edge in G\X, since
e′ is a pendent edge in P\(X∩E(P )). Suppose now that P is a rhino R. Recall that
HR, which equals R\XR/YR, is a graph having two connected components, each
with two blocks both of which are triangles. Note also that HR can be obtained
as a minor of R in a different way: contract e′ and all the edges of XR that join
different connected components of R\XR; and delete all the other edges belonging
to XR ∪ YR. Thus HR can be obtained in two different ways as a minor of the
connected component R of G\(X−XR). Hence H can be obtained in two different
ways as a minor of G; a contradiction. �

Let (D, {t}, {e}) be a dog on e = uv having head at v. We call t the tail of D
and say that it is at u. If there is exactly one edge vy in E(G)− E(D) meeting v,
and vy is in X, then vy is called the lead of the dog and we say it is at y. The next
lemma asserts that we can remove a dog and its lead and stay in the desired class
whenever we have two dogs with tails at the same vertex and leads at the same
vertex provided some minor technical condition holds.

7.3. Lemma. Let uv1 and uv2 be edges e1 and e2 in Y where v1 6= v2 and suppose
that G has a vertex y such that, for each i ∈ {1, 2},

(i) (Di, {ti}, {ei}) is a dog on ei having head Ti at vi, and y 6∈ V (Di); and
(ii) dG(vi) = 4 and viy ∈ X.

If the connected component of H that has T1 and T2 as blocks has at least one more
block, then G− (V (D1)− u) ∈ G∅(H − (V (T1)− v1)).

Proof. Let G′ = G − (V (D1) − u) and H ′ = H − (V (T1) − v1) and suppose that
G′\X ′/Y ′ = H ′. Since the connected component of H having T1 and T2 as blocks
has another block, it is not difficult to see that Y ′ must contain v2u or v2y. More-
over, since v1 and v2 both have degree four in G, it follows that G′ is a block.

In this paragraph, we shall prove that X ′ = X ∩ E(G′) and Y ′ = Y ∩ E(G′).
We have two cases to consider: (a) v2u ∈ Y ′; and (b) v2y ∈ Y ′. Assume (a) holds.
Let G′′ = G\(X ′ ∪ {v1y, v1u, t1})/Y ′. Then G′′ is the vertex-disjoint union of the
graphs H ′ and T1. As v1u joins v1 to the vertex that v2 has been contracted to in
H ′, it follows that (G′′ + v1u)/v1u, which equals G\(X ′ ∪ {v1y, t1})/(Y ′ ∪ v1u) is
equal to H. But H is uniquely obtained as a minor of G. Hence X = X ′∪{v1y, t1}
and Y = Y ′ ∪ v1u. Thus X ′ = X ∩ E(G′) and Y ′ = Y ∩ E(G′) in case (a). Now
assume that (b) holds. Then, since v2 is contracted to y in H ′, it follows that
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G\(X ′ ∪ {v1u, t1})/(Y ′ ∪ v1y) equals H and again X ′ = X ∩ E(G′) and Y ′ =
Y ∩ E(G′).

Now suppose that, for some x′ in X ′ and some y′ in Y ′, one of G′\x′ and G′/y′ is
a block. Then we obtain the contradiction that G\x′ or G/y′ is a block unless u and
y have been identified in G′\x′ or G′/y′. The exceptional case can only occur if y′

joins y and u. Then G′\[(X ′ ∪ v2u)− v2y]/[(Y ′ ∪ v2y)− v2u] = H ′; a contradiction.
We conclude that if x′ ∈ X ′ and y′ ∈ Y ′, then neither G′\x′ and G′/y′ is a block.
Hence, by Lemma 2.5, G′ ∈ G∅(H ′). �

8. The beginning of the main proof

In this section, we begin the proof of the second part of the main theorem of
the paper. This proof is quite complex and we will need to take some detours,
which will appear in separate sections, before we can complete it. An outline of
the strategy of the proof will be given in the next section. Theorem 5.1 established
that if every G in GL(H) obeys the inequality

|E(G)− E(H)| ≤ α(κ1(H)− 1) + β(κ2(H)− 1),

then (α, β) must lie in A. Our main theorem establishes that, provided (α, β) ∈ A
the desired inequality on |E(G)| − |E(H)| holds.

8.1. Theorem. Suppose that α and β are real numbers such that (α, β) ∈ A. If G
and H are graphs, L is a set of loops of H, and G ∈ GL(H), then

|E(G)| − |E(H)| ≤ α(κ1(H)− 1) + β(κ2(H)− 1).

Proof. We show first that, to verify the theorem, it suffices to prove it for ( 5
3 ,

10
3 )

and ( 5
2 , 3), the two vertices of the polyhedron A. To establish this, we show that if

the theorem holds for (α, β) ∈ {(α1, β1), (α2, β2)}, then it also holds for:
(i) (α3, β3) where α3 ≥ α1 and β3 ≥ β1;
(ii) (α1 − c, β1 + c) where c ≥ 0; and
(iii) a(α1, β1) + b(α2, β2) where a+ b = 1 and a, b ≥ 0.

The fact that the theorem holds for (i) follows because both κ1(H) and κ2(H)
are positive. To see that the theorem holds for (ii), it suffices to observe that
κ2(H) ≥ κ1(H). Finally, it is straightforward to verify that the theorem holds
for (iii). We conclude that, as asserted, we need only verify the theorem when
(α, β) ∈ {( 5

3 ,
10
3 ), ( 5

2 , 3)}.
We shall assume that the theorem fails, that is, we suppose that G(α,β)

L (H) 6= ∅
for some triple (G,H,L), where H = G\X/Y . We choose a triple (G,H,L) such
that G ∈ G(α,β)

L (H) and (κ2(H),−θ(H)) is minimal in the lexicographic order,
where θ(H) denotes the number of blocks of H that are triangles.

The next two lemmas establish that neither G nor H has any loops.

8.2. Lemma. G has no loops.

Proof. Suppose that l is a loop of G. Then l is also a loop of H so we cannot simply
delete l. Assume first that l is adjacent to some edge h in E(H). It is not difficult
to show that (G\l,H\l, L− l) violates our choice of (G,H,L).

Next assume that l is adjacent in G to an edge e of Y . Let G′ be obtained
by taking the union of G\l and a snake on e. Take H ′ = G′\X/Y . Then it is
straightforward to check that (G′,H ′, L− l) contradicts the choice of (G,H,L).
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We may now assume that l is incident to a vertex v of G that is incident only
with loops and edges of X. Then it follows from the first paragraph that l is the
unique loop incident with v otherwise l is adjacent to a loop h, which must be
in H. As G ∈ GL(H), it is not difficult to show that |X| ≥ 2. In that case, we
construct a new graph G′′ as follows. First delete l. Then take an edge x in X
joining v to, say, v′ and replace it by a path v, u, v′ labelling vu as e and uv′ by
x. Let the resulting graph be G′. Finally, let G′′ be union of G′ with a snake on
e = uv that has e, u, and v as its only common elements with G′ (see Figure 6).
Let H ′′ = G′′\X/(Y ∪ e).

We assert that (G′′,H ′′, L − l) contradicts the choice of (G,H,L). The main
step in the proof of this is to show that e must be contracted in order to obtain
H ′′ from G′′. From this, it follows that H ′′ arises uniquely as a minor of G′′:
we must delete X and contract Y ∪ e. Finally, it is straightforward to show that
G′′ ∈ G(α,β)

L−l (H ′′) and thence to deduce that (G′′,H ′′, L− l) contradicts the choice
of (G,H,L). Therefore G has no loops. �

Figure 6. The replacement in the proof of Lemma 8.2.

8.3. Lemma. H has no loops.

Proof. If l is a loop of H, then (G′,H ′, L − l) contradicts the choice of (G,H,L),
where G′ and H ′ are obtained from G and H, respectively, by replacing l by a path
of length three. �

8.4. Lemma. Y is non-empty.

Proof. If Y = ∅, then, by Theorem 3.2, |E(G)| − |E(H)| ≤ κ1(H) + κ2(H) − 2.
Thus |E(G)| − |E(H)| ≤ α(κ1(H)− 1) +β(κ2(H)− 1) for (α, β) ∈ {( 5

3 ,
10
3 ), ( 5

2 , 3)};
a contradiction. �

9. An outline of the main proof

The beginning of the proof of Theorem 8.1 given in the last section is relatively
direct. The rest of the proof is far less so and we shall outline it here.

Let y be an edge of Y . Next we define the depth of y inductively. If G has an
admissible decomposition (G1

y, G
2
y) with respect to y such that G1

y/y is a block and
(Y − y)∩E(G1

y) is empty, then y has depth 0. For k ≥ 1, the edge y has depth k if
y does not have depth less than k and G has an admissible decomposition (G1

y, G
2
y)
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such that G1
y/y is a block and all edges of Y − y in E(G1

y) have depth less than k.
There are six main steps in the proof, the first of which has already been done in
Lemma 8.4.

(S1) G has at least one depth-0 edge.
(S2) On every depth-0 edge of G, there is a dog or a snake with respect to

(G,X, Y ).
(S3) G has at least one depth-1 edge.
(S4) On every depth-1 edge of G, there is a rhino or a bull with respect to

(G,X, Y ).
(S5) G has at least one depth-2 edge.
(S6) G cannot have a depth-2 edge.
The proofs of steps (S2)–(S6) appear in Lemmas 12.1–12.5. The proofs of steps

(S2), (S4), and (S6) are very similar, as are the proofs of steps (S3) and (S5).
To avoid repetitive arguments, we shall prove two general but technical lemmas,
11.4 and 11.5 respectively, which combine the common features of these two sets of
situations.

If G ∈ G(α,β)
∅ (H) where H = G\X/Y and (C1)–(C3) hold, then in Section 11 we

study a certain subgraph G1 of G in order to deal simultaneously with the following
two cases.
Case I. (G1, G2) is an admissible decomposition of G with respect to an edge e in
Y such that G1/e is a block. In this case, X1 = X ∩ E(G1), Y1 = Y ∩ E(G1), and
we set Y ′′ = {e}.
Case II. G1 = G. In this case, X1 = X, Y1 = Y , and we set Y ′′ = ∅.

Note that, in both cases,

G1/Y
′′ is a block.

We also assume throughout that section that the following hold in both Cases I
and II.

(H1) E(G1) ∩ (Y − Y ′′) contains only depth-0 or depth-1 edges of G.
(H2) Every depth-0 edge in E(G1)∩ (Y −Y ′′) has a dog or a snake with respect

to (G,X, Y ).
(H3) Every depth-1 edge in E(G1)∩ (Y −Y ′′) has a bull or a rhino with respect

to (G,X, Y ).
Note that if e is a depth-0 edge of Y and we are in Case I, then (H1)–(H3) hold.
Moreover, once (S2) is proved, (H1)–(H3) hold if (S3) fails and we are in Case II.
In this manner, hypotheses (H1)–(H3) enable us to prove (S2)–(S6) one after the
other.

Much of the argument in Section 11 focuses on the graph that we get by breaking
off the bulls, rhinos, snakes, and dogs whose existence is guaranteed by (H1)–(H3).

10. An auxiliary lemma

In this section, we detour from the proof of Theorem 8.1 to prove a technical
lemma that will be fundamental to the proof of that theorem. This lemma has nu-
merous hypotheses. The motivation for these will be made clear in the next section.
We begin by defining a slight modification of the function κ2. Let κ>2 (G̃, X̃, Ỹ ) be
the number of blocks of G̃\X̃/Ỹ with at least one edge plus the number of isolated
vertices of G̃\X̃. Thus κ>2 (G̃, X̃, Ỹ ) is κ2(G̃\X̃/Ỹ ) minus the number of isolated
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vertices of G̃\X̃/Ỹ that arise from the contraction of a connected component of
G̃\X̃ whose edge-set is non-empty and is contained in Ỹ .

10.1. Lemma. Suppose that

(i) G̃ is a block and X̃ and Ỹ are disjoint subsets of E(G̃) such that |E(G̃)| 6= 1
or E(G̃) 6= Ỹ ;

(ii) G̃\x is not a block, for every x in X̃;
(iii) Ỹ does not contain a cycle of G̃;
(iv) Ỹ does not span any edge of X̃;
(v) Ỹ has a subset Y0, which may be empty, such that G̃/e is not a block for

every e in Y0.

Then
|Y0| ≤ κ1(G̃\X̃/Ỹ ) + κ>2 (G̃, X̃, Ỹ )− 2.

Proof. We shall argue by induction on |Y0|. First, suppose that |Y0| = 0. If
κ1(G̃\X̃/Ỹ ) ≥ 2 or κ>2 (G̃, X̃, Ỹ ) ≥ 1, then the result follows. Thus we may suppose
that κ1(G̃\X̃/Ỹ ) = 1 and κ>2 (G̃, X̃, Ỹ ) = 0. Therefore G̃\X̃/Ỹ is a vertex and
E(G̃) = X̃ ∪ Ỹ . Since κ1(G̃\X̃/Ỹ ) = 1, it follows that G̃\X̃ has just one connected
component. By (iii), G̃\X̃ is a tree. Thus, Ỹ spans X̃. By (iv), it follows that
X̃ = ∅. Hence E(G̃) = Ỹ and G̃ is a tree. As G̃ is a block and κ>2 (G̃, X̃, Ỹ ) = 0, it
follows that |E(G̃)| = 1. Thus we have a contradiction to (i) since |E(G̃)| = 1 and
E(G̃) = Ỹ . Hence the lemma holds for |Y0| = 0.

Suppose that |Y0| > 0. Choose e ∈ Y0. By (v), G̃/e is not a block. Thus, for some
n ≥ 2, there are n blocks G̃1, G̃2, . . . , G̃n whose union is G̃ such that each has at
least two edges and, for i 6= j, the only common elements between G̃i and G̃j are the
edge e and its vertices. For i in {1, 2, . . . , n}, set Xi = X̃ ∩E(G̃i), Y i = Ỹ ∩E(G̃i),
and Y i0 = (Y0 ∩ E(G̃i))− e. Observe that (G̃i, Xi, Y i, Y i0 ) has the same properties
as (G̃, X̃, Ỹ , Y0). By induction, we have that

|Y i0 | ≤ κ1(G̃i\Xi/Y i) + κ>2 (G̃i, Xi, Y i)− 2,

for every i in {1, 2, . . . , n}. Hence

|Y0 − e| =
n∑
i=1

|Y i0 | ≤
n∑
i=1

κ1(G̃i\Xi/Y i) +
n∑
i=1

κ>2 (G̃i, Xi, Y i)− 2n.

Observe that
n∑
i=1

κ>2 (G̃i, Xi, Y i) = κ>2 (G̃, X̃, Ỹ ) and
n∑
i=1

κ1(G̃i\Xi/Y i) = κ1(G̃\X̃/Ỹ ) + n− 1,

where the last equality occurs because each of G̃\X̃/Ỹ , G̃1, G̃2, . . . , G̃n has a com-
ponent containing the vertex that results from the contraction of e. Thus

|Y0| − 1 ≤ (κ1(G̃\X̃/Ỹ ) + n− 1) + κ>2 (G̃, X̃, Ỹ )− 2n

= κ1(G̃\X̃/Ỹ ) + κ>2 (G̃, X̃, Ỹ )− n− 1,

and the result follows by induction since n ≥ 2. �



MINOR-MINIMAL 2–CONNECTED GRAPHS WITH A FIXED MINOR 21

11. Some basic inequalities

In this section, we assume that G ∈ G(α,β)
∅ (H) where H = G\X/Y . We also

assume that (C1)–(C3) from Theorem 1.1 hold, that one of Cases I and II defined
in Section 9 occurs, and that hypotheses (H1)–(H3) defined at the end of Section 10
hold.

We now distinguish three disjoint subsets of (Y ∩E(G1))−Y ′′ each of which may
be empty. Let Yb be the set of depth-1 edges g in (Y ∩ E(G1)) − Y ′′ that have a
bull with respect to (G,X, Y ) and let Dg be one of these bulls. Let Yr be the other
depth-1 edges in (Y ∩E(G1))− Y ′′. By assumption, every such edge g has a rhino
with respect to (G,X, Y ). Let Dg be such a rhino. Let Ysd be the set of edges of
(Y ∩E(G1))− Y ′′ that do not belong to any of the graphs Dg for g ∈ Yb ∪ Yr. By
assumption, every such edge g is a depth-0 edge. In this case, we choose Dg to be
a dog or a snake on g with respect to (G,X, Y ).

Figure 7. Breaking off bulls, rhinos, dogs, and snakes.

Next we shall break off all the bulls, rhinos, dogs, and snakes that we have
associated with edges of (Y ∩ E(G1))− Y ′′. Let

G′ = G1 −

 ⋃
g∈Yb∪Yr∪Ysd

[V (Dg)− V (g)]

 .

An example of this construction is shown in Figure 7. In G1, the type of each edge
of Y is marked and, for each edge of Y that remains in G′, we have indicated to
which of the sets Ysd, Yb, Yr, or Y ′′ it belongs. We observe that G1 has a rhino
at the top, a bull at the bottom, a snake on the left, and a dog on the right. It
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is not difficult to see that, in this example and in general, G′ is a block. Define
X ′ = E(G′) ∩X and Y ′ = E(G′) ∩ Y . These sets have the following properties:

(P1) Y ′ does not contain a cycle of G′.
(P2) Y ′ does not span any edge of X ′.
(P3) G′\x is not a block for every x in X ′.
(P4) No edge of Yb is pendent in G′\X ′.
(P5) E(G′) 6= Y ′.

The first three parts of this follow from Lemma 2.3 and the fact that G ∈ G∅(H).
For (P4) , we observe that, by Lemma 7.1, if g ∈ Yb, then g is not pendent in
[G− (V (Dg)− V (g))]\(X −XDg ) and, using this, it is not difficult to show that g
is not pendent in G′\X ′.

To show (P5), suppose that E(G′) = Y ′. As G′ is a block and G′[Y ′] contains
no cycle, it follows that |E(G′)| = 1. If Y ′ = Y ′′, then G′ = G1, which contradicts
the fact that (G1, G2) is an admissible decomposition of G with respect to e. Thus
Y ′′ = ∅. But, in that case, G is a snake, a dog, a bull, or a rhino, and G/Y ′ is a
block; a contradiction. We conclude that (P5) holds.

In this section, we shall apply Lemma 10.1 to get an upper bound on |X1|+ |Y1|.
We shall also get bounds on κ1(G1\X1/Y1) and κ2(G1\X1/Y1). These bounds will
be used to derive two lemmas (11.4 and 11.5) that are fundamental in the proof of
the main result.

Observe that

κ1(G1\X1/Y1) = κ1(G′\X ′/Y ′) + |Yr|+ |Yb|. (5)

We also have that

κ2(G1\X1/Y1) = 4|Yr|+ 3|Yb|+ |Ysd|+ κ>2 (G′, X ′, Y ′) + δ1, (6)

where δ1 = 1 when |Y ′′| = 1 and Y ′′ is the edge-set of a connected component of
G′\X ′, and δ1 = 0 otherwise.

Now, we shall get an upper bound for |X1|+ |Y1|. Let s be the number of edges
g in Ysd such that Dg is a snake. Observe that

|X1|+ |Y1| = (|X ′|+ 8|Yr|+ 7|Yb|+ |Ysd| − s) + (|Y ′|+ 4|Yr|+ 3|Yb|)
= |X ′|+ 13|Yr|+ 11|Yb|+ 2|Ysd|+ |Y ′′| − s. (7)

Next we seek an upper bound for |X ′|. We shall obtain this by applying Lemma 10.1
to a certain graph K. There are two cases to consider:

(a) Y ′′ is not a pendent edge of G′\X ′.
(b) Y ′′ is a pendent edge of G′\X ′.

Observe that (a) includes the possibility that Y ′′ is empty.
Consider (a). Since G1/Y

′′ is a block, it follows that G′/Y ′′ is a block. Let Y0

be a minimal subset of Yb such that (G′/Y ′′)/(Yb − Y0) is a block. In case (b), let
Y0 be a minimal subset of Yb such that G′/(Yb − Y0) is a block. Let

K =
{

(G′/Y ′′)/(Yb − Y0) in case (a);
G′/(Yb − Y0) in case (b).

Evidently K/g is not a block for every g in Y0. We want to apply Lemma 10.1 to
(G̃, X̃, Ỹ , Y0) where G̃ = K, X̃ = X ′, and

Ỹ =
{
Yr ∪ Y0 ∪ Ysd in case (a);
Yr ∪ Y0 ∪ Ysd ∪ Y ′′ in case (b).
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11.1. Lemma. With (G̃, X̃, Ỹ , Y0) = (K,X ′, Ỹ , Y0), the hypotheses of Lemma 10.1
hold.

Proof. All of the hypotheses except (i) and (ii) follow easily. We verify (ii) in case
(a) noting that a similar argument applies in case (b). If K\x is a block for some
x in X̃, then, by (P1)–(P3) , it follows that Y ′′ ∪ (Yb−Y0) contains a pendent edge
in G′\x; a contradiction. Thus (ii) holds. To show (i), suppose that |E(K)| = 1
and E(K) = Ỹ . Then E(G′) = Y ′. By (P1) and the fact that G′ is a block, we
deduce that |E(G′)| = 1; a contradiction to (P5) . Hence (i) holds. �

Applying Lemma 10.1, we get

|Y0| = κ1(K\X ′/Ỹ ) + κ>2 (K,X ′, Ỹ )− 2− δ2, (8)

for some δ2 ≥ 0. Evidently K\X ′/Ỹ = G′\X ′/Y ′, so

κ1(K\X ′/Ỹ ) = κ1(G′\X ′/Y ′). (9)

We shall show next that

κ>2 (K,X ′, Ỹ ) = κ>2 (G′, X ′, Y ′). (10)

Certainly κ2(K\X ′/Ỹ ) = κ2(G′\X ′/Y ′). Moreover, if v is an isolated vertex of
G′\X ′, then v is an isolated vertex of K\X ′. Now suppose that v is an isolated
vertex of K\X ′ that is not an isolated vertex of G′\X ′. Then G′\X ′ has a compo-
nent Z whose edge-set is non-empty and is contained in, respectively, Y ′′∪(Yb−Y0)
in case (a) or Yb−Y0 in case (b). Because Y ′ contains no cycle of G′\X ′, it follows
that Z must contain a pendent edge. But this is a contradiction by (P4) and the
fact that Y ′′ is not pendent in G′\X ′ when (a) holds. We conclude that (10) holds.

As K\x is not a block, for every x in X ′, it follows that K ∈ G∅(K\X ′) so, by
Theorem 3.2,

|X ′| = κ1(K\X ′) + κ2(K\X ′)− 2− δ3, (11)

for some δ3 ≥ 0. Evidently

κ1(K\X ′) = κ1(K\X ′/Ỹ ). (12)

Next we show that
κ2(K\X ′)− |Ỹ | ≤ κ>2 (K,X ′, Ỹ ). (13)

Consider the blocks of K\X ′. They are of three types: isolated vertices, those with
at least one edge that is not in Ỹ , and those with non-empty edge-set contained in
Ỹ . Each block of the first type is counted in κ>2 (K,X ′, Ỹ ). The edge-set of each
block of the second type contains the edge-set of at least one block of K\X ′/Ỹ
with non-empty edge-set. Such blocks of K\X ′/Ỹ are counted in κ>2 (K,X ′, Ỹ ).
No block of K\X ′ of the third type is counted in κ>2 (K,X ′, Ỹ ) and there are at
most |Ỹ | blocks of this type. Hence there are at most κ2(K\X ′) − |Ỹ | blocks of
K\X ′ of the first two types and (13) follows. Thus, by the definition of Ỹ , we have

κ2(K\X ′) = κ>2 (K,X ′, Ỹ ) + |Yr|+ |Y0|+ |Ysd|+ |Y ′′| − δ4, (14)

where δ4 ≥ 0. Indeed, δ4 ≥ 1 unless Y ′′ is a pendent edge of G′\X ′ or Y ′′ = ∅.
Substituting from (12) and (14) into (11), we get that

|X ′| = κ1(K\X ′/Ỹ ) + κ>2 (K,X ′, Ỹ ) + |Yr|+ |Y0|+ |Ysd|+ |Y ′′| − δ4 − 2− δ3.
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Using (8) to replace κ1(K\X ′/Ỹ ) + κ>2 (K,X ′, Ỹ ) by |Y0|+ 2 + δ2, we get

|X ′| = 2|Y0|+ |Yr|+ |Ysd|+ |Y ′′|+ δ2 − δ3 − δ4.

Substituting from this equation for |X ′| into (7), we obtain

|X1|+ |Y1| = 14|Yr|+ 11|Yb|+ 3|Ysd|+ 2|Y0|+ 2|Y ′′|+ δ2 − s− δ3 − δ4. (15)

By substituting for κ>2 (K,X ′, Ỹ ) from (8) into (5) and using (10), we can also get
a new equation for κ1(G1\X1/Y1), namely,

κ1(G1\X1/Y1) = |Yr|+ |Yb|+ |Y0| − κ>2 (G′, X ′, Y ′) + 2 + δ2. (16)

The proof of Theorem 8.1 will involve reducing to the case when κ>2 (G′, X ′, Y ′)
is 0. The next two lemmas gather together useful information about this case.

11.2. Lemma. If κ>2 (G′, X ′, Y ′) = 0, then G′[Y ′] = G′\X ′, κ1(G′\X ′/Y ′) ≥ 2 and

|Yr|+ |Ysd|+ s+ δ5 ≥ 2κ1(G′\X ′/Y ′) ≥ 4,

where δ5 = 0 unless |Y ′′| = 1, in which case, δ5 is 2 minus the type of (G1, G2).

Proof. Since κ>2 (G′, X ′, Y ′) = 0, every edge of G′ is in X ′ or Y ′, and G′\X ′ has
no isolated vertices. Thus G′[Y ′] = G′\X ′. Now, since E(G′) 6= Y ′, it follows that
X ′ 6= ∅. Thus, as Y ′ does not span any edge of X ′ and Y ′ contains no cycle of G′,
we deduce that G[Y ′] is a forest having at least two connected components. Thus
κ1(G′\X ′/Y ′) = κ1(G′\X ′) ≥ 2.

To determine
|Yr|+ |Ysd|+ s+ δ5, (17)

we shall consider the contribution of each connected component ofG′[Y ′] to this sum
where, if |Y ′′| = 1, we view δ5 as contributing to the component of G′[Y ′] containing
Y ′′. If every component of G′[Y ′] contributes at least two to |Yr| + |Ysd| + s + δ5,
then the required result holds. Thus we may assume that G′[Y ′] has a component
Z that contributes less than 2 to (17). Then no edge of Z has a snake on it. Thus
every edge of Z −Y ′′ has a dog, a bull, or a rhino on it. By Lemma 7.1, no edge of
Yb is pendent in Z. Therefore every pendent edge of Z is in Yr ∪Ysd ∪Y ′′. We now
suppose that Z has at least two edges. Then Z has at least two pendent edges. As
Z has at most one pendent edge in Yr ∪ Ysd, it follows that Z is a path one end
of which is the edge in Y ′′. Thus we are in Case I and, since E(G′) = X ′ ∪ Y ′, it
follows that (G1, G2) has type-1, so δ5 = 1. In this case, Z contains Y ′′ and the
contribution of Z to (17) is at least two; a contradiction.

It remains to consider the case when Z has exactly one edge. By Lemma 7.2
and the fact that no edge of Z has a snake on it, we deduce that the edge-set of
Z is Y ′′. In that case, (G1, G2) has type-0 and so δ5 = 2, and Z contributes 2 to
(17). This contradiction completes the proof of the lemma. �

A star is a tree in which there is a vertex incident with every edge. This vertex,
the center of the star, is unique unless the star consists of a single edge. In the
exceptional case, we are free to choose one of the two vertices to be the center of
the star. The next lemma involves four of the seven parameters δ1–δ5, s, and t. In
Table 1, which appears below, these seven parameters are summarized.

11.3. Lemma. Suppose that

κ>2 (G′, X ′, Y ′) = |Y0| = |Yb| = δ1 = δ2 = δ3 = s = 0.
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Then K\X ′ has two connected components each being a star, and every edge of X ′

joins a pendent vertex of one connected component to the center of the other.

Proof. By definition, since Yb = Y0 = ∅, it follows that K = G′ unless Y ′′ is not a
pendent edge of G′\X ′, in which case, K = G′/Y ′′. By (8) and (10), we have that
κ1(K\X ′/Ỹ ) = 2. By (11), we have that

|X ′| = κ1(K\X ′) + κ2(K\X ′)− 2. (18)

Since δ1 = 0, either |Y ′′| = 0, or |Y ′′| = 1 and Y ′′ is not the edge-set of a connected
component of G′\X ′. As κ>2 (G′, X ′, Y ′) = 0, the graph G′\X ′ has no isolated
vertices. We deduce that, both when |Y ′′| = 0 and when |Y ′′| = 1, the set Y ′′ is
not the edge-set of a connected component of G′\X ′. By the last lemma, G′\X ′ =
G′[Y ′]. Thus K\X ′ has no isolated vertices. Since K is G′ or G′/Y ′′ with the latter
occurring when Y ′′ is not a pendent edge of G′\X ′, it follows that

2 = κ1(G′\X ′/Y ′) = κ1(G′\X ′) = κ1(K\X ′). (19)

Moreover, each component of K\X ′ is a tree. Let T1 and T2 be these two compo-
nents. Then each edge of X ′ joins a vertex of T1 to a vertex of T2. Thus, by (18)
and (19),

|X ′| = κ2(K\X ′) = (|V (T1)| − 1) + (|V (T2)| − 1) = |V (K)| − 2. (20)

Suppose that |V (T1)| = |V (T2)| = 2. Then, by (20), |X ′| = 2 and it follows that
K is a 4-cycle, and the lemma holds. Thus we may suppose that |V (T1)| ≥ 3. For
i in {1, 2}, let Pi be the set of degree-one vertices of Ti. Then |Pi| ≥ 2. Since K is
a block, for each u in P1 ∪ P2, there is an edge xu in X ′ such that xu meets u. Let
X ′u = {xu : u ∈ P1 ∪ P2}. Now take v and w in P1. Then T1 has a path joining v
and w, and so K\(X ′ −X ′u) has a cycle containing this path, xv, xw, and a subset
of E(T2). It follows without difficulty that K\(X ′ −X ′u) is a block. But, as noted
earlier, K\x is not a block for all x in X ′. Hence X ′ = X ′u. Thus

|X ′| = |X ′u| ≤ |P1|+ |P2| ≤ (|V (T1)| − 1) + (|V (T2)| − 1) = |V (G)| − 2.

By (20), equality must hold throughout the last line. Thus |Pi| = |V (Ti)| − 1 for
each i, so each Ti is a star. Since |X ′u| = |P1| + |P2|, it follows that xv 6= xw if
v 6= w. Therefore, provided |V (T2)| ≥ 3, every edge of X ′ is incident with the
center of one of the stars Ti and the lemma follows. It remains to consider the case
when |V (T2)| = 2. In that case, T2 has a vertex that is incident with all but one
edge of X ′, otherwise K\x is a block for some x in X ′. The result follows by taking
that vertex to be the center of T2. �

In the next two lemmas, we shall specialize the argument to consider Cases I
and II separately. Thus assume that (G1, G2) is an admissible decomposition of G
with respect to e such that G1/e is a block. Now we follow Section 4 in defining
J2 and H ′2 depending on the type of (G1, G2). We also define the integer t. Recall
that X2 = X ∩ E(G2) and Y2 = Y ∩ E(G2). When (G1, G2) has type-0, we let
H ′2 = H2 = G2\X2/Y2, let J2 be the member of {G2, G2/e} that is in G∅(H ′2),
and let t = 0. When (G1, G2) has type-1, we let J2 be obtained from G by the
replacement of (G1, X1, {e}) by a dog (F,XF , YF ) with head at the end of e that
meets E(G1) ∩ [E(H) ∪ (Y − e)]; we let H ′2 = J2\(X2 ∪XF )/(Y2 ∪ YF ); and we let
t = 2. When (G1, G2) has type-2, we let J2 be obtained from G by the replacement
of (G1, X1, {e}) by a snake (F, ∅, YF ); we let H ′2 = J2\X2/(Y2 ∪ YF ); and we let
t = 1. By Lemmas 6.1, 6.2, and 6.3, in every case, J2 ∈ G∅(H ′2).
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Name Definition Range Remarks
δ1 1 when |Y ′′| = 1 and G′[Y ′′] is {0, 1} See equation (6)

a component of G′\X ′;
0 otherwise

δ2 See equation (8) {0, 1, 2, . . .}
δ3 See equation (11) {0, 1, 2, . . .}
δ4 See equation (14) {0, 1, 2, . . .} Positive unless Y ′′ is

a pendent edge of G′\X ′
δ5 2 minus the type of (G1, G2) {0, 1, 2} See Lemma 11.2

when |Y ′′| = 1;
0 otherwise

s The number of edges g of Ysd {0, 1, 2, . . .} See equation (7)
for which Dg is a snake

t 0 if (G1, G2) has type-0; {0, 1, 2} Defined in Case I
2 if (G1, G2) has type-1;
1 if (G1, G2) has type-2

Table 1. A summary of certain non-negative integer parameters

In Table 1, for easy reference, we have summarized information about the seven
parameters δ1–δ5, s, and t each of which must be a non-negative integer. Four of
these parameters, t, δ1, δ4, and δ5, change their values according to the case we
are in. The other three parameters act as slack variables to turn inequalities into
equalities. We need to know when certain inequalities become equations. We could
not recover this information just from knowing that the parameters are non-negative
integers since, at certain points, they are multiplied by non-integers. The kind of
difficulty that would arise by avoiding the use of these parameters is exemplified in
equation (15) where δ2 and δ3 have opposite signs. The information conveyed by
equations (8) and (11), which define δ2 and δ3 is valuable at certain points in the
proof.

11.4. Lemma. If J2 6∈ G(α,β)
∅ (H ′2), then

0 > |Yr|+
2|Yb|

3
−|Y0|+ 1

3
+
|Ysd|

3
+

5κ>2 (G′, X ′, Y ′)
3

+
2δ2
3

+
10(δ1 − 1)

3
+s+t+δ3+δ4,

when (α, β) = ( 5
3 ,

10
3 ); and

0 >
|Yr|
2

+
|Yb|
2

+
|Y0|+ 1

2
+
κ>2 (G′, X ′, Y ′)

2
+

3δ2
2

+ 3(δ1 − 1) + s+ t+ δ3 + δ4,

when (α, β) = ( 5
2 , 3). Moreover,

3(δ1 − 1) + t+ δ4 ≥ −1 (21)

and this inequality is strict unless (G1, G2) has type-1 or type-2.

Proof. As J2 6∈ G(α,β)
∅ (H ′2),

|E(J2)| − |E(H ′2)| ≤ α(κ1(H ′2)− 1) + β(κ2(H ′2)− 1). (22)
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Now

|E(G)| − |E(H)| = |X1|+ |Y1|+ |X2|+ |Y2| − 1
= |X1|+ |Y1|+ |E(G2)| − |E(H2)| − 1. (23)

We have
|E(G2)| ≤ |E(J2)|+ 1 if (G1, G2) has type-0,

and

|E(G2)| =
{
|E(J2)| − 4 if (G1, G2) has type-1;
|E(J2)| − 3 if (G1, G2) has type-2.

Moreover,

|E(H2)| =
{
|E(H ′2)| if (G1, G2) has type-0;
|E(H ′2)| − 3 if (G1, G2) has type-1 or type-2.

Thus

|E(G2)| − |E(H2)| − 1 ≤

 |E(J2)| − |E(H ′2)| if (G1, G2) has type-0;
|E(J2)| − |E(H ′2)| − 2 if (G1, G2) has type-1;
|E(J2)| − |E(H ′2)| − 1 if (G1, G2) has type-2.

Hence
|E(G2)| − |E(H2)| − 1 ≤ |E(J2)| − |E(H ′2)| − t. (24)

Therefore, from (23) and (24),

|E(G)| − |E(H)| ≤ |X1|+ |Y1|+ |E(J2)| − |E(H ′2)| − t. (25)

Now, with H1 = G1\X1/Y1, it is clear that

κ1(H) = κ1(H1) + κ1(H ′2)− 1. (26)

Moreover,
κ2(H) = κ2(H1) + κ2(H ′2)− 1, (27)

where we note that if (G1, G2) has type-0, then H1 has an isolated vertex that
results from contracting e. Substituting from (22), (26), and (27) into (25), we get

|E(G)| − |E(H)| − (|X1|+ |Y1| − t) ≤ α(κ1(H)− κ1(H1))

+ β(κ2(H)− κ2(H1)). (28)

Thus, letting

∆ = [|E(G)| − |E(H)|]− [α(κ1(H)− 1) + β(κ2(H)− 1)],

it follows, since G ∈ G(α,β)
∅ (H) that ∆ > 0. Moreover, by (28),

∆ ≤ |X1|+ |Y1| − t+ α(1− κ1(H1)) + β(1− κ2(H1)).

Substituting from (6), (15), and (16) into the last inequality and using the fact that
|Y ′′| = 1 since we are in Case I, we get, after rearranging terms, that

0 > −∆ ≥ |Yr|(α+ 4β− 14) + |Yb|(α+ 3β− 11) + (|Y0|+ 1)(α− 2) + |Ysd|(β− 3)

+ κ>2 (G′, X ′, Y ′)(β − α) + δ2(α− 1) + β(δ1 − 1) + s+ t+ δ3 + δ4].

By substituting the two values for (α, β) into the last inequality, we obtain the two
inequalities stated in the lemma.

It remains to check (21). Since δ4 ≥ 0 and t ∈ {0, 1, 2}, the inequality certainly
holds and, indeed, is strict if δ1 ≥ 1. Thus we may assume that δ1 = 0. Then Y ′′

is not the edge-set of a connected component of G′\X ′. Therefore there are edges
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of Y ′ − Y ′′ incident with at least one of the endpoints of e. These edges are in
E(H) ∩ E(G1). Thus (G1, G2) is of type-1 or type-2. Since t = 2 in the former
case, (21) certainly holds then. In the latter case, t = 1, and Y ′′ is not pendent in
G′\X ′ so δ4 ≥ 1 and again (21) holds. �

The next lemma deals with Case II.

11.5. Lemma. If G1 = G, then

|Yr|+
2|Yb|

3
− |Y0|

3
+
|Ysd|

3
+

5
3

(κ>2 (G′, X ′, Y ′)− 1) +
2δ2
3

+ s+ δ3 + δ4 < 0,

when (α, β) = ( 5
3 ,

10
3 ); and, when (α, β) = ( 5

2 , 3),

|Yr|
2

+
|Yb|
2

+
|Y0|
2

+
κ>2 (G′, X ′, Y ′)− 1

2
+

3δ2
2

+ s+ δ3 + δ4 < 0.

Proof. By definition, |Y ′′| = 0 and |E(G)| − |E(H)| = |X1|+ |Y1|. Thus, by (15),

|E(G)| − |E(H)| = 14|Yr|+ 11|Yb|+ 3|Ysd|+ 2|Y0|+ δ2 − s− δ3 − δ4. (29)

Moreover, as G ∈ G(α,β)
∅ (H), we have |E(G)|−|E(H)| > α(κ1(H1)−1)+β(κ2(H1)−

1). Substituting from (29), (6), and (16) and using the fact that δ1 = 0 because
|Y ′′| = 0, we get, after some rearrangement of terms, that

0 > |Yr|(α+ 4β − 14) + |Yb|(α+ 3β − 11) + |Y0|(α− 2) + |Ysd|(β − 3)

+ (κ>2 (G′, X ′, Y ′)− 1)(β − α) + δ2(α− 1) + s+ δ3 + δ4.

The lemma follows by substituting the appropriate values for α and β. �

12. The end of the main proof

In this section, we complete the proof of Theorem 8.1 and thereby finish the
proof of Theorem 2.1. This is a continuation of the proof that we began in Section 8
so the assumptions we made there apply. In particular, G ∈ G(α,β)

L (H) where the
triple (G,H,L) is chosen so that (κ2(H),−θ(H)) is lexicographically minimal where
θ(H) is the number of blocks of H that are triangles. By Lemmas 8.2, 8.3, and 8.4,
L = L(H) = ∅ and Y 6= ∅.

The proof of Theorem 8.1 will be completed by establishing the next five lemmas,
the last two of which contradict each other.

12.1. Lemma. On every depth-0 edge, there is a dog or a snake with respect to
(G,X, Y ).

Proof. Let (G1, G2) be an admissible decomposition of G with respect to an edge
e of Y such that E(G1) ∩ (Y − e) is empty and G1/e is a block. Then, as in
Section 6, we construct graphs J2 and H ′2, depending on the type of (G1, G2), such
that J2 ∈ G∅(H ′2).

Suppose that κ2(H ′2) ≥ κ2(H). We shall show that, after suitable relabelling,
J2 = G. If (G1, G2) has type-0, then κ2(H ′2) = κ2(H2) < κ2(H); a contradiction.
Thus (G1, G2) has type-1 or type-2 and

κ2(H ′2) = κ2(H2) + 1 ≤ κ2(H). (30)
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Therefore equality must hold here. Thus H has a single block that is not a block of
H2 and this block must meet the vertex that results from contracting e. It follows
from this that κ1(H) = κ1(H2), so κ1(H) = κ1(H ′2). Thus

α(κ1(H)− 1) + β(κ2(H)− 1) = α(κ1(H ′2)− 1) + β(κ2(H ′2)− 1). (31)

Moreover, because G ∈ G∅(H), if (G1, G2) has type-2, then G1 contains no edge of
X, while if (G1, G2) has type-1, then G1 contains a unique edge of X. Thus

|E(G)| − |E(H)| = |E(J2)| − |E(H ′2)|. (32)

By (31) and (32), since G ∈ G(α,β)
∅ (H), it follows that J2 ∈ G(α,β)

∅ (H ′2). Since
κ2(H ′2) = κ2(H), the fact that (κ2(H),−θ(H)) is lexicographically smaller than
(κ2(H ′2),−θ(H ′2)) implies that θ(H) ≥ θ(H ′2). But θ(H ′2) = θ(H2) + 1. Since
equality holds in (30), it follows that the one block of H that is not a block of H2

is a triangle. Therefore, since G1 contains 0 or 1 edge of X depending on whether
(G1, G2) has type-1 or type-2, it follows that, by labelling appropriately, we may
assume that J2 = G. Thus Lemma 12.1 holds if κ2(H ′2) ≥ κ2(H).

We may now suppose that κ2(H ′2) < κ2(H). Then J2 6∈ G(α,β)
∅ (H ′2) and we are

in Case I from Section 9 so we may apply Lemma 11.4. Moreover, since G′ = G1,
X ′ = X1, and Y ′ = Y1, we have that κ>2 (G′, X ′, Y ′) = κ>2 (G1, X1, Y1) 6= 0. Then,
by (21),

3(δ1 − 1) + t+ δ4 ≥ −1.
Furthermore, Yr = Yb = Ysd = Y0 = ∅. Thus, when (α, β) = ( 5

2 , 3), the second
inequality in Lemma 11.4 gives

0 >
1
2

+
κ>2 (G1, X1, Y1)

2
+

3δ2
2

+ s+ δ4 − 1,

so κ>2 (G1, X1, Y1) = 0; a contradiction. Similarly, when (α, β) = (5
3 ,

10
3 ), the first

inequality in Lemma 11.4 gives

0 > −1
3

+
5κ>2 (G′, X ′, Y ′)

3
+

2δ2
3

+
δ1
3
− 1

3
+ [3(δ1 − 1) + t+ δ4] + s+ δ3.

Using (21), we again obtain the contradiction that κ>2 (G1, X1, Y1) = 0. We conclude
that Lemma 12.1 holds. �

Next, we shall prove the following.

12.2. Lemma. G has at least one depth-1 edge.

Proof. Assume the lemma fails. Then Y = Y ′ = Ysd and Yr = Yb = Y0 = ∅. Thus
we are in Case II so |Y ′′| = 0 = δ1 and K = G1. Moreover, by Lemma 11.5,

|Ysd|
3

+
5
3

(κ>2 (G′, X ′, Y ′)− 1) +
2δ2
3

+ s+ δ3 + δ4 < 0 or

κ>2 (G′, X ′, Y ′)− 1
2

+
3δ2
2

+ s+ δ3 + δ4 < 0

depending on the value of (α, β). In both cases, we must have that κ>2 (G′, X ′, Y ′) =
0. If E(G′) = Y ′, then E(G′) = Y so |E(G′)| = 1 and (P5) is contradicted. Thus
E(G′) 6= Y ′. Hence, by Lemma 11.2, we have that G′\X ′ = G′[Y ′] and

|Ysd|+ s ≥ 2κ2(G′\X ′/Y ′) ≥ 4.

It is not difficult to check that, for both values of (α, β), we must have that δ2 =
δ3 = δ4 = s = 0. By Lemma 11.3, we have that K\X ′, which equals G′\X ′ and
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G′[Y ′], has two connected components T1 and T2. Moreover, each Ti is a star with
center vi, say, and every edge of X ′ joins the center of one star to a pendent vertex
of the other. Since Ysd = Y ′ but s = 0, it follows that, for every edge g in Y ′, the
graph Dg is a dog. If Dg has its head at vi for some i, then, in G\X, the edge g
of Y is pendent, contradicting Lemma 2.4 . Thus no dog Dg has its head at vi.
Now H can be obtained not only as G\X/Y but also as G\[Y ∪ (X − X ′)]/X ′.
This contradiction to the fact that H arises uniquely as a minor of G completes the
proof of Lemma 12.2. �

The proof of the next lemma is quite long since it involves actually constructing
a bull or a rhino.

12.3. Lemma. On every depth-1 edge, there is a bull or a rhino with respect to
(G,X, Y ).

Proof. Let e be a depth-1 edge with respect to (G,X, Y ). Let (G1, G2) be an
admissible decomposition of G with respect to e such that G1/e is a block and
E(G1)∩(Y −e) is non-empty and contains only depth-0 edges. Then, as in Section 4,
we construct graphs J2 and H ′2, depending on the type of (G1, G2), such that
J2 ∈ G∅(H ′2).

In this paragraph, we shall prove that J2 is lexicographically smaller than G
or, more formally, that (κ2(H ′2),−θ(H ′2)) is lexicographically smaller than (κ2(H),
−θ(H)). First we note that

κ2(H) =

{
κ2(H2) + κ2(G1\X1/Y1)− 1 if (G1, G2) has type-0;
κ2(H2) + κ2(G1\X1/Y1) otherwise.

To see this, we note that G1\X1/Y1 has an isolated vertex that results from con-
tracting the edge e. But H2 also has a block containing the vertex that results from
contracting e. Since H ′2 = H2 if (G1, G2) has type-0, and H ′2 has one more block
than H2 otherwise, we deduce that, in all cases,

κ2(H) = κ2(H ′2) + κ2(G1\X1/Y1)− 1.

Thus we may assume that κ2(G1\X1/Y1) = 1 otherwise J2 is lexicographically
smaller than G. Now, on each edge in (Y1 − e) ∩ E(G1), there is a dog or a snake
from which we get a block of G1\X1/Y1. Thus |(Y1− e)∩E(G1)| ≤ 1. But, since e
is a depth-1 edge, |(Y1 − e) ∩E(G1)| ≥ 1. Hence equality holds here. Let f be the
unique edge in (Y1 − e) ∩ E(G1). Then the only block of G1\X1/Y1 is a triangle
and Y1 = {e, f}. Hence (G1, G2) has type-1 or type-2. Thus, at least one endpoint
of e is incident with f or an edge of H that is in the dog or snake on f . But the
only vertices of a dog or snake on f that can be adjacent to edges not in the dog or
snake are the endpoints of f . Hence e and f are adjacent in G1. Now G1\X1/Y1

has no isolated vertices. Thus, since G1 is a block, the ends of e and f that are
different must be joined by an edge of X1. This edge of X1 is spanned by edges of
Y1; a contradiction. We conclude that J2 is, indeed, lexicographically smaller than
G.

We now know that J2 6∈ G(α,β)
∅ (H ′2) and that we are in Case I, so we may apply

Lemma 11.4. Evidently Yr = Yb = Y0 = ∅ and Y ′′ = {e}. Thus Y ′ = Y1. For both
values of (α, β), we shall prove that

κ>2 (G′, X ′, Y ′) = s = δ1 = δ2 = δ3 = 0. (33)
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First, suppose that (α, β) = ( 5
3 ,

10
3 ). By Lemma 11.4, we have that

0 > −1
3

+
|Ysd|

3
+

5κ>2 (G′, X ′, Y ′)
3

+
2δ2
3

+
10(δ1 − 1)

3
+ s+ t+ δ3 + δ4. (34)

As |Ysd| ≥ 1, it follows that δ1 = 0. Thus, by (21), t + δ4 − 2 ≥ 0. Using this and
the fact that δ1 = 0, we get from (34) that

0 >
|Ysd|

3
+

5(κ>2 (G′, X ′, Y ′)− 1)
3

+
2δ2
3

+ s+ δ3.

Thus κ>2 (G′, X ′, Y ′) = 0 and so

0 >
(|Ysd|+ s)− 5

3
+

2δ2
3

+
2s
3

+ δ3. (35)

Now E(G′) 6= Y ′ since G′ is a block having at least two edges and Y ′ contains no
cycle of G′. Hence, by Lemma 11.2, |Yr|+ |Ysd|+ s ≥ 4− δ5. Observe that (G1, G2)
does not have type-0 because δ1 = 0. Hence δ5 ∈ {0, 1}. As Yr = ∅, it follows that
|Ysd|+ s ≥ 3. Using this inequality in (35), we obtain

0 > −2
3

+
2δ2
3

+
2s
3

+ δ3.

Hence all the integers δ2, s, and δ3 are non-positive. As these integers are non-
negative, they must be equal to zero. Thus (33) holds when (α, β) = ( 5

3 ,
10
3 ). Now,

suppose that (α, β) = ( 5
2 , 3). By Lemma 11.4,

0 >
1
2

+
κ>2 (G′, X ′, Y ′)

2
+

3δ2
2

+ 3(δ1 − 1) + s+ t+ δ3 + δ4.

Observe that δ1 = 0 because κ>2 (G′, X ′, Y ′), δ2, δ1, s, t, δ3, δ4 are all non-negative
integers. By rewriting the last inequality and using (21), we have

0 >
1
2

+
κ>2 (G′, X ′, Y ′)

2
+

3δ2
2

+ δ3 + s+ [−1].

Hence

0 >
κ>2 (G′, X ′, Y ′)− 1

2
+

3δ2
2

+ δ3 + s.

As all of κ>2 (G′, X ′, Y ′), δ2, δ3, and s are non-negative integers, it follows that
κ>2 (G′, X ′, Y ′) = 0. Hence δ2 = δ3 = s = 0. Thus, again, we get (33).

By (33) and the fact that Yb = Y0 = ∅, the hypotheses of Lemma 11.3 hold so
K\X ′ has two connected components T1 and T2. Moreover, each Ti is a star with
center vi, and every edge of X ′ joins the center of one star to a pendent vertex
of the other. As κ>2 (G′, X ′, Y ′) = 0 and E(G′) 6= Y ′, Lemma 11.2 implies that
G[Y ′] = G′\X ′. In addition, since δ1 = 0, (G1, G2) has type-1 or type-2 .

Next we relate the connected components of G′\X ′ to those of K\X ′. Suppose
first that (G1, G2) has type-1. Then e is a pendent edge of G′\X ′ so K = G′.
Let T ′1 = T1 and T ′2 = T2 where e ∈ E(T1). Then T ′1 and T ′2 are the connected
components of G′\X ′. Evidently e is a pendent edge of T ′1. Moreover, as (G1, G2)
has type-1, it follows that |E(T ′1)− e| ≥ 1.

Suppose next that (G1, G2) has type-2. Then K = G′/e. Thus G′ has two
connected components T ′1 and T ′2, each a tree, where e ∈ E(T ′1) and T ′1/e = T1. As
e is not pendent in T ′1, it follows that the vertex of T1 that results from contracting
e must be v1, the center of the star T1. Thus, as e = uv, there is a partition



32 MANOEL LEMOS AND JAMES OXLEY

{Eu, Ev} of E(T1) such that, for each w in {u, v}, the set Ew is the set of edges of
T1 that meet w.

Now, E(G1) ∩ (Y − e) = Y ′ − e. Since s = 0 and every edge of Y ′ − e is a
depth-0 edge, it follows by Lemma 12.1 that Df is a dog on f for every f in Y ′− e.
Moreover, since f is not pendent in G\X, if the head of the dog is at hf , then
hf 6∈ {v1, v2, u, v}. Also X ′ contains a unique edge xf incident with hf in G′[Y ′].
This edge is the lead of the dog Df .

We shall show next that, both when (G1, G2) has type-1 and when it has type-2,
|E(T2)| = 2. We begin by proving that |E(T2)| ≤ 2. Suppose that |E(T2)| ≥ 3.
Then there are different edges f and g of T2 such that xf and xg are adjacent to
the same vertex z of T ′1 where z is v1 if (G1, G2) has type-1, and z is in {u, v}
when (G1, G2) has type-2 . Now Df and Dg both have their tails incident with
v2. Moreover, Df and Dg have their leads at the same vertex. As |E(T2)| ≥ 3, the
connected component of H that contains the heads of Df and Dg contains at least
one more block. Therefore, by Lemma 7.3, G − [V (Df ) − v2] ∈ G∅(H − [V (Df ) −
V (f)]). As we shall see, this will imply a contradiction to the minimality of G.
Clearly κ1(H) = κ1(H− [V (Df )−V (f)]) and κ2(H) = κ2(H− [V (Df )−V (f)])+1.
The last equation implies that G − [V (Df ) − v2] 6∈ G(α,β)

∅ (H − [V (Df ) − V (f)]).
Thus, if tf is the tail of the dog Df , then

|E(G)| − |E(H)| − |{f, xf , tf}| ≤ α(κ1(H)− 1) + β(κ2(H)− 2).

Therefore, |E(G)| − |E(H)| ≤ α(κ1(H)− 1) + β(κ2(H)− 1) + [3− β]. Since β ≥ 3,
this implies the contradiction that G ∈ G(α,β)

∅ (H). We conclude that |E(T2)| ≤ 2.
If |E(T2)| ≤ 1, then |E(T2)| = 1 because κ>2 (G′, X ′, Y ′) = 0. Therefore we have a
contradiction to Lemma 7.2. We deduce that we do indeed have |E(T2)| = 2.

Next we prove that T ′1 is a path which has length two when (G1, G2) has type-1
and has length three when (G1, G2) has type-2. To establish this, it suffices to show
that |E(T1)− e| = 1 when (G1, G2) has type-1, and |Eu| = |Ev| = 1 when (G1, G2)
has type-2. Thus assume that |E(T1)− e| > 1 if (G1, G2) has type-1, and |Eu| > 1
when (G1, G2) has type-2. In each case, there are at least two dogs Df having
leads at v2 and having tails at z where z is v1 or u depending on whether (G1, G2)
has type-1 or type-2, respectively. Now the component of H that contains the
head of these two dogs contains the head of a third dog if (G1, G2) has type-2 and
contains a block with edge-set in E(G2) if (G1, G2) has type-1. Thus we may apply
Lemma 7.3 as in the previous paragraph to obtain a contradiction. We conclude
that T ′2 is indeed a path of length two or three.

Assembling the information obtained above enables us to conclude that G1 is,
respectively, a bull or a rhino on e when (G1, G2) has type-1 or type-2. This
contradiction completes the proof of Lemma 12.3. �

12.4. Lemma. G has a depth-2 edge.

Proof. Assume that this is not the case. Then every edge of Y is a depth-0 or
depth-1 edge. By Lemma 12.1, every depth-0 edge of G has a dog or a snake with
respect to (G,X, Y ) and, by Lemma 12.3, every depth-1 edge of G has a bull or
a rhino with respect to (G,X, Y ). Thus we are in Case II so Y ′′ = ∅ and we can
apply Lemma 11.5. When (α, β) is equal to ( 5

3 ,
10
3 ), we have that

|Yr|+
2|Yb|

3
− |Y0|

3
+
|Ysd|

3
+

5
3

(κ>2 (G′, X ′, Y ′)− 1) +
2δ2
3

+ s+ δ3 + δ4 < 0. (36)
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As Y0 ⊆ Yb and κ>2 (G′, X ′, Y ′), δ2, s, δ3, δ4 are non-negative integers, it follows that
κ>2 (G′, X ′, Y ′) = 0. By Lemma 11.2, since |Y ′′| = 0, we have that δ5 = 0, so

|Yr|+ |Ysd|+ s− 4 ≥ 0. (37)

Substituting the value of κ>2 (G′, X ′, Y ′) into (36) and reordering, we obtain

|Yr|
3

+
|Yr|+ |Yb| − 1

3
+
|Yr|+ |Ysd|+ s− 4

3
+
|Yb| − |Y0|

3
+

2δ2
3

+
2s
3

+ δ3 + δ4 < 0.

We obtain a contradiction provided each of |Yr|+ |Yb| − 1, |Yr|+ |Ysd|+ s− 4, and
|Yb|−|Y0| is non-negative. The first is because G has a depth-1 edge by Lemma 12.2;
the second is by (37); and the third is because Y0 ⊆ Yb. We may now assume that
(α, β) equals ( 5

2 , 3). In that case, by Lemma 11.5,

|Yr|
2

+
|Yb|
2

+
|Y0|
2

+
κ>2 (G′, X ′, Y ′)− 1

2
+

3δ2
2

+ s+ δ3 + δ4 < 0,

so κ>2 (G′, X ′, Y ′) = 0. Substituting this value into the last inequality and rearrang-
ing it, we obtain

|Yr|+ |Yb| − 1
2

+
|Y0|
2

+
3δ2
2

+ s+ δ3 + δ4 < 0.

Again we arrive at a contradiction because Yr∪Yb 6= ∅ by Lemma 12.2. We conclude
that Lemma 12.4 holds. �

We shall arrive at the final contradiction by proving the following:

12.5. Lemma. G has no depth-2 edges.

Proof. By Lemma 12.4, G has a depth-2 edge. Let e be such an edge and (G1, G2)
be an admissible decomposition of G with respect to e such that E(G1) ∩ (Y − e)
contains only depth-0 or depth-1 edges. Then, as before, we construct the graphs
J2 and H ′2. Since G1 has at least one depth-1 edge, it follows that κ2(H ′2) <
κ2(H), so J2 is smaller than G in our lexicographic order. Thus we can apply
Lemma 11.4. Suppose first that (α, β) = ( 5

2 , 3). Rearranging the second inequality
in Lemma 11.4, we get

0 >
|Yr|
2

+
|Yb|
2

+
|Y0|+ 1

2
+
κ>2 (G′, X ′, Y ′)

2
+

3δ2
2

+ s+ δ3 + [3(δ1 − 1) + t+ δ4].

By (21), we obtain, after rearranging terms, that

0 >
|Yr|+ |Yb| − 1

2
+
|Y0|
2

+
κ>2 (G′, X ′, Y ′)

2
+

3δ2
2

+ s+ δ3.

But this is a contradiction because |Yr|+ |Yb| − 1 is non-negative since there is at
least one depth-1 edge.

We may now assume that (α, β) = ( 5
3 ,

10
3 ). The rest of the proof will be divided

explicitly into three cases depending on the type of (G1, G2).
Suppose that (G1, G2) has type-0. Then t = 0 and δ1 = 1. By Lemma 11.4, we

have that

0 > |Yr|+
2|Yb|

3
− |Y0|+ 1

3
+
|Ysd|

3
+

5κ>2 (G′, X ′, Y ′)
3

+
2δ2
3

+ s+ δ3 + δ4.

As |Yb| ≥ |Y0|, we obtain a contradiction unless |Yb| = |Y0| = 0. But in the
exceptional case, |Yr| ≥ 1, because e is a depth-2 edge and so Yr ∪ Yb 6= ∅. Again,
we have a contradiction.
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Suppose that (G1, G2) has type-1. Then t = 2, δ1 = 0, and δ5 = 1. Thus, by
Lemma 11.4, we have, after rearranging terms, that

0 > |Yr|+
|Yb|
3

+
|Yb| − |Y0|

3
+
|Ysd|

3
+

5(κ>2 (G′, X ′, Y ′)− 1)
3

+
2δ2
3

+s+δ3 +δ4. (38)

Hence κ>2 (G′, X ′, Y ′) = 0 and so, by Lemma 11.2,

|Yr|+ |Ysd|+ s+ 1 ≥ 2κ1(G′\X ′/Y ′) ≥ 4. (39)

Observe that (38) can be rewritten as

0 >
|Yr|+ |Ysd|+ s− 3

3
+
|Yr|+ |Yb| − 1

3
+
|Yb| − |Y0|

3
+
|Yr|
3

+
2δ2
3

+
2s
3

+δ3+δ4−
1
3
.

Since all of |Yr|+ |Ysd|+s−3, |Yr|+ |Yb|−1, |Yb|−|Y0|, |Yr|, and s are non-negative,
we get a contradiction unless all of these are zero. Thus |Yb| = 1, |Ysd| = 3, and
|Y0| = 1. Hence, by (8), (9), and (10),

1 = |Y0| = κ1(G′\X ′/Y ′) + κ>2 (G′, X ′, Y ′)− 2− δ2 = κ1(G′\X ′/Y ′)− 2.

Thus κ1(G′\X ′/Y ′) = 3. But this contradicts (39) since |Yr|+ |Ysd|+ s− 3 = 0.
Finally, suppose that (G1, G2) has type-2. Then t = 1, δ4 ≥ 1, and δ5 = 0.

Thus, it follows by Lemma 11.4 that

0 > |Yr|+
|Yb|
3

+
|Yb| − |Y0|

3
+
|Ysd|

3
+

5(κ>2 (G′, X ′, Y ′)− 1)
3

+
2δ2
3

+ s+ δ3 + (δ4 − 1). (40)

Hence κ>2 (G′, X ′, Y ′) = 0 so, by Lemma 11.2, |Yr| + |Ysd| + s ≥ 2κ2(H ′) ≥ 4.
Rewriting (40), we get

0 >
|Yr|+ |Ysd|+ s− 4

3
+
|Yr|+ |Yb| − 1

3
+
|Yb| − |Y0|

3
+
|Yr|
3

+
2δ2
3

+
2s
3

+δ3+(δ4−1).

This contradiction completes the proof of Lemma 12.5. �

Theorem 8.1 follows by combining the last two lemmas. �

We may rewrite the bound in Theorem 8.1 for some special values of α and β.

12.6. Corollary. If G ∈ GL(H), then
(i) |E(G)| − |E(H)| ≤ κ1(H) + 4κ2(H)− 5;
(ii) |E(G)| − |E(H)| ≤ 5κ2(H)− 5; and
(iii) |E(G)| − |E(H)| ≤ 3κ1(H) + 3κ2(H)− 6.

Part (i) and (iii) of this corollary are two best-possible linear bounds on |E(G)|−
|E(H)| in which κ1(H) and κ2(H) have integer coefficients. The bound in (ii) is
interesting, since we can compare it to the bound obtained for the corresponding
matroid problem. When M is a minor-minimal matroid with respect to being 2-
connected and having a non-empty matroid N as a minor, Theorem 1.4 gives that
|E(M)|− |E(N)| ≤ 2k−2, where k is the number of 2-connected components of N .
If M = M(G) for some graph G, then N = M(H) for a minor H of G having no
isolated vertices, and 2k− 2 equals 2κ2(H)− 2. Thus the matroid bound is exactly
2
5 of the bound obtained in the graph case. This strange situation occurs because
the cycle matroids of two graphs are equal provided the sets of blocks with at least
one edge in these two graphs coincide [9].
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13. A sharper bound

For all (α, β) on the boundary of A, one of the examples constructed in Section 5
attains the bound

|E(G)| − |E(H)| ≤ bα(κ1(H)− 1) + β(κ2(H)− 1)c (41)

unless (α, β) is on the oblique half-line α + β = 5 and α ≤ 5
3 . In the exceptional

case, provided κ2(H) is not too small, the bound in (41) can be improved so that
it is also attained by an appropriate example from Section 5. This improvement is
contained in the next theorem. Corollary 13.2 is a straightforward consequence of
this theorem that sharpens the bound in Corollary 12.6(ii) when κ2(H) ≥ 3.

13.1. Theorem. Suppose that α + β = 5 and α ≤ 5
3 . If G ∈ GL(H) and κ2(H) ≥

β − 7
3 , then |E(G)| − |E(H)| ≤ bα(κ1(H)− 1) + β(κ2(H)− 1)− (β − 10

3 )c.

Proof. It suffices to prove that

β − 10
3 ≤ α(κ1(H)− 1) + β(κ2(H)− 1)− (|E(G)| − |E(H)|). (42)

By taking (α, β) = ( 5
3 ,

10
3 ), it follows from Theorem 8.1 that if

h = 5
3 (κ1(H)− 1) + 10

3 (κ2(H)− 1)− [|E(G)| − |E(H)|],

then h is non-negative. Now, since α + β = 5, it follows that (β − 10
3 )(κ2(H) −

κ1(H)) = (α− 5
3 )(κ1(H)− 1) + (β − 10

3 )(κ2(H)− 1). Thus

α(κ1(H)− 1) + β(κ2(H)− 1)− [|E(G)| − |E(H)|] = h+ (β − 10
3 )(κ2(H)− κ1(H)).

Suppose that κ2(H) ≥ κ1(H) + 1. Then, as h ≥ 0, it follows that

α(κ1(H)− 1) + β(κ2(H)− 1)− [|E(G)| − |E(H)|] ≥ β − 10
3 ,

that is, (42) holds. We may now assume that κ2(H) ≤ κ1(H). Thus κ2(H) =
κ1(H). Then, by Theorem 3.5,

|E(G)| − |E(H)| ≤ 4κ2(H)− 4
= α(κ1(H)− 1) + β(κ2(H)− 1)− (κ2(H)− 1).

But, by assumption, κ2(H) ≥ β − 7
3 , so κ2(H)− 1 ≥ β − 10

3 . Hence

|E(G)| − |E(H)| ≤ α(κ1(H)− 1) + β(κ2(H)− 1)− (β − 10
3 )

so (42) holds. �

13.2. Corollary. If G ∈ GL(H) and κ2(H) ≥ 3, then

|E(G)| − |E(H)| ≤ 5κ2(H)− 7.

14. Some consequences

We conclude the paper by using Corollary 3.3 to generalize some results of Dirac
[2] and Lemos and Oxley [5] for minimally 2-connected graphs, where a graph G is
minimally 2-connected if, for all e in E(G), the graph G\e is not 2-connected.

14.1. Corollary. Let M be a matching in a 2-connected graph G and assume that
no proper 2-connected subgraph of G has M as a matching. Then

|E(G)| ≤ 2|V (G)| − |E(M)| − 2.

Proof. The corollary follows by applying Corollary 3.3 to the graph with vertex-set
V (G) and edge-set E(M). �
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To see that the last result is sharp, let G be the graph that is constructed by
joining two vertices u and v by k internally disjoint paths where k ≥ 2 and two of
the paths P1 and P2 have length two while the rest have length three. Let v1 and
v2 be the internal vertices of P1 and P2. Let F be the set of edges of G that are
incident with neither u nor v. Then {uv1, vv2} ∪ F is the edge-set of a matching
in G and no 2-connected proper subgraph of G has M as a matching. Moreover,
|E(G)| = 2|V (G)| − |E(M)| − 2.

The next result, due to Dirac [2], is obtained by applying the last corollary to a
2-edge matching.

14.2. Corollary. A minimally 2-connected graph G with at least four vertices has
at most 2|V (G)| − 4 edges.

14.3. Corollary. Let C1, C2, . . . , Ck be vertex-disjoint cycles in a 2-connected graph
G. Assume that no proper 2-connected subgraph of G has all of C1, C2, . . . , Ck as
cycles. Then

|E(G)| ≤ 2|V (G)|+ 2(k − 1)−
k∑
i=1

|E(Ci)|.

Proof. The corollary follows by applying Corollary 3.3, taking H to be the subgraph
of G with vertex-set V (G) and edge-set ∪ki=1E(Ci). �

By taking k = 1 in the last corollary and letting C1 be a maximum-sized cycle
in G, we obtain the following result of Oxley and Lemos [5] that was originally
derived from the corresponding result for matroids.

14.4. Corollary. Let G be a minimally 2-connected graph with circumference c.
Then |E(G)| ≤ 2|V (G)| − c.
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