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Abstract. Let N be a minor of a 3-connected matroid M such that no proper

3-connected minor of M has N as a minor. This paper proves a bound on

|E(M)− E(N)| that is sharp when N is connected.

1. Introduction

Let N be a minor of a 3-connected matroid M . Suppose that one wants to
remove elements from M to maintain both 3-connectedness and the presence of N
as a minor. If this cannot be done, what can be said about |E(M) − E(N)|? In
particular, must this difference be bounded? If N is 3-connected, then clearly the
difference is 0. This paper proves a bound on the difference that is sharp when N
is connected.

For a matroid N , let λ1(N) denote the number of connected components of N .
NowN can be constructed from a collection Λ2(N) of 3-connected matroids by using
the operations of direct sum and 2-sum. It follows from results of Cunningham and
Edmonds [5] that Λ2(N) is unique up to isomorphism. Let λ2(N) be the number
of matroids in Λ2(N). The following is the main result of the paper.

1.1. Theorem. Let N be a non-empty matroid and M be a minor-minimal 3-
connected matroid having N as a minor. Then

|E(M)| − |E(N)| ≤ 22(λ1(N)− 1) + 5(λ2(N)− 1).

An immediate consequence of the theorem is that if M and N satisfy the hy-
potheses, then

|E(M)| − |E(N)| ≤ α(λ1(N)− 1) + β(λ2(N)− 1)

for all α ≥ 22 and β ≥ 5. We shall give examples to show that this theorem is
sharp when N is connected, so the value of β cannot be reduced below 5. However,
we believe that the theorem still holds when the value of α is reduced to 1.

1.2. Conjecture. Let N be a non-empty matroid and M be a minor-minimal 3-
connected matroid having N as a minor. Then

|E(M)| − |E(N)| ≤ λ1(N) + 5λ2(N)− 6.

The modification of the original problem that insists that M is a minor-minimal
3-connected matroid having N as a restriction was solved by the authors first in the
case when N spans M [8] and then in general in joint work with Reid [10]. Another
variant of the original problem that requires N to be 3-connected and different from
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M was solved by Truemper [14] when |E(N)| ≥ 4 and by Bixby and Coullard [3]
when |E(N)| ≤ 3. That result is as follows.

1.3. Theorem. Let N be a 3-connected matroid. If M is a minor-minimal 3-
connected matroid having N as a proper minor, then |E(M)| − |E(N)| ≤ 3.

A third variant of the original problem that requires only that M be a minor-
minimal 3-connected matroid having a minor isomorphic to N will be considered
at the end of Section 4.

The terminology used in this paper will follow Oxley [11] except that the simpli-
fication and cosimplification of a matroid M will be denoted by si(M) and co(M),
respectively. For a positive integer k, a partition {X,Y } of the ground set of a ma-
troid M is a k-separation of M if min{|X|, |Y |} ≥ k and r(X)+r(Y )−r(M) ≤ k−1.
When equality holds in the latter inequality, the k-separation {X,Y } is exact. A
matroid is connected if it has no 1-separations, and is 3-connected if it has no 1- or
2 -separations.

The property that a circuit and a cocircuit of a matroid cannot have exactly one
common element will be referred to as orthogonality. A basic structure in the study
of 3-connected matroids consists of an interlocking chain of triangles and triads.
Let T1, T2, . . . , Tk be a non-empty sequence of sets each of which is a triangle or a
triad of a matroid M such that, for all i in {1, 2, . . . , k − 1},

(i) |Ti ∩ Ti+1| = 2;
(ii) (Ti+1 − Ti) ∩ (T1 ∪ T2 ∪ . . . ∪ Ti) is empty; and
(iii) in {Ti, Ti+1}, exactly one set is a triangle and exactly one set is a triad.

We call the sequence T1, T2, . . . , Tk a fan of M . When this occurs, it is straight-
forward to show that M has k + 2 distinct elements x1, x2, . . . , xk+2 such that
Ti = {xi, xi+1, xi+2} for all i in {1, 2, . . . , k}. This terminology differs from that in
[12] where the term “chain” is used for what has just been defined as a fan, and
where “fan” is used for a maximal chain.

Suppose that the intersection of the ground sets of the matroids M and M(K4)
is ∆ and that ∆ is a triangle in both matroids. The generalized parallel connection
of M(K4) and M across ∆ is the matroid P∆(M(K4),M) whose ground set is the
union of the ground sets of the two matroids and whose flats are those subsets X
of the ground set for which X ∩ E(M(K4)) is a flat of M(K4) and X ∩ E(M) is
a flat of M . If the elements of ∆ are deleted from P∆(M(K4),M), we obtain the
matroid that we get by performing a ∆− Y -exchange on M across ∆ [1].

This paper is structured as follows. In the next section, we review the results
of Cunningham and Edmonds [5] on decomposing a connected matroid into 3-
connected pieces. Section 3 proves some technical lemmas that will be used in the
proof of the main result. In particular, a result of Seymour [13] is used to show
that the destruction of a particular exact 2-separation of the matroid N requires
the addition of at most 5 new elements. In Section 4, the main result is proved in
the case that N is connected and it is shown that the theorem is sharp in this case
even when M is only required to contain a minor isomorphic to N rather than N
itself. Section 5 uses the result for the connected case to obtain a general bound
on |E(M)| in terms of |E(N)|. This bound tends to be weaker than the bound in
the main theorem, which is proved in the last section.
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2. Tree decomposition

In this section, we review the results of Cunningham and Edmonds that will
be used in the proof of the main result. Let M be a connected matroid. A tree
decomposition of M is a tree T with edges labelled e1, e2, . . . , ek−1 and vertices
labelled by matroids M1,M2, . . . ,Mk such that

(i) each Mi is 3-connected having at least four elements or is a circuit or a
cocircuit;

(ii) E(M1) ∪ E(M2) ∪ . . . ∪ E(Mk) = E(M) ∪ {e1, e2, . . . , ek−1};
(iii) if the edge ei joins the vertices Mj1 and Mj2 , then E(Mj1)∩E(Mj2) = {ei};
(iv) if no edge joins the vertices Mj1 and Mj2 , then E(Mj1)∩E(Mji) is empty;
(v) M is the matroid that labels the single vertex of the tree T/e1, e2, . . . , ek−1

at the conclusion of the following process: contract the edges e1, e2, . . . , ek−1

of T one by one in order; when ei is contracted, its ends are identified and
the vertex formed by this identification is labelled by the 2-sum of the
matroids that previously labelled the ends of ei.

Cunningham and Edmonds [5] proved the following result.

2.1. Theorem. Every connected matroid M has a tree decomposition T (M) in
which no two adjacent vertices are both labelled by circuits or are both labelled by
cocircuits. Furthermore, the tree T (M) is unique to within relabelling of its edges.

We shall call T (M) the canonical tree decomposition of M and we let Λu2 (M) be
the set of matroids that label vertices of T (M). If a vertex M ′ of T (M) corresponds
to a circuit or a cocircuit with n elements for some n ≥ 4, then M ′ has a tree
decomposition T 3(M ′) in which each vertex is labelled by a 3-element circuit when
M ′ is a circuit and by a 3-element cocircuit when M ′ is a cocircuit. It follows that
T 3(M ′) has n − 2 vertices and, indeed, every (n − 2)-vertex tree can be labelled
so that it is such a tree decomposition of M ′. Now replace the vertex of T (M)
labelled by M ′ by one of the choices for T 3(M ′). Specifically, delete the vertex of
T (M) labelled by M ′; take the disjoint union of the resulting graph T (M) −M ′
with T 3(M ′); for each edge x of T (M) that joins M ′ to M ′x, say, add an edge
labelled x to (T (M) − M ′) ∪ T 3(M ′) joining M ′x to the vertex of T 3(M ′) that
is labelled by a matroid having x as an element. Repeat the above process for
each vertex of T (M) that is labelled by a circuit or cocircuit with at least four
elements. Let the resulting graph be T 3(M). It is not difficult to see that T 3(M)
is a tree decomposition of M in which every vertex is labelled by a 3-connected
matroid. We call T 3(M) a 3-c-tree decomposition of M . Evidently, unlike T (M),
the tree T 3(M) is not uniquely determined by M . We let Λ2(T 3(M)) be the set
of matroids that label vertices of T 3(M). The construction of T 3(M) ensures that
the matroid M determines the distribution of isomorphism types of matroids in
Λ2(T 3(M)) together with the isomorphism type of the matroid Me that contains
e and, if |E(Me)| ≥ 4, the isomorphism types of the matroids that share elements
with Me. We shall write Λ2(M) for Λ2(T 3(M)) and let λ2(M) be the number of
members of Λ2(M). If M has components M1,M2, . . . ,Mt, we define λ2(M) to
be
∑t
i=1 λ2(Mi). Also we let λ1(M) be t, the number of components of M . Note

that this use of λ2(M) differs from that in some earlier work of the authors where
λ2(M) did not count the copies of U1,3 that arose in the decomposition [8, 9, 10].

Let M be a connected matroid and T be a tree decomposition of M . A connected
subgraph H of T induces a subset X of E(M) if X is the union, over all vertices
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Mj of H, of E(Mj) ∩ E(M). Each edge e of T determines a partition of E(M)
into the subsets Xe1 and Xe2 that are induced by the components of T − e. We
shall say that the edge e displays the partition {Xe1, Xe2} of E(M) and displays
the sets Xe1 and Xe2. Now let M ′ be a vertex of T that is a circuit or a cocircuit.
We say that M ′ displays a partition {X,Y } of E(M) if every subset of E(M) that
is induced by a component of T −M ′ lies entirely in either X or Y .

The next result of Cunningham and Edmonds [5] does not have an easily acces-
sible proof so we include a proof here.

2.2. Lemma. Let M be a connected matroid and {X1, X2} be a partition of E(M)
such that |X1|, |X2| ≥ 2. Then the following statements are equivalent.

(i) {X1, X2} is a 2-separation of M ;
(ii) M has a 3-c-tree decomposition having an edge that displays {X1, X2}; and
(iii) T (M) has an edge or a vertex that displays {X1, X2} where, in the latter

case, the vertex is labelled by a circuit or a cocircuit.

Proof. We show first that (i) implies (ii). Suppose that {X1, X2} is a 2-separation
of M . Then M can be written as the 2-sum, with basepoint b, of two matroids M1

and M2 having ground sets X1 ∪ b and X2 ∪ b, respectively. We can construct a
3-c-tree decomposition T 3(M) for M inductively as follows. Begin with the two-
vertex tree T1 in which the vertices are labelled by M1 and M2 and the edge is
labelled by e. Assume that Tk has been constructed for some k ≥ 1. If every
matroid labelling a vertex of Tk is 3-connected, let Tk = T 3(M); otherwise choose
a matroid M ′ that labels a vertex of Tk and is not 3-connected, and let {X ′1, X ′2}
be a 2-separation of M ′. Write M ′ as the 2-sum of two matroids M ′1 and M ′2 with
ground sets X ′1 ∪ b′ and X ′2 ∪ b′, respectively; form Tk+1 by splitting the vertex M ′

of Tk into two vertices M ′1 and M ′2 joined by the edge b′ where each edge e of Tk
that meets M ′ meets the member of {M ′1,M ′2} that contains e. Evidently, T 3(M)
is a 3-c-tree decomposition of M and the edge b displays {X1, X2}. Thus (i) implies
(ii).

Next we show that (ii) implies (iii). Suppose that T 3(M) is a 3-c-tree decom-
position of M and the edge b displays {X1, X2}. To obtain T (M) from T 3(M),
we look for two adjacent vertices of the latter that are both labelled by circuits or
are both labelled by cocircuits. When we find two such vertices, we contract the
edge joining them and label the composite vertex resulting by the 2-sum of the two
original labels on the ends of the edge. We continue this process until we obtain
a tree having no two adjacent vertices both labelled by circuits or both labelled
by cocircuits. The uniqueness of T (M) implies that the resulting tree is, indeed,
T (M).

Now {X1, X2} is displayed by the edge b in T (M) unless, in T 3(M), both ends
of b label circuits or both ends label cocircuits. Consider the exceptional case,
assuming, without loss of generality, that both ends of b label circuits. Then b is
an edge of a maximal subtree T c of T 3(M) all of whose vertices are labelled by
circuits. In forming T (M), we contract T c to a single vertex, which we may assume
is one of the ends of b, say v. For T = T 3(M), every subset of E(M) induced by
a component of T − v lies entirely in X1 or X2. This remains true whenever we
contract an edge incident with v. Thus, it follows that v displays {X1, X2} in T (M)
and v is labelled by a circuit. Hence (ii) implies (iii).

The proof that (iii) implies (i) is similar to the above and is omitted. �
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Let M be a connected matroid. Evidently, T (M∗) and T 3(M∗) can be obtained
from T (M) and T 3(M), respectively, by replacing each matroid labelling a vertex of
the latter by the dual matroid. Now suppose that e ∈ E(M) and M/e is connected
and non-empty. It is useful to describe the relationship between T (M) and T (M/e).
By duality, this also determines the relationship between T (M) and T (M\e) when
M\e is connected. Let M ′ be the matroid labelling a vertex of T (M) such that
e ∈ E(M ′). To find T (M/e), we proceed as follows:

(i) construct T (M ′/e);
(ii) take the disjoint union of T (M ′/e) and T (M)−M ′;
(iii) if b is an edge of T (M) that joins M ′ to K, add an edge labelled by b joining

the vertex K of T (M)−M ′ to the vertex of T (M ′/e) that contains b;
(iv) if a newly added such edge b joins two circuits or two cocircuits, then

contract the edge b and relabel the composite vertex by the 2-sum, with
basepoint b, of the two matroids that had labelled the endpoint of b;

(v) if |E(M ′/e)| = 2 and T (M) has more than one vertex, then contract an
edge b joining M ′/e with H, say, and relabel the composite vertex by H ′,
the matroid that is obtained from H by relabelling the element b by the
unique element b′ of E(M ′/e)−b; finally, if K ′ is a cocircuit and b′ joins K ′

to another cocircuit K ′′, then contract b′ and label the composite vertex
by the 2-sum of the two matroids that had labelled the endpoints of b′.

3. Preliminary lemmas

In this section, we prove some technical lemmas that will be used in the proof
of the main result. In particular, we show in Lemma 3.3 that the destruction of a
particular exact 2-separation of N requires the addition of at most 5 new elements.
This fact will be crucial in the proof of the main theorem in the case that N is
connected.

Let A and B be disjoint subsets of the ground set of a matroid M . Then
kM (A,B) = min{r(X) + r(Y ) − r(M)}, where the minimum is taken over all
partitions {X,Y } of E(M) with X ⊇ A and Y ⊇ B. This function, which was
used by Seymour [13], is closely related to a function k(M ;X,Y ) introduced by
Tutte [15]. Indeed, kM (A,B) = k(M ;A,B)−1, so one can easily deduce properties
of one function from properties of the other. The following lemma summarizes some
useful properties of kM (A,B).

3.1. Lemma. Let A and B be disjoint subets of the ground set of a matroid M .
Then

(i) kM (A,B) = kM∗(A,B);
(ii) if N is a minor of M such that A∪B ⊆ E(N), then kN (A,B) ≤ kM (A,B);

and
(iii) if e ∈ E(M)− (A ∪B), then

max{kM\e(A,B), kM/e(A,B)} = kM (A,B)

and
min{kM\e(A,B), kM/e(A,B)} ≥ kM (A,B)− 1.

Seymour [13] carefully analyzes the structure of a matroid M having a minor
N such that {A,B} is a partition of E(N) and M is minor-minimal having N as
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a minor and satisfying kM (A,B) > kN (A,B). We shall only use this result in the
case that {A,B} is a 2-separation of N , so we state it only in this case.

3.2. Lemma. Let N be a matroid and {A,B} be an exact 2-separation of N .
Suppose that M is a minor-minimal matroid that has N as a minor and satisfies
kM (A,B) > 1. Then the following hold.

(i) There are unique subsets P and Q of E(M) such that N = M\P/Q.
(ii) Let Mz be M\z when z ∈ P and be M/z when z ∈ Q. Then Mz has just one

2-separation {Xz, Yz} such that A ⊆ Xz and B ⊆ Yz, and this 2-separation
is exact.

(iii) The elements of P ∪ Q can be labelled as z1, z2, . . . , zn so that Xzi = A ∪
{z1, z2, . . . , zi−1} and Yzi = B ∪ {zi+1, zi+2, . . . , zn} for all i.

(iv) The elements z1, z2, . . . , zn are alternately members of P and Q.
(v) M has no circuit C such that C ⊆ P ∪Q and |C −Q| ≤ 1, and M has no

cocircuit C∗ such that C∗ ⊆ P ∪Q and |C∗ − P | ≤ 1.
(vi) For all i > 1, if zi ∈ P , there is a circuit C of M such that {zi−1, zi} ⊆ C

and C − {zi−1, zi} ⊆ (Q ∩ {zj : j > i}) ∪ B. If zi ∈ Q, there is a cocircuit
C∗ of M such that {zi−1, zi} ⊆ C∗ and C∗ − {zi−1, zi} ⊆ (P ∩ {zj : j >
i}) ∪ A. Moreover, the corresponding result holds for all i < n with A and
B interchanged.

3.3. Lemma. Let {A,B} be an exact 2-separation of a matroid N and let M be a
minor-minimal matroid such that N is a minor of M and kM (A,B) > 1. Then

|E(M)| − |E(N)| ≤ 5. (1)

Moreover, if N is connected and M\e or M/e is disconnected for some e in E(M)∪
E(N), then |E(M) − E(N)| = 1. In particular, if M\e is disconnected, then the
vertex of T (M) that is labelled by a matroid containing e is a triangle, this vertex
has exactly two neighbours in T (M) both of which are labelled by cocircuits, and all
four of the sets that are displayed by edges of T (M) incident with this triangle must
meet both A and B.

Proof. We shall use the notation of the last lemma. In particular, E(M) has unique
subsets P and Q such that N = M\P/Q.

We shall prove (1) by contradiction. Let n = |P |+ |Q| = |E(M)| − |E(N)| and
assume that n ≥ 6. By taking the dual if necessary, we may assume that z1 ∈ P .
Thus z6 ∈ Q by Lemma 3.2(iv). HenceN is a minor ofM\z1/z6. Now, as {Xz6 , Yz6}
is an exact 2-separation of M/z6, this matroid is a 2-sum of two matroids N2 and
M2 where E(M2) = Yz6 ∪ b. Since {Xz1 , Yz1} is an exact 2-separation of M\z1,
it is not difficult to check that {Xz1 , {z2, z3, z4, z5, b}} is an exact 2-separation of
N2. Thus N2 is the 2-sum of two matroids M1 and H where E(M1) = Xz1 ∪ a and
E(H) = {a, z2, z3, z4, z5, b}. We conclude that M\z1/z6 is obtained by taking the
2-sum of M1,H, and M2. Moreover, M\z1 is the 2-sum of M1 and a matroid N1

for which N1/z6 = H ⊕2 M2. Next we observe that H is connected, otherwise if a
and b are in the same component of H, then P and Q are not unique, while if a
and b are in different components of H, then kN (A,B) = 0 6= 1. Moreover, since P
and Q are unique and kN (A,B) = 1, the matroid H\{z3, z5}/{z2, z4} is connected
and is uniquely determined as a minor of H. Thus H\{z3, z5}/{z2, z4} is a circuit
on {a, b} and hence is also a cocircuit on {a, b}. The fact that H\{z3, z5}/{z2, z4}
is uniquely determined as a minor of H implies that {a, b, z2, z4} is a circuit of H
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and that {a, b, z3, z5} is a cocircuit of H. It follows that {z2, z4} is a line of H.
Moreover, r(H) = r(H∗) = 3.

By Lemma 3.2(vi), M has a circuit C containing z4 and z5 such that C −
{z4, z5} ⊆ (Q∩{zj : j > 5})∪B. Let C ′ be a circuit of M/z6 such that C ′ ⊆ C and
C ′ ∩{z4, z5} 6= ∅. If C ′ ∩B = ∅, then {z4, z5}∪ (Q∩{zj : j > 5}) contains a circuit
of M ; a contradiction to Lemma 3.2(v). Thus C ′ ∩ B 6= ∅, so b ∪ (C ′ ∩ {z4, z5}) is
a circuit of H. As C − z6 is a union of circuits of M/z6, we have two possibilities:

(a) both {b, z4} and {b, z5} are circuits of H; or
(b) {b, z4, z5} is a circuit of H.

Since b is not a loop of H/z4, it follows that z4 cannot be parallel to b. Thus
{b, z4, z5} is a circuit of H. Since {a, b, z2, z4} and {b, z5, z4} are circuits of H,
it follows that H has a circuit containing a and contained in {a, b, z2, z5}. This
circuit does not contain b and so is a subset of {a, z2, z5}. Now {a, z2} is not a
circuit. Moreover, {a, z5} is not a circuit otherwise {a, b, z4} is a circuit of H. Thus
{a, z2, z5} is a circuit of H. Hence H\z3 is the parallel connection of the two 3-point
lines {a, z2, z5} and {b, z4, z5}. Now, in H/z5, the element z3 must either be a loop
or be parallel to a or b otherwise H\{z3, z5}/{z2, z4} is not uniquely obtainable as
a minor of H. Thus z3 is on the line of H spanned by {a, z5} or the line of H
spanned by {b, z5}. Since neither {a, b, z2, z3} nor {a, b, z4, z3} is a circuit of H,
we deduce that z3 is parallel to one of a, b, and z5 in H. In the second and third
cases, {Xz3 , Yz3} is an exact 2-separation of M\z3 and z3 is spanned by Yz3 , so
{Xz3 , Yz3 ∪ z3} is an exact 2-separation of M ; a contradiction. We conclude that
{z3, a} is a circuit of H. Now recall that M\z1 = M1⊕2N1, where N1/z6 = H⊕2M2

and E(M1) = Xz1∪a. Since Xz3 , and hence Xz1 , does not span z3 in M , we deduce
that {a, z3} is not a circuit of N1. Therefore {a, z3, z6} is a circuit of N1. Hence M
has a circuit D that contains {z3, z6} and is contained in Xz1 ∪ {z3, z6}. Moreover,
by Lemma 3.2(vi), M has a cocircuit D∗ that contains {z5, z6} and is contained in
Yz6 ∪ {z5, z6}. Thus, |D ∩D∗| = 1; a contradiction. We conclude that (1) holds.

We now prove the rest of the lemma. Suppose that N is connected and that
M\e or M/e is disconnected for some e in P ∪ Q. Without loss of generality, we
may suppose that M\e is disconnected. As N is connected, M is connected and
e 6∈ P , so e ∈ Q. Since M\e is disconnected, the member of Λu2 (M) containing e
is a circuit C. If E(M) = C, then kM (A,B) = 1; a contradiction. Thus E(M)
properly contains C.

Now M/e has N as a minor. Thus, by the choice of M , there is a 2-separation
{X,Y } of M/e such that A ⊆ X and B ⊆ Y . Moreover, by Lemma 2.2, {X,Y } is
displayed either by an edge or a vertex of T (M/e). From the last section, there are
three possibilities for the way in which T (M) is obtained from T (M/e):

(a) a single vertex of T (M/e) that was labelled by a circuit D of T (M/e) has
its label changed to D ∪ e, a circuit that labels a vertex of T (M);

(b) an edge of T (M/e) is subdivided with the newly inserted vertex being
labelled by a triangle containing e; and

(c) a single vertex w of T (M/e) that was labelled by a cocircuit C∗ is replaced
by three vertices w0, w1, and w2, where w1 and w2 are the only two neigh-
bours of w0; every neighbour of w in T (M/e) is a neighbour of exactly
one of w1 and w2; the vertices w1, w0, and w2 are labelled by, respectively,
a cocircuit C∗1 , a triangle C with ground set {x1, e, x2}, and a cocircuit
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C∗2 ; the edges w0w1 and w0w2 are labelled by x1 and x2, respectively; and
E(C∗) = (E(C∗1 ) ∪ E(C∗2 ))− {x1, x2}.

Since kM (A,B) > 1, there is no 2-separation {X ′, Y ′} of M such that X ⊆ X ′

and Y ⊆ Y ′. It follows that {X,Y } is displayed by a vertex w of T (M/e) where
T (M) is obtained from T (M/e) as in (c) above. Therefore the assertion in the last
sentence of the lemma holds. In T (M), for each i in {1, 2}, let xi, bi1, bi2, . . . , bimi be
the edges incident with wi. Now, one by one, contract the edges of T (M) that are
not incident with w1 or w2 and, after each contraction, label the composite vertex
of the result by the 2-sum of the two matroids that had labelled the endpoints of the
edge. Then M is the 2-sum of the matroids C∗1 , C

∗
2 , C,M11,M12, . . . ,M1m1 ,M21,

M22, . . . ,M2m2 where E(Mij)− E(M) = {bij}.
The 2-separation {X,Y } has the property that each E(Mij) − bij is contained

in X or Y . Thus each E(Mij)− bij meets exactly one of A and B. Label bij by A
or B according to which of these two sets is met by E(Mij). Similarly, label each
element of C∗i ∩ (A ∪ B) by A or B according to which of A and B the element
belongs. Since kM (A,B) > 1, it follows that, for each i in {1, 2}, the set C∗i must
have at least one element labelled A and at least one element labelled B. Thus all
four of the sets that are displayed by an edge of T (M) incident with w0 meet both
A and B.

Assume that |E(M)−E(N)| > 1 and let f be an element of E(M)− (E(N)∪e).
Since N is connected, if f ∈ P , then M\f is connected, while if f ∈ Q, then M/f
is connected. Suppose first that f ∈ C∗1 − ∪

m1
j=1b1j . Then M/f is disconnected, so

f 6∈ Q. Hence f ∈ P and M\f is connected. Moreover C∗1−f must contain x1 along
with an A-element and a B-element. It follows that {X−f, Y −f} is a 1-separation
of M/e/f , so kM/e/f (A,B) = 0. Hence, by Lemma 3.1(iii), kM/f (A,B) ≤ 1 <
kM (A,B) and so kM\f (A,B) = kM (A,B). Thus M\f contradicts the choice of M .
We conclude that f 6∈ C∗1 − ∪

m1
j=1b1j and hence, by symmetry, f 6∈ C∗1 ∪ C∗2 . Now

let M ′ be M\f if f ∈ P and be M/f if f ∈ Q. Then the construction of T (M ′)
from T (M) is described in the last section. It follows from that description that
T (M ′) has no edge and no vertex that displays a 2-separation {X ′, Y ′} such that
A ⊆ X ′ and B ⊆ Y ′. Hence kM ′(A,B) > 1 and so M ′ contradicts the choice of M .
We conclude that |E(M)− E(N)| = 1. �

3.4. Lemma. Let {A,B} be a 2-separation of a connected matroid N . Let M be a
minor-minimal matroid that has N as a minor and satisfies kM (A,B) > 1. Then
either

(i) λ2(M) < λ2(N); or
(ii) there is a matroid H labelling a vertex of T (M) that has exactly two neigh-

bours such that either H is a triangle and its two neighbours are cocircuits,
or H is a triad and its two neighbours are circuits; each of the 2-separations
that is displayed by an edge of T (M) meeting H has both its parts meeting
both A and B; and the sets E(H)−E(N) and E(M)−E(N) are equal and
contain a single element.

Proof. Observe that M is connected. Moreover, since kN (A,B) = 1, it follows that
M 6= N and M is neither a circuit nor a cocircuit. By Lemma 3.3, there are unique
sets X and Y such that N = M\X/Y . For each H in Λ2(M), we define

H− = H\(X ∩ E(H))/(Y ∩ E(H)).
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Next we show the following:

3.4.1. There is a matroid H in Λ2(M) such that |E(H−)| ≤ 2.

Proof. Suppose that |E(H−)| ≥ 3 for all H in Λ2(M). Now consider how to
construct a 3-c-tree decomposition T 3(N) for N from a 3-c-tree decomposition
T 3(M) for M . By assumption, for each matroid H labelling a vertex of T 3(M), the
matroid H− has at least three elements. Thus each vertex of T 3(H−) is labelled
by a matroid with at least three elements. We construct T 3(N) from T 3(M) by
replacing each vertex H of the latter by the tree T 3(H−) where an edge b of T 3(M)
that meets H corresponds to an edge of T 3(N) that meets the vertex of T 3(H−)
that is labelled by a matroid using b. We deduce that

λ2(N) =
∑

H∈Λ2(M)

λ2(H−) ≥
∑

H∈Λ2(M)

λ2(H) =
∑

H∈Λ2(M)

1 = λ2(M). (2)

We may assume that we have equality throughout (2), otherwise the result follows.
Therefore,

λ2(H−) = 1, for every H in Λ2(M). (3)

Now, by Lemma 2.2, we can construct a 3-c-tree decomposition T 3(N) for N hav-
ing an edge that displays the 2-separation {X1, X2}. By (3), T 3(M) can be obtained
from T 3(N) just by relabelling each vertex H− of the latter by the corresponding
matroid H. Thus T 3(M) has an edge that displays a 2-separation {X ′1, X ′2} where
X ′1 ⊇ X1 and X ′2 ⊇ X2. Therefore kM (X1, X2) = 1; a contradiction. Thus (3.4.1)
holds. �

3.4.2. If |E(H−)| ≤ 2 for some H in Λ2(M), then |E(H−)| = 2, the matroid H is
a triangle or a triad, and |E(M)− E(N)| = 1.

Proof. If E(H−) = ∅, then H is a component of M . This is a contradiction to
the uniqueness of X and Y because N is a minor of both M\f and M/f , when
f ∈ E(H). Thus E(H−) 6= ∅. Now suppose that |E(H−)| = 1. Then H− is a
loop or a coloop. As H− is uniquely determined as a minor of H, it follows that
H is a circuit or a cocircuit. Thus, as |E(H)| ≥ 3, if f ∈ E(H) ∩ (X ∪ Y ), then
H\f or H/f is disconnected. Therefore M\f or M/f is disconnected. Hence, by
Lemma 3.3, |E(M) − E(N)| = 1. But |E(M) − E(N)| ≥ |E(H) − E(H−)| ≥ 2;
a contradiction. Hence we may assume that |E(H−)| = 2. Observe that H− is
connected because N is connected. Hence H− is isomorphic to U1,2. Now take g
in E(H) ∩ (X ∪ Y ). By switching to the dual if necessary, we may assume that
g ∈ Y . Then H\g is disconnected because H− is uniquely determined as a minor
of H and so H\g does not have a circuit that contains E(H−). Thus, as H is
3-connected having at least three elements but H\g is disconnected, it follows that
H ∼= U2,3. Since H\g is disconnected, M\g is disconnected. Thus, by Lemma 3.3,
|E(M)− E(N)| = 1. �

Now, by (3.4.1), there is a member H of Λ2(M) such that |E(H−)| ≤ 2. By
(3.4.2), |E(H−)| = 2 and |E(M)−E(N)| = 1, so H is unique. Let E(M)−E(N) =
{g}. Then g ∈ E(H)−E(H−). By switching to the dual if necessary, we have that
H is a triangle and N = M/g. Moreover, it follows by the last part of Lemma 3.3
that H labels a vertex of T (M) that has exactly two neighbours both of which are
labelled by cocircuits. Furthermore, both of the edges incident with H in T (M)
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display two sets and, by the last part of Lemma 3.3, all four of these sets meet both
A and B. Thus the lemma is proved. �

3.5. Lemma. Let N be a simple connected matroid having at least four elements.
Suppose that M is a minor-minimal 3-connected matroid having N as a minor. If
e ∈ E(M) − E(N) and N is a minor of both M\e and M/e, then e belongs to a
triad T ∗e of M such that T ∗e − e ⊆ E(N). Moreover, if N = M\X/Y and X ′ ⊆ X,
then every component H of M/Y \X ′ that does not meet E(N) is a coloop.

Proof. Since N is a simple minor of M/e, we may choose the elements of si(M/e)
so that it has N as a minor. By the choice of N , it follows that si(M/e) is not
3-connected. Thus, by a result of Bixby [2], co(M\e) is 3-connected and each series
class of M\e has at most two elements. The choice of M implies that the elements
of co(M\e) cannot be chosen so that N is a minor of it.

Assume that no non-trivial series class of M\e is contained in E(N). Then, to
obtain N from M , we must delete or contract an element from every such series
class. If {a, b} is such a series class where a 6∈ E(N), then either N is a minor of
M\e\a, or N is a minor of M\e/a. In the former case, since b is a coloop of M\e\a
but not of N , it follows that b 6∈ E(N), so N is a minor of M\e\a\b, which equals
M\e\b/a. Thus, in both cases, N is a minor of M\e/a. Therefore the 3-connected
matroid co(M\e) has N as a minor; a contradiction. We conclude that M\e has a
non-trivial series class contained in E(N), so M has a triad T ∗e containing e such
that T ∗e − e ⊆ E(N).

To prove the second part of the lemma, we argue by contradiction. Suppose that
H is not a coloop. If f ∈ E(H), then, as E(H) does not meet E(N), both M\f
and M/f have N as a minor. Hence T ∗f exists and is a triad of M/Y . Thus T ∗f
is a union of cocircuits of M/Y \X ′. But T ∗f ∩ E(H) = {f}, so H is a coloop; a
contradiction. �

The hypotheses of the next lemma are satisfied, for example, when M is a rank-4
wheel and N is the restriction to its rim. In that case, |E(M)| = 8, and the lemma
shows that this equation holds in general.

3.6. Lemma. Let N be a 4-element circuit. Suppose that M is a minor-minimal
3-connected matroid having N as a minor. If there is a non-spanning circuit C of
M such that E(N) ⊆ C, then |E(M)| = 8.

Proof. Suppose that the lemma is not true and let (M,N) be a counterexample for
which |E(M)| is minimal. Let

U = {e ∈ E(M)− E(N) : N is a minor for both M\e and M/e}.

Evidently, E(M)−cl(C) ⊆ U . Let T be the set of triangles of M such that T−cl(C)
is non-empty. Since cl(C) 6= E(M) , there is a cocircuit D∗ of M avoiding cl(C).
Moreover, for all e in D∗, the matroid M/e has N as a minor. Thus M/e is not
3-connected. Therefore, by a result of Lemos [6], M has at least two triangles
meeting D∗. Thus |T | ≥ 2.

Suppose that T ∈ T . As T − cl(C) ⊆ U , it follows by Lemma 3.5 that each
element e of T − cl(C) is in a triad T ∗e such that T ∗e − e ⊆ E(N). Hence, as
|T − cl(C)| ≥ 2, the matroid M has two different triads T ∗1T and T ∗2T such that
T ∗1T ∩ (T − cl(C)) and T ∗2T ∩ (T − cl(C)) are distinct single-element sets and |T ∗iT ∩
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E(N)| = 2 for each i. Hence T ∗1T , T, T
∗
2T is a fan whose rim RT is contained in

E(N). In particular,

|T ∩ E(N)| = 1.

Now choose T ′ to be a member of T −{T}. Since N does not contain a triangle,
RT 6= RT ′ . Thus |RT ∪ RT ′ | ≥ 4. Since RT ∪ RT ′ ⊆ E(N) and |E(N)| = 4,
we deduce that RT ∪ RT ′ = E(N). Moreover, each element of E(N) is in one of
T ∗1T , T

∗
2T , T

∗
1T ′ , or T ∗2T ′ . Thus E(N) is contained in a series class S of M |cl(C).

We show next that cl(C) = C. Suppose that e ∈ cl(C)−C. Then M has a circuit
C ′ such that e ∈ C ′ ⊆ C ∪ e. Moreover, by circuit elimination and orthogonality,
we may choose C ′ so that C ′ ∩ S = ∅. Thus C ′ ⊆ E(M)− E(N), so e is a loop of
M/(C−E(N)). This contradicts the last part of Lemma 3.5. Therefore e does not
exist and we conclude that cl(C) = C.

Clearly either

(i) T ∩ T ′ 6= ∅, or
(ii) T ∩ T ′ = ∅.

Consider (i). Without loss of generality, we may suppose that T ′ ∩ T ∗2T 6= ∅ and
that T ∗2T = T ∗1T ′ . AsN does not contain a triangle, it follows that T ∗1T , T, T

∗
2T , T

′, T ∗2T ′
is a fan of M . The rim of this fan is RT ∪RT ′ , which equals E(N).

Now suppose that f ∈ U − (T ∪ T ′). Then, by Lemma 3.5, f belongs to a triad
T ∗f of M such that T ∗f − f ⊆ E(N). But orthogonality implies that T ∗f − f avoids
(T ∪T ′)∩E(N). Thus T ∗f ∩E(N) = E(N)−(T ∪T ′). Assume that |U−(T ∪T ′)| ≥ 2
and let f and g be distinct elements of U−(T ∪T ′). Then T ∗f ∩E(N) = T ∗g ∩E(N).
Hence {f, g} ∪ (E(N)− (T ∪ T ′)) is a 4-point line in M∗, so M∗\f is 3-connected.
Therefore M/f is 3-connected and, since f ∈ U , the matroid M/f has N as a
minor. Thus the choice of M is contradicted. Hence |U − (T ∪ T ′)| ≤ 1.

Consider M |(C ∪ T ∪ T ′). It has C − (T ∪ T ′) as a non-trivial series class. Thus
C ∪ T ∪ T ′ 6= E(M). Since C ∪ U = E(M), we deduce that |U − (T ∪ T ′)| ≥ 1.
Hence |U − (T ∪ T ′)| = 1. Take e in U − (T ∪ T ′). Then M |(C ∪ T ∪ T ′) = M\e
and C − (T ∪ T ′) is a series class of this matroid. Thus e ∪ (C − (T ∪ T ′)) is a
line of M∗. Now M∗\e is not 3-connected otherwise M/e contradicts the choice of
M . Thus |C − (T ∪ T ′)| = 2 and we conclude that |E(M)| = 8. This completes the
proof in case (i).

Now assume that (ii) holds. By orthogonality, we must have that RT − T =
RT ′ − T ′. We show next that E(M)−C is a cocircuit of M . Assume the contrary.
Then, as cl(C) = C and |T − cl(C)| = 2, it follows by cocircuit elimination that M
has a cocircuitD∗ that is contained in E(M)−C and avoids T . By applying Lemos’s
result [6] again, we get that D∗ meets two triangles of M , one of which, say T ′′, must
be different from T ′. Hence T ′′ ∈ T so |T ′′∩E(N)| = 1 and |T ′′−C| = 2. As T ′′−C
meets D∗, it follows by orthogonality that T ′′ − C ⊆ D∗ so T ∩ (T ′′ − cl(C)) = ∅.
Therefore, by the orthogonality of T ′′ with each of T ∗1T and T ∗2T , we deduce that
T ′′ ∩ RT = ∅, otherwise T ′′ = RT . Since |E(N)| = 4, it follows that the unique
element of E(N)−RT is in both T ′ and T ′′. As E(N) does not contain a triangle, it
follows by comparing the fans containing T ′ and T ′′ that T ′ = T ′′; a contradiction.
We conclude that E(M)− C is a cocircuit of M . We call this cocircuit C∗.

Next we show that |C∗| = 4. By cocircuit elimination, (T ∗1T ∪T ∗2T )− (T ∩E(N))
contains a cocircuit D∗T of M which, by orthogonality with both T and C, must
equal (T ∗1T ∪ T ∗2T ) − (T ∩ E(N)). Take e ∈ RT − T . Then e ∈ D∗T ∪ D∗T ′ , so
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(D∗T ∪ D∗T ′) − e contains a cocircuit of M . This cocircuit contains at most one
element of C and must therefore equal C∗. Hence C∗ = (T ∪ T ′)−C, so |C∗| = 4.

Let M ′ = M/(C − E(N)). Then M ′ is connected by Lemma 3.5. We show
next that M ′ is 3-connected. Evidently, E(N) is a circuit and C∗ is a cocircuit
of M ′. As each of T ∗1T , T

∗
2T , T

∗
1T ′ , and T ∗2T ′ is contained in E(M ′), each of these

triads of M is also a triad of M ′. Moreover, each of these triads contains a single
element of C∗ and these elements are distinct. Thus M ′ has no 2-circuit meeting
C∗. Furthermore, since E(N) is a circuit of M ′, there is no 2-circuit of M ′ contained
in E(N). Thus M ′ is simple. But M ′ is also cosimple since M is cosimple. Hence
M ′ has no trivial 2-separations. Let {X,Y } be a non-trivial 2-separation of M ′.
We may assume that |X∩T | ≥ 2 and that X is closed in both M ′ and (M ′)∗. Thus
X contains T and hence it contains T ∗1T and T ∗2T . Therefore X contains E(N), so
|X| ≥ 6 and |Y | ≤ 2; a contradiction. We conclude that M ′ is 3-connected. Since
M ′ has N as a minor, it follows that M ′ = M , so |E(M)| = |E(M ′)| = 8. �

4. The connected case

In this section, we prove the main result in the case that N is connected. We
also show that the bound in this case is sharp. In particular, we prove the following
result.

4.1. Theorem. Let N be a non-empty connected matroid. If M is a minor-minimal
3-connected matroid having N as a minor, then

|E(M)| − |E(N)| ≤ 5(λ2(N)− 1).

Proof. Suppose the theorem fails and choose a counterexample (M,N) which is
minimal with respect to the lexicographic order on (|E(M)|,−|E(N)|). Observe
that N is not 3-connected. In particular, λ2(N) ≥ 2. Thus

|E(N)| ≥ 4. (4)

Moreover, since (M,N) is a counterexample to the theorem, it follows that |E(M)| >
|E(N)|+ 5(λ2(N)− 1). Therefore

|E(M)| ≥ 10. (5)

4.1.1. Let {X1, X2} be a 2-separation of N and let N ′ be a minor of M that is
minor-minimal having N as a minor and satisfying kN ′(X1, X2) > 1. Then T (N ′)
is a 3-vertex path with central vertex H such that

(i) |E(H) ∩ E(M)| = |E(N ′)− E(N)| = 1;
(ii) both neighbours of H meet both X1 and X2; and
(iii) either

(a) H is a triangle whose two neighbours in T (N ′) are cocircuits, and N
is a cocircuit; or

(b) H is a triad whose two neighbours in T (N ′) are circuits, and N is a
circuit.

Proof. Observe that N ′ is connected. Moreover, since kN (X1, X2) = 1, it follows
that N ′ 6= N . By Lemma 3.3,

|E(N ′)| − |E(N)| ≤ 5. (6)

By the choice of (M,N), the theorem holds for the pair (M,N ′). Hence

|E(M)| − |E(N ′)| ≤ 5(λ2(N ′)− 1).
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Substituting from (6) into the last inequality, we obtain

|E(M)| − |E(N)| ≤ 5λ2(N ′).

Since the theorem fails for the pair (M,N), we have that

λ2(N ′) ≥ λ2(N). (7)

Thus λ2(N ′) ≥ 2 and, as N is connected, each member of Λ2(N ′) has at least
three elements. Moreover, by Lemma 3.4 and by switching to the dual if necessary,
we may assume that there is a vertex H of T (N ′) that is labelled by a triad and
has exactly two neighbours, each of which labels a circuit such that both X1 and
X2 meet all four of the sets displayed by the edges incident with H. Since the
2-separation {X1, X2} was arbitrary, we deduce that every 2-separation of N is
displayed by a vertex but not by an edge of T (N). Thus T (N) has no edges, so N
is a circuit or a cocircuit and the lemma follows. �

We now know that N is a circuit or a cocircuit. Let N = M\X/Y . Next we
establish the following:

4.1.2. The sets X and Y are not unique.

Proof. Suppose that X and Y are unique. Let {X1, X2} be a 2-separation of N .
Then, by (4.1.1), M has a minor N ′1 having an element e1 such that N ′1\e1 = N .
Moreover, T (N ′1) is a 3-vertex path in which the central vertex is labelled by a
triad containing e1 and the other two vertices are labelled by circuits C11 and
C12 where each C1i meets each Xj . Hence |C1i ∩ E(N)| ≥ 2 for each i. Now
consider the 2-separation {C11 ∩ E(N), C12 ∩ E(N)} of N . Again, M has a minor
N ′2 having an element e2 such that N ′2\e2 = N . Moreover, T (N ′2) is a 3-vertex path
in which the central vertex is labelled by a triad containing e2 and the other two
vertices are labelled by circuits C21 and C22 each of which meets both C11 ∩E(N)
and C12 ∩ E(N). By the uniqueness of X and Y , both e1 and e2 are in X. Let
M ′ = M\(X − {e1, e2})/Y . Then E(N) is a circuit of M ′, and M ′ has corank
3. Now M ′\e2 = N ′1 and M ′\e1 = N ′2, and it is straightforward to check that the
dual of M ′ is a matroid in which {e1}, {e2}, and {e1, e2} are flats and for which
the simplification is isomorphic to M(K4). Since M ′\{e1, e2} ∼= N , it is easily
checked that λ2(M ′) = λ2(N) − 1. Now |E(M ′)| > |E(N)|, so (M,M ′) is not a
counterexample to the theorem. Hence

|E(M)| − (|E(N)|+ 2) = |E(M)| − |E(M ′)| ≤ 5(λ2(M ′)− 1) ≤ 5(λ2(N)− 1)− 5.

Therefore |E(M)|−|E(N)| ≤ 5(λ2(N)−1); a contradiction. Thus (4.1.2) holds. �

Let

U = {e ∈ E(M)− E(N) : N is a minor of both M\e and M/e}.
By (4.1.2), U 6= ∅. Choose e ∈ U . Since |E(N)| ≥ 4 and M/e has N as a minor,
si(M/e) has N as a minor so si(M/e) is not 3-connected. Therefore, by a result
of Bixby [2], co(M\e) is 3-connected and every non-trivial series class of M\e has
exactly two elements. Since M\e in not 3-connected, the set {T ∗1 , T ∗2 , . . . , T ∗n} of
triads of M containing e is non-empty. Moreover, T ∗1 − e, T ∗2 − e, . . . , and T ∗n − e
are pairwise disjoint.

Next, we prove that

4.1.3. T ∗i − e ⊆ E(N) for all i in {1, 2, . . . , n}.
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Proof. Suppose that f ∈ T ∗i − (e ∪ E(N)) for some i in {1, 2, . . . , n}, say i = 1.
Then n ≥ 2, otherwise M\e/f is 3-connected having N as a minor, and the choice
of M is contradicted. The choice of M also implies that M/f is not 3-connected.
By applying the dual of Tutte’s Triangle Lemma [16] (or [11, Lemma 8.4.9]) to T ∗1 ,
we get that, for each x in {e, f}, there is a triangle Tx of M such that x ∈ Tx
and |Tx ∩ T ∗1 | = 2. Suppose that Te 6= Tf . Then Tf , T

∗
1 , Te, T

∗
2 is fan in M , so

si(M/f) ∼= M/f\(T ∗1 − {e, f}) and thus si(M/f) is 3-connected and its elements
can be chosen so that it has N as a minor. This contradiction to the choice of M
implies that Te = Tf . In this case, T ∗1 , Te, T

∗
2 is a fan in M and n = 2. Now switch

attention to M∗. Let g be the unique element of Te−{e, f} and, for each i in {1, 2},
let ei be the unique element of T ∗i −Te. Since co(M∗\e) is not 3-connected, it follows,
by a result of Akkari and Oxley [1], that M∗ has a triangle that meets {e, f, g} in
{f, g}. Let the third element of this triangle be e3. Then Akkari and Oxley’s result
implies that {e1, e2, e3} is a triangle ∆ of M∗ and M∗ = P∆(M(K4),M∗\Te) where
the triangles of M(K4) other than ∆ are T ∗1 , T

∗
2 , and {f, g, e3}, and M∗\Te is 3-

connected. Now, by (5), |E(M)| ≥ 10. Hence, for all i, the matroid si(M∗/ei) is
not 3-connected. Thus co(M∗\ei) is 3-connected for all i and, as no ei can be in a
triad of M∗, it follows that M∗\ei is 3-connected for all i. Now N∗ is a cocircuit
and it is a minor of M∗/e. Thus, if e1 6∈ E(N), then M∗/e\e1 has N∗ as a minor.
Hence M∗\e1 has N∗ as a minor, a contradiction to the choice of M∗. Therefore
e1 ∈ E(N) and, by symmetry, e2 ∈ E(N). Moreover, M∗\e/f has N∗ as a minor
and therefore so does M∗/f . Thus, if e3 6∈ E(N), then N is a minor of M∗/f\e3

and hence of M∗\e3. Therefore e3 ∈ E(N).
The matroid M∗\Te is 3-connected and so, by the choice of (M,N), does not

have N∗ as a minor. Thus g ∈ E(N). Clearly M∗\Te has N∗\g as a minor, and
N∗\g is connected since N∗ is a cocircuit. Evidently, |E(N∗\g)| = |E(N)| − 1 and
λ2(N∗\g) = λ2(N)− 1.

We now distinguish two cases:

(i) |E(N∗\g)| ≥ 4;
(ii) |E(N∗\g)| = 3.

In case (i), choose M ′ to be a 3-connected minor of M∗\Te that is minor-minimal
having N∗\g as a minor. By the choice of (M,N), the theorem holds for (M ′, N∗\g)
and so

|E(M ′)| − |E(N∗\g)| ≤ 5(λ2(N∗\g)− 1). (8)

In case (ii), choose M ′ to be a 3-connected minor of M∗\Te that is minor-minimal
having N∗\g as a proper minor. Then, by Theorem 1.3,

|E(M ′)| − |E(N∗\g)| ≤ 3. (9)

Now M∗ = P∆(M(K4),M∗\Te). Let M ′ = (M∗\Te)\X ′/Y ′. The choice of M ′

ensures thatM ′ has ∆ as a triangle. ThusM∗\X ′/Y ′ = P∆(M(K4),M∗\Te\X ′/Y ′).
As M ′ is 3-connected, so is M∗\X ′/Y ′. Moreover, as N∗\g is a minor of M ′, it
follows that N∗ is a minor of M∗\X ′/Y ′. We deduce, by the choice of M∗, that
X ′ = Y ′ = ∅. Hence M ′ = M∗\Te. Therefore, in case (i), by (8),

|E(M∗\Te)| − |E(N∗\g)| ≤ 5(λ2(N∗\g)− 1).

Thus (|E(M)| − 3) − (|E(N)| − 1) ≤ 5((λ2(N) − 1) − 1), so |E(M)| − |E(N)| ≤
5(λ2(N)−1)−3; a contradiction. In case (ii), by (9), (|E(M)|−3)−(|E(N)|−1) ≤ 3,
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so |E(M)|−|E(N)| ≤ 5. But |E(N)| = 4, so λ2(N) = 2, and so |E(M)|−|E(N)| ≤
5(λ2(N)− 1). This contradiction completes the proof of (4.1.3). �

Now let T ∗i = {e, ai, bi} for all i. We define M ′ = M\e/{a1, a2, . . . , an} and
N ′ = N/{a1, a2, . . . , an}. Then M ′ ∼= co(M\e), so M ′ is 3-connected.

We show next that

4.1.4. |E(N ′)| ≤ 3.

Proof. Assume that |E(N ′)| ≥ 4. Let M ′′ be a 3-connected minor of M ′ that is
minor-minimal having N ′ as a minor. By the choice of (M,N), we have that

|E(M ′′)| − |E(N ′)| ≤ 5(λ2(N ′)− 1). (10)

Suppose that M ′′ = M ′\X ′/Y ′. Then M ′′ = M\(X ′ ∪ e)/Y ′/{a1, a2, . . . , an}.
The matroid M\(X ′ ∪ e)/Y ′ can be obtained from the 3-connected matroid M ′′

by adding ai in series with bi for all i. Thus λ2(M\(X ′ ∪ e)/Y ′) = n + 1. Now
E(M\(X ′ ∪ e)/Y ′) ⊇ E(N) so, in the lexicographic order,

(|E(M)|,−|E(M\(X ′ ∪ e)/Y ′)|) ≤ (|E(M)|,−|E(N)|).
But, by (4.1.1), in every lexicographically minimal counterexample (M,N) to the
theorem, the second coordinate is a circuit or a cocircuit. As M\(X ′ ∪ e)/Y ′ is not
a circuit or cocircuit, it follows that the theorem holds for (M,M\(X ′ ∪ e)/Y ′).
Hence

|E(M)| − |E(M\(X ′ ∪ e)/Y ′)| ≤ 5(λ2(M\(X ′ ∪ e)/Y ′)− 1) = 5n.

We also have that |E(M\(X ′ ∪ e)/Y ′)| = |E(M ′′)|+n and so |E(M)|− |E(M ′′)| ≤
6n. Adding the last inequality to (10), we get that |E(M)| − |E(N ′)| ≤ 6n +
5(λ2(N ′)− 1). As |E(N ′)| = |E(N)|−n, we obtain |E(M)|− |E(N)| ≤ 5(λ2(N ′) +
n − 1). But λ2(N) = λ2(N ′) + n and so we obtain a contradiction. We conclude
that (4.1.4) holds. �

Now N ′ is a circuit and, since |E(N)| ≥ 4, the construction of N ′ implies that
|E(N ′)| ≥ 2. Then, by (4.1.4), |E(N ′)| ∈ {2, 3}. If M ′ = N ′, then, as λ2(N) ≥ 2,
we have

|E(M)| − |E(N)| = 1 ≤ 5(λ2(N)− 1);
a contradiction. Thus M ′ 6= N ′. Next we define a matroid M ′′. If |E(N ′)| = 3,
then, by Theorem 1.3, M ′ has a 3-connected minor M ′′ such that |E(M ′′)| −
|E(N ′)| ≤ 3 and M ′′ is minor-minimal having N ′ as a proper minor. If |E(N ′)| = 2,
then M ′ is a loopless extension of N ′, so M ′ has a minor M ′′ isomorphic to U1,3

such that E(N ′) ⊆ E(M ′′).
Suppose that M ′′ = M ′\X ′/Y ′ where Y ′ is chosen so that |Y ′| is maximal. Then

M ′′ = [M\(X ′∪ e)/Y ′]/{a1, a2, . . . , an}. Let M ′′′ = M\(X ′∪ e)/Y ′. It is obtained
from the 3-connected matroid M ′′ by adding ai in series with bi for all i. Thus, the
only 2-separations of M ′′′ are {{ai, bi}, E(M ′′′)− {ai, bi}} for all i.

We show next that

4.1.5. n = 1.

Proof. Assume that n ≥ 2. We show first that e is not a coloop in M\X ′/Y ′.
Assume the contrary. Then M has a cocircuit C∗ such that e ∈ C∗ ⊆ X ′ ∪ e. Take
f ∈ C∗ − e. Then {e, f} is a union of cocircuits of M\(X ′ − f)/Y ′. Thus f is a
coloop of M\[(X ′ − f) ∪ e]/Y ′ so M\(X ′ ∪ e)/Y ′ = M\[(X ′ − f) ∪ e]/(Y ′ ∪ f).
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Therefore M ′\X ′/Y ′ = M\(X ′ − f)/(Y ′ ∪ f); a contradiction to the choice of Y ′.
Hence e is not a coloop in M\X ′/Y ′. As {e, ai, bi} is a cocircuit of M for each
i, it is a union of cocircuits of M\X ′/Y ′. As e is not a coloop of M\X ′/Y ′, this
matroid is connected. Moreover, by orthogonality, since n ≥ 2, there is no 2-circuit
in M\X ′/Y ′ containing e.

We show next that M\X ′/Y ′ is 3-connected. If not, it has a 2-separation {J ∪
e,K} where e 6∈ J and |J | ≥ 2. Then {J,K} is a 2-separation of M\(X ′ ∪ e)/Y ′ so
J or K is {ai, bi} for some i. In each case, e is in a circuit of M\X ′/Y ′ that meets
some {e, aj , bj} in a single element. This contradiction to orthogonality implies
that M\X ′/Y ′ is indeed 3-connected. Since the last matroid has N as a minor, the
choice of M implies that X ′ = Y ′ = ∅. Therefore M ′′ = M ′ and so

|E(M)|− |E(N)| = (1+ |E(M ′′)|+n)− (|E(N ′)|+n) = |E(M ′′)|− |E(N ′)|+1 ≤ 4.

Since λ2(N) ≥ 2, we deduce that |E(M)|−|E(N)| ≤ 5(λ2(N)−1); a contradiction.
We conclude that n = 1. �

On combining (4.1.4) and (4.1.5) with the fact that |E(N)| ≥ 4, we deduce that

|E(N)| = 4 (11)

and that M ′′′ has just one 2-separation, which is induced by {a1, b1}. We relabel
the cocircuit {e, a1, b1} by T ∗e . As e was chosen arbitrarily in U , it follows that T ∗e
is defined for every element e of U .

4.1.6. There is a spanning circuit D of M such that E(M)−D is a 3-element subset
of U whose elements can be labelled by f, g, and h such that T ∗g ∩ T ∗h = ∅ and T ∗f
meets each of T ∗g and T ∗h in exactly one element.

Proof. Since M ′′′ is neither a circuit nor a cocircuit, the theorem holds for the pair
(M,M ′′′) so |E(M)| − |E(M ′′′)| ≤ 5. Now, by (11), |E(N)| = 4, so

|E(M ′′′)| − |E(N)| = |E(M ′′)| − |E(N ′)| ≤ 3.

It follows that |E(M)| − |E(M ′′′)| ≥ 3 because

5 = 5(λ2(N)−1) < |E(M)|−|E(N)| = (|E(M)|−|E(M ′′′)|)+(|E(M ′′′)|−|E(N)|).
We are now going to apply Lemma 3.2 to the exact 2-separation {T ∗e −e,E(M ′′′)−
T ∗e } of M ′′′. Evidently M has M ′′′ as a minor and, as M is 3-connected, kM (T ∗e −
e,E(M ′′′)−T ∗e ) > 1. Now let M1 be a minor of M that is minor-minimal having M ′′′

as a minor and satisfying kM1(T ∗e − e,E(M ′′′) − T ∗e ) > 1. Assume that M1 6= M .
Then, since M1 has N as a minor, the choice of M implies that M1 is not 3-
connected. Thus, as λ2(M ′′′) = 2, we deduce that λ2(M1) ≥ λ2(M ′′′). Now
T (M ′′′) has two vertices, one a triangle and the other isomorphic to M ′′. But, by
Lemma 3.4, T (M1) has at least three vertices including a triangle or triad H that
contains the unique element x of E(M1)−E(M ′′′). Thus T (M ′′′), which is T (M1/x)
if H is a triangle and is T (M1\x) if H is a triad, has a vertex corresponding to a
circuit or a cocircuit with at least four elements. This contradiction implies that
M1 = M .

We now know that M is minor-minimal having M ′′′ as a minor and satisfying
kM (T ∗e −e,E(M ′′′)−T ∗e ) > 1. Then, by Lemma 3.2, there are unique sets P and Q
such that M ′′′ = M\P/Q and the elements of P ∪Q can be labelled z1, z2, . . . , zm
such that these elements are alternately in P and Q. Now, by Lemma 3.2(iii),
Xz1 = T ∗e − e. Moreover, {Xz1 , Yz1} is a 2-separation of the 2-connected matroid
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Mz1 . Thus Xz1 is a 2-circuit or a 2-cocircuit of Mz1 . As M ′′′ is a minor of Mz1

and Xz1 is a cocircuit of M ′′′, we deduce that Xz1 is a 2-cocircuit of Mz1 . Since
Xz1 is not a 2-cocircuit of M , it follows that z1 ∈ P and Xz1 ∪ z1 is a triad of
M . Therefore e = z1, otherwise M∗|(T ∗e ∪ z1) ∼= U2,4, so M/e is 3-connected; a
contradiction.

Now Xz2 = T ∗e . Since {Xz2 , Yz2} is a 2-separation of M/z2 but {Xz2 , Yz2 ∪z2} is
not a 2-separation of M , we deduce that T ∗e spans z2 in M . Thus M has a circuit
C such that z2 ∈ C ⊆ T ∗e ∪ z2. If e 6∈ C, then C is a 3-element set that contains
a circuit and a cocircuit of M\e, so co(M\e) is not 3-connected; a contradiction.
Thus e ∈ C.

Since e ∈ U , it follows that N is a minor of M/e. As T ∗e − e ⊆ E(N) by (4.1.3),
and T ∗e − e spans z2 in M/e, we must delete z2 from M/e to obtain N . Thus

N is a minor of M/e\z2. (12)

Since z2 ∈ Q, we deduce that z2 ∈ U and so T ∗z2 exists. By orthogonality, T ∗z2 ∩C 6=
{z2}, so T ∗z2 ∩ T

∗
e contains an element of C. Now T ∗z2 − z2 6= T ∗e − e, otherwise

{T ∗z2 ∪ T
∗
e , E(M)− (T ∗z2 ∪ T

∗
e )} is a 2-separation of M . Thus

|T ∗z2 ∩ T
∗
e | = 1 and T ∗z2 ∩ T

∗
e ⊆ C. (13)

Hence (T ∗z2−z2)∪(T ∗e −e) is a 3-element subset of E(N) that is a union of cocircuits
of M\{e, z2}. This 3-element set must be contained in a series class S of M\{e, z2},
otherwise it is a union of coloops of M\{e, z2} so M∗|(T ∗e ∪ T ∗z2) ∼= U2,5 and we
obtain the contradiction that M/e is 3-connected. We deduce that M\{e, z2}.has
a circuit D that contains S and an element of E(N) − S. But |E(N)| = 4, so
E(N) ⊆ D. By (5), |E(M)| ≥ 10. Therefore, by Lemma 3.6, D is a spanning
circuit of M .

Next we show that
|U | ≥ 3. (14)

Now N is a minor of M\e/z2, so N = M\e/z2\I∗/I, where I is independent and
I∗ is coindependent in M\e/z2. Thus r(N) = r(M\e/z2) − |I| = r(M) − 1 − |I|.
But N is a 4-element circuit, so r(N) = 3. Hence

|I| = r(M)− 4.

Suppose that I∗ ∩D = ∅. Then D − E(N) ⊆ I. But

|D − E(N)| = |D| − |E(N)| = (r(M) + 1)− 4 = r(M)− 3.

This contradiction implies that I∗ ∩D 6= ∅. Thus if f ∈ I∗ ∩D, then N is a minor
of M\f . But, since f is in the circuit D and N is also a circuit, it follows that N
is a minor of M/f . Thus f ∈ U . Since f 6∈ {e, z2}, we deduce that |U | ≥ 3.

Choose e′ in U − {e, z2} such that, if possible, e′ 6∈ D. Next we show that

T ∗e′ ∩ C = ∅. (15)

Suppose not. Since e′ 6∈ T ∗e ∪ z2 and C ⊆ T ∗e ∪ z2, we have, by orthogonality, that
T ∗e′ ∩ C = T ∗e′ − e′. Now e, z2 6∈ T ∗e′ , so T ∗e′ − e′ = T ∗e′ ∩ C ⊆ C − e ⊆ T ∗e − e. Thus
M∗|(T ∗e ∪T ∗e′) ∼= U2,4 and so M/e is 3-connected; a contradiction. Hence (15) holds.

Now, using e′ in place of e in the argument above, we deduce that U contains an
element z′2 such that T ∗z′2 ∩T

∗
e′ 6= ∅ and M has a circuit C ′ such that {z′2, e′} ⊆ C ′ ⊆

T ∗e′ ∪ z′2. Thus |C ′ ∩ E(N)| ≤ 2 and so, as |D ∩ E(N)| = |E(N)| = 4, we deduce
that C ′ 6⊆ D. Moreover, C ′ − {e′, z′2} ⊆ E(N) ⊆ D. Thus e′ 6∈ D or z′2 6∈ D. By
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the choice of e′, we deduce that e′ 6∈ D. Hence D ∩ {e, z2, e
′} = ∅. On combining

(13) and (15), we deduce that

T ∗e ∩ T ∗e′ ∩ T ∗z2 = ∅. (16)

Next, we show that

T ∗e ∩ T ∗e′ = ∅ or T ∗z2 ∩ T
∗
e′ = ∅. (17)

Assume that (17) is false. We know that (T ∗e−e)∪(T ∗z2−z2) is contained in a series
class S of M\{e, z2}. Now |(T ∗e −e)∪ (T ∗z2−z2)| = 3 and |(T ∗e −e)∩ (T ∗z2−z2)| = 1.
Since T ∗e′ − e′ must meet both T ∗e − e and T ∗z2 − z2 but, by (16), T ∗e′ − e′ avoids
(T ∗e − e) ∩ (T ∗z2 − z2), we deduce that T ∗e′ − e′ ⊆ (T ∗e − e) ∪ (T ∗z2 − z2). Thus either
e′ is a coloop of M\{e, z2}, or e′ ∈ S. In the former case, {e′, e, z2} is a triad of
M that avoids the spanning circuit D; a contradiction. Hence e′ ∈ S. Thus, in
M\{e, z2}\e′, the elements of (T ∗e − e) ∪ (T ∗z2 − z2) are coloops. But these coloops
are contained in D, which is a circuit of M\{e, z2}\e′; a contradiction. We conclude
that (17) holds.

To complete the proof of (4.1.6), we shall show that E(M)−D ⊆ {e′, e, z2}. Now
D∩{e′, e, z2} = ∅ and D is a spanning circuit of M . Since each of T ∗e′−e′, T ∗e −e, and
T ∗z2−z2 is a union of cocircuits of M\{e′, e, z2} contained in D, we deduce that each
of T ∗e′ − e′, T ∗e − e, and T ∗z2 − z2 is a cocircuit of M\{e′, e, z2}. By (17), two of these
2-cocircuits are disjoint and so their union is E(N). Since |(T ∗e −e)∩(T ∗z2−z2)| = 1,
it follows that the third 2-cocircuit meets the other two. Thus E(N) is contained
in a series class of M\{e′, e, z2}. Suppose f ∈ E(M)−D − {e′, e, z2}. Then, since
D is spanning in M , there is a circuit of M\{e′, e, z2} that contains f . Moreover,
this circuit may be chosen to avoid E(N) since E(N) is contained in a series class
of M\{e′, e, z2} contained in D. We deduce that f is a loop of M\{e′, e, z2}/(D −
E(N)). Since N = M/(D − E(N))\(E(M) − D), Lemma 3.5 implies that f is
a coloop of M\{e′, e, z2}/(D − E(N)); a contradiction. We conclude that (4.1.6)
holds. �

Let D be a spanning circuit of M whose existence is guaranteed by (4.1.6). Let
E(M)−D = {f, g, h} where T ∗h ∩T ∗g = ∅. Let M ′ = M/(D−E(N)). Then (M ′)∗ is
a rank-4 matroid in which T ∗f is a triangle to which triangles T ∗g and T ∗h have been
attached at different points via parallel connection. It follows that M ′ is connected,
that T ∗g − T ∗f and T ∗h − T ∗f are disjoint 2-element parallel classes of M ′, and that
M ′ has no other non-trivial parallel classes. Now let Z be a minimal subset of
D − E(M) such that M/(D − (E(N) ∪ Z)) has no non-trivial parallel classes. It
follows, since M/(D−E(N)) has exactly two non-trivial parallel classes each with
exactly 2 elements, that |Z| ≤ 2. Let M ′′ = M/(D − (E(N) ∪ Z)). Then, for each
x in {g, h}, the parallel class T ∗x − T ∗f of M/(D − E(N)) is contained in a triangle
Tx of M ′′.

We show next that M ′′ is 3-connected. By Lemma 3.5, since M ′′ clearly has no
coloops, M ′′ is connected. Moreover, since M/(D − E(N)) is cosimple, so is M ′′;
and, as M/(D − E(N)) has exactly two 2-circuits neither of which is a 2-circuit
of M ′′, it follows that M ′′ is simple. We deduce that M ′′ has no non-trivial 2-
separations. Let {X,Y } be a 2-separation of M ′′. Then min{|X|, |Y |} ≥ 3. Now
E(M ′′) = T ∗f ∪ Tg ∪ Th. Evidently X or Y , say X, meets at least two of T ∗f , Tg,
and Th in at least two elements. By symmetry, we may assume that |X ∩ Tg| ≥ 2.
We may also assume that X is closed in both M ′′ and (M ′′)∗. Thus X ⊇ Tg and,
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since |Tg ∩ T ∗g | = 2, it follows that X ⊇ T ∗g . Note that |X ∩ Th| 6≥ 2, otherwise
X ⊇ Th ∪ T ∗h and so |Y | ≤ 1; a contradiction. Thus |X ∩ T ∗f | ≥ 2, so X ⊇ T ∗f .
Hence Y ⊆ Th and, as |Y | ≥ 3, it follows that Y = Th and that Th and Tg are
disjoint. Thus r(M ′′) = 5 and so r(X) = r(M ′′) + 1− r(Y ) = 4. Therefore Th is a
triad of M ′′ and hence of M . Thus M∗|(Th ∪ T ∗h ) ∼= U2,4 so M/h is 3-connected; a
contradiction. We conclude that M ′′ is indeed 3-connected.

Since M ′′ has N as a minor and is a 3-connected minor of M , it follows that
M ′′ = M . But |E(M ′′)| ≤ 9, whereas, by (5), |E(M)| ≥ 10. This contradiction
completes the proof of Theorem 4.1. �

To conclude this section, we show that, for every integer n exceeding one, there
are infinitely many matroids N that attain the bound of Theorem 4.1 such that
λ2(N) = n. In fact, our examples will show that the bound in Theorem 4.1 cannot
be improved if we require only that M has a minor isomorphic to, rather than
equal to, N . For each i in {1, 2, . . . , n}, let Gi be isomorphic to a wheel for which
the vertices of the rim are, in cyclic order, vi1, vi2, . . . , vi(4m+6), where m is large,
say m = 100n. Let G be formed from the vertex-disjoint union of G1, G2, . . . , Gn
by, for all i in {1, 2, . . . , n − 1}, adding the edges di1, di2, di3, ci1, ci2 and delet-
ing the edges vi1vi2 and v(i+1)(2m+4)v(i+1)(2m+5), where di1 = vi(m+3)v(i+1)(2m+4),
ci1 = vi2v(i+1)(2m+4), di2 = vi2v(i+1)(2m+5), ci2 = vi1v(i+1)(2m+5), and di3 =
vi1v(i+1)(3m+6). Now take M = M(G) and N = M(H) where

H = G\ ∪n−1
i=1 {di1, di2, di3}/ ∪

n−1
i=1 {ci1, ci2}.

In the case n = 3, the graph G is illustrated in Figure 1. We shall show that M is a

Figure 1. An extremal example for Theorem 4.1.

minor-minimal 3-connected matroid having a minor isomorphic to N . A cocircuit
in a connected matroid whose deletion leaves a connected matroid is called a vertex
cocircuit. We observe that, in N , the edges meeting the hub of each wheel Gi form
a vertex cocircuit with 4m+ 6 elements. Moreover, for all i in {1, 2, . . . , n− 1}, the
two vertices that result from identifying the end vertices of ci1 and ci2 in G induce
a 2-separation of N ; and every 2-separation of N is of this type. To obtain a minor
of M isomorphic to N , we must delete and contract a total of 5(n − 1) elements.
Assume that M\D/C ∼= N . We shall show first that E(M)− E(N) = C ∪D. If a
spoke s of one of the wheels Gi is in C, then M(G/s) has a 2-separation such that,
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in the corresponding 2-sum, one of the two matroids is a series-parallel network
with at least m − 3 elements. As m = 100n and |E(M) − E(N)| = 5(n − 1), it
is not possible for M(G/s) to have a minor isomorphic to N otherwise N has a
disallowed 2-separation. Thus no spoke of any Gi is in C and, similarly, no rim
element of any Gi is in D.

If some spoke s of one of the wheels Gi is in D, then M(G\s) has n− 1 vertex
cocircuits of size 4m+ 6, one vertex cocircuit of size 4m+ 5, and all its remaining
vertex cocircuits of size at most 5. But N has exactly n vertex cocircuits of size
4m+ 6. Since m = 100n but |E(M)−E(N)| = 5(n− 1), the structure of N means
that the only way for N to obtain the required number of vertex cocircuits of size
4m+ 6 is by contracting a spoke of one of the wheels, which we have already ruled
out. We deduce that none of the spokes of any Gi is in D. Hence none of the rim
elements of any Gi is in C otherwise, since N is simple, D must contain a spoke
adjacent to this rim element. We conclude that C ∪D = E(M)− E(N).

Next we show that D = ∪n−1
i=1 {di1, di2, di3} and C = ∪n−1

i=1 {ci1, ci2}. Consider
the sequence di1, ci1, di2, ci2, di3. The deletion from M of two consecutive elements
from this sequence leaves a matroid with a 2-separation one side of which corre-
sponds to a series-parallel network with at least 2m elements. It follows that this
matroid cannot have a minor isomorphic to N . Thus no two consecutive members
of di1, ci1, di2, ci2, di3 are in D. Clearly D cannot contain four or more elements
of di1, ci1, di2, ci2, di3. Thus D contains at most three such elements. From the
structure of M , it follows that D is coindependent and C is independent in M . We
deduce that |C| = r(M)− r(N) = 2(n− 1). Therefore C contains exactly two ele-
ments of each set {di1, ci1, di2, ci2, di3} otherwise D contains at least four elements
of one such set. Because no two consecutive elements of di1, ci1, di2, ci2, di3 are in D,
we deduce that {di1, di2, di3} ⊆ D and {ci1, ci2} ⊆ C. Thus D = ∪n−1

i=1 {di1, di2, di3}
and C = ∪n−1

i=1 {ci1, ci2}. Hence the only minor of M isomorphic to N is N itself.
The deletion of any of di1, di2, and di3 or the contraction of any of ci1 and ci2
from M produces a matroid that is not 3-connected and has no 3-connected minor
having a minor isomorphic to N . Thus N is indeed minor-minimal having a minor
isomorphic to N . We conclude that we cannot sharpen the bound in Theorem 4.1
even if we allow N to be replaced by an isomorphic copy.

5. A bound in general

In this section, we combine the main result of the last section with some extremal
results for connected matroids to prove a bound on |E(M)| in terms of |E(N)| alone,
when M is a minor-minimal 3-connected matroid having N as a minor. We begin
by recalling an analogue of the main result for the case when we require only that
M is connected [7].

5.1. Lemma. Let N be a non-empty matroid and M be a minor-minimal connected
matroid having N as a minor. Then

|E(M)− E(N)| ≤ 2λ2(N)− 2.

5.2. Lemma. Let N be a non-empty matroid. If M is a minor-minimal connected
matroid having N as a minor, then

|E(M)| ≤ 3|E(N)| − 2.
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Proof. The result follows immediately from Lemma 5.1 because |E(N)| ≥ λ1(N) ≥
1. �

Figure 2. An extremal example for Lemma 5.2.

For all i in {1, 2, . . . , n}, let Mi be the cycle matroid of the graph that is ob-
tained from a triangle {p, di, ci} by adding an edge ei in parallel with ci. Let
M be the parallel connection of M1,M2, . . . ,Mn across the basepoint p and let
N = M\{d1, d2, . . . , dn}/{c1, c2, . . . , cn}. When n = 4, the matroid M is the cy-
cle matroid of the graph in Figure 2, where the edges to be deleted are dashed,
while those to be contracted are dotted and dashed. Evidently N is the direct
sum of n loops, e1, e2, . . . , en, and one coloop p. Thus |E(N)| = n + 1. Moreover,
|E(M)| = 3n + 1 = 3|E(N)| − 2. Thus M is an extremal example for the last
lemma provided M is a minor-minimal connected matroid having N as a minor.
But, in order to make ei but not p a loop in a minor of M , we must delete di and
contract ci. Deleting di or contracting ci from M produces a matroid that has a
component contained in {ei, ci} and so is disconnected. Hence M shows that the
bound in Lemma 5.2 is sharp.

5.3. Lemma. If M is a connected matroid such that |E(M)| ≥ 3, then

λ2(M) ≤ |E(M)| − 2.

Proof. We prove this result by induction on |E(M)|. If |E(M)| = 3, then M is
isomorphic to U1,3 or U2,3 and the result follows. Suppose that |E(M)| ≥ 4. The
result also follows when M is 3-connected. Thus we may suppose that M is not
3-connected. Then there are matroids M1 and M2 such that M = M1 ⊕2 M2. By
induction, we have that

λ2(Mi) ≤ |E(Mi)| − 2,
for each i in {1, 2}. Observe that

λ2(M) = λ2(M1) + λ2(M2) ≤ |E(M1)|+ |E(M2)| − 4.

The result follows because |E(M)| = |E(M1)|+ |E(M2)| − 2. �

It is not difficult to show that the bound in the last lemma holds if and only
if every vertex of T (M) is a circuit or a cocircuit. Thus, in each of the last two
lemmas, the bounds are sharp. By contrast, the bound in the next theorem seems
far from best-possible.
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5.4. Theorem. Let N be a non-empty matroid. If M is a 3-connected minor-
minimal matroid having N as a minor, then

|E(M)| ≤ 18|E(N)| − 27.

Proof. Let N ′ be a minor-minimal connected minor of M having N as a minor. By
Lemmas 5.2 and 5.3,

λ2(N ′) ≤ |E(N ′)| − 2 ≤ 3|E(N)| − 4.

By Theorem 4.1, we obtain

|E(M)| − |E(N ′)| ≤ 5(λ2(N ′)− 1) ≤ 15|E(N)| − 25.

The result follows by Lemma 5.2. �

6. The proof of the main result

The main result was proved when N is connected in Section 4. In this section, we
complete its proof in general. The main tool in the proof, apart from Theorem 4.1,
is the next result.

6.1. Lemma. Let N be a non-empty matroid and M be a minor-minimal connected
matroid having N as a minor. Then

λ2(M) ≤ 4(λ1(N)− 1) + λ2(N).

Proof. Suppose the theorem fails and choose a counterexample (M,N) which is
minimal with respect to the lexicographic order on (|E(M)|,−|E(N)|). Choose a
minor N ′ of M such that N ′ is minor-minimal having N as a minor and satisfying
λ1(N ′) < λ1(N). By the choice of N ′, there is just one component H of N ′ such
that H is not a component of N . Let X and Y be disjoint subsets of elements of
H such that N ′\X/Y = N . If z ∈ X ∪ Y , and N is a minor of both N ′\z and
N ′/z, then, since λ1(N ′\z) = λ1(N ′) or λ1(N ′/z) = λ1(N ′), the minimality of N ′

is contradicted. We deduce that the sets X and Y are unique. By taking the dual
if necessary, we may assume that X 6= ∅. Choose an element e of X.

Now the matroid H\e is disconnected otherwise λ1(N ′\e) = λ1(N ′) and N ′\e
contradicts the choice of N ′. Thus the member of Λu2 (H) containing e is a circuit
C with at least three elements. If (C ∩ (X ∪ Y )) − e is non-empty and f is in
this set, then f is a coloop of N ′\e contradicting the fact that the sets X and Y
are unique. Therefore C ∩ (X ∪ Y ) = {e}. Let C − e = {e1, e2, . . . , ek} where
C ∩ E(N) = {el+1, el+2, . . . , ek}. Then k ≥ 2. Each element of C ∩ E(N) is a
coloop of N . In T (H), the edges incident with the vertex corresponding to C
are e1, e2, . . . , el. One by one, contract the edges of T (H) other than e1, e2, . . . , el
and relabel the vertex that is obtained by contracting each edge g by the 2-sum
of the matroids that previously labelled the ends of g. At the conclusion of this
process, let Hi be the matroid different from C that labels an end of ei. Since the
end of ei other than C is not labelled by a circuit in T (N), the matroid Hi\ei is
connected. Thus the components of H\e are H1\e1,H2\e2, . . . ,Hl\el together with
k − l coloops on el+1, el+2, . . . , ek.

Each component of H\e must meet E(N) for if there is such a component avoid-
ing E(N), then the sets X and Y are not unique. Moreover, each component of
H\e contains the elements of just one component of N , otherwise N ′\e has N as a
minor but has fewer components than N . Thus

λ1(N) = λ1(N ′) + k − 1. (18)
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Recall that we were able to assume that X 6= ∅ by duality. Next we show that
|X| = 1. Suppose that f ∈ X − e. Without loss of generality, we may assume that
f ∈ E(H1)−e1. If H1\f is connected, then H\f is connected so λ1(N ′\f) = λ1(N ′)
and the choice of N ′ is contradicted. Thus H1\f is disconnected. Since the last
matroid cannot have e1 as a coloop because H1\e1 is connected, we deduce that
H1\f, e1 is disconnected. Since H1\e1 contains elements from just one component
of N , it follows that H1\f, e1 has a component avoiding E(N); a contradiction to
the fact that the sets X and Y are unique. We conclude that f does not exist,
so |X| = 1. Since X was assumed to be non-empty by duality, we have actually
established the following:

6.1.1. If X 6= ∅, then |X| = 1.

An immediate consequence of this is that:

6.1.2. If Y 6= ∅, then |Y | = 1.

Next we show that:

6.1.3. If X = {e} and Y = {f}, then |C| = 3 and the element of Λu2 (H) containing
f is a 3-element cocircuit C∗.

We may assume that f ∈ E(H1) − e1. Then H1/f is disconnected otherwise
N ′/f contradicts the choice of N ′. Moreover, H1/f\e1 is connected otherwise
H1/f\e1 has a component that avoids E(N) and so the uniqueness of X and Y
is contradicted. It follows that the element of Λu2 (H) containing f is a 3-element
cocircuit C∗ that also contains e1. By duality, the element of Λu2 (H) containing e,
namely C, also has 3 elements. Hence (6.1.3) holds.

By the choice of (M,N), the lemma holds for (M,N ′), that is,

λ2(M) ≤ 4(λ1(N ′)− 1) + λ2(N ′).

Substituting from (18) into this inequality, we obtain

λ2(M) ≤ 4(λ1(N)− 1) + λ2(N ′)− 4(k − 1). (19)

By duality, (6.1.1), and (6.1.2), we have the following two cases:
(i) |X| = 1 and |Y | = 0; or
(ii) |X| = 1 and |Y | = 1.

In case (i), we have that

λ2(N ′)− λ2(N) = λ2(H)− λ2(H\X/Y )

=

(
|C| − 2 +

l∑
i=1

λ2(Hi)

)
−

(
k − l +

l∑
i=1

λ2(Hi\ei)

)

= l − 1 +
l∑
i=1

(λ2(Hi)− λ2(Hi\ei)),

where we recall that |C| = k + 1. Now, it is not difficult to see that

λ2(Hi)− λ2(Hi\ei) ≤ 1

for all i. Thus
λ2(N ′)− λ2(N) ≤ 2l − 1 ≤ 2k − 1.
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On combining this inequality with (19), we obtain that

λ2(M) ≤ 4(λ1(N)− 1) + λ2(N)− 2k + 3.

This is a contradiction to the the fact that (M,N) is a counterexample to the
lemma, because k ≥ 2. We conclude that (i) does not hold.

In case (ii), by (6.1.3), |C| = |C∗| = 3. Thus k = 2. Using the same notation as
above, let C = {e, e1, e2} and C∗ = {f, e1, e

′
1}. First suppose that {e2, e

′
1} ⊆ E(N).

In this case, e2 is a coloop and e′1 is a loop of N , and H\X/Y is the direct sum
of the loop e′1 and the coloop e2. In this case, λ2(N) = λ2(N ′). Substituting
this into (19), we obtain the contradiction that (M,N) is not a counterexample
to the lemma. We may now suppose that |{e2, e

′
1} ∩ E(N)| ≤ 1. By taking the

dual if necessary, we may assume that e′1 6∈ E(N). Now H1\e1 is connected and
N = N ′\e/f . Thus

λ2(H) = 2 + λ2(H1\e1) +
l∑
i=2

λ2(Hi),

and

λ2(H\X/Y ) = 2− l + λ2(H1\e1/f) +
l∑
i=2

λ2(Hi\ei).

Thus

λ2(N ′)− λ2(N) = λ2(H)− λ2(H\X/Y )

= λ2(H1\e1)− λ2(H1\e1/f) + l +
l∑
i=2

(λ2(Hi)− λ2(Hi\ei)).

Now each component of H1\e1/f must meet E(N) otherwise X and Y are not
unique. Thus H1\e1/f is connected otherwise N ′\e/f contradicts the choice of N ′

since it has fewer components than N and has N as a minor. It follows that

λ2(H1\e1)− λ2(H1\e1/f) ≤ 1.

Similarly, for each i in {2, . . . , l},
λ2(Hi)− λ2(Hi\ei) ≤ 1.

Thus
λ2(N ′)− λ2(N) ≤ 2l ≤ 2k = 4.

Substituting this into (19), we obtain

λ2(M) ≤ 4(λ1(N)− 1) + λ2(N) + 4− 4(k − 1).

Since k = 2, we have a contradiction that completes the proof. �

To see that the bound in the last lemma is sharp, consider the following example.
For each i in {1, 2, . . . , n}, let Gi be a 7-edge graph consisting of a 5-cycle Ci
with two chords ci and qi, where ci makes a triangle {ci, pi, di} with two of the
edges of Ci and qi is parallel to pi. Let G0 be a graph that is isomorphic to
Kn+3 and has p1, p2, . . . , pn as distinct edges. Form M from M(G0) by attaching
M(G1),M(G2), . . . ,M(Gn) via 2-sums at p1, p2, . . . , pn, respectively. Let N =
M\{d1, d2, . . . , dn}/{c1, c2, . . . , cn}. For the case when n = 2, one possibility for
the matroid M is the cycle matroid of the graph shown in Figure 3 where the edges
to be deleted are dashed, while those to be contracted are dotted and dashed. It is
not difficult to check that M is a minor-minimal connected matroid having N as
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Figure 3. An extremal example for Lemma 6.1.

a minor. Moreover, λ1(N) = λ2(N) = n + 1, while λ2(M(Gi)) = 5 for all i ≥ 1,
so λ2(M) = 5n + 1. Hence this example attains equality in the bound in the last
lemma.

We are now ready to complete the proof of the main result.

Proof of Theorem 1.1. Let N ′ be a connected minor of M that is minor-minimal
having N as a minor. By Lemma 6.1,

λ2(N ′) ≤ 4(λ1(N)− 1) + λ2(N).

As M is a minor-minimal 3-connected matroid having N ′ as a minor, it follows
from Theorem 4.1 that

|E(M)| − |E(N ′)| ≤ 5(λ2(N ′)− 1).

Hence
|E(M)| − |E(N ′)| ≤ 20(λ1(N)− 1) + 5(λ2(N)− 1).

By Lemma 5.1, we have that

|E(N ′)| − |E(N)| ≤ 2(λ1(N)− 1).

By adding the last two inequalities, we obtain the theorem. �

Since the hypotheses of Theorems 1.1 and 5.4 are the same, it is natural to com-
pare their bounds. It is not difficult to show that the bound in the former is sharper
than that in the latter provided the average number of elements per component of
N is at least 2. In particular, Theorem 1.1 is sharper than Theorem 5.4 if N has
no loops and no coloops. However, if, for example, N is the direct sum of n loops
and n coloops, then Theorem 5.4 is sharper than Theorem 1.1.
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