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Abstract. This paper proves several extremal results for 3-connected ma-

troids. In particular, it is shown that, for such a matroid M , (i) if the rank
r(M) of M is at least six, then the circumference c(M) of M is at least six and,

provided |E(M)| ≥ 4r(M)− 5, there is a circuit whose deletion from M leaves

a 3-connected matroid; (ii) if r(M) ≥ 4 and M has a basis B such that M\e is
not 3-connected for all e in E(M)−B, then |E(M)| ≤ 3r(M)−4; and (iii) if M

is minimally 3-connected but not hamiltonian, then |E(M)| ≤ 3r(M)− c(M).

1. Introduction

Let M be a matroid and A be a subset of E(M). Lemos and Oxley [7] and
Lemos, Oxley, and Reid [8] considered the problem of finding a sharp upper bound
on |E(M ′) − A| where M ′ is a 3-connected minor of M that is minimal with the
property that M |A = M ′|A. The following theorem, the main result of [7], solves
this problem in the case when A spans M . Let λ1(A,M) denote the number
of connected components of M |A. Now M |A can be constructed from a collection
Λ2(A,M) of 3-connected matroids by using the operations of direct sum and 2-sum.
It follows from work of Cunningham and Edmonds [1] that Λ2(A,M) is unique up
to isomorphism. We denote by λ2(A,M) the number of matroids in Λ2(A,M) that
are not isomorphic to U1,3, the three-element cocircuit.

1.1. Theorem. Let M be a 3–connected matroid other than U1,3 and let A be a
non-empty spanning subset of E(M). If M has no proper 3–connected minor M ′

such that M ′|A = M |A, then

|E(M)| ≤ |A|+ λ1(A,M) + λ2(A,M)− 2,

unless A is a circuit of size at least four, in which case,

|E(M)| ≤ 2|A| − 2.

It was also shown in [7] that, in a strong sense, the bound in this theorem is
best-possible: given a simple matroid N having at least one circuit, there is a
minor-minimal 3-connected matroid M for which M |E(N) = N such that |E(M)|
attains the bound in the theorem. Therefore the theorem is best-possible for every
restriction M |A for which r∗(M |A) 6= 0. The first new result of this paper sharpens
Theorem 1.1 in the case that A is a basis of M .

1.2. Theorem. Let M be a 3-connected matroid of rank at least four and B be a
basis of M . If no proper 3-connected minor of M has B as a basis, then

|E(M)| ≤ 3r(M)− 4.
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A minimally 3-connected matroid is a 3-connected matroid for which no single-
element deletion is 3-connected. Generalizing a result of Halin [3, Satz 7.6] for
graphs, Oxley [10, Theorem 4.7] proved the following bound on the size of a min-
imally 3-connected matroid and characterized the matroids attaining equality in
this bound.

1.3. Theorem. Let M be a minimally 3-connected matroid of rank at least three.
Then

|E(M)| ≤
{

2r(M), if r(M) ≤ 6;
3r(M)− 6, if r(M) ≥ 7.

Our second theorem uses Theorem 1.1 to derive a new bound on the size of a
minimally 3-connected matroid. The circumference c(M) of a matroid that is not
free is the maximum size of a circuit of M .

1.4. Theorem. Let M be a minimally 3-connected matroid. Then

|E(M)| ≤
{

2r(M), if M has a hamiltonian circuit;
3r(M)− c(M), otherwise.

A comparison of the last two results prompts one to seek a lower bound on
the circumference of a 3-connected matroid. The following such bound is obtained
in Section 3, and an immediate consequence of this bound is that Theorem 1.4
sharpens Theorem 1.3 for matroids of rank at least six.

1.5. Theorem. For a 3-connected matroid M of rank at least six, c(M) ≥ 6.

Mader [9] showed that every k-connected simple graph G with minimum degree
at least k + 2 has a cycle C such that G\C, the graph obtained from G by deleting
the edges of C, is k-connected. Jackson [4] extended this result by showing that,
for 2-connected graphs, C may be chosen to avoid any nominated edge of G and to
have length at least k−1. In [6], Lemos and Oxley proved that if M is a 2-connected
matroid for which

|E(M)| ≥ 2r(M) + 2 + max{0, 1 + r(M)− c(M)},

then M must have a circuit C such that M\C is 2-connected. Moreover, if |E(M)| ≥
3r(M), they showed that this circuit can be chosen so as to avoid some arbitrarily
chosen basis B of M . In Section 4, we prove the corresponding results in the
3-connected case:

1.6. Theorem. Let M be a 3-connected matroid such that r(M) ≥ 6. If

|E(M)| ≥ 3r(M) + 1 + max{0, r(M)− c(M)},

then M has a circuit C such that M\C is 3-connected.

1.7. Theorem. Suppose that M is a 3-connected matroid such that r(M) ≥ 4 and
let B be a basis of M . If

|E(M)| ≥ 4r(M)− 3,

then M has a circuit C such that M\C is 3-connected and C ∩B = ∅.

The terminology used here will follow Oxley [11].
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2. A bound to the size of a minimally 3-connected matroid

In this section, we shall prove Theorems 1.2 and 1.4. The former bounds the
size of a minimal 3-connected matroid that maintains a fixed set as a basis, while
the latter provides a new bound on the size of a minimally 3-connected matroid as
a function of its rank and circumference. Both of these results are consequences of
Theorem 1.1. For a 3-connected matroid M and a subset A of its ground set, (M,A)
is called a minimal pair if M has no 3-connected minor M ′ for which M ′|A = M |A.

The following lemma plays a key role in the proofs of both theorems. For a basis
B of a matroid M and an element e of E(M)−B, the unique circuit of M that is
contained in B ∪ e is denoted by C(e,B).

2.1. Lemma. Suppose that (M,B ∪ e) is a minimal pair and that r(M) 6= 0. If B
is a basis of M and e ∈ E(M)−B, then

|E(M)| ≤
{

2r(M), if C(e,B) is a hamiltonian circuit of M ;
3r(M)− |C(e,B)|, otherwise.

Proof. Suppose first that C(e,B) is a hamiltonian circuit of M . If r(M) ∈ {1, 2},
then E(M) = B ∪ e and the result holds. Thus we may assume that r(M) ≥
3. Then, by applying Theorem 1.1 to the minimal pair (M,B ∪ e), we get that
|E(M)| ≤ 2|C(e,B)| − 2 = 2r(M), and the result follows.

We may now suppose that C(e,B) is not a hamiltonian circuit of M . Observe
that M |(B ∪ e) has C(e,B) as a connected component and B − C(e,B) as a non-
empty set of coloops. Therefore

λ1(B ∪ e,M) = 1 + |B − C(e,B)| = 1 + (|B| − |C(e,B)|+ 1).

Thus λ1(B ∪ e,M) = r(M) + 2− |C(e,B)|. We also have that
λ2(B ∪ e,M) = λ2(C(e,B),M) + |B − C(e,B)|

= (|C(e,B)| − 2) + (|B| − |C(e,B)|+ 1) = r(M)− 1.

Hence, by Theorem 1.1,
|E(M)| ≤ |B ∪ e|+ λ1(B ∪ e,M) + λ2(B ∪ e,M)− 2

= (r(M) + 1) + (r(M) + 2− |C(e,B)|) + (r(M)− 1)− 2
= 3r(M)− |C(e,B)|. �

Theorem 1.4 is a straightforward consequence of this lemma.

Proof of Theorem 1.4. Let C be a circuit of M such that |C| = c(M). Choose an
element e of C and a basis B of M such that C − e ⊆ B. Clearly C = C(e,B).
The result follows immediately from Lemma 2.1. �

Lemos and Oxley [5] proved the analogue of the last theorem for minimally
2-connected matroids, namely, if M is a minimally 2-connected matroid, then

|E(M)| ≤ 2r(M) + 2− c(M).

A matroid is hamiltonian if it has a spanning circuit. Evidently the circumference
of such a matroid is one more than its rank. An interesting aspect of Theorem 1.4
is that the wheels and whirls are hamiltonian matroids that are extremal examples
for the theorem. Moreover, for each r and each c such that 6 ≤ c ≤ r, we shall now
describe an extremal example M for this theorem that has rank r and circumference
c. Let {v1, v2, v3} be one of the vertex classes in the bipartition of K3,r+3−c. Let
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G be obtained from K3,r+3−c as follows: add a path of length c − 4 to K3,r+3−c

that links v1 and v3 but is otherwise disjoint from K3,r+3−c; then add a new edge
joining v2 to every vertex of this path other than the ends. It is not difficult to
check that the cycle matroid M of G has circumference c, rank r, and has 3r − c
elements.

Next we shall prove Theorem 1.2, which gives a best-possible upper bound on
|E(M)| for a minimal pair (M,A) when A is a basis of M . First, however, we
observe that the bound on the rank of M in the hypothesis of this theorem cannot
be lowered: take M to be the rank-3 wheel and let B be its set of spokes. Then
|E(M)| = 6, but 3r(M)− 4 = 5.

Proof of Theorem 1.2. First observe that (M,B ∪ e) is a minimal pair for all e in
E(M) − B. Suppose that C(e,B) is hamiltonian for some e in E(M) − B. Then,
by Lemma 2.1, |E(M)| ≤ 2r(M) and so, as r(M) ≥ 4, we have |E(M)| ≤ 3r(M)−
4. Thus we may assume that C(e,B) is non-hamiltonian for all e in E(M) − B.
Therefore, for all such e, by Lemma 2.1 again, |E(M)| ≤ 3r(M)− |C(e,B)|. Hence
we may assume that

|C(e,B)| = 3 for every element e of E(M)−B. (1)

Next we shall prove that the theorem holds unless

C(e,B) ∩ C(f,B) 6= ∅ whenever e 6= f . (2)

Suppose that e 6= f and that C(e,B)∩C(f,B) = ∅. In this case, we shall consider
the minimal pair (M,B∪{e, f}). Observe that M |(B∪{e, f}) has C(e,B), C(f,B),
and each individual element of B− [C(e,B)∪C(f,B)] as its connected components.
Thus, by (1),

λ1(B ∪ {e, f},M) = r(M)− 2 and λ2(B ∪ {e, f},M) = r(M)− 2.

Hence, by Theorem 1.1,

|E(M)| ≤ |B ∪ {e, f}|+ (r(M)− 2) + (r(M)− 2)− 2 = 3r(M)− 4

and the result follows. Thus we may suppose that (2) holds.
Assume that there are distinct elements e, f, g in E(M)−B such that

C(e,B) = {e, a, b}, C(f,B) = {f, b, c}, and C(g,B) = {g, c, a}. (3)

In this case, we shall obtain a contradiction. We may assume that E(M) − (B ∪
{e, f, g}) contains an element h otherwise the theorem certainly holds. By (2),
C(h, B) must intersect all of C(e,B), C(f,B), and C(g,B). Hence C(h, B)− h ⊆
{a, b, c}. Thus {a, b, c} spans E(M)−B. Moreover, B−{a, b, c} is non-empty since
r(M) ≥ 4. Hence {B − {a, b, c}, (E(M) − B) ∪ {a, b, c}} is a 1-separation of the
3-connected matroid M ; a contradiction. Thus (3) cannot occur.

We deduce that B has an element b such that b ∈ C(e,B) for every e in E(M)−B.
Let be be the unique element of C(e,B) − {e, b}. If be = bf for e 6= f , then
M |{b, be, e, f} is isomorphic to U2,4 and hence M\e is 3-connected; a contradiction.
Thus be 6= bf whenever e 6= f . Therefore

|E(M)−B| ≤ |B − b| = r(M)− 1

and the result follows. �
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We now show that Theorem 1.2 is best-possible. Let K ′′
3,n be the graph that is

obtained from K3,n by adding a new edge from one of the degree-n vertices of the
latter to each of the other two degree-n vertices. Then equality is attained in the
bound in Theorem 1.2 if we take M to be M(K ′′

3,n) and B to be the set of edges
meeting the vertex of degree n + 2 in K ′′

3,n.

3. The circumference of a 3-connected matroid

For a k-connected graph G,the minimum vertex degree is at least k. When k ≥ 2,
a well-known result of Dirac [2, Theorem 4] implies that the circumference of G is
at least 2k provided that |V (G)| ≥ 2k. Moreover, this result is best-possible. Thus
a 3-connected graph with at least six vertices has circumference at least six. In this
section, we shall prove Theorem 1.5, a generalization of this result to 3-connected
matroids having rank at least six.

Let L be a subset of the ground set of a matroid M and suppose that L is the
union of a set of circuits of M and r∗(M |L) = 2. Then L is what Tutte [12] has
called a “line” of M . We shall call L a Tutte-line since the word “line” is also
commonly used in matroid theory to mean a rank-2 flat. It is not difficult to see
that every Tutte-line L of a matroid M has a canonical partition {L1, L2, . . . , Lk}
such that a subset C of L is a circuit of M |L if and only if C = L− Li for some i
in {1, 2, . . . , k}. A Tutte-line L is connected if M |L is a connected matroid.

In the next proof, we shall make frequent use of the next two lemmas. Both parts
of the first of these are elementary consequences of orthogonality, the property of
a matroid that a circuit and a cocircuit cannot have exactly one common element.
The second lemma was proved by Oxley [10, Theorem 2.5].

3.1. Lemma. (i) If C is a circuit of a 3-connected matroid and T1 and T2 are
distinct triads of M both of which meet C, then C ∩ T1 6= C ∩ T2.

(ii) If L is a Tutte-line of a matroid M and T is a triad of M , then T meets
an odd number of sets in the canonical partition of L.

3.2. Lemma. Let C be a circuit of a minimally 3-connected matroid M and suppose
that |E(M)| ≥ 4. Then M has at least two distinct triads intersecting C.

Proof of Theorem 1.5. Let M be a counterexample to the theorem for which |E(M)|
is minimal. Clearly M must be minimally 3-connected. Let C be a circuit of M
such that |C| = c(M). Then 3 ≤ |C| ≤ 5.

Let D be the set of circuits D of M/C such that D is not a circuit of M and
|D| ≥ 2.

3.3. Lemma. (i) |D| = 2 for every D in D;
(ii) |C| ≥ 4; and
(iii) for all D in D, the set C∪D is a connected Tutte-line of M having canonical

partition {XD, YD, D} for some XD and YD with |XD|, |YD| in {2, 3}.

Proof. Suppose that D ∈ D. Then C ∪ D is a connected Tutte-line L of M . Let
{L1, L2, . . . , Lk} be the canonical partition of L. As L is connected, k ≥ 3. Since
(C ∪D) −D is a circuit of M |L, we may assume, without loss of generality, that
D = L1. As L − L1 = C and C is a maximum-sized circuit of M , it follows that
|L− L1| ≥ |L− Li| for all i. But |D| ≥ 2. Thus

2 ≤ |D| = |L1| ≤ |Li| (4)
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for all i. As ∪k
j=2Lj = C and |C| ≤ 5, we deduce that k ≤ 3. Hence k = 3.

Moreover, both |L2| and |L3| are in {2, 3} and min{|L2|, |L3|} = 2. Thus, by (4),
|D| = 2 so both (i) and (iii) hold. In addition, |C| = |L2| + |L3| ≥ 4, and (ii)
holds. �

3.4. Lemma. c(M/C) ≤ 2.

Proof. Let C ′ be a circuit of M/C with at least three elements. By Lemma 3.3,
C ′ 6∈ D. Thus C ′ is a circuit of M . Observe that M |(C ∪ C ′) = (M |C)⊕ (M |C ′).
Choose an element d of C ′. Then M has a circuit Cd that contains d and meets C.
Clearly Cd − C is a union of circuits of M/C. Take such a circuit D that contains
d. Since D and C ′ are both circuits of M/C, we cannot have that D = {d}
otherwise D is a proper subset of C ′. Hence |D| ≥ 2. Lemma 3.3 now implies
that |D| = 2, say D = {d, d′}. Moreover, M |(C ∪D) is connected. Since M |C ′ is
also connected, it follows that M |(C ∪ D ∪ C ′), which equals M |(C ∪ C ′ ∪ d′), is
connected. Deleting d′ from the last matroid produces the disconnected matroid
M |(C ∪ C ′) with components M |C and M |C ′. Thus M |(C ∪ C ′ ∪ d′) is the series
connection, with basepoint d′, of [M |(C ∪ C ′ ∪ d′)]/C ′ and [M |(C ∪ C ′ ∪ d′)]/C.
Now M |(C ∪C ′ ∪ d′) has a circuit D′ that contains d′ and at least two elements of
C ′, otherwise every element of C ′ is parallel to d, a contradiction to the fact that
C ′ is a circuit of M of size at least three. Then D′ = D′

1∪D′
2∪d′ where D′

1∪d′ and
D′

2 ∪ d′ are circuits of [M |(C ∪ C ′ ∪ d′)]/C ′ and [M |(C ∪ C ′ ∪ d′)]/C, respectively.
Hence D′−C = D′

2∪d′ and so D′−C is a circuit of M/C that is not a circuit of M ,
and |D′−C| ≥ 3. Thus D′−C ∈ D yet Lemma 3.3 fails for it; a contradiction. �

By Lemma 3.4, the connected components of M/C consist of loops and parallel
classes. But each parallel class of M/C is a cocircuit of M and therefore has at
least three elements. Let these rank-one components of M/C be H1,H2, . . . ,Hn.
Then n ≥ 1 since C does not span M . Therefore, as M is 3-connected and |E(M)−
E(Hi)| ≥ |C| ≥ 3, we have that

r(E(Hi)) + r(E(M)− E(Hi))− r(M) ≥ 2.

Thus, as E(M)− E(Hi) is a hyperplane of M , it follows that

r(E(Hi)) ≥ 3 for all i. (5)

3.5. Lemma. C does not contain a triad of M .

Proof. Suppose that C contains a triad T of M . Choose a subset A of E(H1) such
that |A| = 2. Then A ∈ D so, by Lemma 3.3, C ∪ A is a connected Tutte-line of
M having canonical partition {A,X, Y } with |X|, |Y | ∈ {2, 3}. Since X ∪ Y = C,
it follows, by Lemma 3.1(ii), that {X, Y } = {T,C − T}. Hence, as |C| ≤ 5, we
deduce that |C−T | ≤ 2. Thus |C−T | = 2 and |C| = 5. Moreover, for all 2-element
subsets A of E(H1), the set A ∪ (C − T ) is a circuit CA of M .

As M is minimally 3-connected, Lemma 3.2 implies that M has distinct triads
T1 and T2 both of which meet CA. By Lemma 3.1(i), T1 ∩ CA 6= T2 ∩ CA. Thus,
as |A| = 2, at least one of T1 and T2, say the former, meets C − T . Now, by
Lemma 3.1(ii), either (i) T1∩C ⊆ C−T ; or (ii) T1 = {a, t, c} for some a in A, some
t in T , and some c in C−T . Let A′ be a subset of E(H1)−a such that |A∩A′| = 1.
Then CA′ , which equals A′ ∪ (C − T ), cannot meet T1 in a single element, so (ii)
does not hold. Hence (i) holds.
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Let A′ be a subset of E(H1) such that |A′∩A| = 1. By Lemma 3.1(ii), A′∩T1 = ∅,
since {A′, T, C −T} is the canonical partition of A′ ∪C. Let C −T = {x, y}. Then
(CA ∪ CA′)− y, which equals A ∪A′ ∪ x, contains a circuit of M . As |A ∪A′| = 3
and (A∪A′ ∪x)∩T1 = {x}, it follows that A∪A′ is a triangle of M . As A′ was an
arbitrarily chosen subset of E(H1) for which |A ∩A′| = 1, we deduce that A spans
E(H1) in M . Hence r(E(H1)) = 2; a contradiction to (5). �

3.6. Lemma. If i ∈ {1, 2, . . . , k} and {a, b} is a 2-element subset of E(Hi) that is
contained in a triad of M , then E(Hi) is a triad of M .

Proof. Let T be a triad of M that contains {a, b} and suppose that T ∩ E(Hi) =
{a, b}. By orthogonality, T ∩C = ∅. Thus {a, b} is a union of cocircuits of M |(C ∪
E(Hi)). But, since E(Hi) is a parallel class of M/C of size at least three, it follows
that r(C ∪E(Hi)) = r(C)+1 and E(Hi) is a cocircuit of M |(C ∪E(Hi)). This is a
contradiction since {a, b} is a proper subset of E(Hi). We conclude that T ⊆ E(Hi).
Since both T and E(Hi) are cocircuits of M , equality must hold here. �

3.7. Lemma. For all i, the matroid M |(C ∪ E(Hi)) has at most one 2-cocircuit
contained in C.

Proof. Suppose that M |(C ∪E(Hi)) has at least two 2-cocircuits W1 and W2 con-
tained in C. We now distinguish the following two cases: (i) |W1∩W2| = 1; and (ii)
|W1 ∩W2| = 0. In each case, we shall show that every 3-element subset of E(Hi)
is a triangle so r(E(Hi)) = 2; a contradiction to (5).

Assume that (i) holds. Then W1 ∪W2 is contained in a series class of M |(C ∪
E(Hi)). Let {a, b, c} be an arbitrary 3-element subset of E(Hi). Then Lemma 3.3
implies that, for each A in {{a, b}, {b, c}}, the set C ∪ A is a connected Tutte-line
of M having canonical partition {A,XA, YA} where each of XA and YA has either
two or three elements. Since both A ∪XA and A ∪ YA are circuits of M , we must
have that W1 ∪ W2 is contained in and therefore equals XA or YA. Thus both
W1 ∪ W2 ∪ {a, b} and W1 ∪ W2 ∪ {b, c} are circuits of M . Hence if w ∈ W1, then
(W1 ∪W2 ∪{a, b, c})−w contains a circuit Cw of M . As W1 ∪W2 is contained in a
series class of M |(C∪E(Hi)) and w 6∈ Cw, it follows that Cw avoids W1∪W2. Hence
Cw is contained in and therefore equals {a, b, c}. It follows that r(E(Hi)) = 2; a
contradiction to (5).

We may now assume that (ii) holds. Let {a, b, c} be an arbitrary 3-element subset
of E(Hi). Then, for each 2-element subset A of {a, b, c}, Lemma 3.3 implies that
C ∪A is a connected Tutte-line. Moreover, for the canonical partition {A,XA, YA}
of C∪A, we must have that each of W1 and W2 is contained in XA or YA. The fact
that each of XA and YA has two or three elements, but their union has at most five
elements implies that A∪W1 or A∪W2 is a circuit of M . Hence there are distinct
2-element subsets A and A′ of {a, b, c} such that, for some j in {1, 2}, both A∪Wj

and A′∪Wj are circuits of M . Thus, if w ∈ Wj , then M has a circuit C1 contained
in (A∪A′∪Wj)−w. Since Wj is a 2-cocircuit of M |(C ∪E(Hi)), it follows that C1

is contained in and hence equals A ∪ A′. Therefore, as in case (i), we deduce that
every 3-element subset of E(Hi) is a triangle, so r(E(Hi)) = 2; a contradiction to
(5). �

3.8. Lemma. Suppose that i ∈ {1, 2, . . . , k} and that {a, b, c} is a 3-element subset
of E(Hi). Then {a, b} is contained in a 4-circuit D of M where |D ∩ C| = 2.
Moreover, either
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(i) M has a triad that meets both {a, b} and D ∩ C; or
(ii) E(Hi) is a triad of M and there is a triad of M that contains c and meets

C.
In both cases, M has a triad that meets both E(Hi) and C.

Proof. The fact that D exists follows immediately from Lemma 3.3(iii) since |C| ≤
5. Let D ∩ C = {α, β}. Suppose that (i) does not occur. By Lemma 3.2, there are
triads T and T ′ of M that meet D. By Lemma 3.1(i), T∩D 6= T ′∩D. The canonical
partition of the connected Tutte-line {a, b}∪C must be {{a, b}, {α, β}, C−{α, β}}.
Thus orthogonality and Lemma 3.1(ii) imply that each of |T ∩ (C ∪ {a, b})| and
|T ′ ∩ (C ∪ {a, b})| is 2. Hence we may assume, without loss of generality, that
T ∩ (C ∪ {a, b}) = {a, b} and T ′ ∩ (C ∪ {a, b}) = {α, β}. Therefore, by Lemma 3.6,
E(Hi) = {a, b, c} and E(Hi) is a triad of M . We may suppose that the element of
T ′ − (C ∪ {a, b}) is not in C ∪ E(Hi) otherwise this element is c and (ii) follows.

Applying Lemma 3.2 again, this time to the circuit C, we deduce that M has a
triad T ′′ that meets C and is different from T ′. By Lemma 3.5, |T ′′ ∩ C| = 2. We
show next that T ′′ ∩ E(Hi) is empty. If not, then c ∈ T ′′, or, by Lemma 3.1(ii),
T ′′ meets both {a, b} and D ∩C. But, in both these cases, the lemma holds. Thus
T ′′ ∩ E(Hi) is indeed empty. Hence T ′′ ∩ C is a 2-cocircuit of M |(C ∪ E(Hi)).
But T ′ ∩ C is also a 2-cocircuit of M |(C ∪ E(Hi)) and Lemma 3.1(i) implies that
T ′ ∩C 6= T ′′ ∩C. Hence M |(C ∪E(Hi)) has two 2-cocircuits contained in C. This
contradiction to Lemma 3.7 completes the proof of Lemma 3.8. �

3.9. Lemma. M has exactly two rank-one components, Hi. Moreover, |C| = 5 and
r(M) = 6.

Proof. Suppose that the number n of rank-one components of M/C is at least three.
Then, by Lemma 3.8, for each i in {1, 2, . . . , n}, there is a triad Ti such that both
Ti ∩ C and Ti ∩ E(Hi) are non-empty. By Lemma 3.1(ii), if i and j are distinct
members of {1, 2, . . . , n}, then Ti ∩ C 6= Tj ∩ C. Thus M |(C ∪ E(H1)) has both
T2 ∩ C and T3 ∩ C as 2-cocircuits contained in C, a contradiction to Lemma 3.7.
We conclude that n ≤ 2. Thus

6 ≤ r(M) = |C| − 1 + n ≤ |C|+ 1 ≤ 6,

so r(M) = 6. Moreover, n = 2 and |C| = 5. �

We now work towards obtaining a final contradiction that will complete the proof
of Theorem 1.5. By Lemma 3.8, for each i in {1, 2}, there is a triad Ti that meets
both E(Hi) and C. If, for a fixed i, there are two such triads Ti,1 and Ti,2, then,
for j 6= i, the sets Ti,1 ∩ C and Ti,2 ∩ C are 2-cocircuits of M |(C ∪ E(Hj)). Thus,
by Lemma 3.7, Ti,1 ∩ C = Ti,2 ∩ C, a contradiction to Lemma 3.1(ii). Hence Ti is
unique.

Suppose that, for some i in {1, 2}, the set E(Hi) is not a triad of M . Then
Lemma 3.8 implies that, for each 2-element subset A of E(Hi), there is a 4-element
circuit, DA, that contains A and meets C in exactly two elements. Thus, as (ii)
of Lemma 3.8 does not hold, (i) of that lemma implies that there are at least two
triads of M that meet C and E(Hi). This contradiction to the uniqueness of Ti

implies that both E(H1) and E(H2) are triads of M .
Let E(H1) = {a, b, c} and E(H2) = {a′, b′, c′}. Without loss of generality, we

may suppose that T1 ∩ E(H1) = {c} and T2 ∩ E(H2) = {c′}. Then, for some
{α, β} ⊆ C, there is a circuit {α, β, a, b} of M . By orthogonality, either
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(i) T1 = {α, β, c}; or
(ii) T1 ∩ {α, β, a, b} = ∅.

In both cases, we shall show that

(iii) T1 ∩ T2 = ∅; and
(iv) there are distinct elements µ and ν of T1−c so that {a, c, ε, µ} and {b, c, ε, ν}

are circuits of M where ε is the element of C − (T1 ∪ T2).

Suppose that (ii) occurs. Then, by Lemma 3.2, M has a triad T that meets
{α, β, a, b} and is different from E(H1). Since E(H1) ∩ {α, β, a, b} = {a, b}, it
follows, by Lemma 3.1(ii), that T ∩ {α, β, a, b} 6= {a, b}. Thus either T meets both
E(H1) and C, or T ∩ {α, β, a, b} = {α, β}. Since T1 is the only triad meeting both
E(H1) and C, the first case implies that T1 = T ; a contradiction since T1 avoids
{α, β, a, b} by (ii). We conclude that T ∩ {α, β, a, b} = {α, β}. If T avoids E(H2),
then T1∩C and T ∩C are distinct 2-cocircuits of M |(C ∪E(H2)) contained in C; a
contradiction to Lemma 3.7. Thus T meets E(H2). Since T also meets C, it follows
that T = T2 and hence that T2 = {α, β, c′}. Hence T1 ∩ T2 = ∅, that is, (iii) holds.
We may now assume that T1 = {γ, δ, c} where C = {α, β, γ, δ, ε}. By Lemma 3.3
and the fact that |C| = 5, the connected Tutte-line C ∪ {a, c} contains a 5-element
circuit C1 of M that contains {a, c}. By applying Lemma 3.1(ii) to T1, we deduce
that |C1 ∩ {γ, δ}| = 1, say γ ∈ C1. As T2 = {α, β, c′}, it follows that {α, β} is a
series class of M |(C ∪{a, c}) and hence that C1 = {α, β, γ, a, c}. Thus {a, c, δ, ε} is
a circuit of M .

Now use the connected Tutte-line C∪{b, c} to give that M has a 5-element circuit
C2 that contains {b, c}. Then, it follows, by arguing as for C1, that {b, c, δ, ε} or
{b, c, γ, ε} is a circuit of M . The first possibility is excluded since it implies that
{a, b, δ, ε} contains a circuit of M . This contradicts the fact that {{a, b}, {α, β},
{γ, δ, ε}} is the canonical partition of C ∪ {a, b}. We conclude that if (ii) occurs,
then (iii) and (iv) hold.

Now suppose that (i) holds. Then, by Lemma 3.1(i) and (ii), T1 ∩ T2 = ∅, that
is, (iii) holds. Thus we may assume that T2 = {γ, δ, c′}. Let C3 be a 5-element
circuit of M |(C ∪ {a, c}) that contains {a, c}. Then, by applying Lemma 3.1(ii) to
the triad {α, β, c}, we have that |C3 ∩{α, β}| = 1, say α ∈ C3. As T2 = {γ, δ, c′}, it
follows that {γ, δ} is a cocircuit of M |(C ∪ {a, c}). Thus the canonical partition of
C ∪ {a, c} is {{a, c}, {α, γ, δ}, {β, ε}}. Hence {a, c, β, ε} is a circuit of M . Arguing
similarly using a 5-element circuit C4 of M |(C ∪ {b, c}) that contains {b, c}, we
deduce that {b, c, β, ε} or {b, c, α, ε} is a circuit of M . The first possibility cannot
occur because it implies that {a, b, β, ε} contains a circuit of M which contradicts
the fact that {{a, b}, {α, β}, {γ, δ, ε}} is the canonical partition of C ∪ {a, b}. We
conclude that {b, c, α, ε} is a circuit of M and hence that, when (i) occurs, both
(iii) and (iv) hold.

Since {{a, b}, {α, β}, {γ, δ, ε}} is the canonical partition of C ∪ {a, b} and T1 ∩
T2 = ∅, Lemma 3.1(ii) implies that either T1 = {α, β, c} and T2 = {γ, δ, c′}, or
T1 = {γ, δ, c} and T2 = {α, β, c′}. Using Lemma 3.1(ii) again, it follows that,
in each case, either {{a′, b′}, {α, β, ε}, {γ, δ}} or {{a′, b′}, {α, β}, {γ, δ, ε}} is the
canonical partition of C ∪ {a′, b′}. Thus {a′, b′, γ, δ} or {a′, b′, α, β} is a circuit of
M . Using this circuit in place of {a, b, α, β}, and E(H2) and T2 in place of E(H1)
and T1, we may now argue as in (i) and (ii) above to deduce that there are distinct
elements µ′ and ν′ of T2 − c′ such that {a′, c′, ε, µ′} and {b′, c′, ε, ν′} are circuits of
M .
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By elimination, ({a, c, ε, µ} ∪ {a′, c′, ε, µ′})− ε contains a circuit C5 of M . The
triads {a, b, c} and T1 and orthogonality imply that either C5 ∩ {a, c, µ} = ∅, or
{a, c, µ} ⊆ C5. Similarly, the triads {a′, b′, c′} and T2 imply that C5∩{a′, c′, µ′} = ∅,
or {a′, c′, µ′} ⊆ C5. But |C5| ≤ 5, so C5 is either {a, c, µ} or {a′, c′, µ′}. However,
the connected Tutte-lines C ∪ {a, c} and C ∪ {a′, c′} imply that both {a, c, µ} and
{a′, c′, µ′} are properly contained in circuits of M . This contradiction completes
the proof of Theorem 1.5. �

To close this section, we shall present an example that shows that the lower
bound on the rank in the hypothesis of Theorem 1.5 is best-possible. Let M be the
tipless binary 5-spike, that is, M is the matroid that is represented over GF (2) by
the matrix [I5|J5 − I5] where J5 is the 5× 5 matrix of all ones. It is not difficult to
show (see, for example, [11, p.321]) that M has circumference 5.

4. Removing circuits from matroids

In this section, we shall prove Theorems 1.6 and 1.7.

Proof of Theorem 1.6. By Lemma 2.1, there is a 3-connected matroid N having
the same rank and the same circumference as M such that N = M |E(N) and

|E(N)| ≤ 2r(M) + max{0, r(M)− c(M)}.

Now
|E(M)| − |E(N)| ≥ [3r(M) + 1 + max{0, r(M)− c(M)}]

−[2r(M) + max{0, r(M)− c(M)}]
= r(M) + 1.

Thus E(M)− E(N) must be a dependent set of M and so contains a circuit C of
M avoiding E(N). Observe that M\C is a 3-connected matroid, since it has N as
a minor and E(N) spans M . �

On combining the last theorem with Theorem 1.5, we immediately obtain the
following result.

4.1. Corollary. If M is a 3-connected matroid such that r(M) ≥ 6 and

|E(M)| ≥ 4r(M)− 5,

then M has a circuit C such that M\C is 3-connected.

The last corollary is best-possible as the next example shows. Let M be the
matroid that is obtained as follows. Begin with a 3-point line {a, b, c} and take
the generalized parallel connection of n copies, N1, N2, . . . , Nn, of M(K4) across
{a, b, c}. Each Ni has a unique 3-point line that meets {a, b, c} at a. Freely add a
point pi on each such line. Then M is obtained by deleting a from the resulting
matroid. Certainly M is 3-connected and has rank 2 + n. Moreover, for each i,
the 4-element set (E(Ni) ∪ pi)− {a, b, c} is a cocircuit of M containing a triangle.
Using this fact and orthogonality, it is not difficult to see that M has no circuit
whose deletion leaves a 3-connected matroid. But

|E(M)| = 4n + 2 = 4(n + 2)− 6 = 4r(M)− 6,

so the bound in the last corollary cannot be improved.



SIZE, CIRCUMFERENCE AND CIRCUIT REMOVAL IN 3–CONNECTED MATROIDS 11

The proof of Theorem 1.7 is obtained by making slight modifications to the proof
of Theorem 1.6 so that Theorem 1.2 rather than Lemma 2.1 can be used. We omit
the straightforward details.

To obtain an example showing that Theorem 1.7 is best-possible, we modify
the previous example by freely adding two new points q1 and q2 on the line {b, c}.
Let the resulting matroid be M ′. Then |E(M ′)| = 4n + 4 and r(M ′) = n + 2, so
|E(M ′)| = 4r(M ′)−4. For each i, let bi be the coloop of M ′|[(E(Ni)∪pi)−{a, b, c}]
and let B = {b, c, b1, b2, . . . , bn}. Then B is a basis for M ′ and, arguing as for M ,
it is not difficult to see that M ′ has no circuit C that avoids B such that M ′\C is
3-connected.
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