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Abstract. In 1981, Seymour proved a conjecture of Welsh that, in a con-

nected matroid M , the sum of the maximum number of disjoint circuits and
the minimum number of circuits needed to cover M is at most r∗(M) + 1.

This paper considers the set Ce(M) of circuits through a fixed element e such

that M/e is connected. Let νe(M) be the maximum size of a subset of Ce(M)
in which any two distinct members meet only in {e}, and let θe(M) be the

minimum size of a subset of Ce(M) that covers M . The main result proves

that νe(M) + θe(M) ≤ r∗(M) + 2 and that if M has no Fano-minor using e,
then νe(M) + θe(M) ≤ r∗(M) + 1. Seymour’s result follows without difficulty

from this theorem and there are also some interesting applications to graphs.

1. Introduction

For an element e of a matroid M , we denote by Ce(M) the set of circuits of
M that contain e. For a subset X of E(M), a set D of circuits covers X if every
element of X is in some member of D. Now suppose that M is connected but is
not a coloop. Let νe(M) and θe(M) be, respectively, the maximum size of a subset
of Ce(M) any two members of which meet in {e} and the minimum size of a subset
of Ce(M) that covers E(M). The purpose of this paper is to prove the following
result.

1.1. Theorem. Let M be a connected matroid M other than a coloop and e be an
element of M such that M/e is connected. Then

νe(M) + θe(M) ≤ r∗(M) + 2.

Moreover, when M has no F7-minor using e,

νe(M) + θe(M) ≤ r∗(M) + 1.

The bounds in this theorem are sharp with, for example, the first being attained
by all odd-rank binary spikes having e as the tip, and the second by all free spikes
where again e is the tip.

For a matroid M , let ν(M) be the maximum number of pairwise disjoint circuits
of M , and θ(M) be the minimum number of circuits needed to cover E(M). A
consequence of our main result is the following theorem of Seymour [11], which
verified a conjecture of Welsh and generalized a result of Oxley [8].

1.2. Corollary. If M is a connected matroid other than a coloop, then

ν(M) + θ(M) ≤ r∗(M) + 1.
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The next two corollaries are obtained by applying the main result to the cycle
and bond matroids of a graph. For distinct vertices u and v of a 2-connected loopless
graph G, we denote by νuv(G) and θuv(G) the maximum number of edge-disjoint
uv-paths in G and the minimum number of uv-paths needed to cover E(G). We
shall call a minimal set of edges whose removal from G puts u and v in separate
components a uv-cut. Let ν∗

uv(G) and θ∗uv(G) denote the maximum number of
edge-disjoint uv-cuts in G and the minimum number of uv-cuts needed to cover
E(G).

1.3. Corollary. Let u and v be distinct non-adjacent vertices of a 2-connected
loopless graph G such that G− {u, v} is connected. Then

νuv(G) + θuv(G) ≤ |E(G)| − |V (G)|+ 3.

1.4. Corollary. Let u and v be distinct non-adjacent vertices of a 2-connected
loopless graph G. Then

ν∗
uv(G) + θ∗uv(G) ≤ |V (G)|.

If e is a non-coloop element of a matroid M , let g∗e(M) and c∗e(M) be the min-
imum and maximum sizes of members of Ce(M). Evidently, c∗e(M) ≤ r∗(M) + 1.
The authors [5, Theorem 2.4] proved that θe(M) ≤ c∗e(M)− 1. Thus

θe(M) ≤ c∗e(M)− 1 ≤ r∗(M). (1)

There is also a relation between νe(M) and g∗e(M). Let C1, C2, . . . , Cm be a
maximum-sized set of circuits of M such that any two meet in {e}. If D∗ is a
cocircuit of M containing e, then, by orthogonality, D∗ meets each Ci in an element
other than e. Thus m ≤ |D∗ − e|. Hence

νe(M) ≤ g∗e(M)− 1. (2)

By the extension of Menger’s Theorem to regular matroids [6] (see also [10, Theorem
11.3.14]), equality holds in this bound when M is regular. Thus, we have the
following corollary of our main theorem.

1.5. Corollary. Let M be a connected regular matroid M other than a coloop and
e be an element of M such that M/e is connected. Then

g∗e(M) + θe(M) ≤ r∗(M) + 2.

The last corollary need not hold when M is non-regular. For example,

θe(Ur,n) =
⌈

n− 1
r

⌉
and g∗e(Ur,n) = n− r + 1 = r∗(Ur,n) + 1.

The matroid terminology used here will follow Oxley [10] except that the cosim-
plification of a matroid N will be denoted by co(N). In the next section, some
preliminaries needed for the main proof are given. Two special classes of ma-
troids that appear in this proof, Sylvester matroids and spikes, will be discussed
in Sections 3 and 4. The proof of the main theorem appears in Section 5. Some
consequences of this theorem will be given in Section 6 where the corollaries noted
above will also be proved.
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2. Preliminaries

In this section, we prove some lemmas that will be used in the proof of The-
orem 1.1. Several of these concern extremal connectivity results. In addition,
we recall Cunningham and Edmonds’ tree decomposition of a connected matroid,
which will also play an important role in the main proof.

2.1. Lemma. Let {X, Y } be a 2-separation of a connected cosimple matroid M and
let C be a circuit of M that meets both X and Y . Then C has a 2-subset A such
that M\A is connected.

Proof. Suppose that the lemma fails. For each Z in {X, Y }, let MZ be a matroid
such that E(MZ) = Z ∪ b and M = MX ⊕2 MY . If each MZ has an element eZ in
C ∩Z such that MZ\eZ is connected, then M\{eX , eY }, which equals (MX\eY )⊕2

(MY \eY ), is connected; a contradiction. Thus, for some Z, the matroid MZ\eZ is
disconnected for all eZ in C ∩Z. Thus, as MZ is connected, by a result of Oxley [9]
(see also [10, Lemma 10.2.1]), C ∩Z contains a 2-cocircuit of MZ . This 2-cocircuit
is also a 2-cocircuit of M , contradicting the fact that M is cosimple. �

The next lemma extends the following result of Akkari [1].

2.2. Theorem. Let C be a circuit of a 3-connected matroid M satisfying |E(M)| ≥
4. Suppose that, when M is isomorphic to a wheel of rank at least four, C is not
its rim. If M\A is disconnected for every 2-subset A of C, then every 2-subset of
C is contained in a triad of M .

2.3. Lemma. Let C be a circuit of a 3-connected matroid M satisfying |E(M)| ≥ 4.
Suppose that, when M is isomorphic to a wheel of rank at least four, C is not its
rim. If M\A is disconnected for every subset A of C such that r∗(A) = 2, then
every 2-subset of C is contained in a triad of M whose third element is not in C.

Proof. Suppose that the lemma is false and choose a counterexample M such that
|E(M)| is minimal. If |E(M)| = 4, then M ∼= U2,4. But the hypothesis fails for
this matroid. Thus |E(M)| ≥ 5. Since M is a counterexample, there is a 2-subset
Y of C that is contained in no triad whose third element is in E(M) − C. By
Theorem 2.2, Y is contained in a triad T ∗ of M . By assumption, we must have
that T ∗ ⊆ C. Next we prove the following:

2.3.1. For every e in T ∗, the matroid M/e is not 3-connected.

Suppose that M/e is 3-connected for some e in T ∗. Let A be a 2-subset of C− e
such that r∗(A) = 2. If M/e\A is connected, then e is a coloop of M\A and so
A spans e in M∗. Hence r∗(A ∪ e) = 2 and M\(A ∪ e), which equals M/e\A, is
connected. This contradiction implies that M/e\A is disconnected. By the choice
of M , the result holds for M/e; that is, for each 2-subset X of C − e, there is a
triad T ∗

X of M/e such that X ⊆ T ∗
X and T ∗

X 6⊆ C − e. Evidently T ∗
X is also a triad

of M . Now M∗|(T ∗ ∪ T ∗
T∗−e) ∼= U2,4 and T ∗ ∪ T ∗

T∗−e contains Y and the element f
of T ∗

T∗−e not in C. Thus Y ∪ f is a triad of M ; a contradiction. We conclude that
(2.3.1) holds.

By the dual of Tutte’s Triangle Lemma [13] (see also [10, Corollary 8.4.9]), the
elements x1, x2, and x3 of T ∗ can be ordered so that E(M)−T ∗ contains elements
x0 and x4 such that {x0, x1, x2} and {x2, x3, x4} are triangles of M . We arrive
at a contradiction because, as is easily checked, M\T ∗ is connected, T ∗ ⊆ C, and
r∗(T ∗) = 2. �
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An important tool in the proof of the main theorem, which will also be used
in the next result, is the following idea of decomposing a connected matroid M .
Assume |E(M)| ≥ 3. A tree decomposition of M is a tree T with edges labelled
e1, e2, . . . , ek−1 and vertices labelled by matroids M1,M2, . . . ,Mk such that

(i) each Mi is 3-connected having at least four elements or is a circuit or
cocircuit with at least three elements;

(ii) E(M1) ∪ E(M2) ∪ · · · ∪ E(Mk) = E(M) ∪ {e1, e2, . . . , ek−1};
(iii) if the edge ei joins the vertices Mj1 and Mj2 , then E(Mj1)∩E(Mj2) = {ei};
(iv) if no edge joins the vertices Mj1 and Mj2 , then E(Mj1)∩E(Mji

) is empty;
(v) M is the matroid that labels the single vertex of the tree T/e1, e2, . . . , ek−1

at the conclusion of the following process: contract the edges e1, e2, . . . , ek−1

of T one by one in order; when ei is contracted, its ends are identified and
the vertex formed by this identification is labelled by the 2-sum of the
matroids that previously labelled the ends of ei.

Cunningham and Edmonds [3] proved the following result.

2.4. Theorem. Every connected matroid M has a tree decomposition T (M) in
which no two adjacent vertices are both labelled by circuits or are both labelled by
cocircuits. Furthermore, the tree T (M) is unique to within relabelling of its edges.

We shall call T (M) the canonical tree decomposition of M and let Λu
2 (M) be the

set of matroids that label vertices of T (M).
Next we extend Lemma 2.3 from 3-connected matroids to cosimple connected

matroids.

2.5. Lemma. Let C be a circuit of a cosimple connected matroid M such that
|C| ≥ 3. If M\A is disconnected for every subset A of C such that r∗(A) = 2, then
there is a 3-connected matroid H in Λu

2 (M) such that H has at least four elements,
C is a circuit of H, and

(i) H is isomorphic to a wheel having C as its rim; or
(ii) every 2-subset of C is contained in a triad of H not contained in C.

Moreover, there is a subset W of E(H) − C and a set F of connected matroids
{Nb : b ∈ W} such that M is the 2-sum of H with all the matroids in F .

Proof. First, we observe the following immediate consequence of Lemma 2.1.

2.5.1. For every 2-separation {X, Y } of M , either C ⊆ X or C ⊆ Y .

From (2.5.1), there is a matroid H in Λu
2 (M) such that C is a circuit of H. If

H is a circuit, then E(H) = C and so E(M) = C, a contradiction to the fact that
M is cosimple. If H is a cocircuit, then |C| = 2, a contradiction to the hypothesis.
Thus H is a 3-connected matroid having at least four elements. Now let X be a
subset of C such that rH∗(X) = 2. Then, as H∗ is a vertex of T (M∗), it follows
that H∗|X = M∗|X so rM∗(X) = 2. Thus M\X is disconnected and so H\X is
disconnected.

We may now apply Lemma 2.3 to H. Thus, either H is isomorphic to a wheel
having C as its rim, or every 2-subset of C is in a triad of H that is not contained in
C. Each element b of E(H)−E(M) labels an edge of T (M) and it follows from the
structure of T (M) that there is a connected matroid Nb such that E(Nb)∩E(H) =
{b}, and M is the 2-sum of H and all these matroids Nb. �
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If we weaken the hypothesis of the last lemma to require only that M\A is
disconnected for every 2-subset A of C, then the lemma remains true if we omit
the requirement that the triads of H in (ii) meet E(H)− C.

The following consequence of Lemma 2.3 will also be used in the main proof.

2.6. Lemma. Let C be a circuit of a 3-connected matroid M such that |E(M)| ≥ 4.
Suppose that M\A is disconnected for every subset A of C such that r∗(A) = 2.
Let Z = {e ∈ E(M) − C : A ∪ e is a triad of M for some 2-subset A of C}. Then
either

(i) |Z| = 1 and M ∼= U|C|−1,|C|+1; or
(ii) M has no circuit D such that |D ∩ Z| = 1.

Proof. By Lemma 2.3, either M is a wheel of rank at least four having C as its rim,
or every two elements of C are in some triad of M with an element not in C. In the
former case, Z is the set of spokes of the wheel and, by orthogonality, (ii) holds.
Thus we may assume that every two elements a and b of C are in a triad T ∗

a,b of
M that contains an element of Z. Then M\Z has C as a circuit and a series class
and hence as a component. Thus C is a circuit of M\Z/[E(M)− (Z ∪C)], so C is
a circuit of M/[E(M) − (Z ∪ C)]. Let N = M/[E(M) − (Z ∪ C)]. Every triad of
M contained in Z ∪ C is a triad of N , so N is connected.

Suppose that (ii) does not hold and let D be a circuit of M such that |D∩Z| = 1.
Let e be the unique element of D∩Z. Now D∩E(N) is a union of circuits of N and
so it contains a circuit D′ such that D′−C = {e}. Since N is connected, D′∩C 6= ∅.
Now choose a in D′ − e. Then, for all b in C −D′, it follows by orthogonality that
e ∈ T ∗

a,b. Hence {e, a} spans C − D′ in N∗. Thus {e, a} ∪ (C − D′) is contained
in a line L∗ of N∗. Evidently, for each b in C −D′, the set {e, b} spans L∗ in N∗

so L∗ ⊇ D′ − e. Thus L∗ ⊇ C ∪ e, so C ∪ e has rank 2 in N∗ and hence in M∗.
Therefore

rM (C ∪ e) + rM∗(C ∪ e)− |C ∪ e| ≤ |C|+ 2− (|C|+ 1) = 1.

But M is 3-connected, so |E(M) − (C ∪ e)| ≤ 1. As rM∗(C ∪ e) = 2, it follows
that r(M∗) = 2 so every 3-subset of E(M) is in a triad of M . We conclude, by
orthogonality, that |Z| = 1 and M ∼= U|C|−1,|C|+1. �

2.7. Lemma. Suppose that C1 and C2 are circuits of a cosimple connected matroid
M such that C1 ∩ C2 = {e}, E(M)− (C1 ∪ C2) = {f}, and min{|C1|, |C2|} ≥ 3. If
M\f/e has two components whose ground sets are C1 − e and C2 − e, then there
are circuits D1 and D2 of M such that {e, f} ⊆ D1 ∪D2 and E(M) = D1 ∪D2.

Proof. The matroid M∗/f\e has rank 2. Thus the simple matroid M∗\e is the
parallel connection of two lines with ground sets (C1 − e) ∪ f and (C2 − e) ∪ f .
For each i in {1, 2}, let ai and bi be distinct elements of Ci − e. Consider the four
lines of M∗ spanned by {a1, a2}, {a2, b1}, {b1, b2}, and {b2, a1}. The fact that M∗ is
simple implies that e does not lie on two lines that are consecutive in the specified
cyclic order. It follows that there are two such lines that are non-consecutive in this
cyclic order such that e avoids both. The complements of these lines are circuits
D1 and D2 of M satisfying the required conditions. �

3. Sylvester matroids

Murty [7] has called a matroid a Sylvester matroid if every pair of distinct ele-
ments is in a triangle. Such matroids will arise naturally in the proof of our main
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theorem and we shall need some covering properties of them. The following char-
acterization of Sylvester matroids extends a similar characterization of Akkari and
Oxley [2].

3.1. Lemma. Let N be a matroid with at least four elements. Then N is the dual
of a Sylvester matroid if and only if N is cosimple and connected, and N\A is
disconnected for every 2-subset A of E(N).

Proof. If N is the dual of a Sylvester matroid with at least four elements, then
it is clear that N is cosimple and connected and that N\A is disconnected for
every 2-subset A of E(N). Now assume that the latter conditions on N hold. As
|E(N)| ≥ 4, it follows, by a result of Akkari and Oxley [2] (see also [10, Proposition
10.2.5]), that it suffices to show that N is 3-connected. But this follows immediately
from Lemma 2.1. �

A set D of circuits of a matroid M double covers a subset X of E(M) if every
element of X is in at least two members of D.

3.2. Lemma. Suppose that N∗ is a 3-connected Sylvester matroid with at least four
elements or that N ∼= U1,m for some m ≥ 3. Then, for all circuits C1 of N and all
elements g of C1, there are circuits C2, C3, . . . , Cn+1 of N such that

(a) C1, C2, . . . , Cn+1 are distinct;
(b) {C1, C2, . . . , Cn+1} double covers E(N);
(c) Ci − (Ci−1 ∪ Ci−2 ∪ · · · ∪ C1) 6= ∅ for all i in {2, 3, . . . , n};
(d) g 6∈ C2 ∪ C3 ∪ · · · ∪ Cn; and
(e) n = r∗(N).

Proof. Suppose first that N ∼= U1,m. Let C1 = {a1, a2} and g = a1. Let E(N) =
{a1, a2, . . . , am}, let Ci = {ai, ai+1} for all i in {2, 3, . . . ,m − 1}, and let Cm =
{a1, am}. Then m = r∗(N) + 1, so the lemma holds with n = m− 1.

Next assume that N∗ is a 3-connected Sylvester matroid having at least four ele-
ments. Then C1 is a cocircuit of N∗ containing g. Let g = b1 and let {b2, b3, . . . , bn}
be a basis for the hyperplane E(N∗) − C1 of N∗. Then {b1, b2, . . . , bn} is a basis
for N∗. For each i in {2, 3, . . . , n}, let Ci be the fundamental cocircuit of bi in N∗

with respect to E(N∗)−{b1, b2, . . . , bn}. Note that C1 is the fundamental cocircuit
of b1 with respect to E(N∗) − {b1, b2, . . . , bn}. As N∗ is a Sylvester matroid, for
each i in {2, 3, . . . , n}, there is an element b′i on the line of N∗ spanned by b1 and bi

that is different from both b1 and bi. Then, in N∗/b1, each b′i is parallel to bi. Thus
{b′2, b′3, . . . , b′n} is a basis of N∗/b1. Hence {b′2, b′3, . . . , b′n} spans a hyperplane of N∗

that avoids {b1, b2, . . . , bn}. Let Cn+1 be the complement of this hyperplane. Then
n = r∗(N) and b1 6∈ C2∪C3∪· · ·∪Cn. Moreover, bi ∈ Ci−(Ci−1∪Ci−2∪· · ·∪C1) for
all i in {2, 3, . . . , n}. Since C1, C2, . . . , Cn is the set of fundamental cocircuits of N∗

with respect to E(N∗) − {b1, b2, . . . , bn}, this set of fundamental cocircuits covers
E(N∗) because N∗ has no loops. If there is an element x of E(N∗)−{b1, b2, . . . , bn}
that is in exactly one of C1, C2, . . . , Cn, say Ci, then, by orthogonality, the funda-
mental circuit of N∗ with respect to {b1, b2, . . . , bn} is {x, bi}. This contradicts
the fact that N∗ is 3-connected having at least four elements. Therefore every ele-
ment of E(N∗)− {b1, b2, . . . , bn} is in at least two of C1, C2, . . . , Cn. Finally, since
Cn+1 ⊇ {b1, b2, . . . , bn}, we deduce that every element of N∗ is in at least two of
C1, C2, . . . , Cn+1. �
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4. Spikes

In this section, we prove some results for spikes that will be used in the proof
of the main theorem. For r ≥ 3, a rank-r matroid M is a spike with tip p and
legs L1, L2, . . . , Lr if {L1, L2, . . . , Lr} is a subset of Cp covering E(M); each Li is a
triangle; and, for all k in {1, 2, . . . , r − 1}, the union of any k of L1, L2, . . . , Lr has
rank k + 1. Thus, for example, both the Fano and non-Fano matroids are rank-3
spikes although the tips of these spikes are not unique. It follows from (ii) below
that spikes of rank at least four have unique tips. In general, if M is a rank-r spike
with tip p, then

(i) (Li ∪ Lj)− {p} is a circuit and a cocircuit of M for all distinct i and j;
(ii) apart from L1, L2, . . . , Lr and those sets listed in (i), every non-spanning

circuit of M avoids p, is a circuit-hyperplane, and contains a unique element
from each of L1 − p, L2 − p, . . . , Lr − p;

(iii) M/p can be obtained from an r-element circuit by replacing each element
by two elements in parallel; and

(iv) if {x, y} = Li − p for some i, then each of M\p/x and (M\p\x)∗ is a
rank-(r − 1) spike with tip y.

Sometimes spikes are considered with the tips removed. The rank-r free spike has
no non-spanning circuits except the legs and those sets listed in (i). There is a
unique rank-r binary spike. It is represented by the matrix [Ir|Jr − Ir|1] where Jr

is the r×r matrix of all ones and 1 is the vector of all ones. This vector corresponds
to the tip of the spike.

Let C and D be circuits of a matroid N where D = {e, a, b} and C ∩D = {e, a}.
We say that C is indifferent with respect to D−e in N if (C−a)∪ b is also a circuit
of N .

4.1. Lemma. For r ≥ 3, let M be a spike with legs L1, L2, . . . , Lr where Li =
{e, ai, bi} for all i. Then M has a circuit D of the form {e, d1, d2, . . . , dr} where
di ∈ {ai, bi} for all i. Moreover, if M has a spike minor on L1 ∪ L2 ∪ L3 that is
not isomorphic to F7, then D can be chosen so that it is indifferent with respect to
L1 − e, L2 − e, or L3 − e in M .

Proof. Let M1 be a spike minor of M on L1 ∪ L2 ∪ L3. Then M1 has a 4-circuit
C of the form {e, d1, d2, d3} where di ∈ {ai, bi} for all i in {1, 2, 3}. By relabelling
we may assume that C = {e, a1, a2, a3}. Since M1 is a spike minor of M , it follows
that M1 = M\X/Y where X ∪Y = (L4 ∪L5 ∪ · · · ∪Lr)− e and |Y ∩Li| = 1 for all
i ≥ 4. Since (Li ∪ Lj) − e is a cocircuit of M for all distinct i and j, it follows by
orthogonality that C ∪Y is a circuit D of M . We may assume that D is indifferent
with respect to none of C1 − e, C2 − e, and C3 − e. Then M1 has {ai, aj , bk} as a
circuit for all {i, j, k} = {1, 2, 3}. Now suppose that M1 6∼= F7. Then {b1, b2, b3} is
not a circuit of M1. Thus {e, b1, b2, b3} is a circuit of M1 that is indifferent with
respect to L1 − e. Then, by orthogonality again, {e, b1, b2, b3} ∪ Y is a circuit of M
and this circuit is indifferent with respect to L1 − e. The lemma follows. �

4.2. Lemma. Let M be a spike of rank at least three having legs L1, L2, . . . , Lr and
tip e. Then M has circuits D1 and D2 each containing e such that L2∪L3∪· · ·∪Lr ⊆
D1 ∪D2. Furthermore, unless M is a binary spike of odd rank, D1 and D2 can be
chosen so that, in addition, L1 ⊆ D1 ∪D2.
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Proof. Let Li = {e, ai, bi} for all i. Suppose first that M is a binary spike and view
M as a restriction of the r-dimensional vector space over GF (2) letting b1, b2, . . . , br

be the natural basis vectors and e be the vector of all ones. If r(M) is even, then
{e, b1, b2, . . . , br} and {e, a1, a2, . . . , ar} are circuits of M that cover E(M). If r(M)
is odd, then {e, b1, b2, . . . , br} and {e, b1, a2, . . . , ar} are circuits of M that cover
E(M)− a1. Hence the lemma holds if M is binary.

We may now assume that M is non-binary. Then, by a result of Seymour [12], M
has a U2,4 minor using {e, a1} and hence has such a minor M1 using L1. Without
loss of generality, we may assume that E(M1) − L1 = {a2}. Let M1 = M\X/Y .
Then we may assume that |Y | = r − 2. For all i, both M\{ai, bi} and M/{ai, bi}
are binary. Thus, for all i ≥ 3, one of ai and bi is in X and the other is in
Y . By relabelling if necessary, we may assume that each such ai is in Y . Since
|Y | = r − 2, it follows that b2 ∈ X. Thus Y ∪ a2 is a series class of M/e\X and
hence of M\X. Therefore both Y ∪ {e, a1, a2} and Y ∪ {e, b1, a2} are circuits of
M , so {e, a1, a2, . . . , ar} is a circuit D1 of M that is indifferent with respect to
L1 − e. Since {b1, b2, . . . , br} is a circuit of M/e, it is straightforward to show that
{e, b1, b2, . . . , br} or {e, a1, b2, b3, . . . , br} is a circuit of M and we take this circuit
to be D2. Clearly, L2 ∪ L3 ∪ · · · ∪ Lr ⊆ D1 ∪D2. Moreover, since D1 is indifferent
with respect to L1 − e, we can replace D1 by whichever of D1 and (D1 − a1) ∪ b1

contains D2 − {a1, b1} to obtain that L1 ⊆ D1 ∪D2. �

5. The proof of the main result

In this section, we prove the main result of the paper.

Proof of Theorem 1.1. Suppose the theorem is false and choose a counterexample
M that minimizes |E(M)|. First we note that

5.0.1. M is not a spike with tip e.

Assume the contrary. Clearly νe(M) = r(M) = r∗(M) − 1. Moreover, by
Lemma 4.2, provided M is not a binary spike of odd rank, θe(M) = 2. In the
exceptional case, M has an F7-minor using e and θe(M) ≤ 3. Thus, in both cases,
M satisfies the theorem. This contradiction establishes (5.0.1).

For a connected minor M ′ of M using e such that M ′/e is connected and M ′ 6∼=
U1,1, define s(M ′) = 1 if M ′ has no F7-minor using e, and s(M ′) = 2 otherwise.
Evidently, if s(M ′) = 2, then s(M) = 2, so

s(M ′) ≤ s(M). (3)

As M is a counterexample to the theorem,

νe(M) + θe(M) ≥ r∗(M) + s(M) + 1.

Observe that M is not a circuit and so r∗(M) > 1. Let C1, C2, . . . , Cm be a
maximum-sized subset of Ce(M) such that the intersection of any two of them
equals {e}. By definition, m = νe(M). First, we prove that

5.1. m ≥ 2.

If m = 1, then

1 + θe(M) = νe(M) + θe(M) ≥ r∗(M) + s(M) + 1.

Thus θe(M) ≥ r∗(M) + s(M) ≥ r∗(M) + 1, which contradicts (1). Hence (5.1)
holds.
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Next we show the following:

5.2. M has no cocircuit D∗ containing e that is contained in some Ci.

Suppose that such a cocircuit D∗ exists. By orthogonality, Cj ∩ D∗ % {e} for
all j in {1, 2, . . . ,m}. But D∗ ⊆ Ci and Cj ∩ Ci = {e} when j 6= i. Hence m = 1;
a contradiction to (5.1). Thus (5.2) holds.

Observe that

5.3. M is cosimple.

If not, then M has a non-trivial series class S. By (5.2), e 6∈ S. Choose f in
S. Clearly M/f contradicts the choice of M provided that M/f/e is connected.
Thus assume that M/f/e is disconnected. Then, as M/e is connected, M/e\f is
connected. Since M\f is disconnected, it follows that {e, f} is a cocircuit of M ; a
contradiction. Hence (5.3) holds.

Next, we prove the following:

5.4. For every f in E(M)−(C1∪C2∪· · ·∪Cm), the matroid M/e\f is disconnected.

Suppose that, for some such element f , the matroid M/e\f is connected. Then
M\f is connected because {e, f} is not a cocircuit of M since M is cosimple. By
the choice of M ,

νe(M\f) + θe(M\f) ≤ r∗(M\f) + s(M\f).

Evidently, r∗(M\f) = r∗(M) − 1 and, since f 6∈ C1 ∪ C2 ∪ · · · ∪ Cm, we have
νe(M\f) = νe(M). Moreover, θe(M\f) ≥ θe(M) − 1 because a set of circuits in
Ce(M\f) that covers E(M\f) can be completed to a set of circuits in Ce(M) that
covers E(M) by adding a circuit that contains {e, f}. Since, by (3), s(M\f) ≤
s(M), it follows that νe(M) + θe(M) ≤ r∗(M) + s(M). This contradiction to the
fact that M is a counterexample to the theorem completes the proof of (5.4).

We show next that:

5.5. Lemma. If i in {1, 2, . . . ,m}, then M/e\A is disconnected for every subset A
of Ci − e having at least two elements.

Proof. Suppose that M/e\A is connected for some subset A of Ci − e such that
|A| ≥ 2. If M\A is also connected, then, by the choice of M , the theorem holds for
M\A and so

νe(M\A) + θe(M\A) ≤ r∗(M\A) + s(M\A).

But r∗(M\A) ≤ r∗(M)− 2 because M is cosimple; νe(M\A) ≥ νe(M)− 1 because
C1, . . . , Ci−1, Ci+1, . . . , Cm are circuits of M\A; and θe(M\A) ≥ θe(M)−1 because
a set of circuits in Ce(M\A) that covers E(M\A) can be completed to a set of
circuits in Ce(M) that covers E(M) by adding Ci. Hence, as s(M\A) ≤ s(M),

νe(M) + θe(M) ≤ [νe(M\A) + 1] + [θe(M\A) + 1]
≤ r∗(M\A) + s(M\A) + 2 ≤ r∗(M) + s(M).

This contradiction implies that M\A is disconnected. As M/e\A is connected, it
follows e is a coloop of M\A and so A ∪ e contains a cocircuit D∗ of M such that
e ∈ D∗. Since this contradicts (5.2), we deduce that the lemma holds. �

5.6. Lemma. E(M) = C1 ∪ C2 ∪ · · · ∪ Cm.
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Proof. Suppose that the lemma fails and choose f in E(M)− (C1 ∪C2 ∪ · · · ∪Cm).
By (5.4), M/e\f is disconnected. As M/e is connected by hypothesis, we deduce
that M/e/f is connected. Thus M/f is connected and so the theorem holds for
this matroid. Hence

νe(M/f) + θe(M/f) ≤ r∗(M/f) + s(M/f).

Now r∗(M/f) = r∗(M) and νe(M/f) ≥ νe(M) because each of C1, C2, . . . , Cm

contains a circuit of M/f containing e. As s(M/f) ≤ s(M), it follows that

νe(M) + θe(M/f) ≤ r∗(M) + s(M).

Since the theorem fails for M , we deduce that θe(M) > θe(M/f).
Let D1, D2, . . . , Dn be a minimum-sized subset of Ce(M/f) that covers E(M/f).

For each i, either Di or Di ∪ f is a circuit of M containing e. Since θe(M) >
θe(M/f), it follows that each Di is a circuit of M . Thus D1, D2, . . . , Dn are in
Ce(M\f) and cover E(M\f). Hence D1 − e,D2 − e, . . . , Dn − e are circuits of
M\f/e that cover E(M\f/e). As M\f/e is disconnected, we may assume, by
relabelling if necessary, that D1 − e and D2 − e are in different components of
M\f/e. Then (M/e)|[(D1 ∪D2)− e] = (M/e)|(D1 − e)⊕ (M/e)|(D2 − e). Let C ′

be a circuit of M/e that meets both D1 − e and D2 − e such that C ′ − (D1 ∪D2)
is minimal. As M/e\f has D1 − e and D2 − e in different components, f ∈ C ′. We
show next that

5.6.1. C ′ − (D1 ∪D2) is a series class of (M/e)|[(D1 ∪D2 ∪ C ′)− e].

If not, then (M/e)|[(D1 ∪D2 ∪C ′)− e] has a circuit C ′′ that contains some but
not all of C ′ − (D1 ∪ D2) . By the choice of C ′, we may assume that C ′′ meets
D2 but avoids D1. Take d1 in D1 ∩ C ′ and c ∈ (C ′′ ∩ C ′) − (D1 ∪ D2). Then
(M/e)|[(D1 ∪D2 ∪ C ′) − e] has a circuit C ′′′ such that d1 ∈ C ′′′ ⊆ (C ′ ∪ C ′′) − c.
Then C ′′′ must contain an element of C ′′−C ′ and so C ′′′ meets D2 and contradicts
the choice of C ′. Hence (5.6.1) holds.

Now M |(D1 ∪ D2 ∪ C ′) is connected and has C ′ − (D1 ∪ D2) as a series class.
Consider the cosimplification of this matroid labelled so that f is an element of it.
If, in co(M |(D1∪D2∪C ′)), only two elements of D1 remain, then D1−e is a series
class of M |(D1 ∪D2 ∪C ′), and hence is a series class of (M/e)|[(D1 ∪D2 ∪C ′)− e].
But the last matroid is connected and has D1 − e as a circuit; a contradiction.
Thus, in co(M |(D1∪D2∪C ′)), at least three elements of D1 remain and, similarly,
at least three elements of D2 remain. Let D′

i = Di ∩ E(co(M |(D1 ∪ D2 ∪ C ′)))
for each i in {1, 2}. Then, by applying Lemma 2.7 to the circuits D′

1 and D′
2 of

co(M |(D1∪D2∪C ′)), we get that the last matroid has circuits D′′
1 and D′′

2 that both
contain {e, f} and that cover E(co(M |(D1∪D2∪C ′))). Hence M |(D1∪D2∪C ′) has
circuits D′′′

1 and D′′′
2 that both contain {e, f} and that cover D1 ∪D2 ∪C ′. Hence

D′′′
1 , D′′′

2 , D3, D4, . . . , Dn covers E(M), so θe(M) ≤ θe(M/f); a contradiction. �

Without loss of generality, we may assume that there is a non-negative integer l
such that |Ci| ≥ 4 if 1 ≤ i ≤ l, and |Ci| = 3 if l + 1 ≤ i ≤ m.

By hypothesis, M/e is a connected matroid. For all i in {1, 2, . . . , l}, the set Ci−e
is a circuit of M/e and |Ci − e| ≥ 3. Now M/e is cosimple and, by Lemma 5.5,
M/e\A is disconnected for every subset A of Ci − e such that |A| ≥ 2. Thus,
by Lemma 2.5, there is a 3-connected matroid Hi in Λu

2 (M/e) with at least four
elements such that Ci − e is a circuit of Hi and
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(i) Hi is isomorphic to a wheel having Ci − e as its rim; or
(ii) every 2-subset of Ci−e is contained in a triad of Hi not contained in Ci−e.

Moreover, there is a subset Wi of E(Hi) − (Ci − e) and a set Fi of connected
matroids {Nb : b ∈ Wi} such that M/e is the 2-sum of Hi with all the matroids in
Fi. We also define

Zi = {f ∈ E(Hi)− Ci : A ∪ f is a triad of Hi for some 2-subset A of Ci − e}.

5.7. Lemma. If i ∈ {1, 2, . . . , l}, then Zi ⊆ Wi.

Proof. Suppose that f ∈ Zi −Wi. Let T ∗ be a triad of M/e and so of M such that
f ∈ T ∗ and T ∗−f ⊆ Ci−e. By Lemma 5.6, f ∈ Cj for some j in {1, 2, . . . ,m}. By
orthogonality, T ∗ ∩ Cj 6= {f}, say g ∈ (T ∗ ∩ Cj)− f . As T ∗ ⊆ E(M/e), it follows
that g 6= e and so g ∈ (Ci − e) ∩ (Cj − e). Hence i = j; a contradiction because
f 6∈ Ci. Thus Zi ⊆ Wi. �

5.8. Lemma. If i ∈ {1, 2, . . . , l} and z ∈ Zi, then r∗(Hi.[(Ci − e) ∪ z]) > 2.

Proof. Suppose that r∗(Hi.[(Ci − e) ∪ z]) ≤ 2. As Hi is cosimple and |Ci − e| ≥ 3,
it follows that r∗(Hi.[(Ci− e)∪ z]) = 2 and that Hi.[(Ci− e)∪ z] is cosimple. Thus
every 3-subset of (Ci − e) ∪ z is a triad of Hi. Since |(Ci − e) ∪ z| ≥ 4, it follows
that if f ∈ Ci − e, then Hi/f is connected. Therefore, from the remarks preceding
Lemma 5.7, we deduce that M/e/f is connected. If M/f is disconnected, then
{e, f} is a circuit of M contradicting the fact that M/e is connected. Thus M/f is
connected. By the choice of M , we have that

νe(M/f) + θe(M/f) ≤ r∗(M/f) + s(M/f) ≤ r∗(M/f) + s(M).

As each of C1 − f, C2 − f, . . . , Cm − f contains a circuit of M/f having e as one
of its elements, it follows that νe(M) ≤ νe(M/f). Since r∗(M/f) = r∗(M) and
M is a counterexample to the theorem, we deduce that θe(M/f) < θe(M). Let
D1, D2, . . . , Dn be a minimum-sized subset of Ce(M/f) that covers E(M/f). For
each i in {1, 2, . . . , n}, either Di or Di∪f is a circuit of M . As θe(M/f) < θe(M), it
follows that each Di is a circuit of M . In particular, none of D1, D2, . . . , Dn contains
Ci − f . Now, either |Ci − {e, f}| = 2, or every 3-subset of Ci − {e, f} is a triad of
Hi and hence is a triad of M and so of M/f . As D1 ∪D2 ∪ · · · ∪Dn ⊇ Ci −{e, f},
we may assume that D1 ∩ (Ci − {e, f}) 6= ∅. Since D1 6⊇ Ci − f , it follows by
orthogonality in M or from the size of Ci − {e, f} that there is a unique element
x2 of Ci − {e, f} that is not in D1. Without loss of generality, we may assume
that x2 ∈ D2. Again, there is a unique element x1 of Ci − {e, f} that is not in D2.
Now D1 ∩ (Ci − e) and D2 ∩ (Ci − e) are both unions of circuits of M.(Ci − e) and
both sets avoid f . Furthermore, x1 is in the first set but not the second, while x2

is in the second but not the first. Thus {f, x1, x2} is coindependent in M.(Ci − e).
Hence 3 ≤ r∗(M.(Ci − e)) = r∗M (Ci − e) = 2; a contradiction. �

5.9. Lemma. If i ∈ {1, 2, . . . , l} and C is a circuit of Hi, then |C ∩ Zi| 6= 1 and
|Zi| ≥ 2.

Proof. Suppose that |C ∩ Zi| = 1 or |Zi| = 1. In the latter case, the connected
matroid Hi has a circuit D such that |D ∩ Zi| = 1. Thus, in both cases, by
Lemma 2.6, Hi

∼= U|Ci|−2,|Ci|. Therefore, r∗(Hi) ≤ 2; a contradiction to Lemma 5.8.
�
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For each i in {l+1, l+2, . . . ,m}, let Ci = {e, ai, bi}. Now C1−e, C2−e, . . . , Cm−e
is a set of disjoint circuits of M/e that covers E(M/e). By (5.3), M is cosimple so
M/e is cosimple. Thus every non-trivial series class of M/e\{al+1, al+2, . . . , am}
contains at most one element not in {bl+1, bl+2, . . . , bm}. Hence, by orthogonality
with each of C1 − e, C2 − e, . . . , Cl − e, every such series class is contained in
{bl+1, bl+2, . . . , bm}. Let N = co(M/e\{al+1, al+2, . . . , am}). Then, clearly, N is
connected and has all of C1 − e, C2 − e, . . . , Cl − e among its circuits. For the
remainder of the proof of the theorem, we take

X = (C1 ∪ C2 ∪ · · · ∪ Cl)− e.

Thus
E(N)−X ⊆ {bl+1, bl+2, . . . , bm}.

Moreover, since M is not a spike with tip e,

r(N) > 0.

Now consider the canonical tree decomposition T (M/e) of M/e. For each i in
{1, 2, . . . , l}, the matroid Hi is in Λu

2 (M/e). Thus, by possibly relabelling some
elements in the set Wi, we may assume that each Hi labels a vertex of T (M/e),
and Wi labels the edges of T (M/e) incident with this vertex. We observe that the
vertices H1,H2, . . . ,Hl need not be distinct. Now contract every edge of T (M/e)
that is not labelled by a member of W1 ∪ W2 ∪ · · · ∪ Wl and, after each such
contraction, label the new composite vertex by the 2-sum of the two matroids
that previously labelled the ends of the edge. At the conclusion of this process,
we obtain a tree T ′(M/e) with edge-set W1 ∪ W2 ∪ · · · ∪ Wl such that if l > 0,
then {H1,H2, . . . ,Hl} is a dominating set of vertices of the tree. Moreover, since
Zi ⊆ Wi and |Zi| ≥ 2 for all i, it follows that no Hi is a terminal vertex of T ′(M/e),
and |E(Hi)| ≥ |Ci− e|+ |Zi| ≥ 3+2 = 5. Note that if l = 0, then we take T ′(M/e)
to consist of a single vertex labelled by M/e. For each matroid H that labels a
vertex of T ′(M/e) other than H1,H2, . . . ,Hl, the set E(H)− (W1 ∪W2 ∪ · · · ∪Wl)
is a disjoint union of 2-circuits from Cl+1 − e, Cl+2 − e, . . . , Cm − e.

From T ′(M/e), we construct a tree T ′(N) for N by first replacing each ma-
troid H labelling a vertex of T ′(M/e) other than H1,H2, . . . ,Hl by the matroid
obtained from it by deleting E(H)∩ {al+1, al+2, . . . , am} and contracting (E(H)∩
{bl+1, bl+2, . . . , bm}) − E(N). After this, if some vertex is labelled by a 2-element
matroid H, then H must contain at least one bi for l + 1 ≤ i ≤ m. Hence H must
be a terminal vertex of the current tree with its second element being an element
wj of some Wj . When this occurs, we contract the edge wj of the tree and relabel
the element wj of Hj by bi. At the conclusion of this process, we obtain the tree
T ′(N) which will be important throughout the rest of the argument. Evidently, for
each i in {1, 2, . . . , l}, there is a vertex H ′

i of T ′(N) that is labelled by a matroid
that is obtained from Hi by possibly relabelling some members of Wi by elements
of {bl+1, bl+2, . . . , bm}. Let Z ′

i be the set Zi after this relabelling.

5.10. Lemma. If C is a circuit of N , then |C −X| 6= 1.

Proof. Since r(N) > 0 and N is connected, the result holds if l = 0. Thus suppose
that l > 0 and |C − X| = 1. To each subtree T ′ of T ′(N), we can associate a
connected matroid M(T ′) formed by taking the 2-sum of the matroids that label
the vertices of T ′ using, as basepoints, the labels of the edges of T ′. Choose such
a subtree T ′ of T for which M(T ′) contains a circuit C ′ such that |C ′ − X| = 1
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and |V (T ′)| is a minimum. As |C ′| > 1, it follows that C ′ ∩ (Cj − e) 6= ∅ for some
j in {1, 2, . . . , l}, say j = 1. Thus C1 − e meets E(M(T ′)), and the construction
of T ′ implies that C1 − e ⊆ E(M(T ′)). Suppose that M(T ′) is 3-connected. Then
M(T ′) = H ′

1. By orthogonality, either C ′ ⊇ C1 − e, or C ′ ∩ Z ′
1 6= ∅. In the first

case, C ′ % C1 − e; a contradiction. Thus C ′ ∩Z ′
1 6= ∅. Since C ′ ∩Z ′

1 ⊆ C ′ −X and
the last set has exactly one element, say f , we deduce that C ′∩Z ′

1 = C ′−X = {f}.
Therefore, by Lemma 2.6, |Z1| = 1; a contradiction to Lemma 5.9. We conclude
that M(T ′) is not 3-connected. In particular, T ′ does not consist of a single vertex
and so has an edge b. Moreover, H ′

1 must label a vertex of T ′. Let T1 and T2 be
the connected components of T ′ − b. Then M(T ′) is the 2-sum with basepoint b
of the matroids M(T1) and M(T2). By the choice of T ′, neither M(T1) nor M(T2)
has C ′ as a circuit. Hence, for each i in {1, 2}, there is a circuit Di of M(Ti) such
that b ∈ Di and C ′ = (D1 ∪ D2) − b. Without loss of generality, we may assume
that f ∈ D1. Thus D2− b ⊆ X, that is, {b} = D2−X. This contradicts the choice
of T ′ and the lemma follows. �

Now let B = {bl+1, bl+2, . . . , bm} ∩ E(N).

5.11. Lemma. If A is a 2-subset of B and N\A is connected, then A is a circuit
of N .

Proof. Suppose that A is not a circuit of N . Then there is a circuit C of N
such that |C| ≥ 3 and A ⊆ C. By the definition of N , there is a circuit D of
M/e\{al+1, al+2, . . . , am} such that C = D ∩ E(N). Let A = {s1, s2}. As |C| ≥ 3,
the circuit D meets at least three series classes of M/e\{al+1, al+2, . . . , am} in-
cluding S1 and S2 that contain s1 and s2, respectively. As N\A is connected,
[M/e\{al+1, al+2, . . . , am}]\(S1 ∪ S2) is connected. Let S′ = {ai, bi : bi ∈ S1 ∪ S2}.
Then M/e\S′ is obtained from [M/e\{al+1, al+2, . . . , am}]\(S1 ∪ S2) by, for each j
in {l+1, l+2, . . . ,m} such that aj 6∈ S′, adding aj in parallel to bj . Hence M/e\S′

is connected. Moreover, M\S′ is connected, otherwise e is a coloop of M\S′ contra-
dicting the fact that E(M\S′) is the union of the circuts in {C1, C2, . . . , Cm}−{Ci :
bi ∈ S1 ∪ S2}. Thus M\S′ satisfies the hypotheses of the theorem, so

νe(M\S′) + θe(M\S′) ≤ r∗(M\S′) + s(M\S′). (4)

Evidently, νe(M\S′) = νe(M)− (|S1|+ |S2|). Moreover, r∗(M\S′) = r∗(M/e\S′),
and, in M/e, the elements of S′ consist of 2 distinct series classes in which each ele-
ments has been replaced by two parallel elements. Thus r∗(M/e\S′) = r∗(M/e)−
(|S1|+1)−(|S2|+1), so r∗(M\S′) = r∗(M)−(|S1|+|S2|+2). Since s(M\S′) ≤ s(M),
we obtain, by substituting into (4), that

νe(M)− (|S1|+ |S2|) + θe(M\S′) ≤ r∗(M)− (|S1|+ |S2|+ 2) + s(M),

that is,
νe(M) + (θe(M\S′) + 2) ≤ r∗(M) + s(M).

We shall complete the proof of the lemma by showing the following:

5.11.1. M has two circuits both containing e whose union contains S′.

This will show that
θe(M) ≤ θe(M\S′) + 2

and thereby establish the contradiction that M satisfies the theorem.
To prove (5.11.1), it suffices to show that:



14 MANOEL LEMOS AND JAMES OXLEY

5.11.2. M has a spike-minor M ′ with tip e whose legs include all the sets {e, ai, bi}
such that bi ∈ S1 ∪ S2 together with at least one other set.

This is because, by Lemma 4.2, if (5.11.2) holds, then M ′ has two circuits both
containing e whose union contains S′ and therefore (5.11.1) holds.

We now prove (5.11.2). There are two possibilities for the circuit C:
(i) C ∩ (B −A) 6= ∅; and
(ii) C ∩B = A.

Suppose that (i) holds and let s3 be an element of C ∩ (B−A). Then the circuit
D of M/e\{al+1, al+2, . . . , am} contains S1, S2, and the series class S3 containing
s3. Now consider the restriction of M/e to the set D′ that is obtained from D by
adding all ai such that bi ∈ S1 ∪ S2 ∪ S3. Then it is not difficult to check that by
contracting from M |(D′ ∪ e) all the elements of D that are not in S1 ∪ S2 ∪ S3, we
obtain a spike with tip e and legs all the sets {e, ai, bi} such that bi ∈ S1 ∪S2 ∪S3.
Thus, in case (i), (5.11.2) holds.

We may now assume that (ii) holds. Then we have that {C1, C2, . . . , Cm} covers
E(M), that |C| ≥ 3, and that C −X = C ∩ B = {s1, s2}. It follows that C meets
Cj−e for some j in {1, 2, . . . , l}. This circuit Cj−e will be used to manufacture the
leg of the spike minor M ′ that is different from all {e, ai, bi} such that bi ∈ S1 ∪S2.

We show next that S1 ∪S2 is contained in a series class of (M/e)|[D ∪ (Cj − e)].
Suppose not. Then, since C ∩B = {s1, s2}, it follows that

N |[C ∪ (Cj − e)] = [M/[e ∪ (S1 − s1) ∪ (S2 − s2)]]|[C ∪ (Cj − e)].

Thus s1 and s2 are not in series in N |[C ∪ (Cj − e)]. Therefore N has a circuit
C ′ that contains exactly one of s1 and s2, and this circuit must meet Cj − e. As
C − X = {s1, s2}, we deduce that |C ′ − X| = 1; a contradiction to Lemma 5.10.
We conclude that S1 ∪ S2 is contained in a series class of (M/e)|[D ∪ (Cj − e)].

Now let D1 be a circuit of (M/e)|[D ∪ (Cj − e)] such that D1 ⊇ S1 ∪ S2 and
D1− (Cj − e) is a circuit of ((M/e)|[D∪ (Cj − e)])/(Cj − e). Then D1− (Cj − e) is
a series class of (M/e)|[D1 ∪ (Cj − e)]. Clearly there is a 2-element subset {cj , dj}
of Cj − e such that

((M/e)|[D1 ∪ (Cj − e)])/(Cj − {e, cj , dj})
consists of a circuit with ground set (D1 − (Cj − e)) ∪ cj and the element dj in
parallel with cj .

Now recall that S′ = {ai, bi : bi ∈ S1 ∪ S2} and let

M ′′ = (M |[D1 ∪ S′ ∪ Cj ])/(Cj − {e, cj , dj}).
Observe that:

5.11.3. If T is a triangle of M or of M ′′ such that e ∈ T and T − e is a circuit
of M ′′/(V ∪ e) for some V avoiding e, then either e is a loop of M ′′/V , or T is a
triangle of M ′′/V .

Clearly M ′′ has {e, cj , dj} as a circuit. Thus, by (5.11.3), for each bi in S1∪S2, the
matroid M ′′ has {e, ai, bi} as a circuit. Observe that M ′′/e has (D1− (Cj − e))∪ cj

as a circuit. Let Y = (D1 − (Cj − e)) − (S1 ∪ S2). Then M ′′/e/Y has, among its
circuits, the sets S1 ∪ S2 ∪ cj , {cj , dj}, and all {ai, bi} with bi in S1 ∪ S2. In order
to show that M ′′/Y is the desired spike minor of M , we shall show next that e
is not a loop of M ′′/Y . But (D1 − (Cj − e)) ∪ cj is a circuit of M ′′/e so either
(D1 − (Cj − e)) ∪ cj or (D1 − (Cj − e)) ∪ cj ∪ e is a circuit of M ′′. In the former
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case, choose some i such that bi ∈ S1 ∪ S2. Then {e, ai, bi} is a circuit of M ′′. As
(D1 − (Cj − e)) ∪ cj is a circuit of M ′′ containing bi and not spanning e, it follows
that ((D1 − bi)− (Cj − e))∪ cj ∪ {ai, e} is a circuit of M ′′. Thus, by interchanging
the labels on this ai and bi, we may assume that (D1− (Cj − e))∪ cj ∪ e is a circuit
of M ′′. As Y is a subset of the last set, we conclude that e is not a loop of M ′′/Y .
Thus, by (5.11.3), {e, cj , dj} and all {e, ai, bi} with bi in S1 ∪ S2 are triangles of
M ′′/Y so this matroid is, indeed, the desired spike minor of M . Hence (5.11.2)
holds and the lemma is proved.

�

5.12. Lemma. Either r(N) = 1, or N is 3-connected having at least four elements.
In the latter case, H ′

1 = H ′
2 = · · · = H ′

l = N .

Proof. Suppose that r(N) ≥ 2. Since N is cosimple and connected, N has at least
four elements. To prove that N is 3-connected, it is enough to prove that T ′(N)
has just one vertex. Suppose that T ′(N) has at least two vertices. Let K1 and K2

be terminal vertices of T ′(N) and, for each i let ki be the element of Ki that labels
an edge of T ′(N). We prove next that:

5.12.1. For each i in {1, 2}, there is an element ei in E(Ki) ∩ B such that Ki\ei

is connected and, when r(Ki) 6= 1, the set {ei, ki} is not a circuit of Ki.

Suppose first that Ki = H ′
j for some j in {1, 2, . . . , l}. Then Z ′

j − ki contains an
element ei since, by Lemma 5.9, |Zj | ≥ 2 and |Z ′

j | = |Zj |. Since Ki is a terminal
vertex of T ′(N), the element ei must be in B. As Ki is 3-connected having at least
four elements, Ki\ei is connected and {ei, ki} is not a circuit of Ki. Hence (5.12.1)
holds if Ki = H ′

j .
Now suppose that Ki 6∈ {H ′

1,H
′
2, . . . ,H

′
l}. From the construction of T ′(N), it

follows that E(Ki) ⊆ B∪ki. Moreover, since N is cosimple, if Ki has a 2-cocircuit,
then this 2-cocircuit is unique and must cointain ki. Choose a circuit of Ki that
contains ki. Then, provided r(Ki) 6= 1, we can choose this circuit to have at least
three elements. By a result of Oxley [9] (see also [10, Lemma 10.2.1]), this circuit
must contain an element ei such that Ki\ei is connected. Moreover, {ei, ki} is not a
circuit unless r(Ki) = 1. We conclude that (5.12.1) holds in this case and therefore
holds in general.

Now N = K1 ⊕2 K2 or N = N ′ ⊕2 K1 ⊕2 K2 for some connected matroid N ′.
As K1\e1 and K2\e2 are connected, it follows that, in each case, N\{e1, e2} is
connected because it is a 2-sum of connected matroids. Thus, by Lemma 5.11,
{e1, e2} is a 2-circuit of N . Therefore, (E(K1)− k1)∪ (E(K2)− k2) is contained in
a parallel class of N . But K1 and K2 were arbitrarily chosen terminal vertices of
T ′(N). Hence r(N) = 1; a contradiction.

Finally, we note that it is an immediate consequence of the construction of T ′(N)
that, when N is 3-connected having at least four elements, H ′

1 = H ′
2 = · · · = H ′

l =
N . �

Recall that (C1 ∪ C2 ∪ · · · ∪ Cl)− e = X.

5.13. Lemma. If C is a circuit of N and C 6∈ {C1 − e, C2 − e, . . . , Cl − e}, then
C − X is a circuit of N/X. Moreover, N |X is the direct sum of the l circuits
C1 − e, C2 − e, . . . , Cl − e. In particular, l < m.
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Proof. Clearly, we may assume that l 6= 0. As C1 − e is a circuit of N having at
least 3 elements, it follows from the last lemma that N is 3-connected having at
least four elements. Moreover, H ′

1 = H ′
2 = · · · = H ′

l = N .
First, we prove that C 6⊆ X. Suppose that C ⊆ X. Hence C ∩ (Ci − e) 6= ∅ for

some i in {1, 2, . . . , l}, say i = 1. As C 6= C1 − e by hypothesis, (C1 − e) − C and
C ∩C1 contain elements a and b, respectively. Since N = H ′

1, there is a triad T ∗ of
N containing {a, b} whose third element, c say, is not in C1. By the orthogonality
of the circuit C and the triad T ∗, it follows that c ∈ C. As C ⊆ X, it follows
that c ∈ Ci for some i ∈ {2, 3, . . . , l}; a contradiction to orthogonality because
Ci ∩ T ∗ = {c}. Hence C −X 6= ∅.

To complete the proof of the first part of the lemma, it suffices to show that:

5.13.1. N has no circuit C ′ such that C ′−X is a non-empty proper subset of C−X.

For each i in {1, 2, . . . , l}, choose gi in (Ci − e) − C. Assume that (5.13.1)
fails and let be a circuit C ′ of N that demonstrates this failure and minimizes
|C ′∩{g1, g2, . . . , gl}|. Suppose that C ′∩{g1, g2, . . . , gl} is non-empty and choose gi in
this set. Since C ′−X is non-empty, it contains an element c. By circuit elimination,
N has a circuit C ′′ such that c ∈ C ′′ ⊆ [C ′∪ (Ci−e)]−gi. Clearly C ′′−X is a non-
empty subset of C ′−X. Moreover, C ′′∩{g1, g2, . . . , gl} ⊆ (C ′∩{g1, g2, . . . , gl})−gi;
a contradiction to the choice of C ′. Hence C ′ ∩ {g1, g2, . . . , gl} = ∅.

If C ′ ∩ (Cj − e) ⊆ C ∩ (Cj − e) for all j in {1, 2, . . . , l}, then C ′ ∩ X ⊆ C ∩ X
and so C ′ $ C; a contradiction. Thus C ′ ∩ (Cj − e) 6⊆ C ∩ (Cj − e) for some j in
{1, 2, . . . , l}. Now choose hj ∈ (C ′ − C) ∩ (Cj − e). As N = H ′

j , there is a triad
T ∗

j of N such that T ∗
j ∩ (Cj − e) = {gj , hj} and T ∗

j − (Cj − e) = {fj}, say. As
gj 6∈ C ′, it follows by the orthogonality of C ′ and T ∗

j that fj ∈ C ′. Thus fj ∈ C.
But C ∩ {gj , hj} = ∅ and this contradiction to orthogonality completes the proof
of (5.13.1) and thereby proves the first part of the lemma. The second assertion of
the lemma follows from the fact that, by the first part, N |X has no circuits except
C1 − e, C2 − e, . . . , Cl − e.

To verify the last assertion, assume that l = m. Then X = E(M/e) so N |X =
M/e. By assumption, the matroid on the right-hand side is connected, whereas
by the second part and the fact that m ≥ 2, the matroid on the left-hand side is
disconnected. This contradiction implies that l < m. �

5.14. Lemma. N/X is cosimple and connected.

Proof. Observe that N/X is cosimple because N is cosimple. Let a and b be
elements of N/X. As N is connected, there is a circuit C of N such that {a, b} ⊆ C.
By Lemma 5.13, C−X is a circuit of N/X that contains both a and b. Thus N/X
is connected. �

5.15. Lemma. Suppose that r(N/X) ≥ 2. If A is a 2-subset of E(N) − X, then
N/X\A is disconnected.

Proof. Since r(N/X) ≥ 2, it follows by Lemma 5.12 that N is 3-connected having
at least four elements, and H ′

1 = H ′
2 = · · · = H ′

l = N . Suppose that N/X\A is
connected. Since N is simple, it does not have A as a circuit. As A ⊆ E(N)−X ⊆
B, it follows by Lemma 5.11, that N\A is disconnected. Since N/X\A is connected,
we deduce that N\A has a component H such that E(H) ⊆ X. If E(H) = {h},
then, as N is connected, h must be a coloop of N\A. Since N is also cosimple, h∪A
is a triad of it. But this triad meets some Ci−e in a single element, namely h. This
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contradiction to orthogonality implies that |E(H)| ≥ 2, so E(H) contains a circuit
of N . Since every circuit of H is contained in X, by Lemma 5.13, the only circuits
of H are members of {C1 − e, C2 − e, . . . , Cl − e}. But the members of the last set
are disjoint and H is connected, so E(H) = Ci−e for some i, say i = 1. Thus C1−e
is the ground set of a component of N\A. As N = H ′

1, every 2-subset of C1 − e
is contained in a triad of N whose third element is in Z ′

1. Since every 2-subset of
C1−e is a cocircuit of N\A, every element of Z ′

1−A is a coloop of N\A and so is a
coloop of N/X\A. This is a contradiction as the last matroid is connected having
at least two elements. Hence Z ′

1 ⊆ A. By Lemma 5.9, |Z1| ≥ 2. As |Z ′
1| = |Z1|, it

follows that Z ′
1 = A. We now apply Lemma 2.6 to N to deduce that (ii) of that

lemma holds for N . Therefore A contains a minimal non-empty subset of E(N)
that does not meet any circuit in exactly one element. Hence A contains a cocircuit
of N (see, for example, [10, Proposition 2.1.20]); a contradiction. �

5.16. Lemma. r(N/X) < 2 or N/X is the dual of a 3-connected Sylvester matroid
with at least four elements.

Proof. Suppose that r(N/X) ≥ 2. Since, by Lemma 5.14, N/X is cosimple and
connected, it follows that this matroid has at least four elements. The lemma
follows from Lemmas 5.15 and 3.1. �

In the next lemma, we construct a special cover of N by circuits. This cover will
be used in the subsequent lemma to construct a cover of M .

5.17. Lemma. Let X1 be a circuit of N that is not in {C1 − e, C2 − e, . . . , Cl − e}.
Let g be an element of X1 −X. Then N has circuits X2, X3, . . . , Xn+1 such that:

(i) X1, X2, . . . , Xn+1 are distinct;
(ii) {X1, X2, . . . , Xn+1} covers E(N);
(iii) {X1, X2, . . . , Xn+1} double covers E(N)−X;
(iv) Xi − (X1 ∪X2 ∪ · · · ∪Xi−1 ∪X) 6= ∅ for all i in {2, 3, . . . , n};
(v) g ∈ X1 − (X2 ∪ · · · ∪Xn ∪X); and
(vi) n = r∗(N/X).

Proof. By Lemma 5.13, X1 − X is a circuit D′
1 of N/X. By Lemmas 5.14, 5.15,

and 5.16, N/X is a loop, a uniform matroid of rank one, or the dual of a 3-connected
Sylvester matroid with at least four elements. It cannot be a loop by Lemma 5.10.
By Lemma 3.2, there are circuits X ′

2, X
′
3, . . . , X

′
n+1 of N/X such that

(a) X ′
1, X

′
2, . . . , X

′
n+1 are distinct;

(b) {X ′
1, X

′
2, . . . , X

′
n+1} double covers E(N/X);

(c) X ′
i − (X ′

1 ∪X ′
2 ∪ · · · ∪X ′

i−1) 6= ∅ for all i in {2, 3, . . . , n};
(d) g ∈ X ′

1 − (X ′
2 ∪X ′

3 ∪ · · · ∪X ′
n); and

(e) n = r∗(N/X).
For each i in {2, 3, . . . , n + 1}, let Xi be a circuit of N such that X ′

i = Xi − X.
Choose X2, X3, . . . , Xn+1 such that |E(N)− (X1 ∪X2 ∪ · · · ∪Xn+1)| is minimized.
Then (i) and (iii)–(vi) follow from (a)–(e), respectively. Hence we need only show
that (ii) holds. Assume it does not. Then X contains an element x that is not in
X1 ∪X2 ∪ · · · ∪Xn+1. Without loss of generality, we may assume that x ∈ C1 − e.
Thus N has a circuit with at least three elements so r(N) ≥ 2. Therefore, by
Lemma 5.12, N is 3-connected and N = H ′

1. Let L∗
1, L

∗
2, . . . , L

∗
k be the non-trivial

lines of N∗ that contain x. As H ′
1 = N , each 2-subset of C1− e containing x is in a

triad of N whose third element is not in C1 − e. Thus each element of C1 − e is in
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some L∗
t for 1 ≤ t ≤ k. Moreover, for all i in {1, 2, . . . , k}, there is an element ei in

L∗
i −C1 and, by orthogonality, ei is unique. If ei ∈ X, then ei ∈ Cj − e for some j

in {2, 3, . . . , l}, so Cj − e meets L∗
i in a single element, contradicting orthogonality.

Thus ei 6∈ X. Now L∗
1 − x, L∗

2 − x, . . . , L∗
k − x are non-trivial series classes of

N\x. Moreover, {X1, X2, . . . , Xn+1} is a set of circuits of N\x that double covers
E(N) − X. Thus each of e1, e2, . . . , er is in at least two of X1, X2, . . . , Xn+1. As
every element of C1−{e, x} is in a series class of N\x with some ei, it follows that
{X1, X2, . . . , Xn+1} double covers C1 −{e, x}. Thus, for some i ≥ 2, say i = 2, the
circuit Xi meets C1 − {e, x}. By Lemma 5.13, N |X is the direct sum of l circuits.
Moreover, X2−X is a circuit of N/X. An elementary rank calculation using these
observations shows that r(X2 ∪X) = |X2 ∪X| − (l + 1). Now, in N |(X2 ∪X), if
we delete an element of each (Ci − e) − X2 with 2 ≤ i ≤ l, we do not alter the
rank of the matroid. Thus the last matroid has corank 2 and has C1− e and X2 as
intersecting circuits. Hence N |[X2 ∪ (C1 − e)] is connected, has corank 2, and has
both X2− (C1−e) and (C1−e)−X2 as series classes. Therefore, N |[X2∪ (C1−e)],
and hence N , has a circuit X ′′

2 that contains both of these series classes and so
contains x. Clearly X ′′

2 − X = X2 − X. Now X2 − X ′′
2 ⊆ C1 − e ⊆ X and

{X1, X2, . . . , Xn+1} double covers C1 − {e, x}, so {X1, X
′′
2 , X3, . . . , Xn+1} double

covers E(N) −X and covers X1 ∪X2 ∪ · · · ∪Xn+1. Since x ∈ X ′′
2 , it follows that

|E(N) − (X1 ∪ X ′′
2 ∪ · · · ∪ Xn+1)| < |E(N) − (X1 ∪ X2 ∪ · · · ∪ Xn+1)| and so the

choice of {X1, X2, . . . , Xn+1} is contradicted and the result follows. �

5.18. Lemma.

θe(M) ≤ r∗(M) + s(M) =

{
r∗(N/X) + 1 if M has no F7-minor using e;
r∗(N/X) + 2 otherwise.

Proof. First we show that:

5.18.1. For all i in {l + 1, l + 2, . . . ,m}, the element bi is in a non-trivial series
class of M/e\{al+1, al+2, . . . , am}.

Suppose that bi is in a trivial series class of M/e\{al+1, al+2, . . . , am} for some
i in {l + 1, l + 2, . . . ,m}. Then, since N = co(M/e\{al+1, al+2, . . . , am}), it follows
that bi is an element of N . By Lemma 5.12, either r(N) = 1, or N is 3-connected
having at least four elements. Thus N\bi is connected. However, by Lemma 5.5,
[M/e\{al+1, al+2, . . . , am}]\bi is disconnected. Therefore, bi is in a non-trivial series
class of M/e\{al+1, al+2, . . . , am}. This contradiction establishes (5.18.1).

From (5.18.1) and the construction of N , we deduce that M is obtained from N
by:

(i) replacing each element f of E(N) − X by a non-trivial series class Sf to
give M/e\{al+1, al+2, . . . , am}, which we denote by N1;

(ii) adding an element in parallel to each element of each Sf to give M/e;
(iii) coextending by e to give M .
By Lemma 5.12, |E(N)−X| ≥ 2 so, by (5.18.1), there are at least two non-trivial

series classes Sf in N1. Let D be a circuit of N1 that contains two such non-trivial
series classes. Then D is a circuit of M/e and D contains at least four members
of {bl+1, bl+2, . . . , bm} including, say, bm−3, bm−2, bm−1, bm. Now D or D ∪ e is a
circuit of M . In the former case, (D − bm−3) ∪ {am−3, e} is a circuit of M and
we interchange the labels on bm−3 and am−3 so that D ∪ e is again a circuit of
M . Then it is straightforward to check that [M |(D ∪ {e, am−2, am−1, am})]/(D −
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{bm−2, bm−1, bm}) is a rank-3 spike. If this spike is isomorphic to F7, then we leave
D ∪ e unchanged. In the other case, by Lemma 4.1 and relabelling if necessary, we
can choose D so that D is a circuit of N1 containing {bm−2, bm−1, bm} and D∪ e is
a circuit of M that is indifferent with respect to {am, bm}. In both cases, we take
g = bm. Since N is the cosimplification of N1, we may assume that g ∈ E(N). Let
X1 be the circuit D ∩E(N) of N . We observe that, in particular, g ∈ X1 and if M
has no F7-minor using e, then D ∪ e is indifferent with respect to {am, bm} in M .

Now let X2, X3, . . . , Xn+1 be circuits of N such that (i)-(vi) of (5.17) hold.
For each i in {1, 2, . . . , n + 1}, let X ′

i = ∪{Sh : h ∈ Xi}. By (ii) and (iii),
{X ′

1, X
′
2, . . . , X

′
n+1} covers E(N1) and double covers E(N1) − X. Let X ′

1 = D1.
Next we construct circuits D2, D3, . . . , Dn+1 of M/e as follows. Each series class
Sh for h ∈ E(N) − X is contained in at least two of X ′

1, X
′
2, . . . , X

′
n+1. Proceed

through the list X ′
1, X

′
2, . . . , X

′
n+1 in order and, the second time each Sh is con-

tained in some X ′
i, replace each element of Sh in that X ′

i by the element of M/e
that is parallel to it. Clearly {D1, D2, . . . , Dn+1}, the resulting set of circuits of
M/e, covers E(M/e). For each i in {1, 2, . . . , n+1}, let D′

i be the circuit of M that
is in {Di, Di ∪ e}.

Next we describe an inductive construction of a subset {D′′
1 , D′′

2 , . . . , D′′
n+1} of

Ce(M) that covers E(M)− am. This set of circuits also covers M provided M has
no F7-minor using e.

Suppose that D′′
1 , D′′

2 , . . . , D′′
i−1 have been constructed in Ce(M) such that {D′′

1−
e,D′′

2 − e, . . . , D′′
i−1 − e,Di, Di+1, . . . , Dn+1} is a set of circuits of M/e that covers

E(M/e). If e ∈ D′
i, then we take D′′

i to be D′
i. Now assume that e 6∈ D′

i. The
definition of D′′

i in this case will depend on the value of i. We observe that, since
e ∈ D′

1, we must have i > 1.
Suppose that i ≤ n. We now choose an element h. Since i > 1, by (iii),

we may choose h in Xi − (Xi−1 ∪ Xi−2 ∪ · · · ∪ X1 ∪ X). Let Ph be the parallel
class of M/e that meets Sh in {h}. Then |Ph| = 2 and Ph is a parallel class of
[M |(D′

i∪Ph∪e)]/e and so D′
i−(Ph∪e) is a series class of this matroid and hence is

a series class of M |(D′
i∪Ph∪ e). Also (Ph∪ e)−D′

i is a series class of this matroid.
As |D′

i ∩ (Ph ∪ e)| = 1, it follows that D′
i 4 (Ph ∪ e) is a circuit of M . We take this

circuit to be D′′
i . Note that the element belonging to Ph ∩D′

i, which is not in D′′
i ,

may be in none of Di+1, Di+2, . . . , Dn+1. As i ≤ n, it follows by the choice of h and
(ii) that, for some j > i, we have h ∈ Xj , so Ph ∩Dj 6= ∅. If Ph ∩Dj = Ph ∩D′

i,
then {D′′

1 − e,D′′
2 − e, . . . , D′′

i − e,Di+1, . . . , Dn+1} is a set of circuits of M/e that
covers E(M/e). If Ph ∩ Dj 6= Ph ∩ D′

i, then we replace Dj by Dj 4 Ph, another
circuit of M/e. Again, {D′′

1 − e,D′′
2 − e, . . . , D′′

i − e,Di+1, . . . , Dn+1} is a set of
circuits of M/e that covers E(M/e).

Now suppose that i = n + 1. Then, since we are in the case when e 6∈ Di, we
have that e 6∈ Dn+1. By (v), {am, bm} ∩Dn+1 6= ∅. In this case, Dn+1 is a circuit
of M and, therefore, so is Dn+1 4{am, bm, e}. We take the last circuit to be D′′

n+1

and let D be {D′′
1 , D′′

2 , . . . , D′′
n+1}. Clearly D covers E(M)−am and, if am ∈ D′′

n+1,
then D covers E(M). We now assume that am 6∈ D′′

n+1. Then bm ∈ D′′
n+1. If M

has no F7-minor using e, then D ∪ e, which equals D′′
1 , is indifferent with respect

to {am, bm} in M . Thus (D′′
1 − bm) ∪ am is a circuit of M . Replacing D′′

1 by this
circuit, we get that D covers E(M).

We conclude that either D covers E(M), or D covers E(M) − am with the
former holding if M has no F7-minor using e. In the former case, θe(M) ≤ n + 1 =
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r∗(N/X) + 1. In the latter case, let D′′
n+2 be a circuit of M containing {am, e},

then D ∪ {D′′
n+2} covers E(M) and so θe(M) ≤ n + 2 = r∗(N/X) + 2. �

We now complete the proof of the theorem. We know that νe(M) = m. More-
over, by Lemma 5.13, r∗(N |X) = l, that is, r(N∗.X) = l, so r(N∗)− r(N∗\X) = l.
Hence

r∗(N)− r∗(N/X) = l. (5)
Since N = co(M/e\{al+1, al+2, . . . , am}) and ai is parallel to bi in M/e for each i
in {l + 1, l + 2, . . . ,m}, we have

r∗(N) = r∗(M/e\{al+1, al+2, . . . , am})
= r∗(M/e)− (m− l)
= r∗(M)− (m− l).

Substituting into (5), we get r∗(M)−(m−l)−r∗(N/X) = l, so r∗(M)−r∗(N/X) =
m. Thus

νe(M) = r∗(M)− r∗(N/X).
On combining this with the last lemma, we get

νe(M) + θe(M) ≤ (r∗(M)− r∗(N/X)) + (r∗(N/X) + s(M))
= r∗(M) + s(M).

This contradicts the fact that M is a counterexample to the theorem and thereby
completes the proof. �

6. Consequences

In this section, we prove several consequences of the main theorem including the
corollaries that were stated in the introduction.

Proof of Corollary 1.2. Let N∗ be the matroid obtained from M∗ by freely adding
an element e. Note that N∗ does not have an F ∗

7 -minor using e, because every
minor of N∗ has e as a free element and F ∗

7 has no free elements. Now N∗\e = M∗,
so M = N/e. In particular, r∗(N) = r∗(M). We also have that

Ce(N) = {e ∪ C : C ∈ C(M)}.
In particular, θ(M) = θe(N) and ν(M) = νe(N). The result follows from Theo-
rem 1.1 because N is a connected matroid without an F7-minor using e and N/e
is connected. �

Observe that when M attains the bound in Corollary 1.2, the matroid N con-
structed in the last proof attains the bound in Theorem 1.1. Lemos [4] characterized
the binary matroids that attain the bound in Corollary 1.2 but the characterization
in general remains open. A characterization of the matroids attaining the bounds
in Theorem 1.1 seems to be more difficult, since there are matroids attaining the
bounds other than those described at the beginning of this paragraph. One such
extremal example is given after Theorem 1.3 and we now describe some others. It
is not difficult to check that, for all q > 2, the dual of the projective geometry
PG(r−1, q) attains the second bound in the theorem. Lest the reader suspect that
binary spikes are the only matroids attaining the first bound, we now construct an-
other class of matroids attaining that bound. Begin with U1,n for some odd n ≥ 3
and replace each element by m elements in series for some even m. Then, in the
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resulting matroid, add an element in parallel to each element. Finally, construct
the simple binary coextension of this matroid by the element e. Let the resulting
matroid be M . Then r∗(M) = r∗(M/e) = mn + n − 1 and νe(M) = mn. If
{C1, C2, . . . , Ck} is a minimum-sized subset of Ce(M) covering E(M), then the first
bound implies that k ≤ n + 1. Suppose that k = n. Then k is odd. Moreover, each
Ci − e is a circuit of M/e and so has at most 2m elements. Since {C1, C2, . . . , Ck}
covers E(M), it follows that |Ci−e| = 2m for all i and Ci∩Cj = {e} for all distinct
i and j. Now think of M as being represented by a matrix D with r(M) rows and
let e correspond to the last natural basis vector. Then, in each Ci − e, there must
be an odd number of ones in the last row. Because the sets C1−e, C2−e, . . . , Ck−e
are disjoint and k is odd, it follows that there are an odd number of ones altogether
in the last row of D, not counting the one in the column corresponding to e. But
the last row of D has exactly mn + 1 ones; a contradiction since m is even. We
conclude that k 6= n and so M does, indeed, attain the first bound in the theorem.

The next result extends the main theorem by allowing M/e to be disconnected.

6.1. Corollary. Let e be an element of a connected matroid M where M is not
a coloop, and let E1, E2, . . . , En be the ground sets of the connected components
of M/e. Suppose that M |(Ei ∪ e) has an F7-minor using e if and only if i is in
{1, 2, . . . , k}. Then

νe(M) + θe(M) ≤ r∗(M) + n + k.

Proof. The matroid M is the parallel connection of the n matroids M |(E1 ∪ e),
M |(E2 ∪ e), . . . ,M |(En ∪ e), each of which is connected. Because each of νe, θe,
and r∗ is additive under the operation of parallel connection along the element e, it
follows by Theorem 1.1 that νe(M)+θe(M) ≤ r∗(M)+2k+(n−k), as required. �

Equality is attained in the bound in the last corollary by assuming that M |(Ei∪e)
is an odd-rank binary spike with tip e if 1 ≤ i ≤ k, and otherwise is a free spike
with tip e.

To prove Corollaries 1.3 and 1.4, we construct the graph G′ from G by adding
an edge e joining u and v and then apply Theorem 1.1 to, respectively, the cycle
and bond matroids of G′.

Next we describe a graph Gn for which equality is attained in Corollary 1.3. Let
Gn be the graph obtained from a path Pn of length n by adding two non-adjacent
vertices u and v both adjacent to every vertex in Pn. In this case, νuv(Gn) =
θuv(Gn) = n + 1 and |E(Gn)| − |V (Gn)|+ 3 = (3n + 2)− (n + 3) + 3 = 2n + 2. Let
G′

n be the graph that is obtained from Gn by adding a new edge e joining u and
v. Then, from above, G′

n attains the bound in Theorem 1.1. However, it does not
attain the bound in Corollary 1.2, since ν(G′

n) = n and θ(G′
n) = dn+3

2 e.
The next result is the natural extension of Corollary 1.3 to the case when

G − {u, v} need not be connected. It is not difficult to give examples that attain
equality in this bound.

6.2. Corollary. If u and v are distinct non-adjacent vertices of a 2-connected graph
G and G− {u, v} has k components, then

νuv(G) + θuv(G) ≤ |E(G)| − |V (G)|+ k + 2.
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