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Abstract. Mader and Jackson independently proved that every 2-connected
simple graph G with minimum degree at least four has a removable cycle,

that is, a cycle C such that G\E(C) is 2-connected. This paper considers the

problem of determining when every edge of a 2-connected graph G, simple
or not, can be guaranteed to lie in some removable cycle. The main result

establishes that if every deletion of two edges from G remains 2-connected,
then, not only is every edge in a removable cycle but, for every two edges,

there are edge-disjoint removable cycles such that each contains one of the

distinguished edges.

1. Introduction

If G is a 2-connected simple graph in which the minimum degree δ(G) is at
least four, then, as a special case of a result for k-connected graphs, Mader [7]
showed that G has a cycle C such that G\E(C), the graph obtained by deleting
the edges of C, is 2-connected. Independently, Jackson [5] proved that C can be
chosen to avoid a nominated edge e and to have at least δ(G) − 1 edges. We call
a cycle D in a 2-connected graph H removable if H\E(D) is 2-connected. Lemos
and Oxley [6] extended Jackson’s theorem and obtained, as a corollary, that every
simple 2-connected graph with δ(G) ≥ 5 has two removable edge-disjoint cycles
each with at least δ(G) + 1 edges.

Although every simple 2-connected graph G with minimum degree at least four
has a removable cycle, the example shown in Figure 1(a), which was obtained
independently by Robertson (in [5]) and Jackson [5], shows that the requirement
that G be simple cannot be dropped. However, Fleischner and Jackson [2] proved
that this requirement could be replaced by the condition that G is planar. Their
result was extended by Goddyn, van den Heuvel, and McGuinness [3] who proved
a strengthening of a conjecture of Jackson [5] by proving the following.

1.1. Theorem. Let G be a 2-connected graph with minimum degree at least four.
If G has no minor isomorphic to the Petersen graph, then G has two edge-disjoint
removable cycles.

In this paper, we consider when we can guarantee that every edge of a 2-
connected graph G is in some removable cycle. When G is simple, the requirement
that δ(G) ≥ 4 is not sufficient to ensure the existence of such a family of removable
cycles for if G has an edge cut of size less than four, none of the edges in this
cut will be in a removable cycle. But even if we strengthen the minimum-degree
requirement to insist that every edge-cut has size at least four, we shall not be
guaranteed that every edge is in a removable cycle. For example, every edge cut
in the graph G in Figure 1(b) has size at least four, but the only edges that are in
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removable cycles are those edges that are in 2-cycles. Although G is not simple,
a straightforward modification produces a simple graph G′ that has no removable
cycle meeting either the outer pentagon or the inner pentagram. Specifically, we
replace each pair {x, y} of parallel edges of G by a copy of K5 whose vertex set
meets V (G) in the endpoints of x.

Figure 1.
In the following theorem, the main result of the paper, the hypothesis is strong

enough to ensure not only that every edge is in a removable cycle but also that,
for every two edges, there is a pair of edge-disjoint removable cycles one containing
each of the distinguished edges. We observe here that, for the graph G in Figure
2, every edge is in a removable cycle, but the only removable cycle containing e
also contains f . This example can be modified as above to produce a simple graph
satisfying the same assertions.

Figure 2.

1.2. Theorem. Let G be a 2-connected graph. Suppose that G\X is a 2-connected
graph for every 2-subset X of E(G), and let x and y be distinct edges of G. Then
G has edge-disjoint cycles Cx and Cy containing x and y, respectively, such that
both G\E(Cx) and G\E(Cy) are 2-connected.

For comparison with Theorem 1.1, we note the following immediate consequence
of Theorem 1.2.

1.3. Corollary. Let G be a 2-connected graph such that G\X is 2-connected for
every 2-subset X of E(G). Then G has two edge-disjoint removable cycles.
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The proof of Theorem 1.2 will be given in the next section. Section 3 describes a
counterexample to a natural extension of Theorem 1.2 to cographic matroids. The
graph and matroid terminology that is used here will follow Bondy and Murty [1]
and Oxley [8], respectively. A block is a connected graph with no cut-vertices. A
graph with at least three vertices is a block if and only if it is 2-connected and
loopless. For a path λ that is not a cycle, if u and v are vertices of λ, then λ[u, v]
denotes the subpath of λ having u and v as its ends.

2. Proof of the main result

The following result is the main tool in the proof of Theorem 1.2. Once it is
proved, it will not be difficult to complete the proof of the theorem.

2.1. Proposition. Suppose that G and H are blocks such that

(i) H is a subgraph of G; and
(ii) G\X is a block for every X ⊆ E(G)− E(H) such that |X| ≤ 2.

Then, for each e in E(G)− E(H), either

(iii) there is no cycle of G that contains e and is edge-disjoint from H; or
(iv) there is a cycle C of G that contains e such that C is edge-disjoint from H

and G\E(C) is a block.

Proof. Suppose that the proposition fails and choose a counterexample (G,H, e)
for which (|E(G)|,−|E(H)|) is lexicographically minimal. Then there is a cycle C
of G that contains e and is edge-disjoint from H. Moreover, G\E(C) is not a block.
Let B be the block of G\E(C) that contains E(H). By the choice of (G,H, e), we
have that B = H. Choose C such that the connected component of G\E(C) that
contains H as a block has the maximum number of edges.

In the rest of the proof, when λ is a subpath of C, we define its complement λc

to be the other subpath of C having the same terminal vertices as λ. In particular,
λci and λ′c will denote the complements of λi and λ′, respectively.

2.2. Lemma. G\E(C) is connected.

Proof. Let K0,K1,K2, . . . ,Kn be the connected components of G\E(C) and let H
be a block of K0. We want to show that n = 0. Assume that n ≥ 1. For each i in
{1, 2, . . . , n}, let λi be the shortest subpath of C containing e such that its terminal
vertices are in V (Ki). If λi = C, then λi and Ki have a unique common vertex,
say vi. Since G is a block, vi is not a cut-vertex of G so vi is an isolated vertex of
G\E(C). But then G\X is not a block when X are the two edges of G incident
with vi. This contradiction to (ii) implies that λi 6= C, so λi has different terminal
vertices. Let λ′i be a path in Ki joining the terminal vertices of λi. Note that λi∪λ′i
is a cycle C ′ of G that contains e and is edge-disjoint from H. Therefore

V (λci ) ∩ V (K0) = ∅, (1)

otherwise the connected component of G\E(C ′) that contains H contains E(K0)∪
E(λci ), which is contrary to the choice of C.

Now, we shall define an auxiliary graph K such that V (K) = {1, 2, . . . , n} and ij
is an edge of K if and only if i 6= j and E(λci ) ∩E(λcj) 6= ∅. Let K ′ be a connected
component of K. Let λ be the union of all the paths λci for which i in V (K ′). Note
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that λ is a subpath of C that does not contain e. We set

V ′ =
⋃

i∈V (K′)

V (Ki).

Note that V ′ 6= V (G) because V ′ ∩ V (K0) = ∅ by the definition of K ′. Let X be
the set of edges of G that join a vertex of V ′ to a vertex of V (G) − V ′. By our
construction, X ⊆ E(C) and, since G is a block, |X| ≥ 2. We shall prove that X is
the set of terminal edges of λc.

First we show that X ∩ E(λ) = ∅. Suppose that f ∈ X ∩ E(λ). By definition
of λ, the edge f ∈ E(λci ) for some i ∈ V (K ′). Let f = xy where x ∈ V ′ and
y ∈ V (G) − V ′. By (1), y 6∈ V (K0). Thus y ∈ V (Kj) for some j in {1, 2, . . . , n}.
Hence j 6∈ V (K ′). Let g be the edge of C − {f} incident to y. By definition
of λj , we have that E(λcj) ∩ {f, g} 6= ∅. The definition of K now implies that
E(λci ) ∩E(λcj) = ∅. Hence g ∈ E(λcj)−E(λci ) and f ∈ E(λci )−E(λcj). Thus f is a
terminal edge and y a terminal vertex of λci and hence of λi. Therefore y ∈ V (Ki).
But y ∈ V (Kj) so j = i. This contradiction implies that X ∩ E(λ) = ∅.

We now know that X ⊆ E(λc). Let f ∈ X. Then f is incident with some vertex
x of V ′ and x ∈ V (Ki), say. Since f ∈ E(λc), we deduce that f ∈ E(λi). Now
no internal vertex of λi is in Ki, so x is a terminal vertex of λi. Thus the edge
g of C − f that is incident with x is in E(λci ) and so is in E(λ). Hence f must
be a terminal edge of λc. Thus |X| ≤ 2. But |X| ≥ 2, so |X| = 2 and we have a
contradiction since G\X is disconnected. �

Let w1, w2, . . . , wn be the cut vertices of G\E(C) belonging to H. For each k in
{1, 2, . . . , n}, let Gk be the connected component of G\(E(H)∪E(C)) that contains
wk. We set Vk = V (Gk).

2.3. Lemma. Suppose that {u, v} ⊆ Vk ∩ V (C) and that ζ is a uv-path of Gk. Let
K be the connected component of Gk\E(ζ) such that wk ∈ V (K). If λ is the path in
C that joins u and v and does not contain e, then V (λ) ⊆ Vk or V (λ)∩ V (K) = ∅.

Proof. Observe that the union D of λc and ζ is an Eulerian graph since λc and ζ
are edge-disjoint paths that have the same terminal vertices. Thus D is a union of
cycles of G. One of these cycles, say C ′′, contains e. When V (λ) ∩ V (K) = ∅, the
lemma holds. Therefore we may suppose that there is a vertex x in V (λ) ∩ V (K).
Let β be a wkx-path in K. We choose x so that β has minimum length. Hence
V (β) ∩ V (λ) = {x}. In particular, the union of β with either of the paths λ[u, x]
or λ[x, v] is also a path.

Now suppose that V (λ) 6⊆ Vk and choose a vertex w of V (λ)− Vk such that its
distance to x in the path λ is a minimum. Then w is a vertex of λ[u, x] or λ[x, v].
Without loss of generality, we may assume the latter. It follows, by the choice of
w, that V (λ[x,w]) − Vk = {w}. Consider the wkw-path τ that is the union of β
and λ[x,w].

Suppose w ∈ V (H). As τ is edge-disjoint from H and C ′′, it follows that
E(H) ∪ E(τ) is contained in some block H ′ of G\E(C ′′). This contradicts the
choice of (G,H, e) since H ′ has more edges than H. Therefore w 6∈ V (H).

We may now suppose that w ∈ Vl for some l 6= k. Let ζl be a wwl-path in Gl.
Observe that V (ζl)∩V (τ) = {w} because V (β) ⊆ V (K) ⊆ Vk and V (λ[x,w])−Vk =
{w}. Thus the union of τ and ζl is a wkwl-path ε that is edge-disjoint from H and
C ′′. Therefore E(H)∪E(ε) is contained in a blockH ′′ ofG\E(C ′′). This contradicts
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the choice of (G,H, e) since H ′′ has more edges than H. We deduce that w does
not exist, so V (λ) ⊆ Vk. �

Let λk be the longest path in C that has both ends in Vk and does not contain
e. Next we show that

2.4. V (λk)− Vk 6= ∅.

Let X be the set of edges of G that join a vertex of Vk − {wk} to a vertex of
V (G) − Vk. Suppose that V (λk) ⊆ Vk. Then X ⊆ E(λck). But the choice of λk
means that only the terminal vertices of λck are in Vk. Hence each edge of X is
terminal in λck. Thus |X| ≤ 2. Since G\X has wk as a cut-vertex, it is not difficult
to obtain a contradiction. We conclude that (2.4) holds.

Let ak and bk be the ends of λk. Traverse λk beginning at ak and let vk be the
first vertex that is not in Vk. Let λ′k be the shortest subpath of λk that contains
vk and has both ends in Vk. Suppose that λ′k joins the vertices a′k and b′k and that
ak, a

′
k, vk, b

′
k, bk appear in this order in λk. Note that a′k, vk, and b′k are distinct,

but ak may equal a′k and bk may equal b′k. We define

Ak = V (λk[ak, a′k]) ∩ Vk and Bk = V (λk[b′k, bk]) ∩ Vk.

By the choice of vk, we have that Ak = V (λk[ak, a′k]).
We now define a simple auxiliary graph M with vertex set Ak. If a and a′ are

distinct members of Ak, then aa′ ∈ E(M) if and only if there is no b in Bk such
that Gk has two edge-disjoint paths joining {a, a′} and {b, wk}.

When f is an isthmus of Gk, we denote by Gk(f) the connected component of
Gk\f whose vertex set does not contain wk.

2.5. Lemma. Let {a, a′} be a subset of Ak such that if a 6= a′, then aa′ ∈ E(M).
Then

(i) Gk has an isthmus that separates {a, a′} from wk.
(ii) If f is an isthmus of Gk that separates {a, a′} from wk such that |V (Gk(f))|

is a minimum, then
(a) V (Gk(f)) ∩Bk = ∅; and
(b) if N is the connected component of M such that {a, a′} ⊆ V (N), then

V (Gk(f)) ∩Ak ⊆ V (N).

Proof. We shall prove (i) and (ii)(a) simultaneously. To do this, we take J = Gk
and w = wk when there is no isthmus separating {a, a′} from wk; and, when the
hypothesis of (ii)(a) holds, we take J to be Gk(f) and w to be the unique vertex
in V (Gk(f)) ∩ V ({f}).

Next we observe that there is no isthmus in J that separates {a, a′} from w.
This is true by definition when J = Gk. Moreover, if J = Gk(f) and g is such
an isthmus, then g is also an isthmus in Gk that separates {a, a′} from wk. Since
Gk(g) is clearly a subgraph of Gk(f)− w, the choice of f is contradicted. Hence g
does not exist.

By the result of the last paragraph, Menger’s Theorem implies that J has an
aw-path α and an a′w-path α′ such that E(α) ∩ E(α′) = ∅.

Next we show that

2.5.1. V (J) ∩Bk = ∅.
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If b ∈ V (J) ∩ Bk, then choose a path β of minimum length joining b to some
vertex of α or α′, say α′. Let b′ be the common vertex of α′ and β and let γ be
the union of α′[a′, b′] and β. Then α and γ are edge-disjoint paths of J joining a
to w and a′ to b, respectively. The path α can be completed to an awk-path ε of
Gk that is edge-disjoint from γ by taking its union with a wwk-path in Gk\E(J).
Hence aa′ 6∈ E(M) and so a = a′. Now apply Lemma 2.3 taking (u, v, ζ) to be
(a′, b, γ). The path α implies that a′ ∈ V (λk[a′, b])∩V (K), whereK is the connected
component of Gk\E(γ) that contains wk. Thus V (λk[a′, b])∩V (K) 6= ∅. Moreover,
the definitions of Ak and Bk imply that V (λk[a′, b]) 6⊆ Vk. Thus Lemma 2.3 is
contradicted. Therefore b does not exist and so (2.5.1) holds.

As ∅ 6= Bk ⊆ V (Gk), it follows that J 6= Gk. Thus (i) holds. Moreover,
J = Gk(f) and (ii)(a) holds by (2.5.1). Observe that (ii)(b) follows because any
path of Gk joining a vertex of V (Gk(f)) to a vertex of {wk}∪Bk must contain f as
an edge by (ii)(a). It follows by the definition of M that any two distinct elements
of Ak ∩ V (Gk(f)) are adjacent in M . �

2.6. Lemma. If N is a connected component of M , then there is an isthmus f of
Gk such that

V (Gk(f)) ∩Ak = V (N) and V (Gk(f)) ∩Bk = ∅.

Proof. We shall prove the following assertion by induction on |V |.

2.6.1. If V ⊆ V (N) and N [V ] is connected, then there is an isthmus fV of Gk such

V ⊆ V (Gk(fV )) ∩Ak ⊆ V (N) and V (Gk(fV )) ∩Bk = ∅.

The lemma follows by taking V = V (N) in (2.6.1).
Suppose that |V | = 1, say V = {a}. Now taking a′ = a in Lemma 2.5(i), we

get that there is an isthmus f of Gk that separates {a, a′} from wk. Choose f
so that |V (Gk(f))| is a minimum. Then (2.6.1) follows from Lemma 2.5(ii) by
taking f{a} = f . Now assume that (2.6.1) holds for |V | < n and let |V | = n ≥ 2.
Since N [V ] is connected, there is an a in V such that N [V − {a}] is connected.
By induction, the isthmus fV−{a} exists. If a ∈ V (Gk(fV−{a})), then we take
fV = fV−{a} and the result follows. We may now suppose that a 6∈ V (Gk(fV−{a})).
Choose a′ in V −{a} such that aa′ ∈ E(N). By Lemma 2.5(i), there is an isthmus
f of Gk that separates {a, a′} from wk because aa′ ∈ E(M). Choose such an f for
which |V (Gk(f))| is a minimum.

Note that, since a′ ∈ V − {a} ⊆ V (Gk(fV−{a})), any a′wk-path in Gk contains
fV−{a} and f as edges. Moreover, since fV−{a} separates a from a′ in Gk, it
follows that, in each a′wk-path in Gk, the edge fV−{a} is closer to a′ than f is.
Thus Gk(f) has Gk(fV−{a}) as a subgraph. Hence V ⊆ V (Gk(f)). The remaining
parts of (2.6.1) follow from Lemma 2.5(ii) by taking fV = f . �

Now let N be a connected component of M . By the previous lemma, there is an
isthmus f of Gk such that

V (Gk(f)) ∩Ak = V (N) and V (Gk(f)) ∩Bk = ∅. (2)

Let {x, y} be the subset of V (Gk(f)) ∩ Ak such that ak, x, y, a′k appear in this
order in λk and all the other vertices of V (Gk(f)) ∩Ak lie between x and y on λk.
Next we prove the following:

2.6.2. Every vertex of λk[x, y] is in V (Gk(f)) ∩Ak.
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Suppose that there is a vertex z of G such that z ∈ V (λk[x, y]) but z 6∈ V (Gk(f)).
Since V (λk[ak, a′k]) = Ak and {x, y} ⊆ V (λk[ak, a′k]), it follows that z ∈ Ak. By the
definition of M , the vertices x and z are in different components of M . Thus there
are edge-disjoint paths, ζ and η, joining {x, z} to {wk, b} for some b ∈ Bk. First
suppose that ζ and η join x to b and z to wk, respectively. We know that vk is in
the path in C that joins x and b and does not contain e. Since vk 6∈ Vk, Lemma 2.3
implies that z and wk are in different connected components of Gk\E(ζ). This
contradiction to the fact that η joins z to wk implies that we may assume that ζ
joins z to b and η joins x to wk.

Let V ({f}) ∩ V (Gk(f)) = {w}. Since x ∈ V (Gk(f)), the isthmus f of Gk
separates wk from x. Thus f is an edge of η. Hence w is a vertex of η, and
f is not an edge of ζ. As y ∈ V (Gk(f)), there is a yw-path γ of Gk(f). The
union ε of γ and η[w,wk] is a ywk-path of Gk. Moreover, ε is edge-disjoint from
ζ because ζ and η are edge-disjoint, and V (γ) ⊆ V (Gk(f)) while V (ζ) avoids
V (Gk(f)) since f is not an edge of ζ and z 6∈ V (Gk(f)). Now apply Lemma 2.3,
letting (u, v, ζ) = (z, b, ζ). Since λk[z, b] contains vk, it is clear that V (λk[z, b]) 6⊆ Vk.
Therefore V (λk[z, b])∩V (K) = ∅, where K is the connected component of Gk\E(ζ)
that contains wk. But y ∈ V (λk[z, b]), and the path ε joins y to wk so y ∈ V (K).
Therefore y ∈ V (λk[z, b]) ∩ V (K). This contradiction implies that (2.6.2) holds.

We now complete the proof of Proposition 2.1. From (2.6.2), (2), and the choice
of x and y, we have that V (Gk(f)) ∩ V (C) = V (λk[x, y]). Thus there are just two
edges of C that join a vertex of Gk(f) to a vertex outside Gk(f). Delete these edges.
The resulting graph has f as an isthmus and has at least three vertices. Therefore
it is not a block. This contradiction completes the proof of Proposition 2.1. �

Proof of Theorem 1.2. The graph obtained from G by deleting all the loops is a
block. If we can prove the theorem in the case that G is a block, then it will follow
in general because each loop is itself a removable cycle. Thus assume that G is a
block. First, observe that G\e is a block for every edge e of G. Let x and y be
distinct edges of G. Since G\y is a block, G has a cycle C that contains x but not
y. Now applying Proposition 2.1 taking H to be the block with edge set {y}, we
obtain a cycle Cx of G such that G\E(Cx) is a block, x ∈ E(Cx), and y 6∈ E(Cx).
Since G\E(Cx) is a block, there is a cycle C ′ of this graph such that y ∈ E(C ′).
Applying Proposition 2.1 again, this time taking H to be the cycle Cx, we obtain
a cycle Cy containing y such that E(Cx)∩E(Cy) = ∅ and G\E(Cy) is a block. �

3. Matroid (non)-extensions

Mader’s theorem [7], with which we began this paper, implies that every 2-
connected simple graph in which every bond has at least four edges has a removable
cycle. In particular:

3.1. Every 2-connected simple graphic matroid M in which every cocircuit has at
least four elements has a removable circuit, that is, a circuit C such that M\C is
2-connected.

The matroid U3,7 shows that one cannot delete the word “graphic” from the last
result. Oxley [8, Problem 14.4.8] asked whether one could replace “graphic” with
“binary” in (3.1) and, specializing this, Goddyn, van den Heuvel, and McGuinness
(in an earlier version of [3]) conjectured that (3.1) holds when we replace “graphic”
with “cographic”. Lemos and Oxley [6] gave a counterexample to this conjecture.
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We describe this example next for it provides a counterexample to a natural exten-
sion of Theorem 1.2 to cographic matroids. We begin with a copy of K5,5 having
vertex classes V1 and V2. Then, for every 3-element set Z that is a subset of V1

or of V2, adjoin two new degree-3 vertices vZ and wZ making each of them adja-
cent to all the members of Z. The resulting graph G has 50 vertices and 145 edges.
Evidently G is bipartite and has girth four. Moreover, G is 3-connected and 3-edge-
connected. It is shown in [6, Proposition 2.1] that G has no bond C∗ for which the
contraction G/C∗ is 2-connected. Thus M∗(G) has no removable circuit. However,
M∗(G)\X is 2-connected for all 2-subsets X of E(G) because every single-edge
contraction of G is 3-connected. Thus, by contrast with the graphic case dealt with
in Theorem 1.2, in the cographic case, the condition that M\X is 2-connected for
all 2-subsets X of E(M) is not strong enough to guarantee the existence of even
one removable circuit.

Although Mader’s theorem does not extend to binary or even cographic matroids,
by strengthening the hypothesis slightly, Goddyn and Jackson [4] were able to
extend the theorem to a class of binary matroids that includes cographic matroids.
In particular, they proved that if e is an element of a connected binary matroid
M such that M does not have both the Fano matroid and its dual as minors and
|X| ≥ 5 for all cocircuits X of M not containing e, then M has a removable circuit
C that avoids e such that r(M\C) = r(M).
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