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Abstract. This paper proves that a connected matroid M whose largest cir-

cuit and largest cocircuit have c and c∗ elements, respectively, has at most
1
2
cc∗ elements. It is also shown that if e is an element of M and ce and c∗e are

the sizes of a largest circuit containing e and a largest cocircuit containing e,

then |E(M)| ≤ (ce − 1)(c∗e − 1) + 1. Both these bounds are sharp and the first
is proved using the second. The second inequality is an interesting companion

to Lehman’s width-length inequality which asserts that the former inequality

can be reversed for regular matroids when ce and c∗e are replaced by the sizes
of a smallest circuit containing e and a smallest cocircuit containing e. More-

over, it follows from the second inequality that if u and v are distinct vertices

in a 2-connected loopless graph G, then |E(G)| cannot exceed the product of
the length of a longest (u, v)-path and the size of a largest minimal edge-cut

separating u from v.

1. Introduction

At the 1991 Seattle conference on graph minors, Robin Thomas informally asked
the question as to whether every sufficiently large connected matroid has a big
circuit or a big cocircuit. This question was rapidly answered at that meeting by
Lovász, Schrijver, and Seymour (see [9]) who proved the following result.

1.1. Theorem. Let M be a connected matroid with at least two elements. If a
largest circuit of M has c elements and a largest cocircuit has c∗ elements, then M
has at most 2c+c∗−1 elements.

An affirmative answer to Thomas’s question can also be obtained from a result of
Tuza [15] for set systems. In response to Theorem 1.1, a natural question is whether
the bound in the theorem can be improved, particularly if attention is restricted
to certain special classes of matroids. For graphic matroids, the following dramatic
improvement was found by Pou-Lin Wu [16].

1.2. Theorem. Let G be a loopless 2–connected graph in which a largest cycle has
c edges and a largest bond has c∗ edges. Then G has at most 1

2 cc∗ edges.

Of course, c is just the circumference of the graph G. There is a wide gap between
the graph bound in Theorem 1.2 and the general matroid bound in Theorem 1.1.
Reid [11] partially closed this gap. He defined the matroid Ramsey number n(s, t)
to be the least positive integer n so that every n–element connected matroid has
a circuit of size at least s or a cocircuit of size at least t. Reid showed that n(s, t)
has several attractive properties that are analogous to properties of the classical
Ramsey numbers for graphs established by Erdős and Szekeres [3]. Using these,
Reid proved the following improvement of Theorem 1.1.
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1.3. Theorem. If M is a connected matroid with largest circuit of size c and largest
cocircuit of size c∗, then

|E(M)| ≤
(

c + c∗ − 2
c− 1

)
− 2

provided both c and c∗ exceed three.

Reid [11] and Hurst and Reid [5] also determined some small matroid Ramsey
numbers including all n(s, t) with s or t at most three.

The purpose of this paper is to prove that the bound that Pou-Lin Wu proved
for graphic matroids also holds for matroids in general. The following is our main
result.

1.4. Theorem. Let M be a connected matroid with at least two elements. If a
largest circuit of M has c elements and a largest cocircuit has c∗ elements, then

|E(M)| ≤
⌊

cc∗

2

⌋
.

This theorem solves a problem raised by Oxley [10] and settles a conjecture of
Bonin, McNulty, and Reid [1]. For comparison, a lower bound on |E(M)| in terms
of c and c∗ that holds for all matroids M having non-zero rank and corank is

c + c∗ − 2 ≤ |E(M)|. (1)

To see this, observe that c ≤ r(M) + 1 and c∗ ≤ r∗(M) + 1. The bound in (1) is
sharp. It is attained by, for example, the whirls, all uniform matroids of non-zero
rank and corank, and, more generally, by all matroids with both a free element and
a cofree element.

The proof of Theorem 1.4 will use another bound that is of independent interest.

1.5. Theorem. Let M be a connected matroid with at least two elements and let e
be an element of M . If a largest circuit of M containing e has ce elements and a
largest cocircuit containing e has c∗e elements, then

|E(M)| ≤ (ce − 1)(c∗e − 1) + 1.

The last theorem has an attractive similarity to a bound derived from the width-
length inequality [7, 4]. In a matroid M , let e be an element that is neither a loop
nor a coloop. Let λ(M) + 1 and ω(M) + 1 be the cardinalities of a smallest circuit
containing e and a smallest cocircuit containing e. Lehman [7] showed that if M is
regular, then

λ(M)ω(M) ≤ |E(M)| − 1. (2)
More generally, it follows from a result of Seymour [12] that the last inequality
holds for all binary matroids that have no F ∗

7 -minor using e. In fact, it also holds
for F ∗

7 , although it fails, for example, for AG(3, 2).
A straightforward consequence of Theorem 1.5 is the following result for graphs.

1.6. Corollary. Let u and v be distinct vertices in a 2-connected loopless graph G.
Then |E(G)| cannot exceed the product of the length of a longest (u, v)-path and the
size of a largest minimal edge-cut separating u from v.

The bounds in Theorems 1.2, 1.4, and 1.5 are sharp. Pou-Lin Wu [17] determined
all graphs that attain the bound in Theorem 1.2. The cycle matroid of each such
graph attains the bound in Theorem 1.4 provided c or c∗ is even. A non-graphic
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matroid attaining the bound in Theorem 1.4, which was noted by Reid [11], is
AG(3, 2). In Section 4, we shall describe all the matroids that attain the bound
in Theorem 1.5, noting that there is a close link between these matroids and those
found by Wu.

The matroid terminology used here will follow Oxley [9]. In particular, the set of
circuits of a matroid M will be denoted by C(M). Theorem 1.5 will be deduced in
the next section from a stronger result, while Theorem 1.4 will be proved in Section
3.

2. Two strengthenings of Theorem 1.5

Let e be an element of a matroid M and suppose that e is not a coloop of M .
We define the circumference of M through e by

ce(M) = max{|C| : e ∈ C ∈ C(M)},
that is, ce(M) is the size of a largest circuit that contains e. If f is an element
of M that is not a loop, we define c∗f (M) = cf (M∗). The circumference c(M) of
a non-free matroid is the size of a largest circuit of M . If r(M) > 0, we define
c∗(M) = c(M∗).

Let C be a circuit of a matroid M . A subset P of E(M)− C is a chord of C if
P ∈ C(M/C) − C(M). Equivalently, P is a chord of C if and only if P is disjoint
from C and M |(C ∪ P ) is a connected matroid having corank two. In particular,
when P is a chord of C, it is a series class of M |(C ∪ P ).

The first strengthening of Theorem 1.5 will require some more preliminaries. Let
L be a subset of the ground set of a matroid M and suppose that L is the union
of a set of circuits of M and r∗(M |L) = 2. Then L is what Tutte [14] has called
a “line” of M . We shall call L a Tutte-line since the word “line” is also commonly
used in matroid theory to mean a rank-2 flat. It is not difficult to see that every
Tutte-line L of a matroid M has a canonical partition {L1, L2, . . . , Lk} such that a
subset C of L is a circuit of M |L if and only if C = L−Li for some i in {1, 2, . . . , k}.
A Tutte-line L is connected if M |L is a connected matroid. The size of a Tutte-line
is the number of sets in its canonical partition. Hence a Tutte-line is connected if
and only if it has size at least three.

2.1. Theorem. Let M be a connected matroid such that |E(M)| > 1 and let e be
an element of M . Then

|E(M)| ≤ ce(M) +
1

m− 2
(ce(M)− 1)(c∗e(M)− 2)

for all integers m exceeding two such that every connected Tutte-line of M has size
at least m.

The dual of this theorem can be restated using the concept of a coline of a
matroid, a flat of rank two less than the matroid.

2.2. Corollary. Let M be a connected matroid such that |E(M)| > 1 and let e
be an element of M . Suppose that m is an integer exceeding two such that every
coline of M that is contained in more than two hyperplanes is contained in at least
m hyperplanes. Then

|E(M)| ≤ c∗e(M) +
1

m− 2
(c∗e(M)− 1)(ce(M)− 2).
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Proof of Theorem 1.5. In all connected matroids with at least two elements, every
connected Tutte-line has size at least three. The theorem follows immediately by
taking m = 3 in Theorem 2.1. �

Proof of Corollary 1.6. Add the edge e to G so that it joins u and v. Then the
result follows immediately from Theorem 1.5. �

Proof of Theorem 2.1. We argue by induction on |E(M)| noting that the result
holds when |E(M)| = 2. Assume it holds for |E(M)| < k and let |E(M)| = k ≥ 3.
Choose a circuit C of M such that e ∈ C and |C| = ce(M). Observe that the
result holds when E(M) = C. Thus we may suppose that E(M) 6= C. Let
M1,M2, . . . ,Mn be the connected components of M/C.

For each element f of C − e, consider the connected component Nf of M/(C −
{e, f}) that contains f . There is a set Pf of matroids such that

(i) Nf is the parallel connection of the matroids in Pf across the basepoint e;
and

(ii) N/e is connected for every N in Pf .
Observe that {e, f} is the ground set of a matroid that belongs to Pf . For each
matroid N in Pf , let C∗

N be a cocircuit of N such that e ∈ C∗
N and |C∗

N | = c∗e(N).
Let

C∗ =
⋃

N∈Pf

C∗
N .

Then C∗ contains e and is a cocircuit of Nf and hence of M . Thus

c∗e(M) ≥ |C∗| = 1 +
∑

N∈Pf

(c∗e(N)− 1). (3)

For each f in C − e, view the set Pf as a multiset and let P be the multiset that is
the union of all these multisets. For each i in {1, 2, . . . , n}, let Qi be the multiset
of matroids N in P for which N/e = Mi. Then P is the union of the multisets
Q1,Q2, . . . ,Qn together with |C| − 1 copies of U1,2, the ground sets of the latter
being all sets of the form {e, f} such that f ∈ C − e. For all i in {1, 2, . . . , n}, let
Ni be a matroid in Qi for which

c∗e(Ni) = min{c∗e(N) : N ∈ Qi}. (4)

On summing (3) over all f in C − e, we get

(|C| − 1)c∗e(M) ≥ (|C| − 1) +
∑

f∈C−e

∑
N∈Pf

(c∗e(N)− 1).

Therefore

(|C| − 1)c∗e(M) ≥ (|C| − 1) +

[
(|C| − 1) +

n∑
i=1

∑
N∈Qi

(c∗e(N)− 1)

]
, (5)

where the extra (|C| − 1)-term appears because, for every f in C − e, there is a
matroid belonging to Pf having ground set {e, f} and this matroid does not belong
to any Qi. Hence

(|C| − 1)(c∗e(M)− 2) ≥
n∑

i=1

|Qi|(c∗e(Ni)− 1). (6)
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As |C| = ce(M), it follows that

(ce(M)− 1)(c∗e(M)− 2) ≥
n∑

i=1

|Qi|(c∗e(Ni)− 1). (7)

Next we obtain, for each i in {1, 2, . . . , n}, a lower bound on |Qi|. Let Pi be a
subset of E(Mi) such that Pi ∪ e is a circuit of Ni of size ce(Ni). Thus

|Pi| = ce(Ni)− 1. (8)

Moreover, Pi is a chord of C, so C ∪ Pi is a connected Tutte-line Li of M . Let
{Pi, Li1, Li2, . . . , Lini} be the canonical partition of Li. Without loss of generality,
we may assume that e ∈ Lini . For all j in {1, 2, . . . , ni − 1}, the set Li − Lij is a
circuit of M containing e. Thus

|C| ≥ |Li − Lij | = |Li| − |Lij |.

But
|C| = |Li − Pi| = |Li| − |Pi|.

Hence
|Pi| ≤ min{|Lij | : 1 ≤ j ≤ ni − 1}. (9)

For all f in
⋃ni−1

j=1 Lij , since Mi and Nf are the connected components of M/C

and M/(C − {e, f}), respectively, containing Pi, we deduce that E(Mi) ⊆ E(Nf )
and therefore Pf contains a member N of Qi. Thus

|Qi| ≥
ni−1∑
j=1

|Lij | ≥ (ni − 1)|Pi|, (10)

where the second inequality follows by (9). Moreover, since C ∪ Pi is a connected
Tutte-line of M of size ni + 1, we have ni + 1 ≥ m. Hence, using (10) and (8), we
deduce that

|Qi| ≥ (m− 2)|Pi| = (m− 2)(ce(Ni)− 1). (11)

On combining (7) and (11), we get

(ce(M)− 1)(c∗e(M)− 2) ≥
n∑

i=1

(m− 2)(ce(Ni)− 1)(c∗e(Ni)− 1). (12)

As 2 ≤ |E(Ni)| < |E(M)|, the theorem holds for Ni. In particular, since every
connected Tutte-line of Ni has size at least three, it follows that

|E(Ni)| ≤ ce(Ni) + (ce(Ni)− 1)(c∗e(Ni)− 2).

But |E(Mi)| = |E(Ni)| − 1, so

|E(Mi)| ≤ (ce(Ni)− 1)(c∗e(Ni)− 1). (13)

On combining (12) and (13), we get

(ce(M)− 1)(c∗e(M)− 2) ≥
n∑

i=1

(m− 2)|E(Mi)|

≥ (m− 2)
n∑

i=1

|E(Mi)| = (m− 2)|E(M)− C|.
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Rewriting the last inequality, using the fact that ce(M) = |C|, we obtain

|E(M)| ≤ ce(M) +
1

m− 2
(ce(M)− 1)(c∗e(M)− 2)

and the theorem follows by induction. �

As an immediate consequence of Corollary 2.2, we have the following result.

2.3. Corollary. Let M be a connected matroid such that |E(M)| > 1. Suppose that
m is an integer exceeding two such that every coline of M that is contained in more
than two hyperplanes is contained in at least m hyperplanes. Then

|E(M)| ≤ c∗(M) +
1

m− 2
(c∗(M)− 1)(c(M)− 2).

The bound in the last inequality is sharp, it being attained for every m ≥ 3 by
Un−m+2,n provided n ≥ m− 1.

After the original submission of this paper, Guoli Ding (private communication)
gave a short proof of Theorem 1.5. A straightforward modification of his argument
yields our second strengthening of Theorem 1.5. This result answers a question of
Paul Seymour (private communication).

2.4. Theorem. Let M be a connected matroid with at least two elements and let e
be an element of M . Then there are ce(M) − 1 cocircuits of M each containing e
such that the union of these cocircuits is E(M).

Proof. We argue by induction on ce(M). If ce(M) = 2, then M is a uniform matroid
having rank one, so E(M) is a cocircuit of M and the result follows. Now suppose
that the theorem holds for ce(M) < n and let ce(M) = n ≥ 3.

Let C∗ be a cocircuit of M that contains e. Clearly C∗ 6= E(M). By a well-
known result of Tutte [14] (see also [9, Theorem 4.3.1]), for every element z of
a connected matroid, the deletion or contraction of z leaves a connected matroid.
Thus there is a partition {X, Y } of C∗−e such that M\X/Y is a connected matroid;
call it N . As every circuit of M that contains e must also meet X or Y , it follows
that

ce(N) < ce(M).

Since C∗ 6= E(M), the matroid N has at least two elements. Thus, by the induction
assumption, for some k ≤ ce(N) − 1, there are k cocircuits C∗

1 , C∗
2 , . . . , C∗

k of N
each containing e such that the union of these cocircuits is E(N). For each C∗

i ,
there is a cocircuit D∗

i of M such that C∗
i = D∗

i − X. Hence C∗, D∗
1 , D∗

2 , . . . , D∗
k

are cocircuits of M each containing e and

E(M) = E(N) ∪X ∪ Y ⊆ C∗
1 ∪ C∗

2 ∪ · · · ∪ C∗
k ∪ C∗ ⊆ D∗

1 ∪D∗
2 ∪ · · · ∪D∗

k ∪ C∗.

Thus we have a family of k + 1 cocircuits of M that covers E(M). Since

k + 1 ≤ (ce(N)− 1) + 1 = ce(N) ≤ ce(M)− 1,

the result follows by induction. �

We observe, from the last proof, that the family of ce(M) − 1 cocircuits that
covers E(M) can be required to include any arbitrarily chosen cocircuit of M that
contains e.
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3. Proof of Theorem 1.4

In this section, we shall prove Theorem 1.4. In addition to Theorem 1.5, the
proof will use two lemmas and we begin the section by proving them. For a circuit
C of a matroid M such that |C| ≥ 2, we define

c∗(C,M) = max{|D∗| : D∗ ∈ C(M∗) and |D∗ ∩ C| = 2}.

3.1. Lemma. Suppose that M is a connected matroid having a circuit C such that
every connected component of M/C is a circuit. If |E(M)| > 1, then

|E(M)| ≤ |C|+ c(M)
⌈

c∗(C,M)− 2
2

⌉
. (∗)

Proof. Suppose that (∗) is false and choose a counterexample M such that |E(M)|
is minimum. Observe that E(M) 6= C, otherwise (∗) holds. Suppose that M/e is
connected for some e in C. Observe that |E(M/e)| > 1 because E(M) 6= C. As
M/C = (M/e)/(C − e), it follows that the result holds for the pair (M/e, C − e),
by the choice of (M,C). In particular,

|E(M/e)| ≤ |C − e|+ c(M/e)
⌈

c∗(C − e,M/e)− 2
2

⌉
.

Observe that c(M/e) ≤ c(M) and c∗(C − e,M/e) ≤ c∗(C,M). Hence

|E(M)| − 1 ≤ |C| − 1 + c(M)
⌈

c∗(C,M)− 2
2

⌉
and we obtain the contradiction that (∗) holds for M . Thus M/e is disconnected
for every e in C.

For all e in C, let Pe be a chord of C such that Pe is the ground set of a connected
component of M/e. If possible, choose the chords Pe such that Pa 6= Pb for every
2-element subset {a, b} of C. Suppose that this choice is impossible. Then Pa = Pb

for some distinct a and b in C. Therefore both Pa ∪ a and Pa ∪ b are circuits of
M . Thus if x ∈ Pa, then M has a circuit contained in (Pa − x) ∪ {a, b}. Suppose
that {a, b} is a proper subset of C. Then, since Pa − x is independent in M/C, it
follows that (Pa − x) ∪ {a, b} is independent in M ; a contradiction. We conclude
that C = {a, b}. Moreover, since, by hypothesis, Pa and Pb cannot be chosen to
be different, M is the cycle matroid of the graph consisting of two vertices that are
joined by a, b, and a path with edge set Pa. Thus

|E(M)| = |C|+ |Pa| = 2 + |Pa|,

c∗(C,M) = 3, and c(M) = |Pa|+ 1. Therefore

|C|+ c(M)
⌈

c∗(C,M)− 2
2

⌉
= 2 + c(M) = 3 + |Pa|

and we obtain the contradiction that (∗) holds for M .
We now know that if a and b are distinct elements of C, then Pa 6= Pb. It follows

that M |[C∪(
⋃

e∈C Pe)] is the cycle matroid of the graph that can be obtained from
a cycle with edge set C by adding an edge e′ in parallel with each edge e and then
subdividing e′ to produce a path with edge set Pe. Hence if C ′ =

⋃
e∈C Pe, then

C ′ is a circuit of M , so
|C ′| ≤ c(M). (14)
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Moreover, M\C ′ is connected. Now, suppose that D∗ is a cocircuit of M such that
|D∗ ∩ C| = 2, say D∗ ∩ C = {a, b}. Observe that D∗ must intersect Pa and Pb

because Pa ∪ a and Pb ∪ b are circuits of M . Thus

c∗(C,M\C ′) ≤ c∗(C,M)− 2. (15)

By the choice of M , inequality (∗) holds for the pair (M\C ′, C), that is,

|E(M\C ′)| ≤ |C|+ c(M\C ′)
⌈

c∗(C,M\C ′)− 2
2

⌉
.

As c(M\C ′) ≤ c(M), it follows using (15) that

|E(M)| − |C ′| ≤ |C|+ c(M)
⌈

c∗(C,M)− 4
2

⌉
.

Hence

|E(M)| ≤ |C|+ c(M)
⌈

c∗(C,M)− 2
2

⌉
+ |C ′| − c(M)

≤ |C|+ c(M)
⌈

c∗(C,M)− 2
2

⌉
.

The last inequality, which holds by (14), gives the contradiction that the lemma
holds for M . �

3.2. Lemma. Suppose that M is a connected matroid such that |E(M)| > 1. If C
is a circuit of M such that |C| = c(M), then

|E(M)| ≤ c(M)
⌈

c∗(C,M)
2

⌉
. (∗∗)

Proof. Let M1,M2, . . . ,Mn be the connected components of M/C. Suppose that
(∗∗) is false and choose a counterexample M in which the number of Mi that are not
circuits is a minimum. This number is non-zero, otherwise we get a contradiction
to Lemma 3.1. In particular, E(M) 6= C and we may assume that M1 is not a
circuit.

Let P be a chord of C that is contained in E(M1). Fix a circuit C1 of M |(C∪P )
such that C1 − C = P . Observe that, since P is a series class of M |(C ∪ P ),
this matroid has a circuit D1 containing P ∪ (C − C1). Then |C1| + |D1| ≤ 2|C|.
Moreover, |C1| = |P |+ |C ∩ C1| and |D1| ≥ |P |+ |C − C1|. Therefore

|P |+ |C ∩ C1|+ |P |+ |C − C1| ≤ |C1|+ |D1| ≤ 2|C|,

that is, 2|P |+ |C| ≤ 2|C|, so
2|P | ≤ |C|. (16)

By definition, P is a circuit of the component M1 of M/C. Thus P is a series
class of (M/C)\(E(M1)− P ). Hence

P is a series class of M\(E(M1)− P ). (17)

For each 2-element subset {x, y} of C, let Nxy be the component of M/(C −
{x, y}) that contains {x, y}. Choose a 2-element subset {a, b} of C such that E(M1)
is contained in E(Nab). Then M1 is a connected component of Nab/a. Thus Nab

can be decomposed as the parallel connection of two matroids across a such that,
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for one of these matroids, N1, we have N1/a = M1. Among the 2-element subsets
{a, b} of C for which E(M1) ⊆ E(Nab), choose one such that

c∗a(N1)− 1 is a minimum. (18)

Let P1 be a chord of C contained in E(M1) such that |P1| = ca(N1) − 1. By
Theorem 1.5, we have that

|E(M1)| = |E(N1)| − 1 ≤ (ca(N1)− 1)(c∗a(N1)− 1). (19)

Now M1 is not a circuit. By (17), P1 is a series class of M\(E(M1) − P1).
Thus M\(E(M1) − P1) is the 2-sum, with basepoint p, of a circuit with ground
set P1 ∪ p and a matroid M ′

1 with ground set (E(M)− E(M1)) ∪ p. We construct
a new matroid M ′ from M\(E(M1) − P1) by placing c∗a(N1) − 2 series classes “in
parallel” with P1, with each such series class having exactly |P1| elements. More
formally, take c∗a(N1)−2 disjoint subsets of size |P1|, each disjoint from E(M), and,
for each such subset X, take a circuit with ground set X ∪ p. Then M ′ is obtained
by deleting p from the parallel connection, with basepoint p, of the collection of
matroids consisting of all these circuits, the circuit with ground set P1 ∪ p, and the
matroid M ′

1. For each 2-element subset {x, y} of C, let N ′
xy be the component of

M ′/(C−{x, y}) that contains {x, y}. Then E(N ′
ab) contains P1. Moreover, N ′

ab can
be obtained from Nab by replacing N1 by the parallel connection, with basepoint
a, of c∗a(N1)− 1 circuits, each having exactly |P1|+ 1 elements. Thus

|E(M ′)| = |E(M)| − |E(N1)|+ |P1|(c∗a(N1)− 1) + 1.

Since |P1| = ca(N1)− 1 and |E(M1)| = |E(N1)| − 1, we deduce that

|E(M ′)| − |E(M)| = (ca(N1)− 1)(c∗a(N1)− 1)− |E(M1)|.
Therefore, by (19) , |E(M ′)| ≥ |E(M)|. Since M ′/C has fewer components that
are not circuits than does M/C, it will follow that (∗∗) holds for the pair (M ′, C),
provided we can show that

|C| = c(M ′). (20)
The proof of the lemma will be completed by proving this together with the in-
equality

c∗(C,M ′) ≤ c∗(C,M). (21)
Suppose that c(M ′) > |C|. Then M ′ has a circuit C ′ such that |C ′| > |C|.

Certainly C ′ meets E(M ′)−E(M), otherwise C ′ is a circuit of M ; a contradiction.
If C ′ ⊆ E(M ′)−E(M), then C ′ is the union of two series class of M ′ each of which
is contained in E(M ′)− E(M) and has |P1| elements. Thus

|C ′| = 2|P1| ≤ |C|
where the last inequality follows by (16) . This contradiction implies that C ′ meets
both E(M ′)−E(M) and E(M)∩E(M ′). Thus C ′ contains a series class P ′ of M ′

that is contained in E(M ′) − E(M). Hence (C ′ − P ′) ∪ P1 is also a circuit of M ′

having the same cardinality as C ′. This is a contradiction because this circuit is
also a circuit of M . Thus (20) holds.

Next we prove (21). Suppose that c∗(C,M ′) > c∗(C,M). Then there is a 2-
element subset {g, h} of C such that

c∗gh(C,M ′) > c∗gh(C,M),

where
c∗gh(C,M) = max{|D∗| : D∗ ∈ C(M∗) and D∗ ∩ C = {g, h}}.
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Then certainly Ngh 6= N ′
gh. Moreover, if E(M1) avoids E(Ngh), then M1 is a

component of M/(C − {g, h}) and so Ngh = N ′
gh; a contradiction. Thus E(M1)

meets, and so is contained in, E(Ngh). Hence P1 is contained in E(Ngh).
Each of Ngh and N ′

gh can be obtained as a parallel connection across g of a
certain set of matroids. For Ngh, this set Sg includes a matroid N ′′

1 for which
N ′′

1 /g = M1. The set S ′g for N ′
gh must contain Sg − {N ′′

1 }.
We show next that P1∪g is a circuit of N ′′

1 . Suppose not. Then P1 is a circuit of
M/(C − {g, h}) and hence of M ′/(C − {g, h}). It follows from the construction of
M ′ that P1 is a component of M ′/(C − {g, h}) and that the elements of E(M ′)−
E(M) are partitioned into c∗a(N1) − 2 sets each a |P1|-circuit that is a component
of M ′/(C − {g, h}). Thus S ′g = Sg − {N ′′

1 } and so c∗gh(C,M ′) ≤ c∗gh(C,M); a
contradiction. Thus P1 ∪ g is indeed a circuit of N ′′

1 .
The construction of M ′ now implies that S ′g is obtained from Sg − {N ′′

1 } by
adjoining c∗a(N1)− 1 circuits, each of size |P1|+ 1. Thus

c∗gh(C,M ′)− c∗gh(C,M) = (c∗a(N1)− 1)− (c∗g(N
′′
1 )− 1).

But, by the choice of N1, the right-hand side of this equation is not positive. Hence
c∗gh(C,M ′) ≤ c∗gh(C,M); a contradiction. We conclude that (21) holds.

Since (∗∗) holds for M ′ and c(M) = |C| = c(M ′),

|E(M ′)| ≤ c(M)
⌈

c∗(C,M ′)
2

⌉
.

But |E(M)| ≤ |E(M ′)| and c∗(C,M ′) ≤ c∗(C,M). Hence

|E(M)| ≤ c(M)
⌈

c∗(C,M)
2

⌉
;

a contradiction. �

We are now ready to prove the main result of the paper.

Proof of Theorem 1.4. Evidently, it suffices to prove that

|E(M)| ≤ c(M)c∗(M)
2

.

We shall first prove this when c∗(M) is even. By Lemma 3.2,

|E(M)| ≤ c(M)
⌈

c∗(C,M)
2

⌉
,

for any circuit C of M such that |C| = c(M). As c∗(C,M) ≤ c∗(M), it follows that

|E(M)| ≤ c(M)
⌈

c∗(C,M)
2

⌉
≤ c(M)

⌈
c∗(M)

2

⌉
=

c(M)c∗(M)
2

,

where the last equality follows since c∗(M) is an even integer.
When c∗(M) is odd, let M ′ be the matroid obtained from M by inserting an

element in parallel with each element of the latter. Then c∗(M ′) = 2c∗(M). Thus
c∗(M ′) is even and hence

|E(M ′)| ≤ c(M ′)c∗(M ′)
2

.

As |E(M ′)| = 2|E(M)| and c(M ′) = c(M), we get

2|E(M)| ≤ c(M)c∗(M)
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and the result follows. �

Reid [11] noted that the matroid Ramsey numbers have the property that
n(1, 1) = 1 and n(s, t) = 2 if s or t is in {1, 2} provided (s, t) 6= (1, 1). As a
consequence of the last theorem, we can determine n(s, t) for all other pairs (s, t).
Before this result, for s ≤ t, the Ramsey number with s largest for which the exact
value was known was n(6, 6), which Bonin, McNulty, and Reid [1] showed was equal
to 13.

3.3. Corollary. For all integers s and t exceeding two,

n(s, t) =
⌊

(s− 1)(t− 1)
2

⌋
+ 1.

Proof. It follows immediately from Theorem 1.4 that

n(s, t) ≤
⌊

(s− 1)(t− 1)
2

⌋
+ 1.

We shall show that equality holds here by giving, for all s and t exceeding two, an
example of a connected matroid M with c(M) = s− 1, c∗(M) = t− 1, and

|E(M)| =
⌊

(s− 1)(t− 1)
2

⌋
.

In each case, the matroid M will be the cycle matroid of a graph G. If t is odd, let
G be obtained from a cycle with s−1 edges by replacing each edge by t−1

2 edges in
parallel. If s is odd, let G consist of two vertices joined by t− 1 internally disjoint
paths each of length s−1

2 . Finally, if s and t are both even, let G be constructed by
joining two vertices by three internally disjoint paths, of lengths s−2

2 , s−2
2 , s

2 , and
then replacing each edge of the first and last paths by t−2

2 edges in parallel. �

4. The matroids attaining the bound of Theorem 1.5

In this section, we characterize the matroids for which equality holds in the
bound in Theorem 1.5. In addition, we relate this class of matroids to the graphs
that attain the bound in Theorem 1.2. We denote by B3 the class of matroids that
attain the bound in Theorem 1.5, that is, those matroids M that have an element
e for which

|E(M)| = ce(M) + (ce(M)− 1)(c∗e(M)− 2).
It is straightforward to check that B3 is closed under duality and that every circuit
with at least two elements including e belongs to B3. In the next lemma, we
shall prove that B3 is closed under series connection, provided some conditions are
satisfied. A matroid M is uniform with respect to an element f if every circuit
containing f has the same cardinality d and every cocircuit containing f has the
same cardinality d∗. A matroid M is a uniform series connection of k matroids
M1,M2, . . . ,Mk for some k ≥ 2 if the following hold:

4.1. (i) M1,M2, . . . ,Mk are connected matroids each having at least two ele-
ments;

(ii) E(Mi) ∩ E(Mj) = {e} for every 2-subset {i, j} of {1, 2, . . . , k};
(iii) c∗e(M1) = c∗e(M2) = · · · = c∗e(Mk);
(iv) M1,M2, . . . ,Mk are uniform with respect to e; and
(v) M is S(M1,M2, . . . ,Mk), the series connection with basepoint e of M1,

M2, . . . ,Mk.
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4.2. Lemma. Let M1,M2, . . . ,Mk be matroids satisfying (4.1)(i)–(ii). Let M =
S(M1,M2, . . . ,Mk). Then M ∈ B3 if and only if all of M1,M2, . . . ,Mk are in
B3 and (4.1)(iii) holds. Moreover, M is uniform with respect to e if and only if
(4.1)(iii) and (4.1)(iv) hold.

Proof. Clearly

|E(M)| = 1 +
k∑

i=1

(|E(Mi)| − 1).

Thus, by applying Theorem 1.5 to each Mi, we get

|E(M)| ≤ 1 +
k∑

i=1

[
ce(Mi)− 1 + (ce(Mi)− 1)(c∗e(Mi)− 2)

]
= 1 +

k∑
i=1

(ce(Mi)− 1) +
k∑

i=1

(ce(Mi)− 1)(c∗e(Mi)− 2)

≤ ce(M) + max{c∗e(Mi)− 2 : 1 ≤ i ≤ k}
k∑

i=1

(ce(Mi)− 1)

= ce(M) + max{c∗e(Mi)− 2 : 1 ≤ i ≤ k}(ce(M)− 1)
= ce(M) + (c∗e(M)− 2)(ce(M)− 1).

Thus M ∈ B3 if and only if equality occurs throughout the above, that is, if and
only if M1,M2, . . . ,Mk are all in B3, and

c∗e(M1) = c∗e(M2) = · · · = c∗e(Mk).

Hence the first part of the lemma holds. The second part follows straightforwardly
from the definition of series connection. �

The proof of the characterization of the matroids attaining equality in Theo-
rem 1.5 will use two results of Seymour [13]. Because the terminology of that paper
is different from that used here, we have translated Seymour’s results into our ter-
minology. The first result is [13, (3.7)], restated in the special case that Z is a
circuit.

4.3. Lemma. Let e be an element of a circuit C of a connected matroid M . If
M\e is connected, then there is no partition {X1, X2} of E(M)− e such that

(i) no chord of C meets both X1 and X2; and
(ii) for each i in {1, 2}, if P is a chord of C contained in Xi, then Xi contains

a circuit containing P .

The second lemma is a restatement of a special case of [13, (3.8)].

4.4. Lemma. Let C and D be circuits of a matroid M such that C ∩D = {e} and
(C ∪D)− e is also a circuit of M . Then either (C ∪D)− e has a chord A that is
different from {e} and is not a chord of C or of D, or there is a partition {X1, X2}
of E(M\e) such that X1 ⊇ C − e and X2 ⊇ D − e, and

r(X1) + r(X2)− r(M\e) = r(C − e) + r(D − e)− r((C ∪D)− e) = 1.

4.5. Theorem. B3 is the minimal class M of matroids with the following properties.
(i) Every circuit that contains e and has at least two elements is in M.
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(ii) The dual of every member of M is in M.
(iii) The uniform series connection of a collection of members of M is in M.

Proof. We noted above that B3 contains all circuits with at least two elements
including e and that B3 is closed under both duality and uniform series connec-
tion. The proof will be completed by proving the following, where the superfluous
strength of the assertion will facilitate the argument.

4.5.1. If M ∈ B3, then M is uniform with respect to e, and M or its dual is a
circuit or is a uniform series connection of a collection of matroids in B3.

We shall argue by induction on |E(M)| noting that the assertion holds when M
is a circuit. Thus we may assume that M is not a circuit.

We shall use the same notation as in the proof of Theorem 2.1 taking m = 3.
When a matroid attains equality in the bound in Theorem 1.5, equality must hold
in all the inequalities that appear in the proof of Theorem 2.1.

First, observe that, to achieve equality in (6), we must have that, for all i in
{1, 2, . . . , n},

c∗e(Ni) = c∗e(N)

for every N in Qi. Thus Ni can be chosen arbitrarily in Qi.
Equality must also hold in (9), that is,

|Pi| = min{|Lij | : 1 ≤ j ≤ ni − 1},

so, for all j in {1, 2, . . . , ni − 1},

|Lij | = |Pi|. (22)

Since equality must hold in (10) and (11), we have that, for all i in {1, 2, . . . , n},

(ni − 1)|Pi| = |Qi| = |Pi|.

Thus, for all such i,
ni = 2. (23)

As any N in Qi can be taken to be Ni, and since equality holds in (13), we have
that, for all N in Qi,

ce(N)− 1 =
|E(Mi)|

c∗e(N)− 1
=

|E(Mi)|
c∗e(Ni)− 1

= ce(Ni)− 1.

Hence
ce(Ni) = ce(N) (24)

for every N in Qi.
Again, since equality holds in (13),

|E(Mi)| = |E(Ni)| − 1 = (ce(Ni)− 1)(c∗e(Ni)− 1),

and so Ni ∈ B3. Thus, by the induction assumption, we deduce the following:

4.5.2. For all i in {1, 2, . . . , n}, the matroid Ni is uniform with respect to e.

Next we observe that the chords of C have the following property.

4.5.3. For all i in {1, 2, . . . , n}, every chord of C contained in E(Mi) has cardinality
equal to |Pi|.
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To see this, we note that, for such a chord P , the set P ∪ e is a circuit of N for
some N in Qi. As this N can be taken to be Ni, the assertion follows from (8) and
(24) because |Pi| = ce(Ni)− 1 and Ni is uniform with respect to e.

Next we show the following:

4.5.4. Suppose i ∈ {1, 2, . . . , n}. Let P ′
i be a chord of C contained in E(Mi) and let

Ci and C ′
i be the unique circuits of M |(C ∪ Pi) and M |(C ∪ P ′

i ), respectively, that
avoid e. Then

Ci ∩ C = Li1 = C ′
i ∩ C.

By definition, Qi =
⋃

f∈C−e{N ∈ Pf : N/e = Mi}. Also |{N ∈ Pf : N/e = Mi}|
is 0 or 1 for all f in C − e and, by (23), ni = 2. Therefore, from the paragraph
between (9) and (10), we have that, for all f in Li1, there is a matroid N in Pf

such that N/e = Mi. Thus

|Qi| = |{f ∈ C − e : Pf contains a matroid N such that N/e = Mi}|
≥ |Li1|.

But equality holds in (10) and therefore holds in the above. Hence, as Li1 = Ci∩C,
we have

Ci ∩ C = {f ∈ C − e : Pf contains a matroid N such that N/e = Mi}. (25)

By (4.5.3), |P ′
i | = |Pi| and so P ′

i can be used in place of Pi throughout the proof
of Theorem 2.1 and in the above. In particular,

C ′
i ∩ C = {f ∈ C − e : Pf contains a matroid N such that N/e = Mi}.

We conclude that
Ci ∩ C = C ′

i ∩ C,

that is, (4.5.4) holds.
On combining (4.5.4) and (22), we get that

|Ci ∩ C| = |Pi|. (26)

We now show that two sets Ci∩C and Cj∩C are either disjoint or are comparable.

4.5.5. If i and j are distinct elements of {1, 2, . . . , n}, then
(i) Ci ∩ Cj = ∅; or
(ii) Ci ∩ C ⊆ Cj ∩ C; or
(iii) Cj ∩ C ⊆ Ci ∩ C.

By (23), ni = nj = 2. Thus each of the Tutte-lines C ∪ Pi and C ∪ Pj has size
three, so the matroids M |(C∪Pi) and M |(C∪Pj) are binary. It is a straightforward
consequence of a result of Lemos [8, (3.1)] that M |(C ∪ Pi ∪ Pj) is also binary.
Assume that none of (i)–(iii) holds. Then M |(C ∪ Pi ∪ Pj) is the cycle matroid of
the graph obtained from a cycle C by adding two disjoint paths Pi and Pj each
with both endpoints on C such that the resulting graph is a subdivision of K4. Let
C ′ = Pi ∪Pj ∪ (Ci ∩Cj ∩C)∪ (C− (Ci ∪Cj)). Then C ′ is a circuit of M containing
e and

|C ′| = |Pi|+ |Pj |+ |Ci ∩ Cj ∩ C|+ |C − (Ci ∪ Cj)|.
Thus, by (26) and the fact that {Ci∩Cj∩C,C−(Ci∪Cj), (Ci∩C)−Cj , (Cj∩C)−Ci}
is a partition of C, we deduce that

|C ′| = |Ci ∩ C|+ |Cj ∩ C|+ |C| − |(Ci ∩ C)− Cj | − |(Cj ∩ C)− Ci|.
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As Ci∩C properly contains (Ci∩C)−Cj , and Cj∩C properly contains (Cj∩C)−Ci,
we deduce that |C ′| > |C|; a contradiction. We conclude that (4.5.5) holds.

Let Q1, Q2, . . . , Qk be the distinct maximal sets in the family {Ci ∩ C : 1 ≤ i ≤
n}. Then, by (4.5.5), Qi ∩ Qj = ∅ for all 2-element subsets {i, j} of {1, 2, . . . , k}.
For each j in {1, 2, . . . , k}, let Q′

j be the union of all E(Mi) for which Ci ∩C ⊆ Qj .
Then {Q′

1, Q
′
2, . . . , Q

′
k} is a partition of E(M) − C. Letting X1 = Q1 ∪ Q′

1 and
X2 = E(M\e) − (Q1 ∪ Q′

1), we deduce from Lemma 4.3 that either (a) M\e is
disconnected, or (b) X2 is empty. In the first case, M is a series connection with
basepoint e of a set of connected matroids each having at least two elements. Since
M ∈ B3, it follows by Lemma 4.2 and the induction assumption that M satisfies
(4.5.1). Thus we may assume that (ii) holds. Hence

k = 1 and Q1 = C − e. (27)

Moreover, for some i in {1, 2, . . . , n}, we have Q1 = Ci∩C, and, by (26), |Ci∩C| =
|Pi|. Hence |Pi| = |C| − 1 and so, letting D = Pi ∪ e, we have that D is a circuit of
M containing e and having cardinality |C|, and C ∪D is a Tutte-line of size three
for which the canonical partition is {{e}, C−e,D−e}. Thus (C∪D)−e is a circuit
of M .

Next we shall prove the following:

4.5.6. Let A be a chord of (C ∪D)− e. Then A = {e}, or A is a chord of C or D.

Suppose that A 6= {e} and let W = M |(C ∪D ∪A). The proof of (4.5.6) will be
broken into several steps the first of which is as follows.

4.5.7. If D1 and D2 are circuits of W and e ∈ D1 ∩D2, then D1 ∪D2 is a proper
subset of E(W ).

Suppose that E(W ) = D1 ∪D2. Then

|D1∪D2| = |E(W )| = |C ∪D∪A| = |C|+ |D− e|+ |A| = 2|C|− |{e}|+ |A| ≥ 2|C|.
As e ∈ D1 ∩D2, it follows that |D1 ∩D2| ≥ 1. Thus

|D1|+ |D2| = |D1 ∪D2|+ |D1 ∩D2| ≥ 2|C|+ 1.

Therefore |D1| > |C| or |D2| > |C|. This is a contradiction because |C| = ce(M)
and e ∈ D1 ∩D2. We conclude that (4.5.7) holds.

Now consider W ∗, which has rank three since W has corank three. Recall that
the points and lines of a matroid are its rank-1 and rank-2 flats.

4.5.8. W ∗ has the following properties:
(i) {e} and A are points of W ∗.
(ii) If L1 and L2 are lines of W ∗ such that e 6∈ L1 ∪ L2, then L1 ∩ L2 6= ∅.
(iii) There are exactly three lines in W ∗ that contain A.
(iv) The line which contains e and A does not contain another point.

Part (i) holds because {e} and A are series classes of W . Part (ii) follows
immediately from (4.5.7) by duality. Parts (iii) and (iv) hold because E(W ) − A
contains exactly three circuits, and because E(W )−(A∪e) is the circuit (C∪D)−e
of W . Thus (4.5.8) holds.

By (4.5.8)(iii), W ∗ has exactly three lines, say L1, L2, and L3, that contain A.
By (4.5.8)(iv), we may suppose that L1 = A ∪ e. Next we establish the following:

4.5.9. L2 or L3 contains just one point different from A.
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For each i in {2, 3}, let pi1 and pi2 be distinct points contained in Li − A. For
each j and k in {1, 2}, let Kjk be the line of W ∗ that contains p2j and p3k. Suppose
that, for some i, j, k, and l in {1, 2} such that i 6= k and j 6= l, we have e 6∈ Kij∪Kkl.
Then, by (4.5.8)(ii), Kij ∩Kkl = {p} for some point p. Clearly p is not on L2 or L3

and, by (4.5.8)(iv), it is not on L1. Hence p does not exist. Thus Kij or Kkl has e
as a point. Hence e is on K11 or K22, and it is on K21 or K12. Thus we have two
distinct lines having two common points. This contradiction implies that (4.5.9)
holds.

By (4.5.9), we may suppose that L2 − A contains a single point Z. Then Z ∪ e
is the complement of L3 and so is a circuit of W that does not intersect A. Hence
Z ∪ e is C or D. Moreover, A is a component of W ∗\[(C ∪D) − Z] and hence of
W/[(C ∪D)− Z]. Thus A is a component of [M |(C ∪D ∪A)]/[(C ∪D)− Z]. But
A is a circuit of [M |(C ∪D∪A)]/[C ∪D]. Hence A is a circuit of M/[(C ∪D)−Z],
that is, A is a chord of (C ∪ D) − Z. Hence A is a chord of C or D, and (4.5.6)
holds.

By (4.5.6) and Lemma 4.4, it follows that there is a partition {X1, X2} of E(M\e)
such that X1 ⊇ C− e and X2 ⊇ D− e, and r(X1)+ r(X2)− r(M\e) = 1. Since e is
in the closure of both X1 and X2, it follows that M is the parallel connection, with
basepoint e, of matroids with ground sets X1 ∪ e and X2 ∪ e. Thus M∗ is a series
connection, with basepoint e, of two matroids. Since B3 is closed under duality, the
theorem follows using Lemma 4.2 and the induction assumption. �

Evidently each of the matroids that attains the bound in Theorem 1.5 is a
series-parallel network. The following result is thus an immediate consequence of
Theorems 1.5 and 4.5.

4.6. Corollary. Let M be a connected matroid that is not a series-parallel network.
If e ∈ E(M), then

|E(M)| ≤ (ce(M)− 1)(c∗e(M)− 1).

We conclude by noting an interesting link between the matroids attaining the
bound in Theorem 1.5 and the graphs attaining the bound in Theorem 1.2. The
following result was proved by Wu [17].

4.7. Theorem. Let M be a connected graphic matroid with at least two elements.
Then E(M) = 1

2c(M)c∗(M) if and only if, for some k ≥ 2, there is a sequence of
positive integers (m,n1, n2, . . . , nk) for which ni ≤ 1

2

∑k
j=1 nj for all i in

{1, 2, . . . , k} such that either M or M∗ can be obtained by deleting e from the
parallel connection, with basepoint e, of k matroids M1,M2, . . . ,Mk, where each
Mi is the cycle matroid of a graph that can be obtained from a 2-cycle containing e
by a sequence of the following operations:

(a) in a cycle containing e, replacing every edge except e by two edges in par-
allel; and

(b) in a bond containing e, subdividing every edge except e exactly once;
where this sequence consists of ni − 1 operations of type (a) and m− 1 operations
of type (b).

Using Theorem 4.5, one can show that the matroids in B3 can be characterized
in a similar way. To prevent the paper from becoming too long, we omit the details
of the proof.
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4.8. Corollary. Let M be a connected matroid with at least two elements and
suppose e ∈ E(M). Then |E(M)| = (ce(M) − 1)(c∗e(M) − 1) + 1 if and only if,
for some k ≥ 1, there is a sequence of positive integers (m,n1, n2, . . . , nk) such
that M is the parallel connection, with basepoint e, of k matroids M1,M2, . . . ,Mk,
where each Mi is the cycle matroid of a graph that can be obtained from a 2-cycle
containing e by a sequence of the following operations:

(a) in a cycle containing e, replacing every edge except e by two edges in par-
allel; and

(b) in a bond containing e, subdividing every edge except e exactly once;

where this sequence consists of ni − 1 operations of type (a) and m− 1 operations
of type (b).
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