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The purpose of this note is to prove the following resuls.

THEOREM 1. Let M be a connected matroid. Suppose that C is a circust of M and p and q
are elements of M. Then M has circwits C,, and C, suchthat peCy,q€ 0y, and C = C, U C,.

Note that p and ¢q are not required to be distinct in this theorem. Indeed on letting
P = g, we obtain the following corollary which may also be easily deduced from the
proof of Lehman’s result ((1), p. 721) that, if ¢ is an element of a connected matroid M,
then M is uniquely determined by the collection of circuits containing e.

CoROLLARY 1. Let M be a connected matroid. Suppose that C is a circuit of M and p is
an element of M. Then M has circuits C; and Cy, such that peCyn Cyand C < O U G,

The matroid terminology used here will in general follow Welsh (3). The ground set
of the matroid M will be denoted by E(M) and, if 2z E(M), then we shall sometimes
write M \x and M /x for the restriction and contraction respectively of M to E(M)\x.
A flat of rank one in a matroid will be called a point; a flat of rank two a line.

The proof of Theorem 1 will use the following well- kqown result.

Levma (Tutte (2), 6:5). If M is a connected matroid and ec E(M ), then either M \e or
M [e is connected.

Proof of Theorem 1. If p,qeC, then let C, = C, = C. We may therefore suppose,
without loss of generality, that p ¢ C. If g C, then let ¢’ = p. If the required result can
be established for p and ¢, then it also holds for p and ¢q. Thus assume that p,g¢ C.

We argue by induction on | E(H)|. Clearly |C| > 2,hence |E(M)| > 3.1If |B(M)] = 3,
then M ~ U, 5 and, since ¢¢ 0, p = ¢. The required result follows immediately. Now
assume that the theorem holds for all connected matroids having fewer than » elements
and let M be a connected matroid having exactly n elements. As M is connected, there
is a circuit containing p and intersecting C. Choose such a circuit P so that |P\C| is
minimal. Similarly, choose a circuit @ containing ¢ and intersecting C so that |@\C| is
minimal. Evidently E(M) = P U @ U C for otherwise the result follows by the induction
assumption.

We now distinguish two cases:

(i) M has an element « such that x¢C U p U ¢; and

(i) B(M)=CupuUgq.

0205-0041/80/0000-7000 202.50 @ 1980 Cambridee Philosovhical Societv




S\

26 J. H. Masox axp J. G. OXLEY

Case (i). By the lemma, either M\» or M / is connected. But, if M\x is connected,
then the required result follows by the induction assumption. On the other hand, if
M [ is connected, then the result again follows by the induction assumption provided
that C is a circuit of M /z.

If C'is not a circuit of M /x, then there is a proper subset D of C such that Dy z is
a cireuit of M. Now ze (P U@)\(CUpuUq); hence suppose that zeP. Then since
zeP n(Duwx)and peP\(D U z) it follows, by circuit exchange, that there is a circuit
P’ of M such that pe P’ < (PUD U x)\w < (P U C)\z. But | P'\C| < [P\C|. Moreover,

P'nC + @ as otherwise P’ =§C= P. Thus the choice of P is contradicted. Similarly, if
xe (), then the choice of @ is contradicted. Hence the proof of (i) is complete,

Case (ii). In this case we distinguish the following three possibilities:

(@) p=gq;

(b) » + g and C is not spanning in M ; and

(¢) » + q and O is spanning in M.

() If p = ¢, then M is a connected single-element extension of a circuit. It follows
that {p} is a hyperplane in M/ * and hence M* has rank 2. Bub M* is connected so there
exist disjoint hyperplanes H, and H, of M* neither of which contains p. If we let
Cp = S\H, and C, = 8\H,, then the required result follows.

(6) If p # q and Cis not spanning in M, then O is a hyperplane of M. Thus {p, g} is
both. a circuit and a hyperplane of M*. A similar argument to that given in (a) com-
pletes the proof of this case.

(¢) In this case assume that the rehwired circuits 0, and C, do not exist. Consider
MM* and observe that, as {p, ¢} = L,, o is a hyperplane of M* and C is spanning in M,
the matroid M * has rank 3. Moreover, it follows by the induction assumption that we
may suppose that M* is simple. Since we have assumed that 0, and C, do not exist, it
follows that, if L, and L, are lines of M * such that b ¢ Ly and g¢ Ly, then I, n Ly + .
Thusif L and L’ are lines of M containing p and not g, then L and L’ contain the same
number, say m+ 1, of points. Likewise all lines through ¢ other than L, , contain the
same number, n+ 1, of points. Thus p is incident with precisely n lines other than
L,,, and gisincident with precisely m lines other than Ly, o If Xis aline of M* avoiding
both p and ¢, then X meets each of the lines through p other than L, , Hence X
contains exactly » points. Similarly X meets each of the lines through ¢ other than
L, ¢ and so X contains exactly m points. Thus m = «. It is now easy to check that M *
has precisely n?+ 2 points and that each point of M* meets exactly n+ 1 lines.

As M*is connected, n > 2 and we may choose two distinct points # and y of M * such
that L, , n L, , = @, where L, ,is the line of M * through« and y. Now every point not
on L, , is uniquely determined as the intersection of two lines, one through « and the
other through y. Moreover, every such pair of lines of M* determines a point, otherwise
we may take the corresponding circuits of M to be 0, and C,; a contradiction. As the
number IV of points of M *is the sum of the number of points on the line through zandy
and the number of points not on this line, N = n+ ((n + )=1)((n+1)—1) = n2+4n.
But we showed earlier that N = 2+ 2; therefore n = 2.

It follows easily that M* ~ M(K,). Hence M ~ M(K,), C is a four-element circuit
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of M and p and g are the two elements of M which are not in C. It is straightforward to
check in this case that the required circuits €}, and C, exist. This contradiction finishes
the proof of (c) and thereby completes the proof of the theorem.

The following result generalizes Theorem 1.

CoroLLARY 2. Let M be a connected matroid of rank r and let F be a flat of M of rank k,
where 0 < k < r—1. If p,qe B(M), then M has rank k flats F, and F, such that p ¢ I,
Cg¢F,and E,nF, S F.

Proof. Let M be truncated (r — k — 1) times to obtain 77~%-1(M). Clearly this matroid
is connected and has I as a hyperplane.
The result now follows by applying Theorem 1 to (7"—*-1(M))*.
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