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On a matroid generalization of graph connectivity
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This paper relates the concept of n-connection for graphs to Tutte’s theory of
n-connection for matroids(12). In particular, we show how Tutte’s definition may be
modified to give a matroid concept directly generalizing the graph-theoretic notion of
n-connection.

The terminology used here for matroids and graphs will in general follow Welsh (14)
and Bondy and Murty (1) respectively. The ground set of a matroid M will be denoted
by E(M) and, if T < E(M), we denote the rank of 7' by r&T'.

If G is a graph and X is a subset of the edge-set E(G) of @, then G[X] will denote
the subgraph of G tnduced by X. That is, G[X] has X as its edge-set and V(X), the set
of endpoints of edges in X, as its vertex-set. If U < V(G), then G\U denotes the sub-
graph of G obtained by deleting U and all those edges incident with a vertex of U. The
connectivity k(@) of @ is the least number of vertices that must be deleted from G in
order to leave a disconnected or single-vertex graph. We shall say that @ is n-connected
if » is a non-negative integer not exceeding «(G). Thus a graph with at least two
vertices is 1-connected if and only if it is connected. : _

The concept of n-connection for matroids was introduced by Tutte (12) in order to
extend certain graph connectivity results to matroids. If M is a matroid and {S, 7T}
is a partition of its ground set E(M), then let

EM;S,T) =rkS +rkT —rkM + 1.

For a positive integer m, we say that M is m-separated if there is a partition {S, 7'}
of E(M) such that |S|, |T'| > m and §(M;8,T) = m.

If there is a least positive integer j such that M is j-separated, it is called the
connectivity A(M) of M. If there is no such integer, we say that A(M) = co. Richardson
((8), lemma 2) and Inukai and Weinberg ((3), theorem 1) have independently shown
that all matroids having infinite connectivity are uniform. Indeed ((3), p. 312),

r4+1, if m>2r+2;
/\(U,.,m)={m—r+1, if m < 2r—2;
oo otherwise.

A matroid M will be said to be n-connected if n is a positive integer not exceeding A(M).

The above notion of matroid connectivity is a direct generalization of an alter-
native definition of graph connectivity given by Tutte ((11);(12), 3-5). The next result
follows immediately from combining this fact with a result of Graver and Watkins (@),
proposition VIE7). The girth g(®) of a graph G is defined to be co if @ has no circuits,
and min {|C|:C is a circuit of G} otherwise.
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(1) ProrosITION. If G 18 a graph without isolated vertices and G has at least three vertices

and at least four edges, then
AM(@)) = min {k(G), 9(G)}.

We shall now indicate how Tutte’s definition may be modified to yield a definition
of connectivity for matroids which directly generalizes the notion of x-connectivity
for graphs. For a positive integer m, we shall say that the matroid M is m-«-separated
if there is a partition {S, 7'} of E(M) such that 7&S,7kT > m and £(M; S, T) = m. It is
straightforward to check that the matroid M is m-«-separated for some positive integer
m if and only if M has a pair of disjoint cocircuits. Thus, provided M has a pair of
disjoint cocircuits, we define the x-connectivity k(M) of M to be the least positive
integer j such that M is j-x-separated. If M does not have a pair of disjoint cocircuits,
we let «(M) = rkM . Thus for the uniform matroid, U, ,,, it is straightforward to check
that
m—r+1, if m<2r—2;

r otherwise.

) = {
The main result of this paper is the following.
(2) THEOREM. Let G be a connected gmph.‘Then

k(M(@)) = x(G).

Proof. It is straightforward to check that we may assume G is simple. Moreover, if

G is complete, then
(@) = [V(@)| -1 = rk(M(@)) = k(M (F)).

Hence we shall suppose that ¢ is not complete.

Now let k(M (G)) = n. We shall argue by contradiction to show that x(G) < n.
Hence suppose that (@) > n. As G is not complete, M(G) has a pair of disjoint co-
circuits, and so, since k(M (G)) = n, there is a partition {S, T’} of E(G) such that

(3) . 1kS,7kT > n, and

(4) E(M(G);8,T) =mn.

It follows easily from (4) (see ((12), 3-1)) that

(5) [ V(S)n V(T)| = oS)+o{T)+n-2,

where (S) and w(T') denote the number of components of G[S] and G[T'] respectively.

If w(S) = o(T) = 1, then |V(S)n V(T')| = n. Now rkS > n, so |V(S)| > n+1 and
hence some edge of S has an endpoint v, which is not in V(T'). Similarly, as kT > =,
some edge of 7' has an endpoint v, which is not in V(8). Thus in the graph

G\(V(S)n V(T))

there is no path joining », and »,, and hence (@) < |V(8) n V(T')| = n; a contradiction.
Therefore

(6) w(8)+w(T) = 3.
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Hence, we may suppose, without loss of generality, that

(7) o(S) =z o(T) and oS) =2

Assume, in addition, that among the sets 8 satisfying (3), (.4) and (7) we have one of
minimum cardinality.

Let 8,, S,, ..., 8, be the edge-sets of the components of @[S] and 7}, Ty, ..., T, be the
edge-sets of the components of G[7']. Then p = w(S) and ¢ = o(T"). Now G is connected
S0 V(S)n V(T) + o for all 4 in {1,2,...,p}. Moreover, as |V(S;)| > 2 and p > 2, if
|V(S;) n V(T)| = 1, then V(S;) n V(T')is a vertex cut in &, s0 k(@) < 1; a contradiction.
Hence

(8) |V (S)n V(T)| > 2
Next we note that, by (5), if j€{1,2, ..., p}, then
[V (S) n V()| = p+a+n—2=2|V(S) n V(T)],
where the sum is taken from 7 = 1 to p, excepting ¢ = j. But, by (7), » > ¢ and, by (8),

\ | V(S,)n V(T)| > 2p—1).
Hence i
9) | V() n V(T)] < p+p+n—2-2(p—1) =n.

Now if V(S ) = V(S;)n V(T'), then V(8;)n V(T) is a vertex cut of G separating
V(S;)\V(T) from V(S,) where k + j. But, since |V(S;) n V(T')| < n, this contradicts
the fact that (@) > n. Therefore V(S;) n V(T') = V(S;), and so, by (9),

(10) |7(8;)] <

Moreover, V(8) < V(T') and hence V(T) = V(G) and V(8) n V(T) = V(8). Therefore,
by (5), ’ |

(11) |V(S)| = p+g+n—2.
Hence
(12) kS =q+n—2,
and so, by (3),
(13) g2
We show next that
(14) every edge of 8 joins vertices in different components of G[T'].

If not, then § has an edge e joining two vertices in the same component of G[T1].
Evidently rk(T U €) = rkT. Moreover, rk(S\e) = rkS, for otherwise rk(S\e) = 7kS—1
and so §(M (G); S\e T Ue) =n—1andrk(S\e), k(T U e) > n—1; a contradiction to the
fact that x(M(G)) = n. It follows that w(S\e) = w(S) and w(T' U €) = o(T'). Thus the
partition {S\e, T U ¢} of E(Q) satisfies (3), (4) and (7) and so the choice of § is contra-
dicted, We conclude that (14) holds.
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Since (&) > n and G is not complete, every vertex of ¢ is adjacent to at least n+ 1
other vertices. We now show that

(15) if |V(S)nV(T)| <n forsomes, then V(T}) = V(S)n V(T
and kS > 2n+2—-|V(T)| = n+2.

If V(T}) + V(S)n V(T;), then V(8)n V(T}) is a vertex cut of G having at most =
members, contrary to the fact that «(G) > n. Therefore V(T}) = V(S) n V(T};) and so
[V(T})| < n. Nowifve V(T}), then v meets at least n + 2 — | V(T})| edges of S. Moreover,

by (10), |V(8;)| < » for all j, so T} meets at least two different components of G[S].

Thus we may choose vertices v, and v, in V(7}) which are in different components of S.

Consider the subset 4 of S formed by taking one edge of S meeting each vertex of
V(T;)\{,, v,}, together with all those edges of S which meet v, or v,. Evidently

4] = 2(n+2—- V(T + (| V(T)] - 2) = 2n+2—|V(T})].

Moreover, since v, and v, are in different components of S, the set 4 is independent in
M(G). Hence kS > 2n+ 2~ | V(T})|. But |V(T})| < n and so (15) holds.

Following (13) we now distinguish two cases, (I) ¢ = 2 and (II) ¢ > 2.

In case I, by (12), 7kS = n. Now consider | V(S) n V(1y)|. If this number exceeds =,
then choose one edge of S incident with each vertex in V(S) n V(7}). Evidently the set
of edges so chosen is independent in M (@) and so we have a contradiction to the fact
that 7kS = n. Therefore |V (S) n V(T})| < » and so, by (15), 7kS > n+ 2 and again we
have a contradiction.

Now consider case II. By (12), 7kS > n. We shall show that, foralliin{1,2, ..., p},

(16) [V(8)] >3

As [8;] = 1, |V(S;)| = 2, so assume that | V(S;)] = 2. Then S; contains a single edge e.
Clearly rk(S\e) = kS — 1 and w(S\e) = w(8) — 1. In addition,by(14),7k(T' U e) = kT + 1
and o(T Ue) = o(T)—1. Thus, as o(S) > o(T'), we have o(S\e) > (T Ue). But the
partition {S\e, 7' U ¢} of E(Q) satisfies (3) and (4) and so, by (6), w(S\e)+w(T'Ue) > 3
Since w(S\e) = (T U e), it follows that w(S\e) > 2, and so {S\e,T U ¢} satisfies (3),
(4) and (7), contrary to choice of S. We conclude that (16) is satisfied.
By (11), Z2_, | V(S;)| = p+g+n— 2. Therefore, for some kin {1,2, ..., p},

n— 2

q
V(S +g4+n—2)=14+=+
|V (S,)] < (pqn ) R

But p > g and |V(S;)| > 3, hence
(17) p<n—2.

We now apply (11) again together with the fact that V(T') = V(G) to get that

2 |V (S)n V(T; ]-—p+q+n 2.
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Therefore, for some j in {1, 2, ...,q},

V)0 V(T < (ptgtn—2
=p+2_2+L
Hence, by (17),
17(8)n V(T < 244 1.

But, by (13), g > 2, so
| V(S)n V(T})| < n—1.
Therefore, by (15),
kS 2 2n+ 2| V(T})|
and :
2n—4

[V(T))| < +1.

Hence rkS > 2n+2— (2n—4)/q— 1. But, by (12), kS = ¢ +n—2, s0
g+n—-22>2n+1—(2n—4)/q.

It follows easily from this that
‘ 9(g—3) > n(g—2)+4

But ¢(¢—2) > ¢(¢—3), hence g(¢g—2) > n(g—2)+4 and so ¢ >&n. Therefore, by (7),
p > n. This contradiction to (17) completes the proof of the fact that

(18) K(6) < K(M(®).

To establish the reverse inequality, suppose that K(G) k. Then as G is not
complete, it has a k-vertex cut U. Partition the set of components of G\U into two
non-empty subsets 4, and 4, and, for ¢ = 1,2, let 8; = {ee E(G): e = uv where uc U
and ve V(4,)} U E(4,;). Then, for each u in U and each ¢ in {1, 2}, there is an edgein §;
having % as an endpomt otherwise U\u is a vertex cut of G. Thus 7kS; > k and
V(S;) 2 U.Therefore V(S;) n V(S,) 2 U.But ¥(8) n V(S;) = U; hence V(8 nV(8Ss)
equals U. Now let § = 8, U E(Q[U]) and T = §,. Then {S, T} is a partition of E(G)
and kS, rkT > k. Moreover, both G[S] and G[T'] are connected. Hence, by (5),

E(M(@);8,T) = |V(8)n V(T)|.

But |V(S)n V(T)| = |V(S)n V(S)| =% and so M(Q) is k-k-separated. Hence
k(M(®@) £ k(@). The theorem follows on combining this with (18). ‘

The next result generalizes Proposition 1 to matroids. By analogy with graphs we
define the girth g(M) of a matr01d M to be oo if M is free, and min {|C}: C is a circuit of
M} otherwise.

(19) ProrosrtioN. If M is a non-uniform matroid, then

A(M) = min {«(M),g(M)}.
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Proof. As M is non-uniform, g(M) < rkM. Now, if C is a circuit of M having g(M)
elements, then
EM;C,E(M\C) = g(M)+rk(E(M)\C)—rEM.

Hence ift = min {g(M), rk(E(M)\C)}, then £(M ; C, E(M)\C) < tand |C|, |[E(M)\C| >
Thus M is m-separated for some m < ¢ < g(M) and so

(20) AM) < g(M) < rkM.

It is clear that, if M is m-x-separated, then M is m-separated. Moreover, A(M) < rkM;
hence

(21) AMM) < k(M).
Combining this with (20), we get
(22) A(M) < min {k(M),g(M)}.

To establish equality here, we first note that, as M is A(M)-separated, there is a
partition {S,T} of E(M) such that |S|,|T| > A(M) and &(M;8,T) = A(M). Now
suppose that A(M) < min{«(M),g(M)}. Then A(M) < g(M), so rkS,7kT > A(M) and
hence M is A(M)-x-separated. Thus k(M) < A(M); a contradiction.

Although Tutte’s definition of connectivity for matroids does not directly generalize
the graph-theoretic notion of x-connectivity, it does incorporate matroid duality.
Indeed, for all matroids M, we have ((12), (12))

(23) AM) = A(M).
The next result is a consequence of Proposition 19.
(24) CoroLLARY. Let M be a non-uniform matroid. Then
A(M) = min {«(M), k(M*)}.
Proof. By Proposition 19, A(M) < k(M) and A(M*) < k(M*). But, by (23),

AM) = A(M*);
hence

@) A < min {c(M), <),

Therefore, if A(M) = x(M) or k(M*) the required result is immediate. Hence, we may
suppose that A(M) < «(M) and A(M) < «(M*). Thus, by Proposition 19 and (23)

| g(M) = MM) = A(M*) = g(M*).
Hence M is g(M)-separated and so |E(M)| > 2g(M). Now let C* be a cocircuit of M
having g(M*) elements. Then
E(M;C*, B(M)\C*) = rk(C*) < g(M*) = g(M).

Moreover, |E(M)\C*| > ). Hence, as M is not m-separated for m < g(M), we have
rk(C*) = g(M). Now rk(E(M N\C*) = rkM —1 and so, if rkM —1 > g(M), then M is
g(M)-k-separated; that is, k(M) < g(M). But g(M) = A(M) and A(M) < k(M ) hence
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we have a contradiction. It follows that we may assume that rAM — 1 < g(M); that is,
rkM < g(M). But then A(M) =g(M) > rkM > (M) and we again have a contra-
diction. :

It is straightforward to check that deleting an element other than a coloop from a
matroid cannot increase its k-connectivity, although as Welsh observes ((14), ex. 5:6-2),
the deletion may increase the connectivity. Thus, just as loops do not affect the
connectivity of a graph, they do not affect the x-connectivity of a matroid. It is not
difficult to show that if M is a matroid of rank atleast two and L is its set of loops then
M is 2-k-connected if and only if M\L is non-separable.

Although the concepts of n-«x-connection and n-connection do not coincide in
general, when n = 2 and n = 3 they are very closely related. Minimally 2- and 3-
connected matroids have been studied in detail in (4, 5,6,7,9,10) and we note that the
classes of minimally 2-connected matroids and minimally 2-x-connected matroids
coincide. Moreover, the only difference between the classes of minimally 3-connected
matroids and minimally 3-x-connected matroids is that U, 4 is in the first but not the
second. Most of the known results for n-connected matroids have been restricted to
the cases n = 2 and » = 3 and can be restated in terms of n-x-connection.

Tutte’s stated aim (13) in introducing a theory of n-connection for matroids was to
allow his ‘Wheels Theorem’ for graphs ((11), (4-1)) to be extended to matroids. The
resulting ‘Wheels and Whirls Theorem’((12), 8-3) can be reformulated in terms of
3-k-connection as follows.

(26) THEOREM. Let M be a simple 3-k-connected matroid such that for all elements e of M
neither M\e nor M /e is both simple and 3-x-connected. Then M is isomorphic to a whirl,
the cycle matroid of a wheel or U, 5.
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Note added in proof. Many of the results of this paper have been obtained inde-
pendently by W.H. Cunningham. His paper, ‘On matroid connectivity’, is to
appear in the Journal of Combinatorial Theory Series B. ,



