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Abstract. For a matroid N , a matroid M is N -connected if every two ele-

ments of M are in an N -minor together. Thus a matroid is connected if and

only if it is U1,2-connected. This paper proves that U1,2 is the only connected
matroid N such that if M is N -connected with |E(M)| > |E(N)|, then M\e
or M/e is N -connected for all elements e. Moreover, we show that U1,2 and

M(W2) are the only matroids N such that, whenever a matroid has an N -
minor using {e, f} and an N -minor using {f, g}, it also has an N -minor using

{e, g}. Finally, we show that M is U0,1 ⊕ U1,1-connected if and only if every

clonal class of M is trivial.

1. Introduction

Our terminology follows Oxley [8]. We say that a matroid M uses an element e
or a set Z of elements if e ∈ E(M) or Z ⊆ E(M). Let N be a matroid. A matroid
M with |E(M)| ≥ 2 is N -connected if, for every pair of distinct elements e, f of
E(M), there is a minor of M that is isomorphic to N and uses {e, f}.

We will assume, unless otherwise stated, that the matroids discussed here have
at least two elements. Note that U1,2-connectivity coincides with the usual notion
of connectivity for matroids. Hence, relying on a well-known inductive property
of matroid connectivity [13], we have that if M is U1,2-connected, e ∈ E(M), and
|E(M)| ≥ 3, then M\e or M/e is U1,2-connected. Our first theorem shows that
U1,2 is the only connected matroid with this property.

Theorem 1.1. Let N be a matroid. If, for every N -connected matroid M with
|E(M)| > |E(N)| and, for every e in E(M), at least one of M\e or M/e is N -
connected, then N is isomorphic to one of U1,2, U0,2, or U2,2.

One attractive property of matroid connectivity is that elements can be assigned
to components. We say that a matroid N has the transitivity property if, for every
matroid M and every triple {e, f, g} ⊆ E(M), if e is in an N -minor with f , and f
is in an N -minor with g, then e is in an N -minor with g. Let M(W2) be the rank-2
wheel. In Section 6, we prove the following result.

Theorem 1.2. The only matroids with the transitivity property are U1,2 and M(W2).

On combining the last two theorems, we get the following result, which indicates
how special the usual matroid connectivity is.

Corollary 1.3. Let N be a matroid with the transitivity property such that when-
ever M is an N -connected matroid, e ∈ E(M), and |E(M)| > |E(N)|, at least one
of M\e and M/e is N -connected. Then N ∼= U1,2.
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The concept of N -connectivity can also convey interesting information when N
is disconnected, as the next result indicates.

Theorem 1.4. A matroid M is U0,1 ⊕ U1,1-connected if and only if every clonal
class of M is trivial.

The paper is structured as follows. In the next section, we recall Cunning-
ham and Edmonds’s decomposition theorem for connected matroids that are not
3-connected, which is a basic tool in our proofs. Sections 3, 4, and 5 treat the cases
of N -connected matroids when N is 3-connected, connected, and disconnected,
respectively. In particular, we prove Theorems 1.1, and 1.2 in Section 6 and Theo-
rem 1.4 in Section 5. Finally, in Section 7, we consider what can be said when every
set of three elements occurs in some minor. Moss [6] showed that 3-connected ma-
troids can be characterized as those in which every set of four elements is contained
in a minor isomorphic to a member of {W2,W3,W4,M(W3),M(W4), Q6}.

2. Preliminaries

The concept of N -connectivity is closely related to roundedness, which is ex-
emplified by Bixby’s [1] result that if e is an element of a 2-connected non-binary
matroid M , then M has a U2,4-minor using e. Formally, let t be a positive integer
and let N be a class of matroids. A matroid M has an N -minor if M has a minor
isomorphic to a member of N . Seymour [11] defined N to be t-rounded if, for every
(t+ 1)-connected matroid M with an N -minor and every subset X of E(M) with
at most t elements, M has an N -minor using X. Thus Bixby’s result shows that
{U2,4} is 1-rounded. Seymour [10] extended this result as follows.

Theorem 2.1. Let M be a 3-connected matroid having a U2,4-minor, and let e and
f be elements of M . Then M has a U2,4-minor using {e, f}.

The connectivity function λM of a matroid M is defined for every subset X of
E(M) by λM (X) = r(X) + r(E(M)−X)− r(M); equivalently, λM (X) = r(X) +
r∗(X)− |X|. For disjoint subsets A,B of E(M), define κM (A,B) = min{λM (X) :
A ⊆ X ⊆ E(M)−B}.

Lemma 2.2. If N is a minor of M and A,B are disjoint subsets of E(N), then
κN (A,B) ≤ κM (A,B).

Next we give a brief outline of Cunningham and Edmonds’s decomposition [4]
of matroids that are 2-connected but not 3-connected. More complete details can
be found in [8, Section 8.3]. First recall that when (X,Y ) is a 2-separation of a
connected matroid M , we can write M as MX ⊕2 MY where MX and MY have
ground sets X ∪ p and Y ∪ p. A matroid-labeled tree is a tree T with vertex set
{M1,M2, . . . ,Mn} such that each Mi is a matroid and, for distinct vertices Mj

and Mk, the sets E(Mj) and E(Mk) are disjoint if Mj and Mk are non-adjacent,
whereas if Mj and Mk are joined by an edge e, then E(Mj) ∩ E(Mk) = {e}, and
{e} is not a separator in either Mj or Mk.

When f is an edge of a matroid-labeled tree T joining vertices Mi and Mj , if we
contract the edge f , we obtain a new matroid-labeled tree T/f by relabeling the
composite vertex that results from this contraction as Mi ⊕2 Mj , with every other
vertex retaining its original label.

A tree decomposition of a 2-connected matroid M is a matroid-labeled tree T
such that if V (T ) = {M1,M2, . . . ,Mn} and E(T ) = {e1, e2, . . . , en−1}, then
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(i) E(M) = (E(M1) ∪ E(M2) ∪ · · · ∪ E(Mn))− {e1, e2, . . . , en−1};
(ii) |E(Mi)| ≥ 3 for all i unless |E(M)| < 3, in which case, n = 1 and M1 = M ;

and
(iii) the label of the single vertex of T/{e1, e2, . . . , en−1} is M .

We call the members of {e1, e2, . . . , en−1} basepoints since each member of this
set is the basepoint of a 2-sum when we construct M . Cunningham and Edmonds
(in [4]) proved the following (see also [8, Theorem 8.3.10]).

Theorem 2.3. Let M be a 2-connected matroid. Then M has a tree decomposition
T in which every vertex label that is not a circuit or a cocircuit is 3-connected, and
there are no adjacent vertices that are both labeled by circuits or are both labeled by
cocircuits. Moreover, T is unique up to relabeling of its edges.

The tree decomposition T whose existence is guaranteed by the last theorem is
called the canonical tree decomposition of M . Although circuits and cocircuits with
at most three elements are 3-connected matroids, when we refer to a 3-connected
vertex, we shall mean one with at least four elements. Clearly, for each edge p of
T , the graph T\p has two components. Thus p induces a partition of V (T ) and a
corresponding partition (Xp, Yp) of E(M). The latter partition is a 2-separation of
M ; we say that it is displayed by the edge p. Moreover, M = MXp ⊕2 MYp where
MXp

and MYp
have ground sets Xp ∪ p and Yp ∪ p, respectively. We shall refer to

this 2-sum decomposition of M as having been induced by the edge p of T .
We shall frequently use the following well-known result, which appears, for ex-

ample, as [9, Lemma 2.15].

Lemma 2.4. Let M1 and M2 label distinct vertices in a tree decomposition T of a
connected matroid M . Let P be the path in T joining M1 and M2, and let p1 and
p2 be the edges of P meeting M1 and M2, respectively. Then M has a minor that
uses (E(M1)∪E(M2))∩E(M) and is isomorphic to the 2-sum of M1 and M2, with
respect to the basepoints p1 and p2.

We will often use the next result, another consequence of Theorem 2.3.

Lemma 2.5. Let (X,Y ) be a 2-separation displayed by an edge p in a 2-connected
matroid M . Suppose y ∈ Y . Then M has, as a minor, the matroid MX(y) that is
obtained from MX be relabeling p by y. In particular, let N be a 3-connected minor
of M with |E(N)| ≥ 4 and |E(N) ∩ Y | ≤ 1. If |E(N) ∩ Y | = 1, let y ∈ E(N) ∩ Y ;
otherwise let y be an arbitrary element of Y . Then MX(y) has N as a minor.

Let T be the canonical tree decomposition of a 2-connected matroid M , and let
M0 label a vertex of T . Let p1, p2, . . . , pd be the edges of T that meet M0. For
each pi, let (Xi, Yi) be the 2-separation of M displayed by pi, where M0 is on the
Xi-side of the 2-separation. For each i, let yi ∈ Yi. Then, by repeated application
of Lemma 2.5, we deduce that M has, as a minor, the matroid that is obtained
from M0 by relabeling pi by yi for all i in {1, 2, . . . , d}. We denote this matroid by
M0(y1, y2, . . . , yd) and call it a specially relabeled M0-minor of M .

The following result, which is straightforward to prove by repeated application
of Lemma 2.2, is well known.

Lemma 2.6. Let N be a 3-connected matroid with |E(N)| ≥ 3. Let M be a 2-
connected matroid with canonical tree decomposition T . Then there is a unique
vertex M ′ of T such that, for each edge p of T , the partition of V (T ) induced by p
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has the vertex M ′ on the same side as at least |E(N)|−1 elements of N . Moreover,
there is a specially relabeled M ′-minor of M that has N as a minor.

3. 3-connected matroids

LetN be a set of matroids. A matroid M isN -connected if, for every two distinct
elements e and f of M , there is an N -minor of M that uses {e, f} for some N in N .
A consequence of [8, Proposition 4.3.6] is that a matroid with at least three elements
is {U1,3, U2,3}-connected if and only if it is connected. The first result in this section
characterizes U2,3-connected matroids. One may hope for a characterization of 3-
connectivity in terms of N -connectivity, but no such characterization exists. To
see this, note that if M is N -connected, then so is M ⊕2 M . A characterization
of 3-connectivity in terms of minors containing 4-element sets, as opposed to the
2-element sets currently under consideration, is given in [6].

Proposition 3.1. A matroid M is U2,3-connected if and only if M is connected
and simple.

Proof. Suppose M is U2,3-connected. Clearly M is connected and simple. Con-
versely, if M is connected and simple, and e and f are distinct elements of M , then
M has a circuit C containing {e, f} and |C| ≥ 3. Hence M has a U2,3-minor using
{e, f}, so M is U2,3-connected. �

Corollary 3.2. A matroid M is U1,3-connected if and only if M is connected and
cosimple.

We will describe N -connectivity for a 3-connected matroid N by first considering
the case when N is U2,4. We will refer to binary and non-binary matroids that label
vertices of a canonical tree decomposition as binary and non-binary vertices.

Theorem 3.3. A matroid M is U2,4-connected if and only if M is connected and
non-binary, and, in the canonical tree decomposition of M ,

(i) every binary vertex has at most one element that is not a basepoint; and
(ii) on every path between two binary vertices that each contain a unique ele-

ment of E(M), there is a non-binary vertex.

Proof. Suppose M is non-binary and connected, and the canonical tree decompo-
sition T of M satisfies the above conditions. Suppose e and f are distinct elements
of M . If e and f are in the same 3-connected vertex M0 of T , then, by (i), M0 is
non-binary. Thus, by Theorem 2.1, M has a U2,4-minor using {e, f}.

Next suppose e belongs to a binary vertex M1 of T , and f belongs to a non-binary
vertex M0 of degree d. By Lemma 2.5, M contains a specially labeled M0-minor
M0(e, y2, y3, . . . , yd) using {e, f}. Similarly, let e and f belong to binary vertices
M1 and M2, and let M0 be a non-binary vertex on the path between them in T .
Then M contains a specially labeled M0-minor M0(e, f, y3, y4, . . . , yd). Thus, by
Theorem 2.1, M has a U2,4-minor using {e, f}.

Suppose now that M is U2,4-connected. Clearly M is non-binary and connected.
If a binary vertexM1 in T contains two non-basepoints e and f , then, by Lemma 2.6,
a U2,4-minor of M using {e, f} must be a minor of M1; a contradiction.

Now suppose e and f are the unique non-basepoints of binary vertices M1 and
M2, respectively, in T , and let N be a U2,4-minor of M using {e, f}. By Lemma 2.6,
T has a nonbinary vertex M0 such that, for every edge p of T , the partition of V (T )
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induced by p has M0 on the same side as at least |E(N)| − 1 elements of N . Let
p1 be the edge incident with M0 such that M1 and M0 are on opposite sides of the
induced partition of V (T ). Then M2 must be on the same side of this partition as
M0. Hence M0 lies on the path in T between M1 and M2. �

The last theorem can be generalized as follows.

Theorem 3.4. Let N be a 3-connected matroid with at least four elements. A
matroid M is N -connected if and only if M is connected, has N as a minor, and,
in the canonical tree decomposition of M ,

(i) every vertex that is not N -connected has at most one element that is not a
basepoint; and

(ii) on every path between two vertices that are not N -connected and that each
have unique non-basepoints, there is an N -connected vertex.

4. Connected matroids

In this section, we consider N -connected matroids when N is connected but not
3-connected.

Theorem 4.1. A matroid M is M(W2)-connected if and only M is connected and
non-uniform.

Proof. IfM isM(W2)-connected, then it is clearly both connected and non-uniform.
To prove the converse, suppose M is connected and non-uniform. We argue by in-
duction that M is M(W2)-connected. This is immediate if |E(M)| = 4, since
M(W2) is the unique 4-element connected, non-uniform matroid. Assume it holds
for |E(M)| < n and let |E(M)| = n > 4. Distinguish two elements x and y of
E(M).

Suppose there is an element e of E(M)− {x, y} such that M/e is disconnected.
Then M is the parallel connection, with basepoint e, of two matroids M1 and M2.
Now M\e is connected. We may assume that it is uniform; otherwise, by the
induction assumption, M\e and hence M has an M(W2)-minor using {x, y}. Now
r(E(M1) − e) + r(E(M2) − e) − r(M\e) = 1. Suppose each of |E(M1) − e| and
|E(M2)− e| has at least two elements. Then M\e has a 2-separation. Since M\e is
uniform, it follows that M\e is a circuit or a cocircuit. In the latter case, M is also
a cocircuit; a contradiction. If M\e is a circuit, then M is the parallel connection
of two circuits, and M is easily seen to have an M(W2)-minor using {x, y}.

Now suppose that |E(M1)− e| = 1. Thus M has a circuit, {e, f} say, containing
e. As M\e is uniform but M is not, r(M) ≥ 2, so M\e has a circuit containing
{f, x, y}. It follows that M has an M(W2)-minor with ground set {e, f, x, y}.

We may now assume that M/e is connected for all e in E(M)−{x, y}. Moreover,
by replacing M with M∗ in the argument above, we may also assume that M\e
is connected for all such e. If M\e or M/e is non-uniform, then, by the induction
assumption, M has an M(W2)-minor using {x, y}. Thus both M\e and M/e are
uniform. Let r(M\e) = r. Then every circuit of M\e has r+1 elements. Since M is
not uniform, it has a circuit containing e that has at most r elements. Contracting
e from M produces a rank-(r − 1) matroid having a circuit with at most r − 1
elements. Since M/e is uniform, this is a contradiction. �

We omit the straightforward proof of the next result.
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Lemma 4.2. If M , N , and N ′ are matroids such that M is N -connected and N
is N ′-connected, then M is N ′-connected.

If we wish to describe the class of N -connected matroids for a 3-connected ma-
troid N , it suffices to describe the N -connected matroids that are 3-connected
and then apply Theorem 3.4. If N is not 3-connected, the task of describing N -
connected matroids becomes harder, and we omit any attempt to provide a general
theorem for N -connectivity in this case. We will instead give characterizations for
two specific matroids that are not 3-connected, namely U1,4 and its dual U3.4. We
will use the following theorem of Oxley [7].

Theorem 4.3. Let M be a 3-connected matroid having rank and corank at least
three, and suppose that {x, y, z} ⊆ E(M). Then M has a minor isomorphic to one
of U3,6, P6, Q6,W3, or M(K4) that uses {x, y, z}.

Proposition 4.4. A 3-connected matroid M is U1,4-connected if and only if either
M ∼= U2,n for some n ≥ 5, or M has rank and corank at least three.

Proof. Clearly if n ≥ 5, then U2,n is U1,4-connected. Now assume that r(M) ≥ 3
and r∗(M) ≥ 3. Suppose {x, y} ⊆ E(M). Then, by Theorem 4.3, M has an N -
minor using {x, y} where N is {U3,6, P6, Q6,W3,M(K4)}. One easily checks that
each member of N is U1,4-connected. Hence, by Lemma 4.2, M is U1,4-connected.

To prove the converse, assume that M is U1,4-connected. Since r∗(U1,4) = 3, it
follows that r∗(M) ≥ 3. The required result holds if r(M) ≥ 3. But, since M is
3-connected and U1,4-connected, r(M) ≥ 2. Moreover, if r(M) = 2, then M ∼= U2,n

for some n ≥ 5. �

Duality gives a corresponding result for U3,4-connectivity.

Corollary 4.5. A 3-connected matroid M is U3,4-connected if and only if either
M ∼= Un−2,n where n ≥ 5, or M has rank and corank at least 3.

Observe that this fails to fully characterize U3,4-connectivity for if we let M =
M(K2,3), thenM is U3,4-connected but none of the matroids in its canonical tree de-
composition is U3,4-connected. We can instead describe U3,4-connectivity in terms
of forbidden configurations of matroids in the canonical tree decomposition.

Proposition 4.6. Suppose M is not 3-connected. Then M is U3,4-connected if and
only if M is connected and simple, and, in the canonical tree decomposition T of
M , there is no vertex of degree at most two that is labeled by some U2,n such that
its only neighbors in T are cocircuits that use elements of E(M).

Proof. Let T be the canonical tree decomposition of M . Assume M is U3,4-
connected. Then, by Lemma 4.2, M is U2,3-connected, so M is connected and
simple. Suppose that T has a vertex M0 whose degree d is at most two such that M0

is labeled by some U2,n and has its only neighbors M1, . . . ,Md labeled by cocircuits
that use elements of E(M). For each i in {1, . . . , d}, suppose fi ∈ E(Mi) ∩ E(M).
Then M can be obtained from a copy of U2,n using {f1, . . . , fd} by, for each i,
adjoining some matroid via parallel connection across the basepoint fi. If d = 1,
let f2 be an element of M0 other than f1. Clearly M has no circuit using {f1, f2}
that has more than three elements.

Now assume that M is connected and simple and that T satisfies the specified
conditions. Let {e, f} be a subset of E(M) that is not contained in a U3,4-minor.
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Assume first that e and f belong to the same vertex M1 of T . As M is simple, M1

is not a cocircuit. Now M has a specially relabeled M1-minor using {e, f}. Thus,
by Corollary 4.5, M1

∼= U2,n for some n ≥ 3. Let p be an edge of T that meets M1.
Consider the 2-sum N1⊕2N2 induced by p where {e, f} ⊆ E(N1). Certainly N1 has
a circuit containing {e, f, p}, and N2 has a circuit of size at least three containing
p. Thus M has a U3,4-minor containing {e, f}; a contradiction.

We now know that e and f belong to distinct vertices M1 and M2 of T . Each
edge p of the path P in T joining M1 and M2 induces a 2-sum decomposition of M
into two matroids, N1p and N2p. Moreover, an element xi of E(Nip) is in a circuit
of Nip of size at least three containing p unless xi is parallel to p in Nip. Thus e
or f is parallel to p in N1p or N2p, respectively. Let the edges of P , in order, be
p1, p2, . . . , pk where p1 meets M1. We may assume that e is parallel to p1 in N1p1

.
Then the vertex M1 of T containing e is a cocircuit.

Suppose k ≥ 3. As no two adjacent vertices of T are cocircuits, neither e nor
f is parallel to p2 in N1p2

or N2p2
. Hence M has a U3,4-minor using {e, f}. This

contradiction implies that k ∈ {1, 2}. Suppose k = 2. Then f is parallel to p2
in N2p2

. Thus M2 is a cocircuit. Since M has no U3,4-minor using {e, f}, the
vertex M3 of T that is adjacent to both M1 and M2 is isomorphic to some U2,n.
By assumption, M3 must have another neighbor in T to which it is joined by the
edge q, say. Then, for the 2-sum decomposition Q1 ⊕2 Q2 of M induced by q,
there is a circuit of Q1 containing {e, f, q} and a circuit of Q2 of size at least three
containing q. Thus M has a U3,4-minor using {e, f}. This contradiction implies
that k = 1. Then M = N1p1

⊕2 N2p1
. Thus the specially relabeled minor N2p1

(e)
uses {e, f}. Now the canonical tree decomposition T ′ of N2p1(e) can be obtained
from the component of T\p1 using N2p1 by replacing M2 by M2(e). As e and f
are contained in the same vertex of T ′, we deduce from the second paragraph that
N2p1

(e), and hence M , has a U3,4-minor using {e, f}; a contradiction. �

5. Disconnected matroids

We now turn our attention to N -connectivity where N is disconnected. The
following is essentially immediate.

Proposition 5.1. Let n be an integer exceeding one. A matroid M is Un,n-
connected if and only if M is simple with rank at least n.

Recall that elements x and y of a matroid M are clones if the bijection on E(M)
that interchanges x and y but fixes every other element yields the same matroid.
Next we prove Theorem 1.4, showing that a matroid is U0,1⊕U1,1-connected if and
only if no element has a clone. The proof will use the well-known fact (see, for
example, [2]) that two elements in a matroid are clones if and only if they are in
precisely the same cyclic flats.

Proof of Theorem 1.4. Suppose every clonal class of M is trivial and let x and y
be distinct elements of M . Then M has a cyclic flat F that contains exactly one
of x and y, say x. In M/(F − x), the element x is a loop but y is not. Thus M has
a U0,1 ⊕ U1,1-minor using {x, y}, so M is U0,1 ⊕ U1,1-connected.

Conversely, assume M is U0,1⊕U1,1-connected, but M has elements x and y that
are in the same cyclic flats. Suppose that M/C\D ∼= U0,1⊕U1,1 and E(M/C\D) =
{x, y}. Let x be the loop of M/C\D. Then x ∈ clM (C). Thus y ∈ clM (C), so y is
a loop in M/C\D; a contradiction. �
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Recall, for the next result, that an element is free in a matroid if it is not a
coloop and every circuit that contains it is spanning.

Theorem 5.2. A matroid M is U1,2 ⊕U1,1-connected if and only if M is loopless,
has at most one coloop, and has at most one free element.

Proof. Clearly if M is U1,2⊕U1,1-connected, then it obeys the specified conditions.
Conversely, suppose M is loopless, has at most one coloop, and has at most one free
element. Let e and f be elements of M . Suppose first that M is disconnected. If e
and f are in the same component, then they are in a U1,2-minor of that component,
so M has a U1,2 ⊕ U1.1-minor using {e, f}. If e and f are in different components,
then one of these components is not a coloop. That component has a U1,2-minor
using e or f . It follows that M has a U1,2 ⊕ U1,1-minor using {e, f}.

Now suppose M is connected. Suppose that e is free in M . Then f is in some
non-spanning circuit, Cf . Choose g in Cf−f . Contracting Cf−{f, g} and deleting
every other element of M yields a U1,2 ⊕ U1,1-minor of M using {e, f}.

Suppose neither e nor f is free in M . If there is a non-spanning circuit C
containing {e, f}, we can find a U1,2⊕U1,1-minor by contracting every element of C
except e and f , and deleting every other element except for one. Now suppose every
circuit containing {e, f} is spanning. Since e is not free, there is a non-spanning
circuit C containing e. Clearly f 6∈ cl(C) otherwise M |cl(C) is a connected matroid
of rank less than r(M) so it contains a circuit containing {e, f}; a contradiction.
Therefore, after we contract all of C except for e and one other element, we see
that f will not be a loop. Thus we can find a U1,2 ⊕ U1,1-minor using {e, f}. �

Corollary 5.3. A matroid M is U1,2⊕U0,1-connected if and only if M is coloopless
and has at most one element that is in every dependent flat.

6. N-connectivity as compared to connectivity

Before proving Theorem 1.1, we state and prove its converse.

Proposition 6.1. If N ∈ {U1,2, U0,2, U2,2}, then, for every N -connected matroid
M with |E(M)| ≥ 3 and for every e in E(M), at least one of M\e or M/e is
N -connected.

Proof. The result is immediate if N ∼= U1,2. By duality, it suffices to deal with the
case when N ∼= U2,2. Suppose M is U2,2-connected, and |E(M)| ≥ 3. By Propo-
sition 5.1, M is simple with rank at least two. Therefore if M is U2,2-connected
and r(M) > 2, we can delete any element e of M and still have an N -connected
matroid. Observe that if r(M) = 2, then M must be connected since it is sim-
ple. Therefore M has no coloops, so r(M\e) = 2 for all e of E(M). Thus M\e is
U2,2-connected. �

Proof of Theorem 1.1. First we consider the case when N is connected. Then N is
U1,2-connected. Thus, by Lemma 4.2, every N -connected matroid is U1,2-connected
and so is connected. Suppose M is an N -connected matroid with |E(M)| > |E(N)|.

Assume N is simple. Then, by Proposition 3.1 and Lemma 4.2, N , and hence M ,
is U2,3-connected. Let M1 and M2 be isomorphic copies of M with disjoint ground
sets. Pick arbitrary elements g1 and g2 in M1 and M2, and let M3 be the parallel
connection of M1 and M2 with respect to the basepoints g1 and g2, which we relabel
as g in M3. Then one easily sees that M3 is N -connected. Let e, f ∈ E(M1) − g.



MATROID N-CONNECTIVITY 9

By assumption, we can remove all the elements of E(M1) − {e, f, g} from M3 via
deletion or contraction to obtain a matroid M4 that is still N -connected. Since M4

is U2,3-connnected, it follows that {e, f, g} is a triangle in M4. Moreover, {e, f} is
a series pair in M4. However, neither M4\e nor M4/e is U2,3-connected since M4\e
is disconnected, and M4/e has f and g in parallel. We deduce that N is not simple.
Dually, N is not cosimple. The only uniform matroid that is neither simple nor
cosimple is U1,2, so either N ∼= U1,2, or N is non-uniform.

Next we show that N cannot be non-uniform. Suppose, instead, that N is non-
uniform. Then, as N is connected, by Theorem 4.1, N is M(W2)-connected.

Recall that M is N -connected with |E(M)| > |E(N)|. Let n = |E(N)|+ 1 and
distinguish elements e, f of E(M). Let each of M1,M2, . . . ,Mn be a copy of M
and let ei and fi be the elements of Mi corresponding to e and f . Let M ′ be the
parallel connection of M1,M2, . . . ,Mn with respect to the basepoints e1, e2, . . . , en
where these elements are relabeled as e in M ′. By assumption, for each Mi, we
can remove E(Mi)− {e, fi} from M ′ in such a way that the resulting matroid M ′′

is N -connected. Since M ′′ is connected, it must be isomorphic to U1,n+1, which
is clearly not M(W2)-connected; a contradiction. We conclude that N cannot be
non-uniform, and hence the theorem holds when N is connected.

Next we consider the case when N is disconnected, first showing the following.

6.2.1. If each element of N is a loop or a coloop, then N ∼= U0,2 or U2,2.

Suppose n ≥ 3 and let N ∼= Un,n. Let M = U2,3 ⊕ Un−2,n−2. Then M is N -
connected, but if e is a coloop of M , then neither M\e nor M/e has a Un,n-minor.
Therefore N 6∼= Un,n; dually, N 6∼= U0,n.

If N = U0,1 ⊕ U1,1, then let M = M(K4). By Theorem 1.4, M is N -connected,
but, for every e of E(M), both M\e and M/e have nontrivial clonal classes and
are therefore not N -connected. Now assume N ∼= U0,n ⊕Um,m for some n ≥ 2 and
m ≥ 1. Then U0,n+1⊕Um,m is an N -connected matroid, say M . But if e is a coloop,
then neither M\e nor M/e has an N -minor. On combining this contradiction with
duality, we conclude that 6.2.1 holds.

Now assume that N has k + s components N1, N2, . . . , Nk+s where those with
at least two elements are N1, N2, . . . , Nk. Then k ≥ 1. For each i in {1, 2, . . . , k},
choose an element ei of Ni and relabel it as p. Let M ′ be the parallel connection
of N1, N2, . . . , Nk with respect to the basepoint p where we take M ′ = N1 if k = 1.
Let N ′ be a copy of N whose ground set is disjoint from E(N), and let n′i be the
component of N ′ corresponding to Ni. Let M1 = N ′ ⊕M ′. We show next that

6.2.2. M1 is N -connected.

Suppose {e, f} ⊆ E(M1). Certainly M1 has an N -minor using {e, f} if {e, f} ⊆
E(N ′). Next suppose that e ∈ E(M ′). Then, since M ′ is a connected parallel
connection, we see that, for each i in {1, 2, . . . , k + s}, there is an Ni-minor of M ′

using e. Thus, if f ∈ E(N ′), say f ∈ E(N ′j), then we can choose i 6= j and get an
N -minor of M1 using {e, f} unless k = 1 = j. In the exceptional case, M ′ has an
N2-minor with ground set {e} and again we get an N -minor of M1 using {e, f}.
We may now assume that f ∈ E(M ′), say f ∈ E(Nj). Then M ′ has an Nj-minor
using {e, f}, so M1 has an N -minor using {e, f}. Thus 6.2.2 holds.

Since M1 is N -connected, by assumption, we may delete or contract elements of
M1 until we obtain an N -connected matroid M2 with |E(M2)| = |E(N)| + 1. In
particular, we may remove elements from M ′ in M1 until a single element g remains.
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Now choose e in E(N ′1). Then M2\e or M2/e is isomorphic to N . But both M2\e
and M2/e have more one-element components than N ′; a contradiction. �

Recall that we say that a matroid N has the transitivity property if, for every
matroid M and every triple {e, f, g} ⊆ E(M), if e is in an N -minor with f , and
f is in an N -minor with g, then e is in an N -minor with g. Clearly N has the
transitivity property if and only if N∗ has the transitivity property.

Lemma 6.3. Suppose N is a matroid having the transitivity property. Let N ′ be
obtained from N by adding an element f in parallel to a non-loop element e of N .
Then there is an element g of E(N ′) such that N ′\g is isomorphic to N and has
{e, f} as a 2-circuit. Moreover, g is in a 2-circuit in N .

Proof. The transitivity property implies that {e, f} is in an N -minor of N ′. Since
r∗(N ′) > r∗(N), there must be an element g of E(N ′)−{e, f} such that N ′\g ∼= N .
Since we have introduced a new 2-circuit in constructing N ′, when we delete g, we
must destroy a 2-circuit. �

By the last lemma and duality, we obtain the following result.

Corollary 6.4. If N is a matroid having the transitivity property, then N has a
component with more than one element.

The following elementary observation and its dual will be used repeatedly in the
proof of Theorem 1.2.

Lemma 6.5. Suppose N is a matroid with the transitivity property. Let N0 be a
component of N with the largest number of elements. Suppose f is added in parallel
to an element e of N0. Let N ′0 and N ′ be the resulting extensions of N0 and N ,
respectively. Suppose g ∈ E(N ′) such that N ′\g ∼= N . Then g ∈ E(N ′0).

Recall that a set S of elements of a matroid M is a fan if |S| ≥ 3 and there is an
ordering (s1, s2, . . . , sn) of the elements of S such that, for all i in {1, 2, . . . , n− 2},

(i) {si, si+1, si+2} is a triangle or a triad; and
(ii) when {si, si+1, si+2} is a triangle, {si+1, si+2, si+3} is a triad; and when
{si, si+1, si+2} is a triad, {si+1, si+2, si+3} is a triangle.

Note that the above extends the definition given in [8] by eliminating the re-
quirement that M be simple and cosimple. We shall follow the familiar practice
here of blurring the distinction between a fan and a fan ordering.

Lemma 6.6. Let (s1, s2, . . . , sn) be a fan X in a matroid M such that each of
{s1, s2} and {sn−1, sn} is a circuit or a cocircuit. Then X is a component of M .

Proof. By switching to the dual if necessary, we may assume that {s1, s2, s3} is
a triangle of M . Thus {s1, s2} is a cocircuit. Observe that {si : i is odd} spans
X. If n is odd, this is immediate, and if n is even, it follows from the fact that
{sn−1, sn} is a circuit in this case. By duality, {si : i is even} spans X in M∗.
Hence r(X) + r∗(X) ≤ |X|; that is, λ(X) ≤ 0, so X is a component of M . �

We define a special fan to be a fan (s1, s2, . . . sk) such that {s1, s2} is a cocircuit
of M . We will now show that U1,2 and M(W2) are the only connected matroids
with the transitivity property.
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Proof of Theorem 1.2. It is clear that U1,2 has the transitivity property. By The-
orem 4.1, two elements of M are in an M(W2)-minor together if and only if they
are in a connected, non-uniform component together. It follows that M(W2) has
the transitivity property.

Suppose that N has the transitivity property. Assume that N is not isomorphic
to U1,2 or M(W2). Next we show the following.

6.7.1. Let N0 be a largest component of N . Then N0 is isomorphic to U1,2 or
M(W2).

Assume that this assertion fails. Then, by Corollary 6.4, N0 has at least two,
and hence at least three, elements. Take an element e of N0 and add an element
f in series with it. Let the resulting coextensions of N0 and N be N ′0 and N ′,
respectively. Then, by the transitivity property, N ′/a ∼= N for some element a of
E(N ′) − {e, f}. Furthermore, by the dual of Lemma 6.5, a ∈ E(N0). We deduce
that N0 has a 2-cocircuit, say {a, b}. In N0, add an element c in parallel to a to get
N1. Then, by transitivity and Lemma 6.5, there is an element s1 of E(N1)−{a, c}
such that N1\s1 ∼= N0. Since N1\b has {a, c} as a component, the component sizes
of N1\b and N0 do not match, so s1 6= b. Thus s1 ∈ E(N)− {a, b, c}, so N1\s1 has
{c, a, b} as a cocircuit. Next add an element d to N1\s1, putting it in series with c.
Let the resulting matroid be N2. By the dual of Lemma 6.5, there is an element s2
of E(N2) − {c, d} such that N2/d ∼= N0. Moreover, s2 must be in a 2-cocircuit of
N2, and s2 is in a triangle in N2 as N2/s2 must have a 2-circuit that is not present
in N2 since adding d destroyed the 2-circuit {a, c}. Now s2 6= a since N2/a has
{c, d} as a component.

Suppose s2 = b. Then b is in a 2-cocircuit {b, e} in N2. Moreover, N2 has a
triangle T containing b. By orthogonality, T = {b, e, a}. Then (d, c, a, e) is a fan
X in N2/b having {c, d} as a cocircuit and {a, e} as a circuit. By Lemma 6.6,
X = E(N2/b), so N0

∼= N2/b ∼= M(W2); a contradiction.
We now know that s2 6= b, so s2 6∈ {a, b, c, d}. Thus N0 has (d, c, a, b) as a special

fan. Among all the special fans of N0 and N∗0 , take one, (a1, a2, . . . , ak), with the
maximum number of elements. Then k ≥ 4. First assume {ak−2, ak−1, ak} is a
triad. Suppose {ak−1, ak} is a 2-circuit of N0. Then, by Lemma 6.6, the special fan
is the whole component N0. As N0 6∼= M(W2), we see that k ≥ 6. Add an element
f in parallel to a3 to form a new matroid N ′0. Then {a1, a3} is in an N0-minor of
N ′0, and so is {a1, f}. By the transitivity property, N ′0 has {a3, f} in an N0-minor.
Since N ′0 has {a3, f} and {ak−1, ak} as its only 2-circuits, while N0 has a single
2-circuit, we deduce that N ′0\ak ∼= N0. But every element of N0 is in a cocircuit of
size at most three, yet f is in no such cocircuit of N ′0\ak; a contradiction.

It remains to deal with the cases when, in N0, either {ak−2, ak−1, ak} is a triad
and {ak−1, ak} is not a circuit, or {ak−2, ak−1, ak} is a triangle. In these cases, add
a0 in parallel with a1 to produce N3. To obtain an N0-minor of N3 using {a0, a1},
we must delete an element z of N3 that belongs to a 2-circuit. Now z is not in
{a2, a3, . . . , ak} as none of these elements is in a 2-circuit, so N3\z is isomorphic to
N0 and has (a0, a1, . . . , ak) as a special fan. This contradicts our assumption that
a special fan in N0 or N∗0 has at most k elements. We conclude that 6.7.1 holds.

6.7.2. N has no single-element component.

To see this, letN0 be a largest component ofN . By 6.7.1, N0 is isomorphic to U1,2

or M(W2). Assume that N has a single-element component N1 with E(N1) = {a}.
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By replacing N by its dual if necessary, we may assume that a is a coloop of N . Let
c be an element that is in a 2-cocircuit of N0. Now let N ′ be obtained from N by
adding an element b so that N ′ has {a, b, c} as a triangle and {a, b} as a cocircuit.
Then, by the transitivity property, N ′\g ∼= N for some element g not in {a, b}.
By the choice of N0, we deduce that g must be in the same component N ′0 of N ′

as {a, b, c}. Moreover, g must be in a 2-cocircuit of N ′0. But N ′0 contains no such
element. Hence 6.7.2 holds.

6.7.3. N has a single component of maximum size.

Assume that this fails, and let N0 and N1 be components of N of maximum size.
Let {ai, bi} be a 2-circuit of Ni. Let N ′i be obtained from Ni by adding ci in series
with bi. Now take a copy of U2,3 with ground set {c0, z, c1} and adjoin N ′0 and
N ′1 via parallel connection across c0 and c1, respectively. Truncate the resulting
matroid to get N01. Then r(N01) = r(N0) + r(N1) + 1. Let N ′ be obtained from
N by replacing N0 ⊕N1 by N01. Now N01/c0 and N01/c1 have (N0 ⊕N1)-minors
using {z, c1} and {z, c0}, respectively. Hence N ′/c0 and N ′/c1 have N -minors using

{z, c1} and {z, c0}. Thus, by transitivity, N ′ has an N -minor Ñ using {c0, c1}.
As r(N ′) = r(N) + 1, there are elements e, f , and g of E(N ′) − {c0, c1} such

that Ñ = N ′/e\f, g. Now N ′/e must have two disjoint 2-circuits that are not
in N ′. Thus e ∈ E(N01). As e 6∈ {c0, c1}, it follows that N0

∼= M(W2) ∼= N1

and, by symmetry, we may assume that e = a0. But N01/a0 does not have an
(M(W2)⊕M(W2))-minor. Thus 6.7.3 holds.

By 6.7.1 and 6.7.3, N has a single largest component N0 and it is isomorphic to
M(W2). As N is disconnected, we may assume by duality that N has a component
N1 that is isomorphic to U1,k for some k in {2, 3}. Now take a copy of U2,3 with
ground set {c0, z, c1} and adjoin copies of U2,k+1 via parallel connection across c0
and c1, letting the resulting matroid be N01. Replacing N0 ⊕ N1 by N01 in N to
give N ′, we see that r(N ′) = r(N) + 1. Moreover, N ′/c0 and N ′/c1 have N -minors
using {c1, z} and {c0, z}, respectively. But c0 and c1 are the only elements e of
N ′ such that N ′/e has two disjoint 2-circuits that are not in N ′. Thus N ′ has no
N -minor using {c0, c1}. This contradiction completes the proof of the theorem. �

We conclude this section by proving Corollary 1.3, which demonstrates how two
of the basic properties of matroid connectivity are enough to characterize it.

Proof of Corollary 1.3. Assume that N 6∼= U1,2. Then, by Theorem 1.1 and duality,
we may assume that N ∼= U2,2. But U2,2 does not have the transitivity property as
the matroid U1,2 ⊕ U1,1 shows. �

7. Three-element sets

The notion of N -connectivity defined here relies on sets of two elements. Sets
of size three have already been an object of some study. Seymour asked whether
every 3-element set in a 4-connected non-binary matroid belongs to a U2,4-minor
but Kahn [5] and Coullard [3] answered this question negatively. Seymour [12]
characterized the internally 4-connected binary matroids that are U2,3-connected,
but the problem of completely characterizing when every triple of elements in an
internally 4-connected matroid is in a U2,3-minor remains open [8, Problem 15.9.7].

For a 3-connected binary matroid M having rank and corank at least three,
Theorem 4.3 shows that every triple of elements of M is in an M(K4)-minor. The
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next result extends this theorem to connected binary matroids. As the proof, which
is based on Lemma 2.6, is so similar to those appearing earlier, we omit the details.

Proposition 7.1. Let M be a connected binary matroid. For every triple {x, y, z} ⊆
E(M), there is an M(K4)-minor using {x, y, z} if and only if every matroid in the
canonical tree decomposition of M has rank and corank at least 3.
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