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ON NONBINARY 3-CONNECTED MATROIDS

JAMES G. OXLEY

ABSTRACT. It is well known that a matroid is binary if and only if it has

no minor isomorphic to Usz 4, the 4-point line. Extending this result, Bixby

proved that every element in a nonbinary connected matroid is in a Us 4-

. minor. The result was further extended by Seymour who showed that every

pair of elements in a nonbinary 3-connected matroid is in a Us 4-minor. This.
paper extends Seymour’s theorem by proving that if {z,y, z} is contained in

a nonbinary 3-connected matroid M, then either M has a Us 4-minor using

{z,y, 2z}, or M has a minor isomorphic to the rank-3 whlrl that uses {z,y,2}

as its rim or its spokes. »

1. Introduction. This paper proves a number of results on the structure of
nonbinary 3-connected matroids. In [8], Seymour showed that if M is such a
matroid and {z,y} C E(M), then M has a Us 4-minor that uses {z,y}, that is,
M has a minor isomorphic to Uz 4 whose ground set contains {z,y}. Seymour
also conjectured [8, 10] that if M is nonbinary and 4-connected and {z,y,z} C
E(M), then M has a U, 4-minor using {z,y,2}. In addition, he noted that this
conjecture fails for certain 3-connected matroids such as the non-Fano matr01d
This paper does not attack Seymour’s conjecture directly but instead concentrates
on characterizing precisely when the conjecture fails for nonbinary 3-connected
matroids. The author has learned since the original submission of this paper that
Seymour’s conjecture has now been disproved by Kahn [4].

Most of the matroid termmology used here will follow Welsh [12]. The ground
set, rank, and corank of the matroid M will be denoted by E(M), rk M, and cork M
respectively. For an arbitrary subset T' of E(M), rk T and cork T will denote the
rank and corank of T. The deletion of T from M will be denoted by M \T or
M|(E(M) —T), and the contraction of T from M by M/T or M - (E(M) = T).
Flats of M of ranks one and two will be called points and lines. A 3-element circuit
of M will be called a triangle and a 3-element cocircuit a triad.

If N and M are matroids on S and S U e respectively and e ¢ S, then M is an
extension of N if M\ e = N, and M is a lift of N if M* is an extension of N*. We
call M a nontrivial extension of N if e is neither a loop nor a coloop of M and.e
is'not in a 2-element circuit of M. Likewise, M is a nontrivial lift of N if M*:is a
nontr1v1al extension of N*.
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If k is a positive integer, the matroid M is k-separated if there is a subs.et T of
E(M) such that |T| > k, |E(M) - T| > k, and

kT + rk(E(M) - T) —tkM =k - 1.

When this occurs, (T, E(M) —T) is an ezact k-separation of M. We say that M is
n-connected if M is not k-separated for any k < n. Thus a matroid is 2-connected
precisely when it is connected [12, p. 69]. Moreover,

(1.1) M isn- connected if and only if M* is n-connected.

We shall assume familiarity with the operations of series and parallel connection
of matroids; a detailed discussion of these operations and their properties may
‘be found in [3]. For matroids M; and M, on disjoint sets, if p1 € E(M;) and
ps € E(M,), then we shall denote the parallel connection of M; and M, with
respect to the basepoints p1 and p2 by P((Ml,pl) (Mz,p2)) or just P(My, M3). If,
for ¢ = 1,2, M; has at least 3 elements and p; is neither a loop nor a coloop of M;,
then P((Ml,pl) (M3, p2)) \ p will be called the 2-sum of My and M [7, p. 308].
In that case, My and M, are the parts and p; and pz the basepoints of the 2-sum.
The following fundamental link between 3-connection and 2-sums was proved by

Seymour [7, (2.6)]. '

- (1.2) THEOREM. If (X1,X3) is an ezact 2-separation of the matroid M, then
there are matroids My and My on X; Up; and Xo U p2 respectwely, where p1
and py are new elements, such that M 1is the 2-sum of M1 and M, with respect
to the basepoints py and py. Conversely, if M is the 2-sum of My and Mo, then
(B(My) — p1, E(M2) — p2) 1s an ezact 2-separation of M, and M; and M, are
1somorphic to minors of M. o

We shall need to use the construction of a minor of M isomorphic to M;. This
proceeds as follows. Let C be a circuit of M meeting both E(M1) —p; and B(My)—
pe. Choose an element z of C. Now delete E(M;) —pz —~ C and then contract
C — z— E(M,) from M. The resulting minor of M is isomorphic to M;.

The following two propertles of 2-sums are straightforward to check.

' (1.3) The sum of M; and My 1s connected zf and only if both My and M; are
connected.

(1. 4) If M is the 2-sum of matroids My and Ma and N 15 a 3- connected matrozd
which is a minor of M, then My or My has an N-minor.

On combining Theorem 1.2 and (1.4) with the excluded-minor characterization
of binary matroids, one easily gets that

(1.5) The 2-sum of My and My s binary if and only if both M1 and M2 are
binary. .

If {z,y)} is a circuit of the matroid M, we say that z and y are mn. pamllel in M
If, instead, {z,y} is a cocircuit, then = and y are in series. A parallel class of Mis
a maximal subset A of E(M) such that if a and b are distinct elements of A, then
o and b are in parallel. Series classes are defined analogously. A series or parallel
class is nontrivial if it contains more than one element. The matroid M’ is a series
extension of M if M = M'/T and every element of T' is in series w1th some element
of M. Parallel extensions are defined analogously.

The following result of Bixby [2, Theorem 1] will be used repeatedly in the proof
of the main theorem of this paper.
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(1.6) THEOREM. Let e be an element of the 3-connected matroid M. Then
either M \ e 1s a series extension of a 3-connected matroid or M /e is a pamllel
extension of a 3-connected matroid.

Suppose that r > 3. The wheel W, of order r is a graph having r +1 vertlces, :
of which lie on a cycle (the rim); the remaining vertex is joined by a single edge (a
spoke) to each of the other vertices. The whirl W of order r is a matroid on EW:)
having as its circuits all cycles of W, other than the rim, as well as all sets of edges
formed by adding a single spoke to the set of edges of the rim. The terms “rim”
and “spoke” will be used in the obvious way in both M (W,) and W". It will also
be convenient here to view the matroid Uz 4 as the Wh1r1 W2. Indeed, if one uses
" the construction of W7 from M(W,) in the case when r = 2, 1t is ‘easy to see that
the resulting matroid is isomorphic to Us 4.

The following result of Tutte [11, 8.3] indicates the fundamental role that whlrls
and the cycle matroids of wheels play in the class of 3-connected matroids. ‘

(1.7) THEOREM. Let M be a 3- connected matroid such that for all elements
e neither M \ e nor M/e is 3-connected. Then M has rank at least three and is a
whirl or the cycle matroid of a wheel. -

An important tool in the proof of Theorem 1.7 and one that will a.lso be needed
in this paper is the following.

o 0 e

(1.8) LEMMA [11, 7.3]. Let M be a 3-connected matroid having at least four
elements. Suppose that {a,b,c} is a triad of M such that neither M/a nor M/b is
3-connected. Then M has a triangle containing a and just one of b andc.

The next theorem, the main result of this paper, will be proved in §4.

(1.9) THEOREM. Let M be a 3-connected nonbznary matroid and suppose that
{z,y, z} C E(M). Then either M has a Uy g-minor using {z,y,z} or M has a
W3-minor in which {z,y,z} is the rim or the set of spokes. ‘ _ '

A 3-connected matroid M is internally 4-connected if M has no exact 3—separa—
tion (Xl,/Xg) with |X1],|X2] > 4. In [10], Seymour characterized preCISely when
three elements in a 3-connected, internally 4-connected binary ma.tr01d are in a
circuit. He also noted that the corresponding nonbinary problem i is still open. As
an immediate consequence of Theorem 1. 9 we have the following: result for: the
nonbinary problem. -

(1.10) COROLLARY. Let M be a 3-connected nonbinary matmzd and suppose
that {:c y,z} C E(M). Then M has a circuit containing {:n y,z} unless M has a
W3-minor in which {x,vy, 2} 1s the set of spokes. _

§62 and 3 of this paper contain several results which are used in the proof of
Theorem 1.9. Most of these results are also of interest in their own right. In
particular, §3 proves the analogue of the main theorem for arbitrary 3-connected

matroids. |

2. A whirls theorem. In this section we shall use P. D. Seymour’s theory of
splitters [7] to prove that a nonbinary 3-connected matroid can be obtained from a
whirl by a sequence of nontrivial lifts and extensions. The author’s original proof
of this result did not use splitters and he is indebted to Dr. Seymour for informing
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him that the results of this section were already known and could be easily derived
using splitters.

Let F be a class of matroids closed under minors and under 1somorph1sm A
member N of 7 is a splitter for 7 if every 3-connected member of 7 having an
N-minor is isomorphic to N.

The next result is Seymour’s characterization of splitters (7, (7.3)].

(2.1) THEOREM. Let 7 be a class of matroids closed under minors and under
1somorphism. Suppose that N is a nonempty connected member of 7 for which the
following conditions hold:

(i) both N and N* are simple;

(i) 7 contains no nontrivial extensions of N and no nontrivial lifts of N

(iii) of N ~ M (W) for some k > 3, then M(Wiy1) ¢ F; and

(iv) if N = W* for some k > 2, then W+l ¢ 7. ‘

Then N is a splitter for ¥.

An easy consequence of this is the following.

(2.2) THEOREM. Let M and N be 3-connected matroids such that N 15 a
minor of M, |E(N)| > 4, and if N ~ M (W), M has no M(Wiy1)-minor, while if
N ~ W¥ M has no Wetl-minor. Then there is a sequence No, N1, Na, ..., Ny of 3-
connected matroids such that Ng ~ N, N, = M, and, for allt in {0,1,2,...,n—1},
N; 15 a single-element deletion or contraction of Niy1.

PROOF. Let 7 be the class of matroids M; that are isomorphic to some minor
of M. Then ¥ is closed under minors and under isomorphism. Let M’ be a 3-
connected member of 7 which is maximal with the property that there is a sequence
Mo,Ml, M of 3-connected matroids such that M} ~ N, M/, = M, and, for
all 7 in {0, 1 2,. — 1}, M is a single-element deletlon or contraction of M,
Then, as {E( )| > 4 Theorem 3.1 implies that M’ is a splitter for 7. Hence
M ~ M.

The following result for whirls, an immediate consequence of the last theorem,
will be used in the proof of Theorem 1.9.

(2.3) COROLLARY. Let M be a nonbinary 3-connected matroid.- Then M can
be obtazned from a whirl by a sequence of nontrivial lifs and nontrivial eztenszons

3. Some structural results. This section contains a number of results whlch
will be needed in the proof of the main theorem. The first of these is a natural
extension of Theorem 2.5 of [6] for nonbinary matroids. Euclidean representations
for the 6-element matroids Pg and Qe are shown in Figure 1.

(3. 1) THEOREM. Let M be a 3-connected nonbinary matroid having rank and
- corank at least three. Then M has a minor isomorphic to one of Us g, Ps, (s, or
W3.
~ The proof of this theorem will use the following two lemmas.

(3.2) LEMMA. Let Ny be a 3-connected matroid having an element e such that
Ni/e=~ Uy for some k > 5. Then Ny has a manor isomorphic to one of Us g, Fe,

or Qe.
PROOF. We argue by induction on k. If k = 5, then Ny is a nontrivial lift of Uz 5,
and it is not difficult to check that N; is isomorphic to one of Us 6, Ps, or Q¢. Thus
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FIGURE 1

the proposition is true for k = 5. Now assume it true for k = n where n >5 and
let k& = n+ 1. Suppose that f is an element of E(Ny/e). Then N1\ f/e ~ Us,» and
the induction assumption implies that, provided Ny \ f is 3-connected, Ny \ f and
hence Nj:has a minor isomorphic to one of Us g; Ps, or (s. Thus we may assume
that, for all elements f .of E(N;) —{e}, N1\ f is not 3-connected. But, both Ny
and Ny \ f/eé are 3-connected .and so, by (5, Lemma 2.6}, Ny has a triad containing
{e, f}. Therefore Ny \ e is not 3-connected and so N; is minimally 3-connected.
Since rk Ny = 3, it follows by [5, Theorem 4.7] that |E(N1)| < 6, a contradiction.
This completes the proof of the lemma.

(3.3) LEMMA. Let M be a 3- connected matroid having rank at least three and
suppose that M has a Uz s-minor. Then M has a 3-connected minor Ny which has
a smgle element contmctwn that is isomorphic to Uk for some k > 9.

PROOF. Let k be the greatest integer m for which M has a Ug,m—mmor. Then
k> 5. Now let N be a Uy -minor of M and apply Theorem 2.2. The choice of N
guarantees that no 3-connected extension of it is a minor of M. It follows that M
has as a minor a 3-connected lift Ny of N. ~

“ PROOF OF THEOREM 3.1. Since M is nonbinary, it has a Us 4-minor N. Now
clearly Uy 5 is the only nontrivial extension of Uz, 4 and, by duality, Us 5 is the only
nontrivial lift. Thus, on applying Theorem 2.2 and recalling that Uz 4 ~ ~ W?, we
obtain that M has a minor isomorphic to one of W3, Uz 5, or Uss. -In the first
case, the theorem is immediate, while in the second and third cases, it follows on
applymg the combination of Lemmas 3.2 and 3.3 to M and M* respectlvely

Theorem 3.1 can be extended by using the following result.

(3.4) LEMMA. Let M be a 3-connected matmzd and {z,y} be a subset ofE( ).
Suppose that M has a minor 'Lsomorphzc to a member of {Us, 6,P6, Qs W3 } Then
M has such a mmor ‘using {z,y}.

PROOF We use the main result of Seymour s paper [9]. As each of Uz g, Pﬁ, Qs,
and W3 is self-dual, we need only check that if M is a 3-connected matroid such
that M \ e is isomorphic to one of the four specified matroids and f € E(M \ e),
" then M has a deletion using {e, f} that is isomorphic to oné of the four specified
matroids. We omit the stralghtforwa.rd checking of cases that is needed to complete
the proof -

- On comblmng this lemma with Theorem 3 1, we immediately obtain the follow—
ing. =
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(3.5) COROLLARY. Let M be a 3-connected nonbinary matrovd having rank
and corank at least three and suppose that {z,y} C E(M). Then M has a minor
isomorphic to one of Us g, Ps, Qp, or W3 that uses {z,y}.

The next result corresponds to the main theorem in the case that one does not
restrict to nonbinary matroids.

(3.6) THEOREM. Let M be a 3-connected matroid having rank and corank at
least three and suppose that {z,y,2} C E(M). Then M has a minor 1somorphic to
one of Usg, Ps, Qs, W3, or M(Ky) that uses {z,y, 2}

PROOF. As M is 3-connected having rank and corank at least three, |E(M )| >6
and, by Theorem 2.5 of [6], M has a minor isomorphic to one of the five specified
matroids. The result therefore follows immediately if |[E(M)| = 6. We shall argue
by induction on |E(M)| so suppose that |E(M)| > 6 and that the result is true for
all matroids with fewer elements than M. Let.tk M = 3. If M has no element e such
that M \ e is 3-connected, then, by [5, Theorem 4.7], |E(M)| < 6; a contradiction.
Hence, M does have such an element e. If e ¢ {z,y, 2}, then the result follows by
the induction assumption. Thus we may suppose, without loss of generality, that
e = z. By [6, Theorem 4.2], M \ z has a restriction isomorphic to one of Usg,
Ps, Qs, W3, or M(K,) that uses {y,z}. It is.now a straightforward matter. to
check that in all five of these cases the required result holds. W¢ note that the case
checking required here is very similar to that required in the proof of Lemma 3.4.
We conclude that the theorem holds if M has rank 3 and, by duality, it also holds if
M has corank 3. We shall now assume that both the rank and corank of M exceed
3. .
By Theorem' 1.6, for all elements e of M, either M \ e is a series extension of
a 3-connected matroid or M/e is a parallel extension of -a 3-connected matroid.
Choose e in E(M) — {x,y, 2} and suppose that M \ e is a series extension of the
3-connected matroid N and that z, y, and z are in different series classes.of N.
Then we may assume that {z,y,2} C E(N). Now either

- (i) N has rank at least 3; or. : y

(ii) N has rank 2. : : : :

In both cases, since cork M > 3, cork N > 3. The result therefore . follows in the
first case by applying the induction assumption to N. In the second case, N ~ Uy i
for some k and, since cork N > 3, k > 5. Now astk M > 4 and rkN =2, M\ e
has at least one nontrivial series class. Choose x; and z9 in this class takmg Ty
equal to z, y, or z if one of these elements is in the class. Contract all the elements
from this class except z; and zo and then contract all but’ one element from each
of the other nontrivial series classes of M \ e ensuring that z, y, and z are kept.
The resulting contraction of M has rank 3 and has {e,z;,z2} as a cocircuit, Now
delete all but three elements, @, b, and ¢, from the.line which is complementary to
{e, T1,z2} again ensuring that z, y, and z are kept. T

In the resulting matroid M’, the closure of {z;,z2} does not contain e otherwme e
is in the closure in M of the series class Sy of M \ e containing {z;,z}. In that case,
rk(S;Ue) = tk Sy and if Sy = E(M \e)— Sy, then rk M = rk(M\e) = rk S +|81| =1
and tk S; = |S1|. Thus tk S; +rk Se =tk M + 1, sork(S1 Ue)+1k S =tk M +1, a
contradiction to the fact that M is 3-connected. We conclude that, in M’, {e, z1,z2}
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FIGURE 2

is a basis. It follows without difficulty that M’ is 3—connected hence the requlred
result holds in case (ii).

We may now assume that, for all elements e of E' (M) — {z,y, 2}, either at least
two of z, y, and z are in series in M \ e, or at least two of z, y, and 2 are in parallel
in M/e. If z and y are in series in M \ f1 and = and z are in parallel in M /fa
where f2 # fi, then {z,y, f1} is a cocircuit of M and {z, 2, f2} is a circuit of M
But |{z,y, f1} N {z, 2, f2}] = 1; a contradiction.

" Suppose next that = and y are in series in both M\ fi and M\ fo. Then {z,v, f1}
and {z,y, fa} are cocircuits of M and hence, by exchange, {z, f1, f2} and {y, f1,f2}
are cocircuits of M. Tt follows then that, for fs in E(M) — {z,¥, 2, f1, f2}, no pair
of z, y, and z can be in a parallel class in M/fs, otherwise we will again get a
circuit and a cocircuit of M having exactly one common element.

As |E(M) = {z,y;2}| > 5, it follows that either, for all e in E(M) - {:c Y, 2},

" at least two of z, y, and z are in series in M \ e, or, for all such e, at least two of

z, y, and z are in paralle] in M/e. In the first case, {z,y, 2} is spanning in M™; in

the second case, it is spanning in M. Thus we obtain the contradiction that M ha.s

rank or corank at most 3, and this completes the proof of the theorem. -
The next result comes from applying the last theorem to binary matroids.

(3.7) COROLLARY. Let M be a 3-connected binary matroid having rank and
corank. at least three and suppose that {z,y,z} C E(M). Then M has a manor
isomorphic to M(K,) that uses {z,y, z}. : :

In view of this result it seenis tempting to conjecture the following extension of
Corollary 3.5: If M is a 3-connected nonbinary matroid having rank and. corank at
least three and {:z:,y, z} C E(M), then M has a minor isomorphic to one of Us,g,
Ps, Qg, or W3 using {z,y,2}. However, the matroid shown in Flgure 2 satisfies
the hypotheses of this conjecture but not its conclusion. Theorem 1. 9 arises fairly
naturally when one attempts to modify this conjecture in light of the above example

The. next result characterlzes those connected nonbinary matorids havmg an
element which i is used by every Uz 4-minor. »

(3 8) THEOREM. Let M be a nonbinary connected matrozd such that for some
element e of M both M \ e and M /e are binary. Then M 1is obtained from a 4-point
line having -ground set {e,e1,e2,e3} by a sequence of at most three 2-sums where
the basepoints-of these 2-sums are ey, ez, and e3, the other part of each 2-sum 145
connected and binary, and each of e1, e2, and ez s the basepoint of at most one of
these 2-sums.

PROOF. Evidently M has rank and corank at least two. We: shall suppose first
that M is 3-connected. If M has rank two, then M ~ U for some k> 4. If
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k > 4, then M does not have the required property. Thus if M has rank 2, then
the required result holds. By duality, if M has corank two, then M* ~ U; 4 and so
M ~ U2,4.

We may now assume that if M is 3-connected, then rk M, cork M > 3. In that
case, by Corollary 3.5, M has a minor N isomorphic.to one of Usg, Ps, Q6, OF
W3 that uses e. It is straightforward to check that, in each case, one of N \ e and
N/e is nonbinary. Hence we obtain the contradiction that one of M \ e and M/e is
nonbinary.

We may now assume that M is not 3-connected. Then

M = P((My,p1), (Ma,p2)) \ p

for some matroids M; and Ms. If M; is nonbinary for 7 =1 and 2, then as M
is connected, by [1, Theorem 3.7}, it has a Us 4-minor using p;. Thus M has.a
minor isomorphic to the 2-sum of two copies of U; 4 and so one of M \ e and M/e
is nonbinary; a contradiction. It follows that we may assume that M; is nonbinary
and M is binary and that | E(Mz)| is maximum subject to these conditions. Clearly.
e € E(My). If My is 3-connected, then My ~ U 4. If M; is not 3-connected, it
is the 2-sum of a nonbinary and a binary matroid.. Again choose the binary part
of M; to have cardinality as large as possible. If the nonbinary part of M; is not
3-connected, then decompose it. We may repeat such decompositions, in each case
choosing the binary part to have maximum cardinality, until we obtain U, 4 as
one of the parts of the 2-sum. The other part of this 2-sum must be a connected
binary matroid. One of the three elements of Us 4 different from e is the basepoint
of this 2-sum. In building back up to M, it follows, by the fact the cardinality of
the binary part of each 2-sum was chosen to be maximum, that M can indeed be
obtained from Uz as described.

(3.9) COROLLARY. Let M be a 3-connected nonbinary matroid having an ele-
ment e such that both M \ e and M/e are binary. Then M ~ U, 4.

4. The main theorem. In this section we shall prove Theorem 1.9, the main
result of this paper. This theorem extends the following result of Seymour [8, (3.1)].

(4.1) THEOREM. Let M be a nonbinary 3-connected matroid and suppose that
{z,y} C E(M). Then M has a Uz 4-minor using {z,y}.

The proof of Theorem 1.9 is a long induction argument and will be presented
as a sequence of lemmas. The basic idea of the proof is to find, in a minimal
counterexample M, elements f that are not in {z,y, 2}, such that both M \' f and
M/ f are nonbinary. Given such an element, we apply Theorem 1.6 to get that
either M \ f is a nonbinary series extension of a 3-connected matroid or M/f is
a nonbinary parallel extension of a 3-connected matroid. But then the induction
assumption can be applied to one of M\ f and M*\ f unless z, y, and z do not all
lie in different series classes. In the exceptional case, if one has sufficiently many
such elements f, then one can deduce enough about the structure of M to get the
theorem. In order to find elements f with the requlred property, we shall rely on
the following lemma. :

(4.2) LEMMA. Suppose that M is the 2-sum of My and My where My is non-
binary. If f is an element of My that is neither in series nor in parallel with p;,
then both M \ f and M/f are nonbinary. : .
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' PROOF. The result is immediate if f and p; are in different components of M;.
Thus assume that f and p; are in the same component of M;. As f and p; are
not in series, My has a circuit containing p; and avoiding f. Thus M \ f has an
Ms-minor and so is nonbinary. On applying the same argument to M*, we get that
M*\ f and hence M/ f is nonbinary.

The next lemma proves the theorem in the case that two of T, y, and z he ona
line in M ‘having at least four points.

(4.3) LEMMA. If M satisfies the hypotheses of Theorem 1.9 and, in addition,
has a-restriction 1somorphic to’ U2 4 ‘that uses two of z, y,.and z, then M satzsﬁes
the conclusion of Theorem 1.9. :

~ PROOF. We shall suppose that M has a Us 4~ _restriction using {z,y}. If M has
rank 2, then the Jemma i is immediate. Slnce M has Uy,4 as a restriction, M cannot
have corank 2 unless M ~Us4. It follows that we may assume that both the rank
and corank of M exceed two. Then as M is 3-connected, by Theorem 3.6, M has
a minor N isomorphic to one of M (K4), Use, W3 Ps or Qg that uses {z,y, z}.
In the last four cases, it is routine to check that the lemma holds. We note, for
future reference that in these cases the existence of a Uy, 4—restr1ctlon of M using
two of z, y, ‘and z is not needed to obtam the conclus1on In the remaining case,
N~M (K4)

' Let L be the line of M conta.lmng {SE y} Then, in formmg N from M no element
of L can be contracted. The lemma is 1mmed1ate if z € L, so we assume that this
is not so.” If z and y are on one of the 3- pomt lines of N, then choose an element f
of L — E(N ) and let N’ be the extension of N by f. Without loss of generahty, we
may assume that z, y, and z are as shown in Flgure 3(1) or (ii). In the first case,
on labelling the elements a and b as shown, we get that N'|{z,y,2,a,b, f} =~ W3
and has {z,y, z} as its set of spokes. In the second case, it is clear that N'/ehas a
Us, 4-Testriction using {z,v, z}.

If z and y are not on one of the 3-point lines of N, then we extend N by adding
two elements of L — E(N). This can be done in several different ways but it. is
routine to show that, in each case, M has a Up 4-minor using {z,y,2}. ‘
.. PROOF OF THEOREM 1.9. Let M be a nonbinary:3-connected matroid which
is a minor-minimal counterexample to the theorem. .Then M* is also a minimal
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FIGURE 4

counterexample to the theorem. If tk M = 2, then M ~ Uy for some k > 4 and
so the theorem holds for M; a contradiction. By duality, if cork M = 2, then the
theorem also holds for M. Thus rk M, cork M > 3. Suppose that M has rank 3.
Then, by Theorem 3.6, M has a restriction isomorphic to one of Usg, W3, Pe, Qs,
or M (K4) that uses {z,y, z}. It was noted in the preceding proof that' in the first
four ‘cases, the theorem holds. Thus M has’ a restriction N isomorphic to M (Kj)
that uses {z,y,2}. Since M is nonbinary, it is not isomorphic to"M(Kj) or the
Fano matroid.’ It therefore has an element e such that the extension N’ of*N by e
is nonbinary. Evidently N is 3-connected. Therefore, as N’ \ e'is binary, Corollary
3.9 implies that. N’/e is nonbinary. But N’/e has rank two and ‘therefore has a
Uy 4-restriction using {z,y, z} unless e is collinear with two of z, y,-and z in 'N’. By
Lemma 4.3, N/ has no 4-point line using two of z, y, and z. It follows that, 'without
loss of generality, we may assume that z, y, and z are as shown in Figure 4, and that
e, z, and z are collinear. Now e, a, and y must also be collinear, otherwise.N'/a
has a Us,4-restriction usmg {:v y,2} and the theorem holds for M; a contradiction.
Furthérmore, b, ¢, and e are not collinear, otherwise N’ 'is- 1somorph1(‘ to the Fano
matroid and hence is bmary Thus N’l{x Y, 2, b,c,e} ~ W3 and has {z,y,2} as 1ts
set of spokes B

We conclude that if M has rank 3 and by duality, if M has corank 3, then the
theorem holds for M a contrad1ct1on Thus both the rank and corank of M exceed '
3

As M is nonblnary and 3- connected by Corollary 23, Mis obtained from a whlrl
by a sequence of nontrivial lifts and montrivial extensions. Now M itself is not a
whirl, otherw1se as is easﬂy checked, it is not a counterexample to the theorém.
Thus M has an eleient ¢ stch that either’ M\ eor M/eis obtamed from a whirl
in the manner descnbed “We may assurmne that the first of these oceurs, otherw1se
we replace M by M* in’ the argument that follows. Ife ¢ {x v, 2}, then we get a
contrad1ct1on by applymg the induction assumptlon to M \e. Thus, We can assume
that e = z. Notlce that this assumpt1on d1st1ngulshes z from Y and z. _

"‘The rest of the proof of Theorem 1.9 will consist of a sequence of elght lemmas
For some of these, both the lemma and its dual wrll be used in the proof of the
theorem

(4 4) LEMMA Suppose that a - 1s an element of E( ) {rc 'y,z} for which
M \ a 15 a nonbinary series extension of a 3-connected matroid. -Then a 15 the
unique such element. Moreover, y and z are in the same series class of M \ a; thzs
class does not contain z, and {a,y,z} 1s a triad of M. - o
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PROOF. Let M\a be a series extension of the 3-connected matroid N. If z, y, and
z are in distinct series classes of M \ a, then we may assume that {z;y,z} C E(N).
Since the theorem holds for N, it follows that it also holds for M; a contradiction.
If z, y, and z are all in the same series class of M \ a, then every 3-element subset
of {a,z,y,2} is a triad of M. Thus M - {a,z,y, 2} =~ Us4; a contradiction. This
leaves the possibility that two of z, y, and 2 are in the same series class of M \ a,
while the third is in a different series class. As M \ z is 3-connected, z is not in a
triad of M and therefore z is not in a 2-cocircuit of M \ a. Thus {y, 2z} is a cocircuit
of M\ a and hence {a,y, 2} is a cocircuit of M. To establish the uniqueness of a,
suppose that M \ b is a nonbinary series extension of a 3-connected matroid where
be E(M)—{z,y,2,a}. Then, applying the above argument with b replacing a, we
get that {b,y,z} is a cocircuit of M and so M*|{a,b,y, 2} ~ Uz 4. It now follows
by applying Lemma 4.3 to M* that the conclusion of the theorem holds for M*
and hence for M; a contradiction. .

(4 5) LEMMA. Suppose that a € E(M) — {z,y,2} and M \ a is a nonbinary
series extension of a 3-connected matroid. Then M has no element b dzﬁerent from
a, z, y, and z such that both M \ b and M /b are nonbinary.

PROOF. Assume that M has such an element b. By the preceding lemma, M \ b
is not a series extension of a 3-connected matroid. Thus, by Theorem 1.6, M/b is
a parallel extension of a 3-connected matroid. By dualizing the argument given in
the preceding lemma, it follows that we may suppose that two of z, y, and z lie
in the same parallel class of M/b while the third lies in a different parallel class.
Thus {b,g,h} is a triangle of M for some subset {g,h} of {z,y,2}. As {a,y,z}is a
triad of M, it follows that {g, h} = {y, 2}, otherwise we have a triangle and a triad
meeting in just a single element. Thus {b,y, 2z} is a triangle of M.

We show next that M \ b is a series extension of a 3-connected matroid. If not,
then by [2, Lemma 2], M \ b has an exact 2-separation (Y, Z) in which both |Y'| and
|Z| exceed two. Now {y,z} ¢ Y, otherwise (Y Ub, Z) is an exact 2-separation of
the 3-connected matroid M; a contradiction. Likewise, {y, 2} ¢_ Z. Thus we may
assume that y € Y and z € Z. We may also suppose that a € Y. Then, as {a,v, 2}
is a triad of M, z is a coloop of M|Z. Hence rk(Z — z) = rkZ — 1. In addition,
rk(Y U{z,b}) = rk(Y U 2z) and therefore

k(Y U {z,b}) +1k(Z — 2) = 1k(Y U z) + 1k(Z — 2) <1kY +1kZ =1k M + 1.

Since M is 3-connected, it follows that |Z — 2| < 1, that is, | Z| < 2; a contradiction.
We conclude that M \ b is indeed a series extension of a 3-connected matroid.” But.
M \ b is also nonbinary and so we have a contradiction to Lemma 4.4.

(4.6) LEMMA. M does not have three distinct elements a, b, and c that are
not in {z,y, z} such that both M \ e and M/e are nonbinary for all e in {a,b,c}.

PROOF. Assume that M does have three such elements, a, b, and ¢. Then, by
Lemma 4.5, none of M \ a, M \ b, or M \ ¢ is a series extension of a 3-connected
matroid. Therefore, by Theorem 1.6, each of M/a, M/b and M/c is a parallel
extension of a 3-connected matroid. We obtain the contradiction that the theorem
holds for M unless in each of M/a, M /b, and M/c, two of z, y, and z lie in the same
parallel class while the third lies in a different parallel class. If {j,k} C {z,v, 2}
and {J,k} lies in a parallel class in two of M/a, M/b, and M/c, then, by Lemma
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4.3, the theorem holds for M. Thus, we may assume that z and y are parallel
in M/a, that y and z are parallel in M/b, and that = and z are parallel in M/c.
Then {a,z,y}, {b,y,2}, and {c,z,2z} are triangles of M. The theorem follows
unless M|{a,b,c,z,y,2} ~ M(K4) and {a,b,c} is also a triangle of M. In that
case, as none of M \ a, M \ b, or M \ ¢ is 3-connected, the dual of Lemma 1.8
implies that M has a triad T, containing a and just one of b and ¢. If ¢ € T,
then, from the intersection of T, with the triangles {a,z,y} and {c,z, 2}, we get
the contradiction that z € T,. Thus b € T, and, from considering intersections
with the triangles {a,z,y} and {b,y, 2z}, we get that T, = {a,b,y}. By a similar
argument, we have that M has a triad T, containing ¢ and just one of a-and b, and
hence that T, = {c, b, z}. Now

rk(T, UT,) + tk(E(M) — (T, UT.)) —tkM <3 +1kM — 2 -tk M = 1,

But M is 3-connected, hence |E(M) — (T, UT,)| < 1. It follows that |[E(M)| =6
and M ~ M(K,); a contradiction to the fact that M is nonbinary.

(4.7) LEMMA. Suppose that M has an element e different from z, y, and z
such that M \ e 1s nonbinary and is not a series extension of a 3-connected matroid.
Then M has two distinct elements fi and fa that are not in {z,y, 2} such that all
of M\ f1, M/f1, M\ f2, and M/ fa are nonbinary.

The next two rather straightforward lemmas will be used in.the proof of Lemma
4.7. - ' :

(4.8) LEMMA. Let N be a 3-connected matroid. Suppose that e € E(N) and
N\ e is the 2-sum of N1 and Ny where N 1s nonbinary. If N1 has an element ¢;
that is parallel to the basepoint p1, then N/e 1s nonbinary.

PROOF. Let E(N;) —p; = E; and E(N2) —py = E5. By (1.3), N, is connected.
Hence the closure of 5 in N countains g;. But N is 3-connected, so e is not in the
closure of E5 U{q;} in N. Therefore, in N \ (E1 — {q1}), the element e is a coloop.

Thus
N/e\ (By —{q:1}) = N\ e\ (Ey —{q1}) =
Hence N/e is nonbinary and the lemma is proved.

(4.9) LEMMA. Let e be an element of M different from z, y, and z such that
M \e is the 2-sum of two nonbinary matroids My and My. Then E(M)—{z,y,2,¢€}
contains three distinct elements a, b, and ¢ such that both M \ f and M/f are
nonbinary for all f in {a,b,c}.

PROOF. For i in {1,2}, let A; be the subset of E(M;) — p; consisting of those
elements that are neither in series nor in parallel with p; in M;. Then, since M;
is nonbinary, |4;] > 3. Thus |(41 U A2) — {z,y,2}| > 3. The lemma follows
immediately since if f € A; U Ay, then, by Lemma 4.2, both M \ f and M/f are
nonbinary.

PROOF OF LEMMA 4.7. As M \ e is not a series extension of a 3- connected

matroid,
M\ e = P((M,p1),(Ma,p2)) \ P

where M; has at léast four elements and is not a single circuit [7, (5.1)(ii)] and,
M, is nonbinary. Moreover, it follows on combining Lemmas 4.6 and 4.9 that M;
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is binary. We shall prove Lemma 4.7 first in the case when p; is parallel with
another element q; of M;. As M \ e has no 2-circuits, {p1,¢1} is a parallel class
of My. Now M \ ¢; is nonbinary since it has M, as a minor. Moreover, M \ e/q;
has rank at least 3 and is not connected, so M/q; cannot be a parallel extension
of a 3-connected matroid. Thus, by Theorem 1.6, M \ q; is a series extension of a
3-connected matroid. As M \ ¢ is nonbinary, it follows by Lemma 4.4 that either

(D) q1 ¢ {z,v,2} and {q1,y, 2} is a triad of M, or

(II) Q1 € {x,y’ Z}.

In case I, {q1,y, 2z} is also a triad of M \ ¢, otherwise M*|{e,q1,y,2} ~ Ua 4 and
we obtain a contradiction by applying Lemma 4.3 to M*. As {p1,q1} is a circuit
of My, {q1,y,z} is not a cocircuit of M;.. Thus {q1,p1}, {qi,y,p1}, or {q1,2,p1}
is a cocircuit of M;. But, as M; is connected and |E(Mj)| > 4, it cannot have
{p1,q1} as both a circuit and a cocircuit. Hence, without loss of generality, we
may assume that {gi,y,p1} is a cocircuit of My. Then {ps, 2z} is a cocircuit of
M; and so z € E(M,). If E(M;) = {z,y,p1,¢1}, then z is in a 2-cocircuit of M;
avoiding p; and we get the contradiction that z is in a triad of M. Therefore,
E(M;)—{z,y,p1,q1} is nonempty and, by Lemma 4.2, if f is in this set, then both
M\ f and M/f are nonbinary. But M \ ¢; is a nonbinary series extension of a
3-connected matroid. Hence, by Lemma 4.5, we obtain a contradlctlon Thus case
I cannot occur. <

Consider case II. If we can show that E(My) — {z,y, 2,p1 } contains at least two
elements, then, by Lemma 4.2, we may take fi; and fo to be two elements of this
set. We note that we could take fo = e for M \ & is certainly nonbinary and, by
Lemma 4.8, M/e is also nonbinary. Thus to prove this lemma, we need only find
a single element in E(M;) — {z,y, 2,p1}. However, for usein the proof of Lemma
4.11, we shall determine when we may need to take one of f; and f, equal to e.
If E(Ml) = {z,y,2,p1}, then M; and hence M has {z,y, 2z} as a triangle and the
theorem follows easily by Theorem 4.1; a contradiction. If E(M;) = {z,y, 2,p1, f}
for some element. f, then, as noted above, {z,y, 2} cannot be a triangle of M;. It
follows, since z is not in a triad of M, that M; is obtained from a 4-element circuit
on {z,y,2, f} by adding p; in parallel with z. Thus M*|{e, f,y,2} ~ Us,s and we
get a contradiction by applying Lemma 4.3 to M*. If E (Ml) {p1,f,q1,s} where
{q1,5} C {z,vy, 2}, then M; is obtained from a triangle on {g1, f, s} by adding p;
in parallel with g;. Since z is not in a triad of M, s # z. Now, by Lemma 4.2, both
M \ f and M/f are nonbinary. In this case, we take f; = f and fz =e.

This finishes the proof of the lemma in the case that p; is parallel to some
other element of M;. From now on, we shall assume that this does not occur. We
complete the proof of the lemma, by first establishing the existence of the element
f1. We then extend the argument to obtain fp.. Now fi certainly exists unless
every element of E(M;) — {p1,2,y, 2} is in series with p;. In the exceptional case,
we consider M;. It has a parallel class P containing p; and has at least two and
at most three other elements. Since M; has no 2-circuits, M7 has no 2-cocircuits.
Moreover, M} is connected. Thus M; has rank 2 and {z,y,z} = E(M7]) - P.
Hence {z,vy, 2} is a triad of M; and so {z,y, 2} is a triangle of M; and hence of M.
It follows, by Theorem 4.1, that the theorem holds for M; a contradiction. Thls
establishes the existence of an element f; with the properties claimed.
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FIGURE 5

To establish the existence of the element f5, we shall begin with the assumption
that this element does not exist. Thus consider M \ e as before and assume that f;
is the only element of E(M;) — {p1,2,y,7} that is not in series with p;. As'in the
case when p; was parallel to one of z, y, and z, we shall try to choose f distinct
from e and we shall note when this may not be possible.

As before we consider M. It contains the element f;, some subset of {z,y, 2},
and a parallel class P containing p;. We know that M7 is connected and has no
2-cocircuits. We look first at the case when all of z, y, and z are in E(M}) —
P. Then tk M} < 3. Suppose that tkMy = 3. As {z,y,2} is not a triad of
M}, the complement of the line of M{ containing P and f; is a cocircuit of M7
properly contained in {z,v,2}; a contradiction. Thus rk M} = 2. As M7y has no
2-circuit containing z and no Up 4-minor, M7 is as shown in-Figure 5. But then
M*|{e, f1,y,2} ~ U2 4 and we get a contradiction by Lemma 4.3.

We conclude that E(M{) — P ? {z,y,2}. If E(M{) - P contains only one
element of {z,vy,z}, then fy exists or else we get the contradiction that M} has
a 2-cocircuit. Thus E(M;) — P contains f1 together with exactly two elements,
say g and h, of {z,y, z}. Moreover, M{ has rank 2 and is binary. Hence M} is a
line having three points, P, {a,b}, and {c}, where {a,b,c} = {f1,g,h}. Therefore
{e,a,b} is a triad of M and so z.¢ {a,b}. Now look at M \ fi. If it is a serles
extension of a 3-connected matroid, then, by Lemma 4.4, {f1,v,2} is a triad of M.
But {e,a,b} is one of {e, f1,y}, {e, fl,z}, or {e,y,z}. Thus M*|{e, f1,y,2} = Us4
and we get a contradiction by Lemma 4.3. Hence M \ f1 is not a series extension of
a 3-connected matroid. Now apply the first part of the proof of this lemma using
M\ f; in place of M \ e to obtain an element f> not in {f,z,¥, z} for which both
M\ fy and M/ f are nonbinary. We observe that possibly fo = e but, in that case,
the structure of M7 is as indicated above. This completes the proof Qf Lemma 4.7.

(4.10) LEMMA. M has two distinct elements f1 and fz that are not in {z,y, 2}
such that all of M\ fi, M/f1, M\ fa, and M/ f2 are nonbinary.

- PROOF. By Theorem 4.1, M* has a Us 4-minor using {y,2}. Therefore, as
rk M* > 4, M* has an element e not in {z,y, 2} such that M* /e and hence M \ e
is nonbinary. If M \ e is not a series extension of a 3-connected matroid, then this
lemma is immediate from Lemma 4.7. Thus we may assume that M \ e is a series
extension of a 3-connected matroid. In that case, by Lemma 4.4, {e,y, 2} is a triad
of M and so {e,y, z} is a triangle of M*. By Theorem 4.1, it follows that M*
has a Us, 4 -minor using {e,y,z}, hence, as rk M* > 4, M* has an element f not in
{e,z,y, 2} such that M*/f is nonbinary. Thus M \ f is nonbinary. If M \ f is not
a series extension of a 3-connected matroid, the lemma is immediate from Lemma
4.7. If M\ f is a series extension of a 3—connected matroid, then {f,y, 2} is a triad
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of M and so M*|{e, f,y,2} ~ Uz 4. We now obtain a contradiction‘vby applying
Lemma 4.3 to M™. ,
‘On combining the next result w1th the precedmg lemma, Theorem 1.9 will follow.

(4.11) . LEMMA ! E(M) {z,y,2} does not contam two distinct elements fi
and fo such that all ofM\fl, M/fy, M\ fz, and M/fz are nonbinary.

PROOF We assume that the elements fi-and f2 do exist. By Lémma 4.5 and
Theorem 1. 6, both M/ f, and M/ f, are parallel extensions of 3-connected matroids,
and neither M \ fi nor' M \ f2 is a series extension of a 3-connected matroid.
Moreover, by Lemma 4.3 and the dual of the argument in Lemma 4.4, two of z, v,
and # form a triangle with f;, and a different pair forms a triangle w1th ‘fa. Now z
has been distinguished in {z,v, 2z} by the’ assumption that M \ z is nonbinary and
3:eonnected. It follows then that, without loss of generality, we may assume that
{f1,z,y} is a triangle of M and that either (i) {f2,z, 2} or (ii) {fg,y, z} is also a
triangle of M. In both cases, if M has:an element f3 that is not in {f1, f2; =, y, 2}
such that both M \ fs and M/ f3 are nonbinary, then we obtain a contradiction to
Lemma 4.6. A contradiction is also obtained if { f, z,y, z} contains a triangle other
than {fi,,y}. Now consider M \ f2. It is nonbinary and is not a series extension
of a 3-connected matroid. Thus M \ fo = P((Mi,;p1),(M2,p2)) \ p where M, is
nonbinary, M; is not a single citcuit, and |E(My)| > 4. We choose My here so
that |E(M;)| is maximum subject to these conditions. Now f; € E(My), otherwise
the argument of Lemma 4.7 establishes the existence of the required element fs.
From the proof of that lemma, it follows that the element f3 exists unless either
Mj is as shown in Figure 6(J) whéré {q1,s} C {z,y,2} and s # z; or E(M{) — P
contains f; and exactly two elements of {z,y,2} and M7 is as shown:in Figure
6(I1) where {a,b,c} = {f1,9,h}, {g,h} C {z,y,2}, and = ¢ {a,b}. In the former
case, {f1,q1,8} is a triangle of M contained in {f1,z,v, 2} Thus {a1,8} = {=z, y}-
But s # z, s0 g1 = ¢ and s = y. Therefore, in case (I), {fl,fz, y} is a triad of M.
This i$ also true in case (II) for, in that case, {a,b,c} is a triad of M{ and hence
is a triangle of M. Since it-is contained in {f1,2, y,z} it-must be {f1;z,y}. Now
z ¢ {a,b}, so {a,b} = {f1,y}: Hence we do indeed have that in both cases (I) and
(D), {fi,u; f2} is a triad of M. Therefore if {f2,z,2} is a triangle of M it meets
this triad in a single element. ‘This contradiction eliminates case (i) above. Hence
we need only consider case (u) It follows that in both cases (I) and (II) we may
assume that M is obtained from the cycle matroid of the graph shown in: Flgure
7 by adding a (possibly empty) set of edges in series with py. '
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FIGURE 7

If the series class of M; containing p; contains elements u; and v, distinct from
p1, then {fa,u1,v1} is a triad of M. As z € E(Mz), this triad meets the triangle
{f2,Y,2} in a single element; a contradiction. Thus either

(1) M, is as shown in Figure 7; or

(2) M; has one extra element u; in series with p;.

In case (2), {f1,2,u1} and {z,y,u;} are triads of M; and hence of M\ f2. Since
7z is not in a triad of M, ueither {f1,z,u1} nor {z,y,u1} is a cocircuit of M and
therefore both {2, f1, 2, ul} and {f2,x,y,u} are cocircuits of M. Thus M \u; has
{f1, f2,%} and {fz,:c y} as cocircuits. Therefore (M \ u1)*|{z, v, fl,fz} is either
a 4-point line or a line having three points, {z}, {y, f1}, {f2}. In the first case,
(M \ u1)* is nonbinary, so M \ u; is also nonbinary. Since M/u; has an M>-minor,
it too is nonbinary. Thus we can take f3 = u; and the required result follows. In
the second case, {y, f1} is a cocircuit of M \ uy. Thus {u1,y, f1} is a triad of M
and hence of M;. But {z,p;,u1} is a triangle of M; meeting this triad in a single
element; a contradiction. Thus case (2) cannot occur.

‘Now consider case (1). Because z is parallel to py in My, the matroid M \ f1, fz,
is obtained from M, simply by relabelling the element py by z. For the rest of the
proof we shall identify M with M\ fi, f2,y.

We shall show next that Ms has a Us _4-minor using {z, z} If Mz 1s 3-connected
this is immediate from Theorem 4.1. If M, is not 3-connected, then, by Theorem
1.2, M5 is the 2-sum of matroids M, ; and Mj 2 with respect to the basepoints sy
and so where z € E(M32) and |E(Ma 1)| is maximum subject to these conditions.
If M; 5 is not 3-connected, then it is the 2-sum of matroids M; 3 and My 4 with
respect to the basepoints s3 afid s4 where z € E(M, 4) and |E(Mp )| is maximum..
By the choice of M5 1, we must have that so € E(Ma,4). If M3 4 is not 3-connected,
then it is the 2-sum of matroids Mz 5 and M ¢ with respect to the basepoints sg
and sg where z € E(M¢) and |E(M25)| is maximum. Again the choice of M2 ;
and My 3 guarantees that s and s4 are in E(M3¢). Repeating this process, we
eventually. obtain a 3-connected matroid Mz o, containing «,sg,$4, ..., S2k such
that My is formed from M3 g by taking the 2-sum of Mz 2x and M 1 w1th respect
to sy and sq; then taking the 2-sum of the result and M2,3 with respect to s4 and
s3 and so on. Evidently, for all 7 in {1,2,...,k}, My is the 2-sum of M3 3;_; and
another matroid, say: M, 25~1> which contams z. As M, is nonbinary, at least one
of the parts of this 2-sum is nonbinary. If M 2;_1 is nonbinary, then M\ f3 is the
2-sum of M3 ;1 and another matroid Mj, which is the 2-sum of M; and M2’2J_1
But M/ has more elements than M;; a contradiction to the choice of M. It follows
that My 5;_; is binary. Since this is true for all j in {1,2,..., k}, we must have that
M o5 is'nonbinary. It follows, by Theorem 4.1 (or see [ (4 2))), that, whether it
is 3-connected or not, Mz has a U, 4-minor using {z,z}. Suppose that this minor
is My /A\ B. then M \ f2/A\ B is the matroid shown in Figure 8.
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FIGURE 8

Now, we may assume that A is independent in My. As AN {y, f1, f2} is empty
and {y, f1, f2} 1s a cocircuit of M, both AU f, and AUy are independent in M.
We recall that {fs,y; 2} is a circuit of M. Thus either {f2,¥y, 2} is a circuit of M/A
or {f2,y, 2} properly contains a circuit of M/A. In the first case, we are forced
to get a W3-minor of M having {z,v, 2} as its set of spokes; a contradiction. In
the second case, since every circuit of M containing f, must meet both E(M;) and
E(M,), and {y, 2z} is independent in M/A, we must have that {fz,y} is a circuit
of M/A. Thus AU {f2,y} contains a circuit C of M. Moreover, {f2,y} C C since
both AU f; and A Uy are independent. But {fs,y, 2} is also a circuit of M and
so, by exchange, M has a circuit containing z and contained in AU {f2,2}. The
element f, is not in this circuit, otherwise the exact 2-separation we have of M \ fo
extends to an exact 2-separation of the 3-connected matroid M; a contradiction.
But now in M/A, the element z is a loop; a contradiction. This completes the proof
of the lemma, thereby finishing the proof of the theorem.
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