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The purpose of this note is to present a counterexample to a conjecture of Kahn 
and Seymour on the minor-minimal matroids not representable over GF(4). 
17:’ 1986 Academic Press, Inc. 

Kahn and Seymour [2] have conjectured that a matroid is representable 
over GF(4) if and only if it has no minor isomorphic to any of the matroids 
u U4.6, 2.6, Fy, (F;)*, and P,, where F; is the non-Fan0 matroid and P, 
is the 6-element rank-3 self-dual matroid for which a Euclidean represen- 
tation is shown in Fig. 1. 

Let P, be the matroid induced by linear independence on the set of 
columns of the following matrix over GF(3). 

1 2 3 4 567 8 

I 14 -111 0 101 110 1 1 -1 0 1 1’ I 

It is not difficult to check, using, for example, a list of its 4-circuits, that P, 
has a transitive automorphism group. Thus every single-element contrac- 
tion of P, is isomorphic to P,/l. The latter is isomorphic to P,, the 
matroid for which a Euclidean representation is shown in Fig. 2. Now P, is 
easily shown to be representable over every field other than GF(2) [3]. 
Using this and the fact that P8 is self-dual, we deduce that no proper minor 
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FIGURE 1 

of P, is a counterexample to Kahn and Seymour’s conjecture. The next 
result completes the argument that P, itself is a counterexample. 

THEOREM. P, is representable over a field F if and on1.v if the charac- 
teristic of F is not two. 

Proof: Suppose that A is a 4 x 8 matrix representing P, over a field F. 
Then, using Brylawski and Lucas’s theory of coordinatizing paths [ 11, we 
can assume that 

A= 

1 2 3 4 

[ 

14 

5 6 7 8 

0 1 1 d 

1 0 1 1 

a 1 0 e 

b 1 c 0 1 
where a, 6, c, d, and e are non-zero elements of F. It is straightforward to 
show, by considering P8/i for each i in j4, 3, 21, that 

1 2 3 4 5 6 7 8 

FIGURE 2 
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Since every non-zero entry in this matrix must be non-zero modulo F, we 
deduce that F does not have characteristic two. It is now routine to check 
that A represents P, over all fields of characteristic other than two. 1 
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