Note

On the Matroids Representable over GF(4)

James G. Oxley*
Mathematics Department, Louisiana State University, Baton Rouge, Louisiana 70803
Communicated by the Managing Editors

Received October 17, 1985

Abstract

The purpose of this note is to present a counterexample to a conjecture of Kahn and Seymour on the minor-minimal matroids not representable over $G F(4)$. (i) 1986 Academic Press, Inc.

Kahn and Seymour [2] have conjectured that a matroid is representable over $G F(4)$ if and only if it has no minor isomorphic to any of the matroids $U_{2,6}, U_{4.6}, F_{7},\left(F_{7}\right)^{*}$, and P_{6}, where F_{7} is the non-Fano matroid and P_{6} is the 6 -element rank- 3 self-dual matroid for which a Euclidean representation is shown in Fig. 1.

Let P_{8} be the matroid induced by linear independence on the set of columns of the following matrix over $G F(3)$.

$$
\begin{aligned}
& \begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array} \\
& {\left[\begin{array}{l}
I_{4}
\end{array} \left\lvert\, \begin{array}{rrrr}
0 & 1 & 1 & -1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
-1 & 1 & 1 & 0
\end{array}\right.\right] .}
\end{aligned}
$$

It is not difficult to check, using, for example, a list of its 4 -circuits, that P_{8} has a transitive automorphism group. Thus every single-element contraction of P_{8} is isomorphic to $P_{8} / 1$. The latter is isomorphic to P_{7}, the matroid for which a Euclidean representation is shown in Fig. 2. Now P_{7} is easily shown to be representable over every field other than $G F(2)$ [3]. Using this and the fact that P_{8} is self-dual, we deduce that no proper minor

[^0]

Figure 1
of P_{8} is a counterexample to Kahn and Seymour's conjecture. The next result completes the argument that P_{8} itself is a counterexample.

Theorem. $\quad P_{8}$ is representable over a field F if and only if the characteristic of F is not two.

Proof. Suppose that A is a 4×8 matrix representing P_{8} over a field F. Then, using Brylawski and Lucas's theory of coordinatizing paths [1], we can assume that

$$
A=\left[\begin{array}{llll|llll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
& & & & 0 & 1 & 1 & d \\
& I_{4} & & & 1 & 0 & 1 & 1 \\
& & & a & 1 & 0 & e \\
& & & & b & 1 & c & 0
\end{array}\right]
$$

where a, b, c, d, and e are non-zero elements of F. It is straightforward to show, by considering P_{8} / i for each i in $\{4,3,2\}$, that

$$
A=\left[\begin{array}{cccc|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
& & & & 0 & 1 & 1 & 2 \\
& I_{4} & & 1 & 1 & 0 & 1 & 1 \\
& & & 1 & 0 & 1 \\
2 & 1 & 1 & 0
\end{array}\right] .
$$

Figure 2

Since every non-zero entry in this matrix must be non-zero modulo F, we deduce that F does not have characteristic two. It is now routine to check that A represents P_{8} over all fields of characteristic other than two.

References

1. T. H. Brylawski and D. Lucas, Uniquely representable combinatorial geometries, in "Teorie Combinatorie, Proc. 1973 Internat. Colloq.," Accademia Nazionale dei Lincei, Roma, 1976, pp. 83-104.
2. J. Kahn and P. D. Seymour, private communication, February 1984.
3. G. P. Whittle, Some Aspects of the Critical Problem for Matroids, Ph.D. thesis, University of Tasmania, 1985.

[^0]: * This research was partially supported by the National Science Foundation under Grant No. DMS-8500494.

