Note

On the Matroids Representable over GF(4)

JAMES G. OXLEY*

Mathematics Department, Louisiana State University, Baton Rouge, Louisiana 70803

Communicated by the Managing Editors

Received October 17, 1985

The purpose of this note is to present a counterexample to a conjecture of Kahn and Seymour on the minor-minimal matroids not representable over GF(4). © 1986 Academic Press, Inc.

Kahn and Seymour [2] have conjectured that a matroid is representable over GF(4) if and only if it has no minor isomorphic to any of the matroids $U_{2,6}$, $U_{4,6}$, F_7^- , $(F_7^-)^*$, and P_6 , where F_7^- is the non-Fano matroid and P_6 is the 6-element rank-3 self-dual matroid for which a Euclidean representation is shown in Fig. 1.

Let P_8 be the matroid induced by linear independence on the set of columns of the following matrix over GF(3).

1	2	3	4	5	6	7	8	
Γ				0	1	1	-1]	
	I_4			1	0	1	1	
				1	1	0	1	
L				-1	1	1	0	

It is not difficult to check, using, for example, a list of its 4-circuits, that P_8 has a transitive automorphism group. Thus every single-element contraction of P_8 is isomorphic to $P_8/1$. The latter is isomorphic to P_7 , the matroid for which a Euclidean representation is shown in Fig. 2. Now P_7 is easily shown to be representable over every field other than GF(2) [3]. Using this and the fact that P_8 is self-dual, we deduce that no proper minor

^{*} This research was partially supported by the National Science Foundation under Grant No. DMS-8500494.

of P_8 is a counterexample to Kahn and Seymour's conjecture. The next result completes the argument that P_8 itself is a counterexample.

THEOREM. P_8 is representable over a field F if and only if the characteristic of F is not two.

Proof. Suppose that A is a 4×8 matrix representing P_8 over a field F. Then, using Brylawski and Lucas's theory of coordinatizing paths [1], we can assume that

where a, b, c, d, and e are non-zero elements of F. It is straightforward to show, by considering P_8/i for each i in $\{4, 3, 2\}$, that

FIGURE 2

JAMES G. OXLEY

Since every non-zero entry in this matrix must be non-zero modulo F, we deduce that F does not have characteristic two. It is now routine to check that A represents P_8 over all fields of characteristic other than two.

References

- 1. T. H. BRYLAWSKI AND D. LUCAS, Uniquely representable combinatorial geometries, *in* "Teorie Combinatorie, Proc. 1973 Internat. Colloq.," Accademia Nazionale dei Lincei, Roma, 1976, pp. 83–104.
- 2. J. KAHN AND P. D. SEYMOUR, private communication, February 1984.
- 3. G. P. WHITTLE, Some Aspects of the Critical Problem for Matroids, Ph.D. thesis, University of Tasmania, 1985.