Note

On the Matroids Representable over $GF(4)$

JAMES G. OXLEY*

Mathematics Department, Louisiana State University,
Baton Rouge, Louisiana 70803

Communicated by the Managing Editors

Received October 17, 1985

The purpose of this note is to present a counterexample to a conjecture of Kahn and Seymour on the minor-minimal matroids not representable over $GF(4)$.

Kahn and Seymour [2] have conjectured that a matroid is representable over $GF(4)$ if and only if it has no minor isomorphic to any of the matroids $U_{2,6}$, $U_{4,6}$, F_7, $(F_7)^*$, and P_6, where F_7 is the non-Fano matroid and P_6 is the 6-element rank-3 self-dual matroid for which a Euclidean representation is shown in Fig. 1.

Let P_8 be the matroid induced by linear independence on the set of columns of the following matrix over $GF(3)$.

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
I_4 & 0 & 1 & 1 & -1 & 1 & 0 & 1 & -1 \\
& 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
& & 1 & 1 & 0 & 1 & & & & \\
& & & -1 & 1 & 1 & 0 & & & \\
\end{bmatrix}
\]

It is not difficult to check, using, for example, a list of its 4-circuits, that P_8 has a transitive automorphism group. Thus every single-element contraction of P_8 is isomorphic to $P_8/1$. The latter is isomorphic to P_7, the matroid for which a Euclidean representation is shown in Fig. 2. Now P_7 is easily shown to be representable over every field other than $GF(2)$ [3]. Using this and the fact that P_8 is self-dual, we deduce that no proper minor

* This research was partially supported by the National Science Foundation under Grant No. DMS-8500494.

0095-8956/86 $3.00

Copyright © 1986 by Academic Press, Inc.
All rights of reproduction in any form reserved.
of P_8 is a counterexample to Kahn and Seymour's conjecture. The next result completes the argument that P_8 itself is a counterexample.

Theorem. P_8 is representable over a field F if and only if the characteristic of F is not two.

Proof. Suppose that A is a 4×8 matrix representing P_8 over a field F. Then, using Brylawski and Lucas's theory of coordinatizing paths [1], we can assume that

$$A = \begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
0 & 1 & 1 & d \\
1 & 0 & 1 & 1 \\
a & 1 & 0 & e \\
b & 1 & c & 0
\end{bmatrix}$$

where $a, b, c, d,$ and e are non-zero elements of F. It is straightforward to show, by considering P_8/i for each i in \{4, 3, 2\}, that

$$A = \begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
0 & 1 & 1 & 2 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
2 & 1 & 1 & 0
\end{bmatrix}.$$
Since every non-zero entry in this matrix must be non-zero modulo F, we deduce that F does not have characteristic two. It is now routine to check that A represents P_8 over all fields of characteristic other than two. ■

REFERENCES