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Brylawski identitied the class of binary matroids with no minor isomorphic to 
M(&) as being the class of series-parallel networks. From this he deduced that, for 
all such matroids M, the critical exponent c(M; 2) is at most 2. He also conjectured 
that a similar result is true over all finite fields GF(q). This paper examines the 
classes of ternary and GF(4)-representable matroids with no M(K,)-minor. The 
main result characterizes the former class by showing that, with one exception, the 
only non-trivial 3connected members of this class are whirls or minors of the 
Steiner system S(5, 6: 12). This characterization is then used to show that, for all 
ternary matroids M with no M(K,)-minor, c(M; 3) < 2, thereby verifying 
Brylawski’s conjecture in the case that q = 3. The characterization is also used to 
give excluded-minor descriptions for the class of ternary gammoids and two other 
related classes. The first of these results answers a question of Ingleton and verities 
another conjecture of Brylawski. (0 1987 Academic Press, Inc. 

1. INTRODUCTION 

In this paper we shall study the classes of ternary and GF(4)-represen- 
table matroids with no minor isomorphic to M(K,), the cycle matroid of 
the complete graph on 4 vertices. The class of binary matroids with no 
M(K,)-minor was identified by Brylawski [S] as being the class of series- 
parallel networks. Thus the only 3-connected binary matroids with no 
M(K,)-minor have three or fewer elements. The main result of this paper is 
that if M is a 3-connected ternary matroid with no M(K,)-minor and 
I/Z(M)1 3 4, then M is a whirl, M is a certain self-dual rank-4 matroid J, or 
M is one of 15 non-isomorphic minors of the Steiner system S(5,6, 12). A 
consequence of this result is that J and S(5, 6, 12) are the only 3-connected 
splitters [35] for the class of ternary matroids with no M(K,)-minor. 
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From our characterization of the 3-connected ternary matroids with no 
M(&)-minor, we deduce that every loopless ternary matroid with no 
M(&)-minor has critical exponent at most two. This verifies a special case 
of a conjecture of Brylawski 161. 

In [ 191, Singleton asked for an excluded-minor description of the class of 
ternary gammoids, while in [6], Brylawski conjectured that a gammoid is 
ternary if and only if it has no minor isomorphic to Uz,s or U3,5. Using our 
main result we are able to deduce excluded-minor descriptions for the 
classes of ternary gammoids, ternary base-orderable matroids and ternary 
strongly base-orderable matroids. From the first of these, the truth of 
Brylawski’s second conjecture follows. 

The matroid terminology used here will in general follow Welsh [38]. 
The ground set and rank of the matroid M will be denoted by E(M) and 
rk M respectively. If TEE(M), then rk T and T will denote the rank and 
closure of T, respectively. The deletion of T from M will be denoted by 
m T or Ml (E(M) - T), and the contraction of T from M by M/T or 
M. (E(M) - T). Flats of A4 of ranks one and two will be called points and 
lines. If X is an n-element circuit of M, then we shall call X an n-circuit. The 
(Y + 1 )-vertex wheel, the whirl of rank r [38, pp. 8&81] and the uniform 
matroid of rank li on an n-element set will be denoted by q, w’, and 
U/i,n, respectively. Whirls are often defined to have rank at least 3. 
However, the usual construction of a whirl from a wheel remains valid for 
r = 2 and the resulting matroid w2 is isomorphic to U2,4. 

A matroid M is 3-connected if it is connected and E(M) cannot be par- 
titioned into subsets X and Y each having at least two elements such that 
rk X+ rk Y- rk M = 1. It is routine to verify that M is 3-connected if and 
only if its dual M* is 3-connected. We call M minimally 3-connected if A4 is 
3-connected and, for all elements e of M, M\e is not 3-connected. 

If M, and M, are matroids on the sets S and S v e where e $ S, then M, 
is an extension of M, if MZ\e = M,, and M, is a iif of M, if M: is an 
extension of M:. We call M, a non-trivial extension of M, if e is neither a 
loop nor a coloop of M, and e is not in a 2-circuit of M2. Likewise, M2 is a 
non-trivial lif of M, if MT is a non-trivial extension of Mr. The following 
result is well known (see, for example, [28, Lemma 2.11). 

(1.1) LEMMA. Let N be a 3-connected malroid having at least three 
elements and M be an extension of N. Then M is 3-connected if and only if 
M is a non-trivial extension of N. 

We shall assume familiarity with the operations of series and parallel 
connection of matroids; a detailed discussion of these operations and their 
properties can be found in [S]. For matroids M, and M, such that 
E(M,)nE(M,)= IPI, we shall denote the series and parallel connections 
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of M, and M2 with respect to the basepoint p by S((M,, p), (M2, p)) 
and P((M,, p), (Ml, p)), respectively. We note here that S((M,, p), 
(M2, p))/p = P( (M,, p), (M2, p))\p [S, Corollary 5.31. The following 
basic link between 3-connection and series and parallel connections was 
proved by Seymour [35, (2.6)]. 

(1.2) THEOREM. A connected matroid M is not 3-connected if and only if 
there are matroids M, and M, each of which has at least three elements and 
is isomorphic to a minor of M such that M= P((M, , p), (M,, p))\p = 
S((M,, p), (M2, p))/p, where p is not a loop or a coloop of M, or Mz. 

When M decomposes as in this theorem, it is called the 2-sum of M, and 
M,. 

If (x, yj is a circuit of the matroid M, we say that x and y are in parallel 
in M. If, instead, {x, y } is a cocircuit of M, then x and y are in series in M. 
The matroid M’ is a series extension of M if M= M’/T and every element 
of T is in series with some element of M’ not in T. Parallel extensions are 
defined analogously. We call M” a series-parallel extension of M if M” is 
obtained from M by a sequence of operations each of which is either a 
series or parallel extension. A matroid in which each connected component 
is a series-parallel extension of a single-element matroid is called a series- 
parallel network. A detailed investigation of the properties of such matroids 
can be found in [S]. 

Given a matrix A with entries from a field F, the dependence matroid 
D(A) of A is the matroid whose ground set is the set S of columns of A and 
whose independent sets are the subsets of S which are linearly independent 
over F. If Mr D(A), we say that A represents M or is a representation for 
M. Now suppose we adjoin a new column e to A. Then A + e will denote 
the resulting matrix and, if M== D(A), we shall sometimes write M+e for 
the matroid D(A + e). If M+ e is a non-trivial extension of M, we shall say 
that e has been added non-trivially to A. A matroid is ternary if it is 
isomorphic to the linear dependence matroid of a matrix over GF(3). The 
next result characterizes the class of ternary matroids in terms of excluded 
minors. The Fano matroid will be denoted by F,. 

(1.3) THEOREM Cl, 341. A matroid is ternary f and o&v if it has no 
minor isomorphic to any of U2,5r U3,5r F,, or FT. 

In Section 2 of this paper we state and prove the main theorem of the 
paper, a characterization of the ternary 3-connected matroids with no 
M(K,)-minor. The proof of this theorem will rely heavily on the next two 
results. The first of these is an easy consequence of Seymour’s splitter 
theorem [35, (7.3)] (see, for example, [30, Theorem 2.21). 
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(1.4) THEOREM. Let M and N be 3-connected matroids such that N is a 
minor of M, 1 E(N) 1 > 4, and if N z M( YI!&), M has no M( Wk + , )-minor, while 
if NE Wk, M has no +IY”+’ -minor. Then there is a sequence M,, M, , 
M 2,-.., M, of 3-connected matroids such that M, g N, M, = M and, for all i 
in { 1, 2,..., n}, Mi is an extension or lift of MiP 1. 

The second result that we shall make extensive use of is the theorem of 
Brylawski and Lucas that ternary matroids are uniquely representable. To 
state this precisely, we shall require some further definitions. Given a 
matrix A over a field F, a projective operation on A consists of either an 
elementary row operation, that is, adding a scalar multiple of one row to 
another, interchanging two rows, or multiplying a row by a nonzero scalar; 
multiplication of a column by a nonzero scalar; or replacement of each 
entry of A by its image under some automorphism of F. The matrices A 
and A’ are projectively equivalent if A’ can be obtained from A by a 
sequence of projective operations. 

(1.5) THEOREM [S, Corollary 3.31. Let A and A’ be r x n matrices over 
GF(3) such that the map which, for all i in (1, 2,..., n}, takes the ith column 
of A to the ith column of A’ is an isomorphism from D(A) to D(A’). Then A 
and A’ are projectively equivalent. 

The well-known Steiner system S( 5, 6, 12) plays a fundamental role in 
our main theorem and we shall make extensive use of the properties of this 
system in the proof of the theorem. Recall that a Steiner system S(t, k, v) is 
a pair (S, g), where S is a v-element set and 9 is a collection of k-element 
subsets of S called blocks such that every t-element subset of S is contained 
in exactly one block. The matroid associated with the Steiner system (S, $8) 
has S as its ground set and 9 as its set of hyperplanes. Its rank is t + 1 and 
every subset of S with fewer than t elements is an independent flat (see [38, 
Chap. 121). If x E S, then the contraction of x from the matroid associated 
with (S, 9) has S-x as its ground set; its set 9’ of hyperplanes consists of 
all sets of the form H- x, where H is a member of 9 containing x. 
Evidently the pair (S-x, 9’) is an S(t - 1, k - 1, v - 1). This construction 
may be repeated to give further Steiner systems; the systems obtained in 
this way are said to be derived from the original system. 

In general, a Steiner system is not uniquely determined by its 
parameters, t, k, and v. However, the Steiner system S(5, 6, 12) and its 
derived systems, S(4, 5, 1 l), S(3, 4, lo), and S(2, 3, 9), are unique [40]. We 
observe here that S(2, 3, 9) is the ternary affine plane, AG(2, 3), while 
S(3,4, 10) is the ternary inversive plane [ 141. There are numerous con- 
structions known for S(5,6, 12), many of which have been described by 
Cameron [9] (see also [lo]). From the point of view of this paper, the 
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most convenient description of S(5,6, 12) is as follows [ 111, Let S = 
{s,, So,..., xi?} be the set of columns of the following matrix over GF(3): 

x= 

FIGURE 1 

The set of hyperplanes of D(X) is the set of blocks of an S(5, 6, 12) on S. 
Since a matroid is uniquely determined by its set of hyperplanes, the 
automorphism group of S(5,6, 12) as a matroid is the same as its 
automorphism group as a Steiner system. The latter is well known to be 
the Mathieu group M,, [39], which is 5-transitive [25]. 

Throughout this paper when we refer to a Steiner system, we shall in 
general mean the matroid associated with the system. As the matrix X has 
the form [Zi A] where A is symmetric, S(5, 6, 12) is self-dual. In fact, 
S(5, 6, 12) is identically self-dual, that is, its sets of circuits and cocircuits 
coincide. The last observation follows from the fact that the complement of 
every block of S(5, 6, 12) is also a block [ 111. Thus the set of cocircuits of 
S(5, 6, 12) equals its set of blocks. Since every block is also a circuit and 
S(5, 6, 12) is self-dual, the set of circuits also equals the set of blocks and 
we conclude that the sets of circuits, cocircuits, and blocks coincide. 

In the third section of this paper, we shall use our main theorem to solve 
the critical problem [ 12, Chap. 161 for ternary matroids with no M(K,)- 
minor. Let M be a rank-r loopless matroid that is isomorphic to the depen- 
dence matroid D(A) of an Y x n matrix A over GF(q). Then the set S of dis- 
tinct columns of A is a subset of V(r, q) and the critical exponent c(M; q) of 
M is the least number k of hyperplanes Hi, H,,..., H, of V(r, q) such that 
(fib=, Hj)n S= Iz(. The fact that c(M; q) does not depend on the par- 
ticular matrix A was proved by Crapo and Rota. To state their result, we 
require a further definition. The chromatic polynomial P(N; /1) of an 
arbitrary matroid N is the polynomial C.yz E(Nj ( - 1 )‘.Y’,?rk N - rk ‘. Crapo 
and Rota [12, p. 16.41 proved that, for a loopless matroid A4 representable 
over GF(q), P(M; q’) 3 0 for all positive integers j, and moreover, 

c(M;q)=min(jEZ+: P(M;q’)>O} 

=min{jEZ+: P(M;q’+‘)>O foralliinZ+ u {O}}. 

As a simple rank-r matroid has critical exponent 1 if and only if it is 
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isomorphic to a restriction of AG(r - 1, q), a loopless matroid is called 
affine if its critical exponent is one. If NZ M(G) for a loopless connected 
graph G, then the chromatic polynomial P(G; 1) of the graph G equals 
P(N; A). This close link with graphs reflects the fact that a major part of 
the initial motivation for the critical problem came from colouring and 
flow problems in graphs (see [23] for details). 

Section 4 of this paper is concerned with certain classes of matroids that 
are related to the class of transversal matroids. It is well known that this 
last class is not closed under contraction (see, for example, [38, p. 1051). A 
ganzmoid is a matroid that is isomorphic to a transversal matroid or a con- 
traction of a transversal matroid. The class of gammoids is closed under 
both minors and duality [20]. Two other related classes introduced by 
Brualdi [3] and studied by several authors [2, 13, 15, 18, 19, 241 are the 
classes of base-orderable and strongly base-orderable matroids. A matroid 
M is base-orderable if, given any two bases B, and B,, there is a bijection 
y?: B, -+ B, such that, for every element x of B,, both (B, -x) u $(x) and 
(B, - $(x)) u x are bases of M. If, given any two bases B, and B,, there is 
a bijection $: B, + B, such that, for every subset X of B,, both 
(B, -X) u $(X) and (B, - $(X)) u X are bases, then M is called strongly 
base-orderable. The classes of base-orderable and strongly base-orderable 
matroids are both closed under minors and duality. Moreover, in general, 
the class of base-orderable matroids properly contains the class of strongly 
base-orderable matroids which, in turn, properly contains the class of gam- 
moids. However, within the class of binary matroids, these three classes 
coincide. In Section 4, we use our main theorem to determine the 
relationship between these classes within the class of ternary matroids. A 
characterization of the class of ternary transversal matroids, which also 
follows from the main theorem, will appear elsewhere [32]. 

In Section 5, we prove another consequence of the main theorem, a best- 
possible upper bound on the number of elements in a rank-u simple ternary 
matroid with no M(K,)-minor. Just like the corresponding bound for 
binary matroids, this bound is linear in r. The paper concludes with an 
addendum in which the class of GF(4)-representable matr’oids having no 
M(IY,)-minor is considered. 

2. THE TERNARY MATROIDS WITH NO M(&)-MINOR 

In this section we state and prove the main result of this paper, a charac- 
terization of all ternary 3-connected matroids having no M(K,)-minor. We 
shall denote by Sz the class of all such matroids. In addition, we shall let J 
be the simple rank-4 matroid for which a Euclidean representation is 
shown in Fig. 2. The points of J are the 8 solid dots in this figure. 
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FIGURE 2 

(2.1) THEOREM. A matroid M is 3-connected, ternary and has no M(K,)- 
minor if and only if 

(i) MrW’for some r32; 

(ii) MrJ; or 

(iii) M is isomorphic to a 3-connected minor of S(5, 6, 1.2). 

By Theorem 1.3, this theorem is precisely a characterization of the class 
of 3-connected matroids having no minor isomorphic to U,,,, U,,,, or 
M(K,). The proof of Theorem 2.1 is long since it involves building up to J 
and S(5, 6, 12) from ^we3 by extensions and lifts. A complete list of the 
members of L2 with at least 4 elements appears in Table II near the end of 
this section. 

Proof of Theorem 2.1. Assume that M is 3-connected, ternary, and has 
no M(K,)-minor. We suppose first that M is binary. Then, as M has no 
M(&)-minor, it is a series-parallel network [S, Theorem 7.61. But M is 3- 
connected and so M is isomorphic to one of U,,,, W ,,,, UiSz, U,.,, or U2,3. 
It is easy to check that each of these matroids is a minor of S(5, 6, 12), so 
the theorem holds if M is binary. 

We now assume that M is non-binary. Then both the rank and corank of 
M are at least two. If equality holds in either case, then M z U2,4 z W2. We 
may therefore suppose that both the rank and corank of M exceed two. 
Then, by [30, Theorem 3.11, M has a minor isomorphic to one of ^w3, 
u 3,6, P,, or Qs, where Euclidean representations fur the last two matroids 
are shown in Fig. 3. As each of U,,,, P,, and Qs has U,., as a minor, each 
is non-ternary. Thus M has ?V3 as a minor. 
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FIGURE 3 

The next four lemmas combine to show that if M has ^Ne4 as a minor, 
then M is isomorphic to a whirl. We observe here that all whirls are ter- 
nary and 3-connected and none has an M(K,)-minor. The last observation 
follows from the easily verified fact that if N is a 3-connected minor of the 
whirl PV’ and /E(N)1 3 4, then N g YP”~ for some k 6 Y. 

Euclidean representations for the matroids P,, Q7, and F;, which 
appear in the next lemma, are shown in Fig. 4. In each case we have 
marked a special element x that will be important in the lemma. Let the 
ground set of M(-W;) and hence of -tlr’ be labelled as in Fig. 5. 

(2.2) LEMMA. Let r be an integer exceeding two and N be a non-trivial 
extension of the whirl W’ by the element x. Then either, for some i in 
(0, l,..., r - 1 }, NIbi\ a, IS a non-trivial extension of W’-‘, or r = 3 and N is 
isomorphic to P,, Q,, or FF, with x being as shown. 

ProoJ: Since for all i, Wr/bi\ai~ w’+ ‘, N/bi\a, is an extension of 
-ty-‘- ‘. This extension is non-trivial and hence the lemma is proved 
provided that x is not in a 2-circuit of N/b,\a,. Assume then that, for all i, x 
is in a 2-circuit (x, c,} of N/b,\a,. Then, for all i, {x, bi, c;} is a circuit of N. 
In particular, {x, b,, cO > and {x, b i , c, > are circuits of N for some elements 
c,, and c1 of %P”‘. 

Now either (i) {x, b,, b,} is a circuit of N, or (ii) neither (x, b,, co) nor 
{x, bl, cl} equals {x, bo, bl >. 1 n case (i), perform exchange about the com- 
mon element x using the circuits {x, b,, 6, } and {x, b,, c2 > to get a circuit 

p7 Q7 F7 

FIGURE 4 
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FIGURE 5 

of Wr contained in {b,, b, , b,, c2 >. As W/“ has no such circuit unless r = 3, 
it follows that (i) does not hold for r > 3. If Y = 3, then N is one of the 
matroids shown in Fig. 6, hence N is isomorphic to one of the matroids P, 
and Q, in Fig. 4. 

In case (ii), we perform exchange about x using {x, b,, c,,} and 
(x, b,, c,} to get that W-’ has circuits C, and C, containing b, and b, 
respectively so that each of C, and C, is contained in {b,, b,, co, c,}. As 
W’ has no 3-circuits containing jh,, h, 1, the elements cO and c, are dis- 
tinct. Moreover, if lCOl =3, then CO= (b,, c,,c,) and C,= jb,,c,, cl>. 
But now, performing exchange about co using Co and C, gives a 3-circuit 
of Yf’ containing {b,, b, 1, a contradiction. Thus Co1 > 3 and so CO = 

C, = {bo, b, > co, c, }. Now, the only 4-circuit of W’ containing (ho, b, } is 
(bo,h,,ao,a2)~ unless r=3. In the exceptional case, if {ho,b,,co,c,)# 
[ho, b,, a,, a,}, it is not difficult to show that N is isomorphic to P, or Q,. 
Thus we may assume that, for all r> 3, jb,, b,, co, cl} = (ho, b,, a,, a?}. 
Hence, (uo, u,} = {co, c, ). If we now repeat the above argument using 
(x, b,, c,} and {x, b,, c2) in place of {x, ho, co} and (x, b,, cl >, we get 
that either N is isomorphic to P, or Q7, or {a,, u3 1 = (c,, cl}. In the latter 
case, (a,, u3} n {a,, uz} #Iz/ and therefore ~,=a,. Thus r=3, and 

FIGURE 6 
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Cl =ao, cz=a,, and cO = a2. Hence N is as shown in Fig. 7, so N is 
isomorphic to the non-Fan0 matroid F;. 1 

We noted earlier that M has w”’ as a minor. Therefore, by Theorem 1.4, 
there is a sequence M,, M,, M2,..., M,, of ternary 3-connected matroids 
such that M,, E YV”’ for some Y 3 3, M, = M and, for all i in { 1,2 ,..., n j, Mi 
is an extension or lift of Mj- i. 

Next we shall list all the rank-3 ternary 3-connected matroids with no 
M(K,)-minor. First, however, we shall need a preliminary lemma. We shall 
denote by AG(2, 3) -p the unique matroid obtained from the affine 
geometry AG(2, 3) by deleting a single point. 

(2.3) LEMMA. Let N be a rank-3 ternary matroid having a 4-point line L 
as a restriction. If N has at least 7 points, then N has an M(K,)-minor unless 
N is the parallel connection of two 4-point lines. 

Proof: Assume that N is not the parallel connection of two 4-point lines 
and let a, b, and c be three non-collinear points of E(N) -L. As L is a full 
line of PG(2, 3), each of the lines {G}, {G}, and {fi} contains a point 
of L. If these points are d, e, andf, respectively, then d, e, and f are distinct 
and MI {a, b, c, d, e,f} EM(K,). 1 

(2.4) LEMMA. The only rank-3 ternary 3-ronrrected matroids having no 
M(K,)-minor are YY3, P,, AG(2, 3)-p, and AG(2, 3), each matroid in this 
list being an extension of its predecessor. 

Proof: Let N be a rank-3 ternary 3-connected matroid having no 
M(K,)-minor. Then we can view N as a restriction of PG(2, 3) (see Fig. 8). 
IvIoreover, as PG(2, 3) 1 (a, b, c, d, e, f } r XV3 and N has a YY3-minor, we 
can assume, by Theorem 1.5, that E(N) 3 {a, b, c, d, e, f }. 

If E(N) contains I, 2, or 4, then N contains a 4-point line and so, by 
Lemma 2.3, has an M(K,)-minor, a contradiction. If E(N) contains 3, then 
NI {a, 6, c, e, f, 3) z M(K,), a contradiction. We conclude that E(N) & 
E(PG(2, 3)) - f 1,2, 3,4}. But, as PG(2, 3)\(1,2, 3,4} E AG(2, 3), it 

FIGURE I 
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FIGURE 8 

follows that N is a restriction of AG(2, 3). Thus N is one of w3, P,, 
AG(2,3) -p, or AG(2, 3), where we note that each of the matroids 
obtained by adding one of g, h, and i to PG(2, 3) I {a, b, c, d, e, f) is 
isomorphic to P,. To show that none of ?V3, P,, AG(2, 3) -p, or AG(2, 3) 
has an AI(&)-minor, it suffices to observe that AG(2, 3) has no M(K,)- 
restriction. The latter is true because M(K,) is not affke over GF(3), since 
K4 is not a 3-colourable graph. 1 

The next result follows immediately from the proof of the preceding 
lemma. We label the ground set of %K3 as in Fig. 9 and view YV”~ as a 
restriction of PG(2, 3). The closure of a set X in PG(2, 3) will be denoted 
by 04. 

f c 

FIGURE 9 
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(2.5) COROLLARY. There are exactly three points of PG(2, 3) that can be 
added to W3 to give a member of R. These points are a{u, e 1 n a{h, d}, 

Q(C, d} n o{b, e>, and ~(6 .f> n cr(d, e). Adding any one of these points to 
W3 gives a matroid isomorphic to P,. 

Another consequence of the last proof is 

(2.6) COROLLARY. S(5,6, 12) has no M(K,)-minor. 

Proof: If S(5,6, 12) does have an M(K,)-minor, then, as S(5, 6, 12) has 
rank 6 and M(K,) has rank 3, there is an independent 3-element subset U 
of E(S(5, 6, 12)) such that M(K,) is a restriction of S(5, 6, 12)/U. But 
S(5, 6, 12)/UzAG(2, 3) and so we get the contradiction that M(K,) is a 
restriction of AG(2, 3). 1 

The next lemma completes the proof that if M has a YPe4-minor, it must 
be a whirl. 

(2.7) LEMMA. Every non-trivial ternary extension qf W” has an M(K,)- 
minor. 

Proof: Let N be a non-trivial ternary extension of %‘“‘. By Theorem 1.5, 
we lose no generality in assuming that N is represented by the matrix 

1 2 3 4 5 6 7 8 9 

N 

where each of x,, .x2, x3, and xq is in (0, 1, - I). By Lemma 2.2 and the 
symmetry of W4, we can assume that N/5\ 1 is a non-trivial extension of 
W3. Thus, by Corollary 2.5, N/5\ 1 g P,. It follows that (x2 -F x,, x3, x4) is 
one of (1, 1, l), (1, -1, -1) or (1, 1, -1). Therefore, there are nine 
possibilities for (x,, x2, .x3, x4):(1,0,1,1), (130, -1, -1). (1,&l, -1) 
(0, 1, 1, l), (0, 1, -1, -1) (0, 1, 1, -1) (-1, -1, 1, l), (-1: -1, -1, -1) 
and (-1, -1, 1, -1). 

On subtracting row 4 from row 1 in N and then deleting row 1 and 
column 8, we get the following matrix representing N/8: 

1 234567 9 

0 1 0 0 -1 1 0 X2 
0 0 1 0 o-1 1 

-1 0 0 1 -1 
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If (X ,,.Y~,x~,x~) is (l,O, 1, -1) or (-1, -1, -1, -I), then N/8 is a 7- 
point matroid having a 4-point line. As N/8 is not the parallel connection 
of two 4-point lines, Lemma 2.3 implies that it has an M(K,)-minor. Hence 
we can assume that (x,, xz, x3, .yq) is neither (1, 0, 1, - 1) nor 
(- 1, - 1, - 1, - 1). Moreover, we can also suppose that (x,, x2, ,Y~, x4) is 
not (-1, -1, 1, l), otherwise N/8\{7, l}rM(K,). 

Next we observe that if row 3 is added to row 4 in N and then row 3 and 
column 7 are deleted, we get the following matrix representing N/7: 

1234568 9 

1 0 0 0 1 0 1 XI 

. 

V(x I > -x2, x3, _ ‘c )isanyof(l,O, l,l), (0, 1, -1, -l),or(-1, -l,l, -1) 4 

then N/7 is a 7-point matroid having a 4-point line and it follows using 
Lemma 2.3 that N/7 has an M(K,)-minor. 

There remain just three possibilities for (x, , s2, x3, x,), namely 
(0, 1, 1, -l), (0, 1, 1, l), and (1, 0, - 1, - 1). It is straightforward to check 
that, in the first case, N/6 is a 7-point matroid having a 4-point line and 
hence, by Lemma 2.3, having an M(K,)-minor; in the second case, 
N/3\{ 6, 7) g M(K,), while, in the third case, N/4\ { 7, 8) z M(&). 4 

For the remainder of the proof of Theorem 2.1, we shall assume that M 
is not a whirl and focus attention on the sequence M,, M,, M2,,.., M,, of 3- 
connected matroids that begins at a whirl W’ of rank at least 3 and ends at 
M. It follows, on combining Lemmas 2.2 and 2.7 with Theorem 1.4 that 
M, g W3. The sequence M,, M,, M, ,..., M,, will be used to construct all 
the members of Q that are not whirls and have at least six elements. 
Evidently the class 52 is closed under duality, so whenever a new member 
of Q is determined, we know immediately that its dual is also in Q. 

Since %P-” is self-dual, we may assume that M, is a lift of M,. But, by 
Corollary 2.5, P, is the unique 3-connected ternary extension of tiT3 having 
no M(&)-minor. Thus Pq is the unique lift of W3 in Q and so M, 2 PF. 

Since P, can be represented by the matrix 

123 4567 

IO 111 

13 /I 0 l-l, 
I1 10 1 I 
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PT can be represented by 

4567 123 4567 123 

A= A= I4 I4 

or, by the matrix we get by subtracting rows 1 and 3 from row 4, namely 

i 

1 000011 

B= 
0100101 

0010110’ 

-1 O-l 1 0 0 0 ! 

Figure 10 is a Euclidean representation for P:. Note that the elements 
(1, 0, 0, O)T and (0, 0, 1, O)T, which are not in P;, have been marked on the 
same diagram. 

If M2 is a lift of PF, then by Lemma 2.4, MI z (AG(2, 3) --p)*. Further- 
more, if M, is a lift of this last matroid, then M,z (AG(2, 3))*. We shall 

0 0 
0 
0 

FIGURE 10 
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delay till Lemma 2.16 consideration of the extensions of (AG(2, 3)-p)* 
and (AG(2, 3))* that are in Q. 

We now assume that M, is an extension of M,. To determine the dif- 
ferent possibilities for M,, we consider the columns that can be added to A 
to give a matrix representing a member of 52. Since adding the negative of a 
column gives an isomorphic matroid to that obtained by adding the 
column itself, we shall not distinguish a column from its negative here. 
A matrix will be said to be in Q if it represents a member of Q. 

(2.8) LEMMA. Suppose that (x,, x2, x3, .x~)~ is a column that is udded 
to the matrix A to give a member of Q. Then (x,, x2, x3, .Y~)~ is one 
of e,=(O, l,O, l)‘, e,=(l, -1, l,O)T, e2=(1, -1, -1, l)T, and e3= 
(1, 1, -1, -1)T. 

Proof. M, is represented by the matrix 

4567 1 2 38 

where each of xi, .x2, .Y~, and -‘cd is in {0, 1, - 1). Now suppose that j E 
(4, 5, 6, 7). Then it is routine to check that PF/jE Y$-~. Therefore M2/j is 
either a 3-connected extension or a parallel extension of lly-‘. Since Mzlj is 
represented by the matrix Cj-,~iPX obtained by deleting row j-3 and 
column j-3 from C, if MI/j is a parallel extension of w3, the last column of 
C ,P3,i+3 must be a nonzero scalar multiple of one of the first six columns. 
If M2/j is a 3-connected extension of ?Y3, then M21jg P, and, by 
Corollary 2.5, there are exactly three possibilities for the last column of 

To complete our determination of the possibilities for the element 8 of 
Ml, we shall use Table I. In this table, it is assumed that Ml/j E Q and the 
possibilities for the last column of C,- 3,,- 3 and hence for (x, , .x?, x3, x~)~ 
are listed. The former were determined using Corollary 2.5. 

Now suppose that 8 = (1, 1, - 1, .x~)~. Then, since the last column of C,., 
must be a nonzero scalar multiple of another column of C,., or of one of 
the three possibilities tabulated below, we are forced to get that 8 is 
(1, 1, - 1, - 1 )T or (1, 1, - 1, O)T. But, in addition, the last column of C2,2 
must be a nonzero scalar multiple of another column of C2.2 or of one of 
the three possibilities tabulated. From this it follows that 8 # (1, 1, - 1, O)T. 
Hence, if 8 = (1, 1, - 1, x,)~, then x4= -1. 
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i Possible last columns of C,- 3,,--) Possibilities for (-x1, x2, x3, .u4)’ 

By a similar argument, if 8 = ( 1, - 1, I, ,Y~)~ then xq = 0, and if 8 = 
(1, -1, -1,~~)~ then x4= 1. 

If M,/7 is not 3-connected, then (x1, x2, x~)~ is a scalar multiple of some 
other column of C4,4. Now, arguing as above, it is routine to check that 8 
cannot be any of the columns (1, 0, 0, x,)~, (0, 0, 1, x,)=, (0, 1, 1, x~)~, 
(1, 190, -%K (to, 1, 1lT, and (0, 1, 0, - 1)‘. However, 8 may equal 
(1, 0, 1, O)T or (0, 1, 0, 1)’ = e,. But, in the representation for Mz that is 
depicted in Fig. 10 and is obtained from the matrix B, the element 
corresponding to ( 1, 0, 1, O)T is (1, 0, 1, 1 )T. (Recall that rows 1 and 3 were 
subtracted from row 4 to get B from A.) By symmetry, the matroid 
obtained by adding (1, 0, 1, 1)’ to B is isomorphic to that obtained by 
adding (1, - 1, 1, O)T to B (see Fig. 10). But, in the representation for M, 
determined by A, the column corresponding to the element (1, - 1, 1, O)T 
from the representation determined by B is (1, -1, 1, - l)T and we have 
already eliminated this as a possibility for 8. Therefore 8 # (I, 0, 1, O)T and 
the proof of Lemma 2.8 is complete. 1 

By the last lemma, I’; has up to four different extensions that are in Q. 
We now examine these extensions more closely. For i in 10, 1, 2, 3 )-, let 
PT + ej be the dependence matroid of the matrix obtained by letting 8 
equal ei in C. We first observe from Fig. 11 that PT + e, z J where we note 

58?b!42/2-7 
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that the transformation that takes the matrix A to the matrix B leaves e. 
fixed. Moreover, 

(2.9) LEMMA. J is a se&ha1 member of L? having no extension or lift in 
n. 

ProoJ In this proof we shall identify J with PF + e,. Evidently 9 is 3- 
connected and ternary. Now suppose that J has an M(K,)-minor. Then, as 
rk J> rk M(&), for some element f of J, J/f has an M(&)-minor. By the 
construction of J, f$ (4, 5, 6, 7 >. Moreover, from the symmetry of Fig. 11, 
we see that f $ (1, 3). Again using Fig. 11, we get that J/e, is a parallel 
extension of U,,, and J/2 E P,. Thusf$ {e,, 2}. We conclude that,f $ E(J). 
This contradiction establishes that J has no M(K,)-minor, that is, JEQ. 

To establish that J is self-dual we use the fact noted above that J/2 2 P,. 
Therefore J*\2 E PF, that is, J* is a member of Q that is an extension of 
PT. Thus, by Lemma 2.8, J* is isomorphic to one of J, PT + e, , PF + e,, 
or PT + e3. As none of the last three matroids has a 3-circuit, whereas J* 
does, it follows that J* 2 J. 

To show that J is a maximal member of 9, it suffices to establish that 
every ternary 3-connected extension of J has an M(K,)-minor. Since the 
only elements that can be added to Pq without producing an M(K,)-minor 
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are e,, el, e2, and e3, the only elements that we need consider adding to J 
are e,, e2, and e3. But on adding any one of these elements to J and then 
contracting 2 we get an &point rank-3 matroid containing a 4-point line. 
By Lemma 2.3 we get a contradiction. 1 

We shall show next that the matroids Pf + e,, PF + e2, and PF + e3, are 
all isomorphic and each is self-dual. 

(2.10) LEMMA. PT + e, c P; + e2 z P + e3 atzd PT + e, is a self-dual 7 
member of Q. 

Proof We first note that if we take 8 = e, in C, then the matrix we get 
representing P7* + e, is 

4567 1 2 3e, 

D= 14 

Since this matrix has the form [Zi A] where A is symmetric, P; + e, is self- 
dual. 

To show that P++ + e,, PT + ez, and PT + e3 are isomorphic, we begin by 
deleting rows 5 and 6 and columns 5 and 6 from X. The resulting matrix X’ 
represents S(5, 6, 12)/s,, se. If we now delete columns 9 and 10 from X’, we 
get the matrix D that represents PT + e,. If, instead, we delete columns 8 
and 10 from X’, we get the matrix C with 8 =e,, a representation for 
PT + e2. Finally, if we delete columns 8 and 9 from X’, we get the matrix C 
with 8 = e3, a representation for PT + e3. Thus, each of P:’ + e, , PT + e2, 
and PT + e3 can be obtained from S(5,6, 12) by contracting two elements 
and then deleting two elements. Since the automorphism group of 
S(5, 6, 12) is 5-transitive, it follows that PT + e, , PT + e2, and Pq + e3 are 
isomorphic. As an alternative to using the 5-transitivity of the 
automorphism group of S(5, 6, 12) to obtain these isomorphisms, we can 
use the following more elementary argument. Consider the representations 
for PT + e,, PT + e,, and PT + e3 obtained from C by letting 8 equal e,, 
e2, and e3, respectively. Then one can check using a sequence of projective 
operations and column interchanges on these matrices that the map which 
takes 4, 5, 6, 7, 1, 2, 3, and e, to 4, 1, 7, 6, 5, 2, 3, and e2, respectively, is an 
isomorphism between PT + e, and PF + e2. Similarly, the map which takes 
4, 5, 6, 7, 1, 2, 3, and e, to 5, 4, 1, 3, 6, 2, 7, and e3, respectively, is an 
isomorphism between PT + e, and PF + e3. 

As PF + e, is a minor of S(5, 6, 12) Corollary 2.6 implies that it has no 
M(K,)-minor. We conclude that PT + e, E Q. i 
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We now suppose that M, is PT + e,. Since this matroid is self-dual, we 
may assume that M, is an extension of M,. Thus M, is one of the matroids 
PT + e, + e2 or P; + e, + e3. But each of these matroids is obtained from 
S(5, 6, 12) by contracting two elements and deleting one. Hence, each is 
isomorphic to S(3,4, 10) --p, the unique matroid obtained from S(3,4, 10) 
by deleting a single element. Thus M, z PF + e, + e2 z S(3,4, 10) -p. 

If M, is an extension of M,, then clearly M, z P: + e, + e2 + e3 z 
S(3,4, 10). By Lemmas 2.8 and 2.9, PT + e, + e2 + e3 has no extension in 52. 
We delay until Lemma 2.16 consideration of the possible lifts of 
PF + e, + e2 + e3 that are in 52. Suppose now that M, is a lift of M,, where 
we recall that the latter is PT + e, + e2. Instead of determining the lifts of 
PT + e, + e2 that are in Q, we shall solve the dual problem of finding all 
extensions of (Pq + e, + e2)* that are in 52. Now PT + e, + e2 is the depen- 
dence matroid of the matrix 

4567 1 2 3e, e2 

IO 1111 

E= 14 11 

0 1 -1 -1 

;I 
1 

10 1-l’ 

L ;1-1 1 0 11 

Thus (PT + e, + e2)* is represented by the matrix 

1 2 3 e, e2 4 5 6 7 

;o 111 ;o 111 

I1 0 1 -1 I1 0 1 -1 

E*= 15 15 I1 10 1 I1 10 1 

11-l 10 11-l 10 

) 1 -1 -1 1 ) 1 -1 -1 1 I. 
(2.11) LEMMA. There are exactly two columns that call be added to E* 

to give a member of Sz. These columns are 

fi=(l, -1, -1, l,O)T arzdf,=(l, 1, -1, -1, l)T. 

The proof of this lemma is similar to the proof of Lemma 2.8. Indeed, 
the rest of the proof of Theorem 2.1 will use this technique. On combining 
the information from two minors of (PT + e, + e?)*, each of which we 
recognize as having only a small number of extensions in 0, we are able to 
show that (PT +e, + ez)* itself has the same property. We now give the 
details of this argument. 
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Proof of Lemma 2.11. The matrix E & that is obtained by deleting the 
fifth row and the fifth column from E* equals the matrix D. Since the latter 
represents P7* + e, , we know that the only extensions of it in Sz involve 
adding one of the columns (1, -1, -1, l)T or (1, 1, -1, -1)‘. Thus the 
only columns that can be added to E* to give a member of Q must have 
their first four rows equal to a nonzero scalar multiple of a column of E& 
or of (1, -1, -1, l)= or (1, 1, -1, -l)T. This still leaves quite a large 
number of possibilities. To further reduce these, consider 
(P: +e, +eJ*/e,. This is isomorphic to the self-dual matroid (Py + ez)*. 
By deleting row 4 and column 4 from E* we get the following matrix 
representing (PF + e2)* and hence PT + ez : 

Now PT +e,~ PT + e, and there are exactly two columns that can be 
added non-trivially to the latter to give a member of L2. In each case the 
resulting extension of PT + e, is isomorphic to S(3, 4, 10) -p. It follows 
from Theorem 1.5 that there are exactly two columns that can be added 
non-trivially to PT + ez to give a member of Q and, for each of these, the 
resulting extension of P: + e2 is isomorphic to S(3,4, 10) -p. To find these 
two columns, consider the matrix X” that is obtained from X by deleting 
rows 4 and 6 and columns 4 and 6. Since this matrix represents S(3,4, 10) 
and F can be obtained from it by deleting its last two columns, these two 
columns, namely (1, - 1, - 1, O)T and (1, 1, - 1, 1 )T, are the two columns 
that can be added non-trivially to P: + e2 to give a member of Q. 

We can now show relatively quickly that if (x,, x2, x3, x4, x~)~ is a 
column that is added to E* to give a member of Q, then 

(XI9 x29 7x3, x4, x5JT is f, or fi. First, suppose that (x,, x2, x3, x4) = 
(1, - 1, - 1, 1). Then, as (xl, x2, x3, -u~)~ must be a nonzero scalar multiple 
of (1, -1, -l,O)T, (1, 1, -1, l)T, or some column of F, it follows easily 
that (-xl, -x2, x3, x4, x,)T=f,.Similarly,if(x,,x2,x3,x4)=(1,1, -1, -I), 
then it is straightforward to show that (xl, x2, x3, x4, x~)~ = f2. 

Finally, if (x,, x2, x3, x4)= is a nonzero scalar multiple of a column of 
E& and (x,, x2, x3, x~)~ is a nonzero scalar multiple of (1, - 1, - 1, O)T, 
(1,1, -1,1)‘,oraco1umnofF,then(x,,x~,~’~~,x~,x~)~is(0,0,0,1,1)~ 
or (0, 0, 0, 1, - l)T. If we now adjoin the first of these columns to E*, then, 
on deleting rows 1 and 2 and columns 1 and 2, we get a rank-3 g-point 
matroid having a 4-point line and hence an M(&)-minor. Similarly, if we 
adjoin (0, 0, 0, 1, - 1 )T to E*, then the deletion of rows I and 3 and 
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columns 1 and 3 again gives a rank-3 &point matroid with a 4-point line 
and hence an M(K,)-minor. 6 

In the next lemma, the matroid (P: + e, + e?)* +f, is the dependence 
matroid of the following matrix G that is obtained by adjoining,f, to E*: 

1 2 3 e,e. 

G 

1 L 4 5 6 7j”, 

IO 1 1 1 1 
I1 0 1 -1 -1 

15 I1 1 0 l-l . 

II-1 1 0 1 

1 1 -1 -1 1 0 

I 

Likewise, (PT + e, + e2)* +,f? is the dependence matroid of the matrix that 
is obtained by adjoiningf? to E*. Although the notation for members of Q 
is becoming rather cumbersome, we shall retain it for its illustrative value. 

(2.12) LEMMA. The matvoid (PT + e, + ez)* + f, is self-dual. Moreouer, 

(P? + e, + el)* +f, S (P7* + e, + e2)* +fi. 

Proof: Since the matrix G representing (PT + e, + ez)* +f; has the 
form [Zi A] where A is symmetric, (PT + e, + e2)* +,f, is self-dual. 

To establish the isomorphism of (P: + e, + e2)* t-f, and 
(PF + e, + e2)* +J;, we begin by deleting row 6 and column 6 from X. The 
resulting matrix X”’ represents S(4, 5, 11 ). If we now delete column 11 from 
X”‘, we get the matrix G that represents (PT + e, + ez)* +,f,. If, instead, 
we delete column 10 from X”‘, the resulting matrix is the same as the 
matrix obtained by adjoining ,fi to E* and therefore represents 
(PF + e, + ez)* +f2. Since the automorphism group of S(4, 5, 11) is transi- 
tive, it follows that (P: + e, + e2)* +,f, s (PT + e, + e2)* +,f2. 

As in the proof of Lemma 2.10, one can obtain a more elementary proof 
of the isomorphism between (PT + e, + e2)* +,f, and (P,* + e, + ez)* +,fi 
as follows. Using the representations considered above for these two 
matroids, it is straightforward to check, by a sequence of projective 
operations and column interchanges, that the map which takes 1, 2, 3, e,, 
e2, 4, 5, 6, 7, and f, to 1, 4, 2, 3, ez, e, , 7, 6, ,f,, and 5, respectively, is an 
isomorphism. B 

Next we consider the extensions and lifts of (PT + e, + ez)* +J; that are 
in R. As (PT + e, + e2)* +f, is self-dual, we need only look at the exten- 
sions of it that are in Q. By Lemma 2.11, the only such extension is 
(P+! + e, + e2)* +f, +,f2, this ‘matroid being isomorphic to S(4, 5, 11). 
Furthermore. the last matroid has no extensions in Sz. The next lemma 
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shows that it has exactly one lift in Q. The matroid 
((PT + e, + ez)* +fi +f2)* is represented by the matrix 

H= 

0 1 1 1 1’ 
1 0 1 -1 -1 

1 1 0 1 -1 

l-l 1 0 1 

1 -1 -1 1 0 

1 1 -1 -1 1 

(2.13) LEMMA. There is only one column that can be added to the matrix 
H to give a member of 9. This column is g, = (1, 1, - 1, - 1, 1, 0)‘. 

Proof On deleting row 6 and column 6 from H we get the matrix G. 
The only column that can be added to this matrix to give a member 
of Q is (1, 1, -1, -1, 1)T. Similarly, it is not difficult to show that 
(1, 1, - 1, -1, 0)’ is the only column that gives a member of Q when 
added to the matrix obtained from H by deleting row 5 and column 5. 
Now, arguing as in Lemma 2.11, it is straightforward to check that g, is 
the only column that can be added to H to give a member of Q. 1 

(2.14) LEMMA. ((P~+el+ez)*+fi+fi)*+g, is isomorphic fo 
S(5, 6, 12) and every non-trivial extension or lft of it has an M(K,)-minor. 

Proof: Adding g, to H gives the matrix X that represents S(5, 6, 12). 
Thus ((P: + e, + ez)* +f, +f2)* +g, 2 S(5, 6, 12). Since no column other 
than g, can be added to H to give a member of Q and S(5,6, 12) is self- 
dual, S(5, 6, 12) has no non-trivial extensions or lifts without an M(K,)- 
minor. 1 

To complete the proof of Theorem 2.1, there are still some details left to 
check. The following table lists all the members of R with 4 or more 
elements that we have found so far together with their duals. The fact that 
this list is complete will follow from combining Lemma 2.16 with our 
earlier results. By the 5-transitivity of the automorphism group of 
S(5, 6, 12) each of the non-whirl matroids in this list except PT + e, can be 
expressed in terms of S(5, 6, 12) or its derived systems. We have done this 
for all listed matroids with 9 or more elements. 

To establish the completeness of Table II, we shall use the following 
result. 

(2.15) LEMMA [27, Theorem 4.73. Let A4 be a minimally 3-connected 
matroid of rank r where 3 < r < 6. Then 1 E(M)1 < 2r. 
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TABLE II 

Members of Q with at least 4 Elements 

Number of 
elements Rank Matroid Remarks 

2r Y 

I 3 
4 

8 3 
4 

4 
5 

9 3 

4 

5 

6 

10 4 

5 

6 

11 5 

6 

12 6 

I“ 

p, 
p: 

AG(2,3) -P 
Pf+e, 

Ptfe, 
(AG(2,3)-p)* 

<4G(2, 3) 2 S(2, 3, 9) 

P,*+e,+e, 

(Pt + e, + eJ* 

(.4G(2,3))* 

P: + e, + ez + e3 
zS(3.4, 10) 

(P?* + e, + ed* +h 

(PS+e,+e,+e,)* 

VT + et + eJ* +/A +fi 
ES(4,5, 11) 

((P:+ei+ez)*+fi+f2)*+gl Self-dual. Has no extension 
z S(5,6, 12) or lift in Q 

r>2 

Unique extension of W’ in St 
Unique lift of W3 in .Q 

Unique extension of P, in Q 
Self-dual; isomorphic to J 
Has no extension or lift in Q 
Self-dual 

Unique extension of AG(2, 3) -p 
in 8. Has no extension in Q 
Unique extension of PF + e, in 
Q; isomorphic to S(3,4, 10) -p 
Unique lift of P: + e, in Q; 
isomorphic to (S(3,4, 10) -p)* 
Isomorphic to (S(2, 3,9))* 

Unique extension of P: + e, + e, 
in Q. Has no extension in Q 
Self-dual; isomorphic to 

S(4,5, 11)--P 
Isomorphic to (S(3, 4, lo))* 

Unique extension of 
(P: + e, + eJ* +f, in Q 
Has no extension in Q 
Isomorphic to (S(4, 5, 1 1 ))* 
and S(5,6, 12) --p 

(2.16) LEMMA. The only lifts of AG(2, 3)-p, AG(2, 3), arzd S(3, 4, 10) 
that are in 52 are S(3, 4, 10) -p, S(3,4, lo), and S(4, 5, 1 l), respectively. 

Proqf: Let N be a lift of AG(2,3) -p that is in S. Then N is 3-connec- 
ted having rank 4 and corank 5. By Lemma 2.15, N is not minimally 3- 
connected. Thus, for some element x of N, i\r\.x is 3-connected and hence is 
in Q. But N’/x has rank 4 and corank 4 and is therefore isomorphic to 
PF + e,. Since the only extension of PT f e, that is in Q is PT + e, + e2, 
and it is isomorphic to S(3,4, 10) -p, we conclude that N is isomorphic to 
S(3,4, 10) -p. Similar arguments complete the proof in the other two 
cases. 1 
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The preceding lemma finishes the proof of Theorem 2.1. An immediate 
consequence of Theorem 1.2 is that one can construct all ternary matroids 
with no M(K,)-minor by beginning with the members of Q and repeatedly 
using the operations of 2-sum and direct sum. 

3. THE CRITICAL PROBLEM 

In this section we shall verify Brylawski’s conjecture that a loopless ter- 
nary matroid with no M(K,)-minor has critical exponent at most two. The 
proof will use the following result. 

(3.1) LEMMA [26, Corollary 3.61. Let M be a matroid representable 
over GF(q). Suppose that E(M) can be covered by rocircuits each with,fewer 
than qk elements. Then c(M; q) 6 k. 

(3.2) THEOREM. Let M be a loopless ternary 3-connected matroid having 
no M(K,)-minor. Then M is affine unless M is isomorphic to J, a whirl of 
even rank, S(3, 4, lo), S(4, 5, 1 1 ), or S(4, 5, 11) -p. In the exceptional cases, 
M has critical exponent two. 

Proof: All the members of Q that are not whirls have rank and corank 
less than 7. Each such matroid can be covered by cocircuits with at most 7 
elements and hence, by Lemma 3.1, each such matroid has critical 
exponent at most two. 

It is routine to verify by induction on r that for all r >, 2, 

r-1 
P(,W’;I,)=(A-1) c (-l)‘(n-2)‘-‘-‘. 

i=O 

From this, we get that P(W’; 3) is 0 for r even and is 2 for r odd. It follows 
that c(W’; 3) is 1 for r odd and is 2 for r even. 

To show that none of J, S(3,4, lo), or S(4,5, 11) -p is affine, one needs 
only to check that no hyperplane of the ternary projective space of the 
appropriate rank avoids the ground set of the specified matroid. This is 
routine and we omit the details. Since S(4, 5, 11) is an extension of 
S(4,5, 11) -p and the latter is non-affine, the same is true of the former. 

To complete the proof we shall show that each of the re.maining mem- 
bers of 52 is affme. Evidently all loopless members of Q with at most three 
elements are afftne. Moreover, AG(2, 3) is affine and therefore so are 
AG(2, 3) --p and P,. The matroid PF + e, + e2 is represented by the matrix 
E. No column of this matrix is in the hyperplane x, -x2 - xj + xq =0 of 
PG(3, 3) and therefore PT +e, +e, is atfine. It follows that PF +e, and PT 
are also affine. 
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The matroid S(5, 6, 12) is represented by the matrix X. No column of 
this matrix is in the hyperplane -Y, +x7 + s3 + x4 + xg +.x6 = 0 of PG(5, 3), 
hence S(5,6, 12) is affine. Now, each matroid in the following sequence is 
isomorphic to a restriction of its predecessor: S(5, 6, 12) S(5, 6, 12) -p, 
(PF +e, +e,+e,)*, (AG(2, 3))“. Since S(5, 6, 12) is aftine, the other three 
matroids listed are also affine. 

The matroid (PT + e, + e2)* is represented by the matrix E*. No column 
of this matrix is in the hyperplane I, + .yz -x3 --‘cd - .Y~ = 0 of PG(4, 3). 
Therefore (PF + e, + ez)* and its restriction (AG(2, 3) -p)* are aftine, and 
the theorem is proved. i 

We can now verify Brylawski’s conjecture [6, p. 1591. 

(3.3) COROLLARY. Let M he a ternary loopless matroid having no 
M( K,)-minor. Then c( M; 3) d 2. 

ProojY We argue by induction on IE(M)I. If M is 3-connected, then the 
result follows immediately from the last theorem. If M is not connected, the 
result follows by the induction assumption. Finally, if M is connected but 
not 3-connected, then by Theorem 1.2, M = S( (M, , p), (M,, p))/p for 
some minors M, and M, of M, where each of M, and Mz has at least three 
elements and p is not a loop or a coloop of M, or M,. Walton and Welsh 
[37, p. 51 showed that, under these circumstances, 

P(M;i)=(hl)-’ P(M,;A) P(Mz;I)+P(M,/p;3.) P(M,/p;A). 

By the induction assumption, neither c(M, ; 3) nor c(M, ; 3) exceeds 2. 
Thus both P(M, ; 9) and P(M,; 9) are positive. Since both P(M,/p; 9) and 
P(M,/p; 9) are nonnegative, we conclude that P(M; 9) > 0. Hence 
c(M; 3) d 2 and the corollary is proved. 1 

4. TERNARY CAMMOIDS AND RELATED CLASSES 

It was shown by Brylawski [S, 61 and Ingleton 1171 that a binary 
matroid is a gammoid if and only if it has no minor isomorphic to M(K,). 
Ingleton [ 19, p. 1271 raised the question of finding an excluded-minor 
description for the class r(3) of ternary gammoids noting that the task of 
finding a nicely determined complete list of excluded minors for the class of 
all gammoids is “probably futile.” Brylawski also considered the class r(3) 
and conjectured 16, p. 1571 that it consists of precisely those gammoids 
which contain neither U2,5 nor lJ3,5 as a minor. In this section we shall use 
our main theorem to answer Ingleton’s question and prove Brylawski’s 
conjecture. We also consider when a ternary matroid A4 is base-orderable 
and when it is strongly base-orderable. Using our main theorem, it is 
straightforward to deduce that the former occurs if and only if M has no 
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minor isomorphic to M(K,) or J. The corresponding result for binary 
matroids, which was proved by de Sousa and Welsh [ 151, is that a binary 
matroid is base-orderable if and only if it has no M(K,)-minor. On com- 
bining this with the characterization of binary gammoids noted above, we 
get that for binary matroids the properties of being a gammoid, being 
strongly base-orderable, being base-orderable, and having no M(K,)-minor 
are equivalent. The results of this section show that, for ternary matroids, 
these four properties are all different. We shall use a number of elementary 
properties of base-orderable and strongly base-orderable matroids. A sum- 
mary of these can be found in Welsh [38, Sect. 14.11. 

(4.1) THEOREM. A matroid is a ternary gammoid if and O~J) if it has no 
minor isomorphic to any of the matroids U,,, , U,,,, M(K,), P,, or PF. 

ProojY The class r(3) of ternary gammoids is closed under minors and 
duality. Suppose that A4 is in this class. Then, as M(K,) is not a gammoid, 
M has no minor isomorphic to M(K,). Moreover, by [19, p. 1281, neither 
P, nor PT is a gammoid, so A4 has no minor isomorphic to P, or PT. 
Finally, as M is ternary, it has no minor isomorphic to l.~‘~,~ or U,,,. 

Now assume that M is a matroid having no minor isomorphic to any of 

u u,,,, 2.5 ( M(K,), P,, or PT. We shall show that ME r(3). Evidently, 
since M has no M(K,)-minor, it has no minor isomorphic to the Fano 
matroid, F7, or its dual. Furthermore, M has no minor isomorphic to U,., 

or K., and therefore, by Theorem 1.3, A4 is ternary. 
To show that A4 is a gammoid, we shall argue by induction on IE(M)I. 

This is trivially true for /E(M)1 = 1. Assume it is true for /E(M)1 <n and let 
IE(M)I = n. If M is not connected, then since a direct sum of gammoids is 
also a gammoid, it follows by the induction assumption that M is a gam- 
moid. Thus we may suppose that M is connected. If, in addition, M is 3- 
connected, then, as M has no M(K,)-minor and no minor isomorphic to P, 
or PT, Table II implies that /E(M)1 < 3 or M is a whirl. But all matroids 
on three or fewer elements are transversal as are all whirls (see, for exam- 
ple, [38, p. 2411). Hence A4 is a gammoid. 

We may now suppose that M is connected but not 3-connected. Then, by 
Theorem 1.2, A4 = S(M,, Mz)/p, where both M, and M1 have fewer 
elements than M and are isomorphic to minors of M. By the induction 
assumption, both M, and M, are gammoids. Hence S(M,, M,) is a gam- 
moid. This last fact can be deduced, for example, from the fact that the 
class of gammoids is closed under the operation of matroid union 
[38, p. 2241. As S(M,, M2) is a gammoid, S(M,, M?)/p is also a gammoid, 
that is, M is a gammoid. 1 

The next two results are consequences of the last proof. The first of these 
verifies a conjecture of Brylawski [6, p. 1571. 
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(4.2) COROLLARY. A gammoid is ternary if and only if it has no minor 
isomorphic to Uz7, or U,,,. 

ProoJ: As noted in the preceding proof, none of M(K,), P,, or PF is a 
gammoid. Using this, the corollary follows from the theorem. i 

(4.3) COROLLARY. Let M be a 3-connected ternary gammoid having at 
least 4 elements. Then MZ W’ for some r > 2. 

By contrast with the last result, we note that there are no 3-connected 
binary gammoids having 4 or more elements. 

The next theorem is an excluded-minor description of the class of ternary 
strongly base-orderable matroids. To prove it, we shall use Theorem 2.1 
together with the following three lemmas. The first of these was proved by 
Ingleton [18] and Davies [13]. 

(4.4) LEMMA. The following statements are equivalent for a rank-3 
matroid M. 

(i) M is strongly base-orderable. 

(ii) M is base-orderable. 

(iii) M has no restriction isomorphic to M(K,). 

(4.5) LEMMA. J is not base-orderable and hence is not strongly base- 
orderable. 

Proof: Since Jz PT + e,, it suffkes to show that the latter is not base- 
orderable. A Euclidean representation for PT + e, is shown in Fig. 11. Now 
let B, = {2, e,, 4, 6 1 and B, = { 1, 3, 5, 7}. Then B, and B, are bases of 
P: + e,. Suppose $: B, + B, is a bijection with the property that, for all 
elements .‘c of B,, both (B, -x) u e(x) and (B, - rc/(x)) ux are bases of 
Pq + e,. Then, since (e,, 5, 7) is a circuit, tif(e,) $ (1, 3). Moreover, as 
{l, 6, e,) and (3, 4, e,} are circuits, $(2) # 1 and $(2)#3. Thus 
$({e,, 2)) = (571, so either $(eo) = 7 or I/I(~) = 7. The former cannot 
occur because {2,7,4,6} is a circuit, and the latter cannot occur because 
{ 1, 3, 5, 2) is a circuit. We conclude that $ does not exist and therefore J is 
not base-orderable. 1 

(4.6) LEMMA. PF + e, is not strongly base-orderable. 

Proof: PT + e, is represented by the matrix D. It has no 3-circuits and 
its 4-circuits include {2,4, 6, 7)., (el, 4, 5, 6}, { 1, 3, 4, 6}, 11, 3, e,, 7}, and 
{ 1, 2, 3, 5). Now let B, = (1, 2, 3, e, } and B, = (4, 5, 6, 7). Then B, and B, 
are bases of PT +e,. Suppose that $: B, -+ B2 is a bijection with the 
property that, for all subsets X of B,, both (B, -X) u $(X) and 
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(B2- $(X))uX are bases. As (2, 4, 6, 7) and {l, 3, e,, 7) are circuits, 
$(2) is not 5 or 7. Moreover, as both (1, 2, 3, 5} and {e,, 4, 5, 6} are cir- 
cuits, $(e,) is not 5 or 7 either. Thus $({2, e,}) = (4,6}. But 
(B,-{2,e,))uIC1({2,e,})=(1,3,4,6}, h h w  ic is a circuit; a contradiction. 
We conclude that PT + e, is not strongly base-orderable. ! 

(4.7) THEOREM. A ternary matroid is strongly base-orderable if and only 
if it has no minor isomorphic to &I(&), J, or PT + e, . 

Before proving this theorem, we note that, on combining it with 
Theorem 1.3, we get 

(4.8) COROLLARY. A matroid is terlzary and strongly base-orderable if 
and only if it has no minor isomorphic to any of U,,,, U,.,, M( K4), J, or 
P7* +e,. 

Proof of Theorem 4.7. By Lemmas 4.4, 4.5, and 4.6, M(K,), J, and 
PT + e, are not strongly base-orderable. Thus, as the class of strongly base- 
orderable matroids is closed under minors, if a ternary matroid is strongly 
base-orderable, it has no minor isomorphic to M(&), J, or PT + e,. Con- 
versely, suppose that a ternary matroid A4 has no minor isomorphic to 
M(E;,), J, or P:+e,. Then, as the class of strongly base-orderable 
matroids is closed under the operations of direct sum, 2-sum, and series- 
parallel extension, we can assume that M is 3-connected having at least 4 
elements. Thus ME Q and, from Table II, A4 is a whirl or one of P,, 
AG(2, 3) -p, or AG(2, 3), or their duals. As all whirls are gammoids, they 
are strongly base-orderable. Moreover, by Lemma 4.4, each of P,, 
AG(2, 3) -p, and AG(2, 3) is strongly base-orderable. Since the dual of a 
strongly base-orderable matroid is strongly base-orderable, the theorem 
follows. 1 

The following is an immediate consequence of the last proof. 

(4.9) COROLLARY. Let M be a ternary 3-connected matroid having at 
least four elements. Then M is strongly base-orderable if and only if M is 
isomorphic to one of P,, PF, AG(2, 3)-p, (AG(2, 3)-p)*, AG(2, 3), 
(AW’, 3))*, or W’ for some r 3 2. 

Next we give an excluded-minor description of the class of ternary base- 
orderable matroids. 

(4.10) THEOREM. A ternary matroid is base-orderable if and only fit has 
no minor isomorphic to M(K,) or J. 

Before proving this theorem, we note the following corollary that comes 
from combining the theorem with Theorem 1.3. 
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(4.11) COROLLARY. A matroid is ternary and base-orderable if and only 
if it has no minor isomorphic to U,,,, U3,5, M(K,), or J. 

The key step in the proof of Theorem 4.10 is contained in the next 
lemma. 

(4.12) LEMMA. S(5, 6, 12) is base-order-able. 

Prooj Suppose that B, and B2 are bases of S(5,6, 12) where B, = 
fx \ , 1 -~2,..., -X6) and B, = (vi, y, ,..., yg}, We want to show that there is a 
bijection I/ from B, to B2 so that, for all x in B,, both (B, -x) u $(x) and 
(B, -$(x)) u x are bases of S(5, 6, 12). Now, all the circuits of S(5, 6, 12) 
have exactly 6 elements and no two distinct circuits have 5 common 
elements. Thus, for each i in { 1, 2,..., 63, there is at most one element o(i) 
so that (B, -xi) u y,,(,) is not a base, and there is at most one element z(i) 
so that (B? - yi) u x~(;) is not a base. Moreover, if i, # izz, then o(i,) # o(iz), 
and z(il) # z(i2). Now, for each i in { 1, 2,..., 6}, let Yi be obtained from B, 
by deleting the elements yaCrJ and y,-~~,,, where we observe that these 
elements need not exist. The existence of the required bijection $ 
corresponds to the existence of a transversal for (Y,, Y?,..., Y,). But, it 
follows easily by Hall’s marriage theorem (see, for example, 138, p. 981) 
that the latter exists. We conclude that S(5, 6, 12) is base-orderable. i 

The rest of the proof of Theorem 4.10 is just like the proof of 
Theorem 4.7 and we omit the details. The final result of this section comes 
from combining Theorems 2.1 and 4.10. 

(4.13) COROLLARY. A ternary 3-connected matroid having at least four 
elements is base-orderable if and only if it is isomorphic to one of the 
matroids, other than J, listed in Table II. 

5. A BOUND ON THE NUMBER OF ELEMENTS 

Dirac [ 161 proved that, for all n 3 3, a simple n-vertex graph with no 
subgraph homeomorphic from K4 has at most 2n - 3 edges. Since every 
binary matroid having no M(K,)-minor is a series-parallel network IS, 
Theorem 7.61 and hence is graphic, Dirac’s result gives that, for all r 3 2, a 
simple binary matroid of rank r having no M(K,)-minor has at most 2r - 1 
elements. In this section we use the main theorem to determine the 
maximum number of elements in a simple ternary matroid having no 
M( K,)-minor. 
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(5.1) THEOREM. Let M be a simple ternary matroid oj’ rank r having no 
M( K,)-minor. Then 

if r is odd; 
if r is even. 

Moreover, the following list contains all the matroids that attain this bound: 

0) r= 1, u,.,; 
(ii) r=2, U,; 

(iii) r = 3, A&;, 3); 

(iv) r = 2t + 1 for t 3 2, all matroids that can be formed from t copies 
of AG(2, 3) using t - 1 parallel connections; 

(v) r = 2t for t > 2, all matroids that can be formed from t - 1 copies 
of AG(2,3) and one copy of U2,4 using t - 1 parallel connections. 

Proof Evidently each of the matroids listed attains equality in the 
bound. Now let M, be a simple ternary matroid of rank r with no M(K,)- 
minor that, among all such matroids, has the greatest number of elements. 
Then, from the matroids listed in (i))(v), we know that IE(M,)l is at least 
4r - 3 if r is odd and at least 4r - 4 if r is even. We shall argue by induction 
on r to show that M, is one of the matroids listed. If r = 1, then clearly 
M, = Ul;, , as required. Now assume the proposition is true for r <n and 
let r = n > 2. If M, is not connected, it follows easily from the induction 
assumption that IE(M,)I < 4r - 4, a contradiction. Thus M, is connected. 
If M, is also 3connected, then from Table II, either r = 2 and M, 2 u,,,, 
or r = 3 and MO z AG(2, 3). 

We may now suppose that M, is not 3-connected. Then, by 
Theorem 1.2, MO = P((M,, p), (M,, p))\p for some minors M, and M, of 
M, each having at least three elements. Evidently both M, and M2 are ter- 
nary having no M(K,)-minor. Moreover, either both M, and Mz are sim- 
ple, or exactly one of them, say M,, has a single element q in parallel with 
the basepoint p. In the former case, we may add an element s in parallel 
with p, thereby increasing the number of elements in the 2-sum without 
destroying the property of simplicity or creating an M(K,)-minor. This 
contradicts the choice of M,. In the latter case, M, is isomorphic to the 
parallel connection of M,\q and MZ, and both these matroids are simple. 
We conclude that we may assume that M, is the parallel connection of two 
simple ternary matroids each having no M(K,)-minor. It is now routine to 
complete the proof of the theorem using the induction assumption and we 
omit the details. 1 
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ADDENDUM: GF(4)-REPRESENTABLE MATROIDS 

In this section, we apply the same method that was used to prove 
Theorem 2.1 to characterize the class of GF(4)-representable matroids hav- 
ing no minor isomorphic to either M(&) or W3. The large number of 
cases makes it difficult to apply this method to determine the GF(4)- 
representable matroids when M(K,), the rank-3 wheel, is the only excluded 
minor. However, excluding both M(&) and W3, the rank-3 whirl, makes 
the task manageable. Moreover, in view of the fundamental building-block 
role that wheels and whirls play within the class of matroids (see 
Theorem 1.4 or [36]), W3 is a natural addition to the set of excluded 
minors. As noted earlier, Brylawski [S] characterized series-parallel 
networks as being those matroids with no minor isomorphic to the rank-2 
whirl or the rank-3 wheel. As a natural extension of this, the author [33] 
has recently characterized the class of matroids with no minor isomorphic 
to the rank-2 whirl or the rank-4 wheel. 

The details given in this section will be brief. The proof of the main 
theorem will rely on the following result of Kahn. 

(A. 1) THEOREM [21, Theorem I]. Let A and A’ be r x n matrices over 
GF(4) such that the map which, for all i in {l, 2,..., n}, takes the ith column 
of A to the ith column of A’ is an isomorphism from D(A) to D(A’). If D(A) 
is 3-connected, then A and A’ are projectively equivalent. 

For every integer r exceeding 1, let K, be the following r x (2r + 1) matrix 
over GF(4). Here, and throughout this section, we shall identify GF(4) with 
GF(2)(u), where o2 = w  + 1, 

K,= 

x, x2 ... x, Yl Y2 

I 0 co+ 

;w+1 w  

Y, Y4 ..’ Yr zr 

1 I 1 1 “. 1 I1 
I 1 1 ..’ 1 I 1 

I, 
r----- 
l l 1 
I 1 1 
I . 
1: ! 
1 1 1 

- - r - - - - - - - - - , - -  

l I  O  

I I 0 
I z r-2 I - 
I I 1 
I 1 0 I. 

Let X, be the dependence matroid of K,. One can obtain X, geometrically 
by the following straightforward construction. Let P(rU?,,) be the parallel 
connection of r 3-point lines [S], that is, P(rU2,3) is the rank-(r + 1) 
matroid consisting of r 3-point lines all passing through a common point p. 
Now add a new point q freely to P(rU2,3) and then contract out q. The 
resulting matroid is the truncation T(P(rU,,,)) of P(rU,,,). 

(A.2) LEMMA. X, z T(P(rU,,,)). 
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To prove this lemma it is useful to exploit the symmetry of X, as 
expressed in the following result. 

(A.3) LEMMA. The automorphism group of X,. is transitive on 
{Xl, x2,-., x,, Yl? Y2,...> ~~3. Moreover, for r 3 3, every automorphism of X, 

fixes z,. 

We omit the routine proof of this lemma as well as the remaining 
straightforward details of the proof of Lemma A.2. 

The next result, the main theorem of this section, lists all 3-connected 
GF(4)-representable matroids having no minor isomorphic to M(K,) or 
YY3. We shall denote by !P the class of all such matroids. By Theorem 1.2, 
one can construct all GF(4)-representable matroids having no M(K,)- or 
w3-minor by beginning with the members of Y and repeatedly using the 
operations of direct sum and 2-sum. 

(A.4) THEOREM. A matroid M is 3-connected and GF(4.)-representable 
having no minor isomorphic to M(K,) or W3 {f and only if 

(i) ME X,, XT, X,\z,, or X,\ yr for some r > 2; or 

(ii) ME U,,,, U,,,, ul.,, u1,3, or U2,,. 

The only pairs of matroids in the above list that have the same rank and 
corank are XI\z, and X,\ y,. When r = 2, these matroids are isomorphic. 
When r 3 3, the matroids are non-isomorphic since the latter has a 3- 
element circuit while the former does not. 

A consequence of Theorem A.4 is the following partial result, in the case 
when q = 4, towards Brylawski’s conjecture that a loopless GF(q)-represen- 
table matroid with no M(K,)-minor has critical exponent at most two [6]. 

(A.5) COROLLARY. Suppose that M is a loopless GF(4)-representable 
matroid having no minor isomorphic to M(K,) or W3. Then c(M; 4) 6 2. 
Moreover, if M is 3-connected, then c(M; 4) = 1 unless M is isomorphic to X, 
for some even integer r. 

Proof of Theorem A.4. All the matroids listed in (ii) have fewer than 
four elements and so cannot have an M(K,)-or YV3-minor. The fact that 
none of the matroids listed in (i) has such a minor follows from the next 
lemma, the proof of which uses Lemma A.3 and resembles the proof of 
Lemma 2.3 of [33]. We omit the details. 

(A.6) LEMMA. X, has no minor isomorphic to M( K4) or TV’. 

Now suppose that M is a 3-connected GF(4)-representable matroid hav- 
ing no minor isomorphic to M(K,) or ?Y3. If lIZ( ~6, it is 
straightforward to check that M is listed under (i) or (ii). Now suppose 
IE(M)l 3 6.. Then, as neither U,,, nor U,,, is representable over G(4), both 
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the rank and corank of M exceed two. Therefore, by 129, Theorem 2.51, M 
has a minor isomorphic to one of M(K,), w3, P,, Q6, or Cl,.,. By 
assumption, A4 has no &I(&)- or $Pe3-minor. Moreover, P, is not represen- 
table over GF(4) (see, for example, [31 I). Therefore, M has a Q6- or U,,,- 
minor where we note that Q6 2 X3\ y,, while U,,, z X,\z,. 

The next result, a straightforward consequence of Theorem 1.4, shows 
that if IE(M)I 37 then M has a &-minor. 

(A.7) LEMMA. Let N be a 3-connected GF(4)-representable matroid and 
suppose that N has no minor isomorphic to Q6. If N has a U,,,-minor, then 
N 2 U,,,. 

Proqf: By Theorem 1.4, if N & U,,,, then N has a non-trivial extension 
or lift of U,,, as a minor. It is straightforward to check that every such 
extension has a U,.,- or a Q,-minor. Hence, by duality, every non-trivial lift 
has a U4,6- or a Q6-minor. Since U,,, and U,,, are not representable over 
GF(4), the lemma follows. 1 

We shall now suppose that A4 z$ U,,,. Then M has a Q,-minor. 
Therefore, by Theorem 1.4 again, there is a sequence N,, N,,..., N,, of 3- 
connected matroids such that NO z Q6, N, = IV, and, for all i in { 1, 2,..., n}, 
N, is an extension or lift of N,+ , This sequence will be used to construct 
all the members of Y - {U ,,,I having rank and corank exceeding two. In 
this construction, we shall make frequent use of the fact that Y is closed 
under duality. Since Q6 is self-dual, we can assume that N, is a lift of N,. 

Now it is straightforward to show that T(P(3U2,3)) is the only extension 
of Q6 that is in $. Moreover, r( P(3U,,)) has no extensions in Y. Since, by 
Lemma A.2, T(P(3U,,)) z X,, it follows that N, E X; and that N2 is an 
extension of N, . As X,* is 3-connected, Theorem A. 1 implies that we lose 
no generality by arguing in terms of a particular representation K; for it, 
where, for all r > 3, K,* is the following (r + 1) x (2r + 1) matrix that 
represents X,*: 

K,!= I It I 

We note from this representation that XT g X,, ,\ yl+ 1, I~+, 
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As in Section 2, we shall not distinguish here between a column and its 
non-zero scalar multiples. The next lemma essentially finishes the proof of 
Theorem A.4. 

(A.8) LEMMA. Suppose that r > 3 and that v= (v,, v2 ,..., v,, ,)’ is a 
column that is adjoined to K,! to give a matrix L over GF(4) representing a 
member N of Y. Then v is (1, 1, 0, 0 ,..., 0, O)= OY (1, 1, 0,O ,..., 0, 1)‘. 

ProoJ: We argue by induction on r. First suppose that r = 3. The proof 
in this case resembles the proof of Lemma 2.8. On deleting the first row 
and column from L, we get the following matrix representing the connected 
matroid N/y 1 : 

The first six columns of this matrix represent Q6. Since N/y, is an extension 
of Qs> if N/y, is in Y, it is isomorphic to T( P(30’,,,)) and it is 
straightforward to check that (v,, vj, v4) is (1, 0, 1). If N/J), is not in !P, it is 
a parallel extension of Q6, so (02, u3, 1~~)~ is a nonzero scalar multiple of 
some other column of L,,,. It also follows immediately from this, using the 
symmetry of the matrix L, that (pi, z)~, v4)= is (1, 0, l)= or a nonzero scalar 
multiple of some column of L,,, 

On deleting the third row and column from L, we get the following 
matrix representing Ilr/y, : 

L,3 = 
i 

13 
I I 01 

/o+l w  Iv,. 

@ 1 o+l 1 0 1 v4 1 
By a similar argument to the above, it follows that (vl, v2, ~1~)’ is (1, 1, 1)’ 
or a nonzero scalar multiple of another column of L, 3. In the first case, 
using the constraints on (v,, ug, v,) and (vi, v3, vq) obtained above, we find 
that (v,, u2, u3, vq) is (1, 1, 0, 1). Using these constraints again in the case 
that (vi, vZ, vq)= is a nonzero scalar multiple of another column of L,,,, we 
get that (u,, v?, vJ, uq) is one of (1, 1, 0, 0), (1, 0, 1, 0), or (0, 1, 1, 0). To 
eliminate the last two possibilities, assume that (v, , v2, vj, ti4) is one of 
them. By symmetry, we can suppose it is (1, 0, JO). In that case, it is 
straightforward to show that N/x, has a YY3-minor, a contradiction. We 
conclude that the lemma holds for r = 3. 

Now assume the lemma is true for all integers less than r and consider 
K,*, where r >4. On applying the induction assumption to each of the 
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matrices L, l.r+ ,, L,,, and L,- I,r- I and combining this information as 
before, it is not difficult to complete the proof of the lemma. 1 

From considering the matrix K,, we see that, for all r, both X,\y, and 
Xr\zr are self-dual. On combining this information with the last lemma and 
using the chain of matroids No, N,, N2,..., N, guaranteed by Theorem 1.4, 
we get that if ME Y and jE(M)( 34, then M is listed in (i). 

We have not explicitly checked here that each of the matroids listed in 
(i) is 3-connected, but this follows inductively from the way in which these 
matroids can be built up from U,,,. This completes the proof of 
Theorem A.4. 1 

Proof of Corollary AS. Suppose that M is a loopless GF(4)-represen- 
table matroid having no minor isomorphic to M(K,) or w3. We shall 
prove 

If M is 3-connected, then c(M; 4) = 1 unless A4 is isomorphic to 
X, for some even integer r; in the exceptional case, c(M; 4) = 2. (A.9) 

The corollary follows from this by a straightforward induction argument 
similar to the proof of Corollary 3.3. If jE(M)I < 3, then M is listed under 
(i) and it is easy to check that h4 is affine. We show next that 

J’ 4T(P(rU2,3)); 4) = k2 
if r is odd, 
if r is even. (A.lO) 

To verify this, we first observe that, by [S, Theorem 6.161, the chromatic 
polynomial of P(rU2,3) is 

Hence, by [7, Theorem 7.31, T(P(rUz,j)) has chromatic polynomial 

wq;) (-,)i~r+--i=~-‘(& l)[(i-I)‘-(-2)‘]. 
i=O 

On evaluating this expression at I = 4 and at A = 42, we immediately obtain 
(A.lO). 

By Lemma A.2, X,r T(P(rU,,,)). Moreover, XT rX,+ 1\y,+ i, z,,,. It 
therefore follows, using (A.lO), that to complete the proof of (A.9) we need 
only show that, for all positive integers m, both X2,,,\z2,,, and X2,,z\yZm are 
affine. The first of these follows because every column of K,, except zzm is 
orthogonal to (1, l,..., I)=. To get the second, note that, by Lemma A.3, 
X,,\ y2,,, E X,,\y,; the latter is afline since every column of KXm except y2 
is orthogonal to (o + 1, 1, 1, l,..., l)=. 1 

We conclude this Addendum with one further consequence of Theorem 
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2.1, another partial result towards the characterization of GF(4)-represen- 
table matroids having no M(K,)-minor. 

(A.1 1) THEOREM. Let M be a matroid having at least four elements. 
Then M is 3-connected, GF(4)-representable and has no minor isomorphic to 
M(K,) or Q6 if and only if 

(i) MC vV’ for some r > 2; 

(ii) ME lJ2,5, U,,,, or U,.,; or 

(iii) M is isomorphic to J or to one of P,, AG(2, 3) -p or AG(2, 3), or 
their duals. 

The proof of this theorem will require the following two lemmas. 

(A.12) LEMMA. Let M be a 3-connected GF(4)-representable matroid 
having no minor isomorphic to M(K,) or Q6. If both the rank and corank of 
M exceed two, then either M is ternary or Mg U,,,. 

Proo$ Assume that M ~6 U3,6. Then, by Lemma A.7, M has no U3,6- 
minor. Now suppose that M is not ternary. Then, by Theorem 1.3 and the 
fact that M has no M(K,)-minor, it follows that M has a minor isomorphic 
to U&5 or U3.5. By duality, we can assume that the latter occurs. Then, 
using Theorem 1.4, it is not difficult to show that M has one of U4,6, U3,6, 
P,, or Q6 as a minor. Since each of these possibilities leads to a contradic- 
tion, the lemma holds. 1 

(A.13) LEMMA [31]. PF +e, is not representable over GF(4). 

Proof of Theorem A.1 1. Since Q6 is non-ternary, it follows easily that 
none of the matroids in (i)-(iii) has a Q,-minor. Moreover, by 
Theorem 2.1, all the matroids in (i) and (iii) are 3-connected and have no 
M(K,)-minor. Evidently the same is true for the matroids in (ii). The 
matroids in (i) and (ii) are well known to be GF(4)-representable. To 
establish GF(4)-representability for the matroids in (iii), it suffices to 
observe that this holds for both AG(2, 3) (see, for example, [22, p. 141) 
and J. To verify the latter, one can easily check that the following matrix is 
a GF(4)-representation for PT + e, and hence for J: 

4567 1 2 3 e0 

i i 

10 1 10 1 1 0’ 
1 1 

14 14 
/I 0 /I 0 
‘1 w  ‘1 w  0 0 

/ 1 w+ / 1 w+ 1 1 1 1. 
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To prove the converse, let A4 be 3-connected and GF(4)-representable 
having no M(K,)- or &minor. We shall assume that both the rank and 
corank of M exceed two since the result is easily checked otherwise. Then, 
by Lemma A. 12, M z U,,, or M is ternary. In the former case, the result 
holds. In the latter case, A4 is 3-connected and ternary having no M(&)- 
minor, so A4 is listed in Table II. Using that table and Lemma A.13, we 
deduce that, in this case, Mz We’ for some r 3 3 or M is listed under 
(iii). i 

It follows easily from Theorem A.1 1 and Lemma 3.1 that a loopless 
GF(4)-representable matroid A4 having no minor isomorphic to M(K,) or 
Q6 has critical exponent c(M; 4) at most two. 
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