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For r in {3,4}, the class of binary matroids with no minor isomorphic to M(W;), 
the rank-r wheel, has an easily described structure. This paper determines all graphs 
with no “&-minor and uses this to show that the class of regular matroids with no 
M( “/@i)-minor also has a relatively simple structure. 0 1989 Academic Press, I X  

1. INTRODUCTION 

The purpose of this paper is to study the class of regular matroids with 
no minor isomorphic to M(W’;), the cycle matroid of the rank-5 wheel. This 
study is motivated by Tutte’s wheels and whirls theorem [16], which 
implies that, for a 3-connected matroid M with at least four elements, there 
is a sequence M,, M,, M,, . . . . M, of 3-connected matroids, each a single- 
element deletion or contraction of its successor, such that M, = A4 and MO 
is a whirl of rank at least two or a wheel of rank at least three. Thus the 
wheels and whirls are the fundamental non-trivial building blocks for the 
class of 3-connected matroids. Indeed, since every matroid that is not 
3-connected is a direct sum or a 2-sum of two matroids on fewer elements 
(Theorem 1.5), these building blocks are fundamental to the whole class of 
matroids. In view of this, it is natural to consider what matroids can arise 
when one excludes a small wheel or a small whirl as a minor. As the 
smallest whirl W2 is isomorphic to the 4-point line, the class of matroids 
with no W2-minor is precisely the class of binary matroids [15]. If one 
also excludes the smallest 3-connected wheel M(“/&), then the class of 
matroids one obtains is precisely the class of series-parallel networks 
[4, 7, 31. In [Ill], the author determined all members of the class 
EX(W2, M(-IY-,)) of matroids having no minor isomorphic to W2 or 
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M(%$). In this paper, as a step towards characterizing EX(‘YV’, M(?&)), 
the class of binary matroids with no M(-Wj)-minor, we characterize the 
class of regular matroids with no M(V5)-minor. 

The terminology used here for matroids and graphs will in general follow 
Welsh [ 181 and Bondy and Murty [l]. The ground set of a matroid M 
will be denoted by E(M) and, if TcE(M), we denote the rank of T by 
rk T. We shall write rk A4 for rk(E(M)) and cork M for the rank of the 
dual matroid M* of M. If H is a matroid or a graph and XE E(H), the 
deletion and contraction of X from H will be denoted by H\X and H/X, 
respectively. 

Familiarity will be assumed with the concept of n-connection for graphs 
as defined, for example, in [ 1, p. 421. For an integer n exceeding one, a 
matroid M is n-connected [16] if there is no positive integer k < n so that 
E(M) can be partitioned into subsets X and Y each having at least k 
elements such that rk X+ rk Y- rk M= k - 1. Thus M is 2-connected if 
and only if it is connected. It is routine to verify that M is n-connected if 
and only if M* is n-connected. 

Let G be a graph without isolated vertices. The notions of n-connected- 
ness of G and n-connectedness of its cycle matroid M(G) do not, in general, 
coincide. However, by [16], 

(1.1) if G has at least three vertices, then G is 2-connected aud loopless 
if and only if M(G) is 2-connected; and 

(1.2) if G has at least four vertices, then G is 3-connected and simple if 
and only if M(G) is 3-connected. 

If G is a 3-connected simple graph, then a result of Whitney [19] 
establishes that, up to isomorphism, G has a unique planar dual G*. We 
shall call G* the dual graph of G. 

If M, and M, are matroids on the sets S and S u e, where e # S, then M, 
is an extension of M, if M,\e = M,, and M, is a lif of M, if M: is an 
extension of M;*. We call M, a non-trivial extension of M, if e is neither a 
loop nor a coloop of M, and e is not in a 2-element circuit of MZ. 
Likewise, M, is a non-trivial lift of M, if M; is a non-trivial extension of 
MT. These terms will also be applied to graphs. Suppose v is a vertex of a 
loopless graph G such that d(v) 2 4 and let G’ be a graph constructed from 
G as follows: replace v by two new vertices v’ and v” that are joined by a 
new edge e; every edge of G that was incident with v is incident with 
exactly one of v’ and VI’ in G’ so that both v’ and v” have degree at least 
three; the rest of G is left unchanged. Then G’ is certainly a lift of G; we 
shall say that G’ has been obtained from G by splitting v. The next two 
results, which were proved by Tutte [14], will be used frequently in the 
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characterization of the class of simple 3-connected graphs having no 
%+minor. 

(1.3) LEMMA. Let G be a simple 3-connected graph and suppose G’ is a 
lift of G. Then the following are equivalent: 

(i) G’ is a non-trivial lift of G; 

(ii) G’ is simple and 3-connected; 

(iii) G’ is obtained from G by splitting a vertex of degree at least four. 

(1.4) LEMMA. Let G be a simple 3-connected graph and suppose G’ is an 
extension of G. Then G’ is simple and 3-connected if and only tf G’ is a non- 
trivial extension of G. 

The last two lemmas have a common matroid generalization (see, for 
example, [9, Lemma 2.11). 

Suppose that the matroids M, and M, have disjoint ground sets and 
that pie E(M,) for i in { 1,2). Then the parallel connection [3] of M, and 
M, with respect to the basepoints pI and p2 will be denoted by 
P((M,, pl), (M2, p2)) or just P(M,, M2). Seymour [12] established the 
following basic link between 3-connection and parallel connection. 

(1.5) THEOREM. A connected matroid M is not 3-connected if and only if 
there are matroids MI and M, each of which has at least three elements and 
is isomorphic to a minor of M such that M= P((M,, pl), (M2, p2))\p, 
where p is not a loop or a coloop of M, or M’. 

When M decomposes as in this theorem, it is called the 2-sum of M, and 
Ml. If Mi z M(G,) for i in (1,2}, then the 2-sum of M, and M, is 
isomorphic to M(G) where G is a 2-sum of the graphs G, and G2 with 
respect to the edges p1 and p2. In general, for a positive integer m, if each 
of G, and G2 has a distinguished K,-subgraph, we form an m-sum of Gi 
and G, as follows: define a bijection between the vertex-sets of the dis- 
tinguished K,,,-subgraphs; identify corresponding pairs of vertices; and, 
finally, delete the edges of both K,-subgraphs. 

Suppose that r > 2. The wheel Wr of rank r is a graph having r + 1 ver- 
tices, r of which lie on a cycle (the rim); the remaining vertex (the hub) is 
joined by a single edge (a spoke) to each of the other vertices. The rank-r 
whirl YY’ is a matroid on E(K) having as its circuits all cycles of ^w; other 
than the rim, as well as all sets of edges formed by adding a single spoke to 
the edges of the rim. The smallest 3-connected whirl is Y&“*; the smallest 
3-connected wheel M( -W;). 
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A basic tool in the proof of the main result of this paper will be 
Seymour’s splitter theorem [ 123. Let F be a class of matroids that is closed 
under minors and under isomorphisms. A member N of F is a splitter for 
F if no 3-connected member of F has a proper minor isomorphic to N. 
A graph G will be called a splitter for a class of graphs if M(G) is a splitter 
for the corresponding class of graphic matroids. We shall only need the 
following special case of the splitter theorem, its restriction to the class of 
graphic matroids. This result was also found by Negami [8]. 

(1.6) THEOREM. Let G and H be 3-connected simple graphs such that H 
is a minor of G and if HZ Wk for some k 3 3, then G has no Wk + ,-minor. 
Then there is a sequence GO, G, , Gz, . . . . G, of 3-connected simple graphs such 
that GO z H, G, = G and, for all i in { 1, 2, . . . . n), Gi is an extension or lift 
of Gj-,. 

In Section 2 of this paper, we use the last result to determine all simple 
3-connected graphs having no *<-minor. In Section 3, we combine this 
theorem with some results of Seymour to determine all 3-connected regular 
matroids with no M(-tLT,)-minor. In Section 4, we prove a sharp upper 
bound on the number of elements in a rank-r simple regular matroid with 
no M(%$,)-minor and solve the critical problem for this class of matroids. 

2. THE GRAPHIC CASE 

In this section we shall determine all 3-connected simple graphs having 
no +&-minor. First we consider some examples of such graphs. For each 
k 3 3, consider the graph Kj,A-, labelling its vertex classes V, and V, where 
1 V,I = 3. Now add edges x, y, and z to this graph so that all pairs of 
vertices in V, are joined. We shall call the resulting graph A,. It is 
straightforward to check that, for all k 3 3, all of A,, A,\x, A,\x, y, and 
K3,k are simple, 3-connected, and have no w5-minor. Similarly, one can 
check that the graphs H6, Q3, K2,2,2, and H, shown in Fig. 1 also have 
these properties. The first of these is the graph obtained from K, by 
splitting a vertex, while the second and third are the graphs of the cube and 
the octahedron and hence are duals of each other. The graph H, is 
isomorphic to its own dual. Notice also that H, can be obtained by taking 
a 3-sum of K2,2,2 and K4. 

(2.1) THEOREM. Let G be a graph. Then G is simple and 3-connected 
having no *w, -minor if and only if 



296 JAMES G. OXLEY 
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%,2,2 5 

FIGURE 1 

(i) GrYx OY 9&; 

(ii) G is isomorphic to a simple 3-connected minor of H,, Q3, K2,2,2, 
or H,; or 

(iii) for some k 3 3, G is isomorphic to one of A,, A,\x, A,\x, y, 
or KU. 

A complete list of the 3-connected simple graphs having no Y&-minor is 
given in Table I. 

Proof of Theorem 2.1. It was noted above that each of the graphs listed 
in (i)-(iii) is 3-connected, simple, and has no w5-minor. Now suppose that 
G is simple, 3-connected, and has no -W,-minor. We shall use the following 
result of Dirac [6, Theorem 11, a short proof of which was given in [2]. 
We denote by K, - e the graph obtained from K, by deleting a single edge. 
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TABLE I 

The 3-Connected Simple Graphs with No %$-Minor 

Number 

of edges 

6 

8 

Graphs 

% 
A 

% M 
V K3,3 j$ Kg-e ~ (Kg-e)* ~ 

10 K5 A31 X,Y 

3k+i 
k>4 
lSiS3 

3k 
k>5 

i=l 
$1 X,Y 

i=2 
Ak\ x 

i=3 

Ak 
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FIG. 2. (K, -e)*. 

(2.2) THEOREM. Let H be a simple 3-connected graph. Then exactly one 
of the following holds: 

(i) H has two vertex-disjoint cycles; 

(ii) H is isomorphic to Wr for some r > 3; 

(iii) H is isomorphic to KS or K,-e; 

(iv) for some k > 3, H is isomorphic to one of Ak, A,\x, A,\x, y, 
or K,,,. 

On applying this result to G, we obtain that either G is listed under 
(2.1) (i)-(iii), or G has two vertex-disjoint cycles. Thus we may assume that 
the latter occurs. It follows easily by Menger’s theorem that G has a minor 
isomorphic to (K, -e) *, the dual of K, - e (see Fig. 2). Therefore, by 
Theorem 1.6, there is a sequence Go, G,, G?, . . . . G, of simple 3-connected 
graphs such that Go r (K, - e)*, G, = G, and, for all i in { 1,2, . . . . n >, Gj- 1 
is a single-element deletion or contraction of Gi. The rest of the proof of 
Theorem 2.1 will concentrate on this sequence. We shall repeatedly use the 
fact that none of the graphs in the sequence has a -ILT,-minor. Since every 
vertex of (K, - e)* has degree 3, G, cannot be a lift of Go. It follows, by the 
symmetry of (K, -e)*, that G, is isomorphic to the graph J, shown in 
Fig. 3. 

1 2 

3 4 

M 
5 6 

FIG. 3. J, 
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A consequence of the next lemma is that if Gz is a non-trivial lift of J,, 
then G, z Jz, where J2 is the graph shown in Fig. 4. The graphs J, + 45 
and J, + 14 appearing in the lemma are obtained from J, by adding the 
edges 45 and 14, respectively. 

(2.3) LEMMA. Let JI be one of J,, J, + 45, and J, + 14 and let N, be a 
non-trivial lift of J; having no Y&-minor. Then J[ = J, and N, E J,, or 
J;= J, + 14 and N, ZH,. 

Proof: By the symmetry of J;, we can assume that 6 is split, say into 6’ 
and 6”, when N, is formed. Now, in N,, either a member of (6’, 6”} is 
adjacent to both 2 and 5, or not. In the first case, N, is isomorphic to Jz, 
J2 + ab, or H, according to whether Ji is isomorphic to J1, J, + 45, or 
J, + 14. Since (J, + ab)/ab has a @;-minor, it follows that N, z J2 or H,. 
In the second case, we may assume that 2 is adjacent to 6’, and 5 is 
adjacent to 6”. Moreover, one of 3 and 4 is adjacent to 6’ and the other to 
6”. It follows that N,/34 has a Wz-minor. 1 

Next we consider when G2 is a non-trivial extension of J,. The graph J3 
appearing in the next lemma is J, + 14. 

(2.4) LEMMA. If G, is a non-trivial extension of J1, then G2 is isomorphic 
to H, or J3. 

Proof: By the symmetry of J,, G2 is isomorphic to J, + 14, J, + 45, or 
JI + 32. The second of these is isomorphic to H, and the third has a 
W5-minor with rim 124651 and hub 3. m 

It follows from the above that we may assume that G, is isomorphic to 
Jz, J,, or He. 

(2.5) LEMMA. H6 is a splitter for the class of graphs with no -W,-minor. 

FIG. 4. Jo 
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Proof. We shall identify H, with J, + 45 to which it is isomorphic. By 
Lemma 2.3, every non-trivial lift of J, + 45 has a -W;-minor. If HQ is a 
non-trivial extension of J, + 4.5, then, without loss of generality, 
HA z J, + 45 + 32. But this matroid has J, + 32 as a minor and so, by the 
preceding proof, has a @i-minor. 1 

Next we suppose that G> is isomorphic to J, where we recall that 
J, = J, + 14. By Lemma 2.3, if G, is a non-trivial lift of J,, then G, z H,. 

(2.6) LEMMA. If G, is a non-trivial extension of J,, then G, r K,,2,2. 
Moreover, every non-trivial extension of K,,2.2 has a V&-minor. 

Proof By the symmetry of J,, G3 is isomorphic to J3 + 45 or J, + 25. 
The second of these is isomorphic to K,,,,,; the first is isomorphic to a 
non-trivial extension of H, and so. by Lemma 2.5, has a %&-minor. Since a 
non-trivial extension of J, + 25 has a minor isomorphic to J, + 45, it also 
follows that every non-trivial extension of K,,z,2 has a %$-minor. 1 

The graphs J2 and J, are duals of each other. Moreover, from above, if 
G, z J3, then G, z K2,2,2 or H,. Therefore, if G-, z .J, z J3* and G, is 
planar, then G3 z Kz2,2 or HT. The first of these is isomorphic to Q3 and 
the second to H,. If G, 2 J, and G, is non-planar, it is straightforward to 
check that G3 has a %‘i-minor. 

We may now assume that G, is isomorphic to Q3, K2,2,2, or H,. The 
next three lemmas complete the proof of Theorem 2.1 by showing that each 
of these graphs is a splitter for the class of graphs having no @;-minor. 

(2.7) LEMMA. Q3 is a splitter for the class of graphs with no -W;-minor. 

Proof: Every vertex of Q3 has degree 3, so Q3 has no non-trivial lifts. 
By the symmetry of Q,, a non-trivial extension of it is isomorphic to one of 
Q r + 13 and Q, + 17 where the vertices of Q3 are labelled as in Fig. 1. In 
the first case, on contracting 37 and 56 and deleting 15, we obtain a graph 
isomorphic to -kl/;. In the second case, on contracting 17, we obtain a graph 
isomorphic to -Iy,. 1 

(2.8) LEMMA. K,,2,2 is a splitter for the class of graphs with no 
^/y-minor. 

Proof By Lemma 2.6, K2,2,2 has no non-trivial extension without a 
w5-minor. Now let N, be a non-trivial lift of K2.2,2 having no wS-minor. If 
N, is planar, then NP is a non-trivial extension of K&,. But, as the last 
graph is isomorphic to Q3, it follows by the preceding lemma that N? has 
a wS-minor. Hence N, has a wS-minor, a contradiction. Thus we may 
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suppose that Nz is non-planar. By symmetry, N2 is uniquely determined up 
to isomorphism and one easily checks that N2 has a $&-minor. 1 

(2.9) LEMMA. H, is a splitter for the class of graphs with no V5-minor. 

Proof: Let N, be a non-trivial lift of H,. Then N3 is obtained by 
splitting one of the degree-4 vertices of H,. With the vertices of H, labelled 
as in Fig. 1, we may assume, by symmetry, that it is the vertex 5 which is 
split, say into vertices 5’ and 5”. In N,, both 5’ and 5” have degree three. If 
each of them is joined to one vertex in {2,3 > and one vertex in {6,7 1: 
then, on contracting 12 and 13 and deleting 67 from N,, we obtain a graph 
isomorphic to $&. Thus we may assume that 5’ is adjacent to both 2 and 3, 
and 5” is adjacent to both 6 and 7. But then, N,\67 zz Q3 and so, by 
Lemma 2.7, N, has a 9&-minor. 

Since H, is isomorphic to its dual, it follows from the above argument 
that every planar non-trivial extension of H, has a %:-minor. Moreover, 
by symmetry, H, has a unique non-planar non-trivial extension and this 
extension is easily shown to have a Y&-minor. 1 

A referee has observed that an alternative proof of Theorem 2.1 may be 
derived from results of Truemper [13, Theorems 4.5 and 4.71. 

To conclude this section, we note the following result that is a 
straightforward combination of Theorems 2.1 and 2.2. 

(2.10) COROLLARY. Let G be a 3-connected simple graph that is not 
isomorphic to a wheel and has at least thirteen edges. Then G has two vertex- 
disjoint cycles if and onIy if G has a $5 -minor. 

3. THE REGULAR CASE 

In the preceding section, we determined all 3-connected simple graphs 
having no %,-minor. By (1.2), the cycle matroids of these graphs are 
precisely the 3-connected graphic matroids with four or more elements 
having no A4(wS)-minor. Evidently the five 3-connected matroids, UO,i, 
U 1,1> U1,,, U1,3p and U,,,, with fewer than four elements are all graphic 
and have no M(w5)-minor. The cocycle matroids of the graphs in 
Theorem 2.1 are precisely the 3-connected cographic matroids with four or 
more elements having no A4(wS)-minor. In this section, we shall determine 
all 3-connected regular matroids with no M($&)-minor. We begin by prov- 
ing the following result. 

(3.1) THEOREM. Let M be a 3-connected regular matroid having no 
M(W5)-minor. Then M 2 R,,, or M is graphic or cographic. 
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The proof of this is based on the following two theorems of Seymour 
[ 12, (14.2) and (7.4)]. The matroids R,, and RI2 are the linear dependence 
matroids of the following matrices over GF(2): 

RlO 

: 

I11001 

~11100 

I5 (01110 

) 00 111 

(IOOli I 

123456 7 8 9 IO 11 12 

r 111 

I 

110 0 10 0 0 0 

%2 ‘6 100 0 10 

1010 0 0 1 

]OOl 0 11 

1000 11 1 I 

(3.2) THEOREM. Let M be a 3-connected regular matroid. Then either M 
is graphic or cographic, or M has a minor isomorphic to one of RIO and R,,. 

(3.3) THEOREM. If M is a 3-connected regular matroid having an 
RIO-minor, then Mr R,,. 

Proof of Theorem 3.1. The result follows immediately from the last two 
theorems provided that we can show that R,, has an AI(minor. But it 
is routine to check that R,,/3\10rM(-W;), with the elements of the latter 
being labelled as in Fig. 5. 

Evidently R,, has no M(-W;)-minor. Using this, together with 
Theorems 2.1 and 3.1 and the remarks at the start of this section, we get 
the following result. 

(3.4) THEOREM. Let M be a regular matroid. Then M is 3-connected and 
has no M(W5)-minor if and only if 

FIGURE 5. 
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(i) for some k 3 3, M is isomorphic to one of M(A,), M(A,\x), 
M(A,\x, y), M(K3,k), or their duals; or 

(ii) M is isomorphic to a 3-connected minor of R,,, M(Q3), M(K2,2,2), 
M(ff,), M(fJ6), or M*(ffd. 

It follows from this theorem that the 3-connected regular matroids with 
no M(W5)-minor are the cycle and cocycle matroids of the graphs in 
Table I, RIO, and the live 3-connected matroids with fewer than four 
elements, namely, U,,, , U,. 1, lJ1,?, U1,3, and U,,, . Hence, apart from these 
live trivial examples, the only regular matroid with no M(-W;)-minor that is 
4-connected is R,,. 

A consequence of Theorem 1.5 is that one can construct all regular 
matroids having no M(%$)-minor by beginning with the 3-connected such 
matroids and repeatedly using the operations of direct sum and 2-sum. 

4. SOME CONSEQUENCES OF THE CHARACTERIZATION 

In this section we use Theorem 3.4 to determine some properties of the 
class of regular matroids with no M(V5)-minor. 

Let A4 be a simple rank-r binary matroid. It follows from results of Dirac 
[4, 51 that if M has no M(,W3))-minor, then /E(M)] <2r- 1. Furthermore, 
it was shown in [ 1 l] that if A4 has no M(%<)-minor, then 

if r is odd, 
if r is even. 

Based on these results, one may hope that if it4 has no M(W;)-minor, then 
IE(M)I 6 4r. To see that this fails, one can take the parallel connection of k 
copies of PG(3, 2) for k 3 2. From this example, one deduces that the best 
possible upper bound on lE(M)I/r that could be valid for all r is y. No 
such result has yet been proved. However, in this section, we note that if M 
is simple and regular having no M(W5)-minor, then JE(M)l/r is less than 3. 
In particular, the following result holds. The proof of this is similar to the 
proof of [ 10, Theorem 5.11 so the details are omitted. 

(4.1) THEOREM. Let M be a rank-r member of the class 9 of simple 
regular matroids having no M(-ly;)-minor. Then 

if rz 1 (mod3), 
otherwise. 

582b:46/3-4 
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Moreover, M attains this bound if and only if either 

(i) M= P(M1, M2), where each of M, and M, is a member of 9 
attaining the bound and having rank at least two, and rk M, or rk M2 is 
congruent to 1 (mod 3); or 

(ii) ME M(K,) for some n in (2, 3, 4, 5), MzMtK,.,,), or 
Mr M(A,) for some k 3 3 such that k f 2 (mod 3). 

In particular, the bound is attained for all ranks. 

It follows from this theorem that, for a simple n-vertex graph G having 
no WY; -minor, 

IE(G)I < ;;I;’ if nr2(mod3), 

> otherwise. 

Furthermore, this bound is attained for all n >, 2 and one can determine 
from the theorem precisely which graphs attain the bound. 

The second consequence of Theorem 3.4 that we shall look at involves 
the chromatic numbers of loopless regular matroids with no M(W;)-minor. 
If M is a loopless regular matroid having chromatic polynomial P(M; 2) 
(see, for example, [ 18, p. 262]), its chromatic number x(M) is 
min{jEZ+: P(M;j)>O}. 

(4.2) THEOREM. Let M be a loopless regular matroid having no M(WS)- 
minor. Then x(M) < 5. Moreover, if M is 3-connected, equality holds here if 
and only if ME M(K,). 

ProoJ: If M is M, @Ml or P(M,, M2)\p, where M, and M2 are 
loopless, then X(M) < max{ X(MI ), x(M2)) [ 171. Thus it suffices to prove 
that if M is 3-connected and regular having no M(W5)-minor, then 
x(M) d 5 with equality if and only if MzM(K,). Using Table I, it is 
straightforward to check this if M is graphic or cographic. By Theorem 3.4, 
if M is neither graphic nor cographic, then ME R,, and this matroid, being 
a disjoint union of cocircuits, has chromatic number 2 (see, for example, 
Cl73 P. 71). I 

It follows from this theorem that, for a loopless regular matroid M 
having no M(W,)-minor, the critical exponent [18, p, 2731 c(M; 2) is at 
most 3. It is an open problem to determine whether the weaker bound 
c(N; 2) d 4 holds for all loopless binary matroids N with no M(W5)-minor. 
If this bound holds it is best possible since, for example, c( PG(3, 2); 2) = 4. 
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