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1. Introduction

It is well known that a graph is bipartite if and only if every cycle has an even
number of edges and that a connected graph is Eulerian if and only if every vertex
has even degree. While we cannot characterize arbitrary matroids in which every
circuit has even cardinality, we can characterize binary matroids with this property.
For reasons that will be clarified later, such a binary matroid is called affine. The
goal of this note is to prove the following two theorems. The first is due to Jim
Geelen and Peter Nelson, the second to Nathan Bowler. A circuit C in a matroid
is odd if |C| is odd; otherwise C is even.

Theorem 1.1 (Geelen and Nelson). Let M be a loopless, connected, non-affine,
binary matroid. If a largest odd circuit of M has k elements, then M has no circuit
of size exceeding 2k − 2.

Theorem 1.2 (Bowler). Let n and k be integers exceeding two where k is odd. Then
there is an integer N(k, n) such that every 3-connected, non-affine, binary matroid
whose largest odd circuit has k elements either has at most N(k, n) elements or has
a minor isomorphic to M(K3,n).

Both of these theorems emerged two years ago from discussions following the
author’s online seminar talk [7] based on the paper by Chun, Oxley, and Wetzler [2].
The proofs of these theorems were emailed to the author by Jim Geelen and Nathan
Bowler. The matroid terminology used here will follow [6].

2. Background

Recall that the rank-r binary projective geometry PG(r − 1, 2) is the matroid
whose elements are the non-zero vectors of V (r, 2), the r-dimensional vector space
over the two-element field, and whose independent sets are the linearly independent
subsets of V (r, 2). For example, the matroids PG(0, 2), PG(1, 2), and PG(2, 2) are
U1,1, U2,3, and the Fano matroid. Of course, every simple binary matroid of rank
r is isomorphic to a restriction of PG(r − 1, 2). The rank-r binary affine geometry
AG(r − 1, 2) is the matroid that is obtained from PG(r − 1, 2) by deleting one
of its hyperplanes. Thus AG(0, 2), AG(1, 2), and AG(2, 2) are U1,1, U2,2, and
U3,4. Clearly, AG(r− 1, 2) is the matroid that is obtained from V (r, 2) by deleting
a V (r − 1, 2). The symmetry of V (r, 2) means that it does not matter which
hyperplane we choose to delete. If we delete the hyperplane consisting of the vectors
whose first coordinate is zero, then we see that the elements of AG(r − 1, 2) are
the vectors of V (r, 2) whose first coordinate is one. It follows that every circuit of
AG(r−1, 2) is even. To see that a simple binary matroid M having no odd circuits
is a restriction of a binary affine geometry, we proceed as follows. Let A be a binary

1



2 JAMES OXLEY

matrix representing M . Adjoin a new row to A consisting entirely of ones to get
the matrix A+. Then one easily checks that M [A] = M [A+]. Clearly M [A+] is a
restriction of a binary affine geometry.

Adding elements in parallel to existing elements of a simple binary affine matroid
yields another binary matroid in which every circuit is even. We deduce that
a binary matroid is affine if and only if it has no loops and its simplification is
isomorphic to a restriction of a binary affine geometry. The next theorem, which
incorporates this observation, is obtained by combining results of Brylawski [1],
Heron [4], and Welsh [8]. A proof of the equivalence of (i) and (ii) was outlined
above. A proof of the equivalence of (i) and (iii) may be found in [6, Proposition
9.4.1]. This equivalence, originally shown by Welsh, generalizes to binary matroids
the dual relationship between bipartite and Eulerian graphs.

Theorem 2.1. The following are equivalent for a non-empty binary matroid M .

(i) Every circuit of M is even.
(ii) M is loopless and its simplification is isomorphic to a restriction of a binary

affine geometry.
(iii) E(M) can be partitioned into cocircuits.

3. Proofs and Consequences

This section presents the proofs of the two main theorems. The proof of The-
orem 1.1 will use the next two lemmas. A theta-graph is a graph G consisting of
two vertices, u and v, and three internally disjoint paths joining them. These three
uv-paths in G are the series classes of the theta-graph.

Lemma 3.1. In a connected binary matroid M with an element e and an odd
circuit C, either E(M) = C, or M has as a restriction the cycle matroid of a
theta-graph that contains the element e and has C as the union of two of its series
classes. In particular, M has an odd circuit containing e.

Proof. We may assume that E(M) 6= C. Let d be an element of E(M) − C, and
let D be a circuit that contains d and meets C such that D−C is minimal. As M
is binary, C 4D is a disjoint union of circuits. The minimality of D − C implies
that C 4 D is a circuit, so M |(C ∪ D) is the cycle matroid of a theta-graph in
which C is the union of two of the series classes. To ensure that e ∈ C ∪D, we take
e = d when e /∈ C. Because the series classes in M |(C ∪ D) do not all have even
cardinality, it follows that e is in an odd circuit of M . �

Lemma 3.2. Let M be a connected, non-affine binary matroid. If M |X is con-
nected and affine having at least two elements, then M has an odd circuit D that
meets both X and E(M)−X for which D−X is a circuit of M/X. Moreover, if X
is a circuit, then M |(X ∪D) is the cycle matroid of a theta-graph in which exactly
two of the series classes have the same parity.

Proof. As M is not affine, it has an odd circuit C. Thus, by Lemma 3.1, M has
an odd circuit containing e. Hence we can take an odd circuit D that meets X for
which D−X is minimal. Suppose that D−X is not a circuit of M/X. Then M/X
has a circuit D′ that is properly contained in D−X. Thus M has a circuit D′′ that
meets D−X in D′ and is contained in D′ ∪X. The choice of D implies that D′′ is
even. Now D4D′′ is a disjoint union of circuits of M . As |D4D′′| is odd, D4D′′

contains an odd circuit. This odd circuit cannot be contained in X, nor does it
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contain D −X. Hence it contradicts the choice of D. Thus D −X is a circuit of
M/X. It follows immediately that if X is a circuit, then M |(X ∪ D) is the cycle
matroid of a theta-graph. As each of D and X is the union of exactly two of the
series classes in this theta-graph, and |D| and |X| have different parities, it follows
that exactly two of the series classes in M |(X ∪D) have the same parity. �

Proof of Theorem 1.1. Let C be a largest circuit of M . We may assume that C is
even. By Lemma 3.2, M has an odd circuit D that meets C such that M |(C ∪D)
is the cycle matroid of a theta-graph. Let the series classes of the theta-graph be
S1, S2, and S3 where the first two have the same parity. Then C = S1 ∪ S2.

Suppose that each of |S1 ∪ S3| and |S2 ∪ S3| is at most 1
2 |C|. Then |S1|+ |S2|+

2|S3| ≤ |S1|+ |S2|. Thus S3 is empty, a contradiction. Hence |S1 ∪ S3| or |S2 ∪ S3|
exceeds 1

2 |C|, and the theorem follows. �

A theta-graph with two series classes each having k − 1 elements and one hav-
ing exactly one element shows that the bound in Theorem 1.1 is sharp. Another
immediate consequence of Lemma 3.2 is the following.

Corollary 3.3. Every even circuit in a connected, non-affine, binary matroid is
the symmetric difference of two odd circuits.

In a connected matroid M with at least two elements, the sizes of a largest circuit
and a largest cocircuit are the circumference c(M) and the cocircumference c∗(M),
respectively. When M has an odd circuit, we denote the size of a largest odd circuit
by co(M); when M∗ has an odd circuit, we write c∗o(M) for co(M∗).

Corollary 3.4. Let M be a connected binary matroid having an odd circuit and an
odd cocircuit. Then

|E(M)| ≤ 2(co(M)− 1)(c∗o(M)− 1).

Proof. By a result of Lemos and Oxley [5], |E(K)| ≤ 1
2c(K)c∗(K) for all connected

matroids K. Combining this with Theorem 1.1 gives the result. �

In the next proof, M(Wm) denotes the cycle matroid of a rank-m wheel, while
a tipless binary spike of rank m is the vector matroid of the binary matrix [Im|Icm]
where Icm is the m×m matrix that is obtained from Im by replacing each entry by
the other element in the two-element field.

Proof of Theorem 1.2. Let m = max{n, 2k−1}. By a theorem of Ding, Oporowski,
Oxley, and Vertigan [3], there is a number N(m) such that every 3-connected binary
matroid having more than N(m) elements has as a minor one of M(Wm), M(K3,m),
M∗(K3,m), or a tipless binary spike of rank m. If M is a non-affine such matroid
and its largest odd circuit has k elements, then, by Theorem 1.1, its largest circuit
has at most 2k − 2 elements. Each of M(Wm), M∗(K3,m), and the tipless binary
spike of rank m has an m-element circuit, so none of these matroids occurs as a
minor of M . Hence M has a minor isomorphic to M(K3,m). Taking N(k, n) to be
N(m), we get the theorem. �

Corollary 3.5. For every odd integer k exceeding two, there is an integer N ′(k)
such that every 3-connected, non-Eulerian, simple graph whose largest odd bond has
k edges has at most N ′(k) edges.
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