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Abstract. This paper generalizes a graph-theoretical result of Maffray
to binary matroids. In particular, we prove that a connected simple
binary matroid M has no odd circuits other than triangles if and only
if M is affine, M is M(K4) or F7, or M is the cycle matroid of a graph
consisting of a collection of triangles all of which share a common edge.
This result implies that a 2-connected loopless graph G has no odd bonds
of size at least five if and only if G is Eulerian or G is a subdivision of
either K4 or the graph that is obtained from a cycle of parallel pairs by
deleting a single edge.

1. Introduction

For each n ≥ 1, let K ′
2,n be the graph that is obtained from K2,n by

adding an edge joining the vertices in the two-vertex class (see Figure 1).
Maffray [5, Theorem 2] proved the following result.
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Figure 1. K ′
2,n

Theorem 1.1. A 2-connected simple graph G has no odd cycles of length
exceeding three if and only if

(i) G is bipartite;
(ii) G ∼= K4; or
(iii) G ∼= K ′

2,n for some n ≥ 1.

There is a long history of generalizing results for graphs to binary matroids
(see, for example, [3, 7] or, more recently, [6, Section 15.4]). This paper
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continues this tradition by proving a generalization of Maffray’s result. A
circuit in a matroid is even if it has even cardinality; otherwise, it is odd. A
triangle is a 3-element circuit. A binary matroid is affine if all of its circuits
are even. Hence the cycle matroid, M(G), of a graph G is affine if and only
if G is bipartite. The following is the main result of the paper.

Theorem 1.2. A connected simple binary matroid M has no odd circuits
other than triangles if and only if

(i) M is affine;
(ii) M ∼= M(K4) or F7; or
(iii) M ∼= M(K ′

2,n) for some n ≥ 1.

The terminology used here will follow Oxley [6]. Binary affine matroids
have several attractive characterizations. Indeed, Welsh [8] proved that the
link between bipartite and Eulerian graphs via duality extends to binary
matroids. His result is the equivalence of the first two parts of the next
theorem (see, for example, [6, Theorem 9.4.1]). The equivalence of the first
and third parts was proved independently by Brylawski [2] and Heron [4].

Theorem 1.3. The following are equivalent for a binary matroid M .

(i) M is affine;
(ii) M is loopless and its simplification is isomorphic to a restriction of

AG(r − 1, 2) for some r ≥ 1;
(iii) E(M) can be partitioned into cocircuits.

Recall that a bond of a graph is a minimal edge cut. The next result
follows immediately by applying our main result to the bond matroid of a
graph, that is, to the dual of its cycle matroid.

Corollary 1.4. A 2-connected loopless graph G has no odd bonds of size at
least five if and only if

(i) G is Eulerian; or
(ii) G is a subdivision of either K4 or the graph that is obtained from an

n-edge cycle for some n ≥ 2 by adding an edge in parallel to all but
one of the edges.

Another straightforward consequence of Theorems 1.2 and 1.3 is the fol-
lowing.

Corollary 1.5. Let M be a connected cosimple binary matroid of rank at
least four. Then M has no odd circuits of size exceeding three if and only if
M is affine.

2. The Proof of the Main Theorem

We shall use two lemmas.

Lemma 2.1. A simple binary matroid having an even circuit meeting a
triangle T in a single element has an odd circuit of size exceeding three.
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Proof. From among even circuits that meet T in a single element, choose C
to have minimum cardinality. As M is binary, C∆T is the disjoint union of
k circuits for some k ≥ 1. As |C∆T | = |C| + 1, if k = 1, then the lemma
holds. Thus we may assume that k ≥ 2. Since each circuit contained in
C∆T must contain an element of T − C, we deduce that k ≤ 2, so k = 2.
Thus, as C∆T has odd cardinality, it is the disjoint union of an odd circuit
and an even circuit, C0, each of which meets T in a single element. As
|C0| < |C|, the choice of C is contradicted. �

Our second lemma is more general than we need to prove the theorem.
For an integer n exceeding one, let M1,M2, . . . ,Mn be matroids such that
E(Mi) ∩ E(Mj) = {p} for all distinct i and j in {1, 2, . . . , n}, and {p} is
not a component of any Mk. The parallel connection P (M1,M2, . . . ,Mn) is
the matroid with ground set E(M1) ∪ E(M2) ∪ · · · ∪ E(Mn) whose set of
circuits consists of the union of the sets of circuits of M1,M2, . . . ,Mn along
with, for all distinct elements i and j of {1, 2, . . . , n}, all sets of the form
(Ci − p) ∪ (Cj − p) where Ci is a circuit of Mi containing p, and Cj is a
circuit of Mj containing p (see, for example, [6, Proposition 7.1.18]). Thus
if Mk

∼= U2,3 for all k, then P (M1,M2, . . . ,Mn) ∼= M(K ′
2,n). The element p

is called the basepoint of the parallel connection.

Lemma 2.2. Let M be a simple connected matroid. Then M has an element
p such that the only circuits of M that contain p are triangles if and only
if M is isomorphic to U1,1 or to U2,k for some k ≥ 3, or M is the parallel
connection with basepoint p of some collection of simple rank-2 matroids
each of which contains at least three points.

Proof. It is straightforward to check that, for each of the matroids listed, the
only circuits containing p are triangles. Now assume that the only circuits
of M containing p are triangles. We may assume that r(M) ≥ 3 otherwise
the result certainly holds. As M is connected, each of its elements is in
some circuit with p. By hypothesis, this circuit must be a triangle. Thus,
in M/p, every element is in a non-trivial parallel class. If every component
of M/p has rank one, then it follows by a result of Brylawski [1] (see also
[6, Theorem 7.1.16]) that M is a parallel connection as asserted. Therefore
we may assume that M/p has a component of rank exceeding one. Thus
M/p has a circuit D of size exceeding two and, as D ∪ p is not a circuit of
M , we deduce that D is a circuit of M . Similarly, (D − d) ∪ d′ is a circuit
of M where d is some element of D, and d′ is parallel to d in M/p. Thus
clM (D− d) contains {d, d′} and so contains p. Then rM/p(D− d) < |D− d|;
a contradiction. �

We are now ready to prove the main result.

Proof of Theorem 1.2. It is easily checked that M(K4), F7, and each M(K ′
2,n)

are binary having no odd circuits of size greater than three. For the converse,
assume that M has no odd circuits of size greater than three. Suppose M is
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not affine. If r(M) = 3, then clearly M is isomorphic to M(K ′
2,2), M(K4),

or F7. Thus we may assume that r(M) ≥ 4. First we show the following.

2.3.1. If T0 is a triangle of M and C is a circuit that meets but is not equal
to T0, then |C| ≤ 4 and M |(T0 ∪ C) ∼= M(K ′

2,2).

This is certainly true if C is a triangle, so we assume that |C| ≥ 4. By
Lemma 2.1, |C ∩ T0| = 2. Then C∆T0 is a circuit of M of cardinality
|C| − 1. Thus |C| = 4 and C∆T0 is a triangle T1 meeting T0 in a single
element. Hence M |(T0 ∪ C) = M |(T0 ∪ T1) ∼= M(K ′

2,2), and (2.3.1) holds.
As M is not affine, it contains a triangle T . As M is connected, it follows

by (2.3.1) that M has a triangle T ′ that meets T in a single element, say f .

2.3.2. For each g not in cl(T ∪ T ′), there is a triangle that contains {g, f}.

As M is connected, it has a circuit D that contains g and meets T ∪ T ′.
Without loss of generality, we may assume that D meets T . By (2.3.1),
M |(D ∪ T ) ∼= M(K ′

2,2). Thus M has a triangle T ′′ that contains g and
meets T in a single element, h. We may assume that h 6= f otherwise
(2.3.2) holds. Then T ′′ meets the 4-element circuit (T ∪ T ′)− f in a single
element; a contradiction to Lemma 2.1. We deduce that (2.3.2) holds.

We may assume that M has a circuit C ′ that contains f and is not a
triangle otherwise the result follows by Lemma 2.2. By Lemma 2.1, C ′ meets
each triangle containing f in two elements. Moreover, by (2.3.1), |C ′| = 4.
Hence M has at most three triangles containing f . But, as r(M) ≥ 4, it
follows that r(M) = 4, and M has exactly two elements not in cl(T ∪ T ′),
these elements being contained in a common triangle with f .

If T ∪ T ′ is a flat of M , then M ∼= M(K ′
2,3). Thus we may assume that

cl(T ∪T ′)− (T ∪T ′) contains an element h. Then M |(T ∪T ′∪h) ∼= M(K4),
so T ∪ T ′ ∪ h contains a 4-circuit D′ containing {f, h}. By (2.3.2), M has a
triangle that meets D′ in {f}. This contradiction to Lemma 2.1 completes
the proof of the theorem. �
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