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We prove that, for every positive integer &, there is an integer N such that every
3-connected graph with at least N vertices has a minor isomorphic to the k-spoke
wheel or K ,; and that every internally 4-connected graph with at least ¥ vertices
has a minor isomorphic to the 2k-spoke double wheel, the k-rung circular ladder,
the k-rung Mobius ladder, or K, ,. We also prove an analogous result for infinite
graphs.  © 1993 Academic Press, Inc.

1. INTRODUCTION

In this paper, graphs are finite unless stated otherwise, and they may
have loops or multiple edges. A graph is a minor of another if the first can
be obtained from a subgraph of the second by contracting connected
(possibly infinite} subgraphs. A graph is a subdivision of another if the first
can be obtained from the second by replacing each edge by a non-zero
length path with the same ends. We begin by stating the following two
simple results.

(1.1) For every positive integer k, there is an integer N such that every
connected graph with at least N vertices contains a subgraph isomorphic
either to the path on k vertices or to the star with k vertices.

We denote by C, the cycle on k vertices.

* This research was partially supported by a grant from the Louisiana Education Quality
Support Fund through the Board of Regents.

239
0095-8956/93 $5.00

Copyright " 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved,



240 OPOROWSKI, OXLEY, AND THOMAS

(1.2) For every positive integer k, there is an integer N such that every
2-connected graph with at least N vertices contains a subgraph isomorphic to
a subdivision of either C, or K, ,.

This paper is concerned with generalizing these two results to 3- and
4-connected graphs. A separation of a graph is a pair {4, B) of subsets of
V(G) such that A U B=V(G), and there is no edge between 4 — B and
B— A. The order of (A, B) is |A~ Bl. A graph G is said to be internally
4-connected if it is 3-connected and, for every separation (4, B) of G of
order 3, one of A— B, B— A4 contains at most one vertex. Clearly every
4-connected graph is internally 4-connected.

We need to introduce several families of graphs (see Fig. 1). Let kK >3 be
an integer. The k-spoke wheel, denoted by W,, has vertices vy, vy, .., Uy,
where v,, v,, ..., v, form a cycle, and v, is adjacent to all of v, v,, ..., U.
The 2k-spoke double wheel, denoted by D, has vertices vy, vg, Uy, Usy s Uy,
where v,, v,, .., v, form a cycle, and both v, and vj are adjacent to all of
Uis Vg, - Ux. The 2k-spoke alternating double wheel, denoted by A,, has
vertices vy, Ug, Uy, Uz, ..., Do, Where vy, v, ..., 05, form a cycle in this order,
vo is adjacent to vy, vs, .., Uy, and vy is adjacent to v,, v4, ..., V5. The
k-rung ladder, denoted by L,, has vertices v, v,, ..., Uy, 4, Uy, ..., U, Where
Uy, Vs, .y U and uy, uy, ..., 4, form paths in the order listed, and v, is adja-
cent to i, for i=1, 2, .., k. The graph V, is obtained from L, by adding an
edge between v, and v,, and contracting the edges joining u, to v, and u,
to v,. The graph O, called the k-rung circular ladder, is obtained from L,
by adding edges between v, and v, and between u, and u,; and the k-rung
Mébius ladder, denoted by M,, is obtained from L, by adding edges
between v, and u, and between u, and v,. The graph K, , has vertices x,
Py X's V', Vyy Ugy s Uy, U, U5, .y Uk, Where v, is adjacent to v}, x, and y, and
v; is adjacent to v;, x', and y' (i=1, 2, .., k). We remark that W,, V,, and
K, , are 3-connected, and that if k>4, then A,, D, O,, M, K, .,
and X, , are internally 4-connected.

The following are the main results of this paper.

(1.3) For every integer k=3, there is an integer N such that every
3-connected graph with at least N vertices contains a subgraph isomorphic to
a subdivision of one of W, V,, and K, ,.

(1.4) For every integer k>4, there is an integer N such that every
internally 4-connected graph with at least N vertices contains a subgraph
isomorphic to a subdivision of one of Ay, Oy, M\, Ky, and K, .

We leave it to the reader to verify that (1.3) and (1.4) imply the results
stated in the abstract and that (1.3) implies that, for every integer k >3,
there are only finitely many simple 3-connected planar graphs having no
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k-spoke wheel W,

Ve
2k-spoke double wheel D,

2k-spoke alternating double wheel A

FIGURE 1

minor isomorphic to W,. It is easy to see that (1.4) implies (1.3), as
follows.

Proof of (1.3) (assuming (1.4)). For k>4 let N(k) be the number “N”
from (1.4}, and let £ >3 be given. We claim that N(k + 1) — 1 satisfies the
conclusion of (1.3). Indeed, let G be a 3-connected graph with at least
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N(k+1)—1 vertices, and let H be the graph obtained from G by adding
a new vertex v, and joining v by an edge to every vertex of G. Then H is
internally 4-connected, and so, by (1.4), it contains a subgraph isomorphic
to a subdivision of one of A,,,, Or,y, M.y, K4 iy, and Kj ;4.
Now it is routine to verify that G contains a subgraph isomorphic to a
subdivision of one of W, V,, and K; ,, as desired. [

Next we shall reformulate (1.3) and (1.4) as excluded-minor theorems
which hold for every graph regardless of its connectivity. A tree-decomposi-
tion of a graph G is a pair (7, Y), where T is a tree and Y is a multiset
(Y,:t€ V(T')) such that

(W1) U,cwr) Y.=V(G), and every edge of G has both ends in some
Y,; and

(W2) if¢, ¢, t"eV(T) and ¢ lies on the path between ¢ and ¢”, then
YnY,.c¥,.

The width of a tree-decomposition (7, ¥) is max, 7, (|Y,| — 1), and the
adhesion of (T, Y) is max, .1 cgr) | Y, N Y, |. (If E(T)=, we define the
adhesion of (7, Y) to be 0.) As we shall see, (1.3} and (1.4) can be restated
as follows.

(1.5) For every integer k = 3, there is an integer N such that every graph
G with no minor isomorphic to either W, or K, , admits a tree-decomposition
of width at most N and adhesion at most 2.

(1.6) For every integer k = 4, there is an integer N such that every graph
G with no minor isomorphic to any of D\, O, M, and K, , admits a tree-
decomposition of width at most N and adhesion at most 3.

The conditions of (1.5) and (1.6) are necessary and sufficient in the sense
that, for instance, every graph which admits a tree-decomposition of width
at most N and adhesion at most 2 has no subgraph isomorphic to a sub-
division of any of W, ., V., and K; »,,. We remark that, by a result
of [27, since (1.5) and (1.6) hold for finite graphs, they also hold for
infinite graphs.

We wish to present yet another reformulation of our results to empha-
size the general paradigm of these theorems. A lower ideal is a set ¥
of graphs with the property that if Ge .# and H is isomorphic to a minor
of G, then He #. Let %', A3, Ay, &, O, and # be the lower ideals con-
sisting of all minors of W, K, K4, Dy, Oy, and M, (k=3,4,..),
respectively.

(1.7) Let .# be a lower ideal. Then ¥ contains neither W nor X, if and



3- AND 4-CONNECTED GRAPHS 243

only if there is an integer N such that every graph G in ¥ admits a tree-
decomposition of width at most N and adhesion at most 2.

Proof. It W & # and X, & .#, then there is an integer k£ such that
W.¢.# and K; ¢ .#. Hence every G in .# admits the desired tree-decom-
position by (1.5). Conversely, if every G in .# admits a tree-decomposition
of width at most N and adhesion at most 2, then W, ,¢.# and
Ky v, €%, and hence # ¢ # and 4, ¢ 4. |}

(1.8) Let F be alower ideal. Then § contains none of €, H,, 2, and .H
if and only if there is an integer N such that every graph G in .# admits a
tree-decomposition of width at most N and adhesion at most 3.

The proof of (1.8) is almost identical to that of (1.7) and so is omitted.

We would like to clarify the relation of (1.7) and (1.8) to well-quasi-
ordering. It follows from Wagner's conjecture recently proved by
Robertson and Seymour [4] that, for every lower ideal .#, there is a finite
set S of graphs such that an arbitrary graph G belongs to .# if and only
if it has no minor isomorphic to any member of S. Let .4” be a set of lower
ideals closed under taking subideals. It is not known whether there exists
a finite set # of lower ideals such that an arbitrary lower ideal .# belongs
to 4" if and only if # has no member of # as a subideal. (This would be
a generalization of Robertson and Seymour’s theorem.) Note that each of
(1.7) and (1.8) can be viewed as a characterization of a set of lower ideals
in terms of a finite set of excluded ideals.

A word about the smallest N for which the conclusions of (1.3) and (1.4)
hold. Although we find an explicit bound, it is far from optimal. In fact
we can improve upon this number, but only at the expense of a more
complicated proof. The extra effort did not seem justified.

The paper is organized as follows. In Section 2 we review and improve
earlier results about tree-decompositions, which are our main tool. In Sec-
tion 3 we prove (1.4), and in Section 4 we derive (1.6). We omit the proof
of (1.5), because it is similar though slightly easier than the proof of (1.6).
In Section 5 we prove a result analogous to (1.4) for infinite graphs.

In the rest of this section we introduce some terminology. If G is a graph,
we denote its vertex-set and edge-set by V(G) and E(G). The union of the
graphs G, and G, is the graph with vertex-set V(G,)u V(G,) and edge-set
E(G,)u E(G,) and the obvious incidences. When we say that two graphs
are disjoint, we always mean they are vertex disjoint. Let G be a graph and
X be a vertex or a set of vertices of G. By G\ X we denote the graph
obtained from G by deleting X. Every path P in a graph is a non-null
subgraph and has two ends (which are equal for the one-vertex path), and
we say that P is a path between its ends. A vertex of P which is not an end
of P is called an internal vertex of P. If X, Y are subsets of V(G) or
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subgraphs of G, we say that P is a path berween X and Y if P has one end
in X and the other end in Y.

2. LEMMAS ABOUT TREE-DECOMPOSITIONS

An important tool in the proofs of our main theorems is the following
result of Robertson, Seymour, and Thomas [5], an improvement of a
result in [3].

(2.1) Let H be a planar graph, and let n=2 |V(H)| +4 |E(H)|. Then
every graph with no minor isomorphic to H has a tree-decomposition of width
less than 207"

Let G be a graph of maximum degree at most 3. Since a graph has a
minor isomorphic to G if and only if it contains a subgraph isomorphic to
a subdivision of G, we deduce the following:

(2.2) Every graph with no subgraph isomorphic to a subdivision of O,

the k-rung circular ladder, has a tree-decomposition of width less than
202(16“5.

The proof of the following easy lemma can be found, for instance, in [6].

(2.3) Let (T, Y) be a tree-decomposition of a graph G, and let H be a
connected subgraph of G such that VIH)nY, #@&#V(H)nY,, where
ti,t1,€V(T). Then V(HYN Y, # (& for every t€ V(T') on the path between t,
and t, in T.

A tree-decomposition (7, Y) of a graph G is said to be linked if

(W3) for every two vertices ¢,, t, of T and every positive integer £,
either there are k disjoint paths in G between Y, and Y, or there is a
vertex t of T on the path between ¢, and ¢, such that |Y,| <k.

It is worth noting that, by (2.3), the two alternatives in {W3) are mutually
exclusive. The following is proved in [6].

(2.4) If a graph G admits a tree-decomposition of width at most w, where
w is some integer, then G admits a linked tree-decomposition of width at
most w.

We need to strengthen this result a little. Let (7, Y) be a tree-decomposi-
tion of a graph G, let r,e V(T), and let B be a component of 7\t,. We say
that a vertex ve Y, is B-tied if ve Y, for some te V(B). We say that a path
P in G is B-confined if |V (P)| =3 and every internal vertex of P belongs to
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Urews Y, — Y,. We wish to consider the following three properties of
(T, Y):

(W4) if ¢, ¢’ are distinct vertices of T, then Y, #7Y,;

(WS) if t,eV(T) and B is a component of T\zy,, then
Ure v Yo — Yro #

(W6) if t,e V(T), B is a component of T\t,, and u, v are B-tied
vertices in Y,, then there is a B-confined path in G between 1 and v.

(2.5) 1If a graph G has a tree-decomposition of width at most w, where w
is some integer, then it has a tree-decomposition of width at most w satisfying
{(W1)-(W6).

Proof. Let (T, Y) be a tree-decomposition of G. By an (#, d)-cell in
(7,Y) we mean any component of the restriction of T to {re V(T):
|Y,|=n} that has at least d vertices. Let us remark that if K is an
{n,d)-cell in (T, Y) and d>d’, then K is an (n, d'})-cell as well. The set of
(n, d)-cells in (T, Y) will be denoted by C(T, Y, n, d). The size of a tree-
decomposition (7, Y) is the family of numbers

(1) (a,,:n=20,d=1),

where a, , is the number of (n, d)-cells in (7, Y). Sizes are ordered
lexicographicaily, that is, if

(2) (b, ain=0,d>1)

is the size of another tree-decomposition (R, Z) of the graph G, we say that
(1) is greater than (2) if there are integers n 20, d= 1 such that q,, ,> b, 4
and a,, ,=b,, , whenever m— 1/2'>n—1/27

(3) The relation “to be greater than” is a well-ordering on the set of
sizes of tree-decompositions of G.

Since this ordering is clearly linear, it is enough to show that it is well-
founded. Suppose for a contradiction that {(a(’) :nz20,d=1)}%, is a
decreasing sequence of sizes, and for i=1,2, .., let n,, d; be such that
ay!,>al*)V and al);=al%" for (n,d) such that n~1/2">n —1/24,
Since af,‘L—O for all d>1 and all sufficiently large », we may assume
(by taking a suitable subsequence) that n,=n,= ..., and that
d,<d,<d;< ---. Since clearly a{,>4a'", for all n>0, all d<d’, and all
i=1,2,.. we have

a®

2 2 3 3
W >a®, >0, >a?,>a®, > -,

ny, dy 73, ds

a contradiction, which proves (3).
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Let (T, Y) be a tree-decomposition of G of width at most w having mini-
mal size among such tree-decompositions. The following is shown in {6].

(4) (T,7Y) is linked.
Qur aim is to show that (7, Y) satisfies (W4)-(W6) as well.
(5) (T, Y) satisfies (W4).

Suppose that Y, =Y, for distinct vertices 1,, 1,€ V(T). Let f'be the edge
of the path between 7, and 7, in 7T incident with ¢,. We let 7' be the tree
obtained from T by deleting 7, and all edges incident with it, and adding
an edge {1, t,} for all 7 such that {¢ 1,} is an edge of T different from f.
Let Y'=(Y,: te V(T")). It is easy to see that (T, Y’) is a tree-decomposi-
tion of G of the same width but smaller size than (7, Y); a contradiction
to the choice of (7, Y).

(6) (T, Y) satisfies (W5).

Suppose that t,e V(T) and that B is a component of 7\t, with
Uievis Y1 €Y, Let T’ be the tree obtained from 7 by deleting B, and let
Y =(Y,:te V(T")). Then (T", Y') is a tree-decomposition of G of the same
width but smaller size than (7, Y); a contradiction to the choice of (T, Y).

It remains to prove that (7, Y') satisfies (W6). Suppose not. Then there
is a vertex t,e V(T'), a component B of T\{,, and B-tied vertices u, ve Y
such that there is no B-confined path between v and v. It is now not
difficult to construct sets C,D such that CuD=V(G), CnDn
(Uiews Y)Y, ueC—D,ve D—C, and such that every edge of G with
one end in C— D and the other in D— C has both ends in some Y, for
te V(T)— V(B). Let ¢, be the vertex of B that is adjacent to 7, in 7. Since
u, v are B-tied we deduce from (2.3) that

(1) Y, n(C=D)#F#Y, n(D-C)

Let B,, B, be two isomorphic copies of B, and let &;: V(B)— V(B;) be
the corresponding isomorphisms. Let R be the tree obtained from T by
deleting B, adding B, and B,, and adding edges joining ¢, to £,(¢,) and ¢,
to &y(¢). Let X,=Y,if te V(T)— V(B), and let X, =Y, nCand X, =
Y,n D if te V(B). Then, for X=(X,: 1€ V(R)), we have

(8) (R, X) is a tree-decomposition of G.

The pair (R, X) clearly satisfies (W1) by the choice of C, D. To verify
(W2), let r, ¥, r" e V(R), let ' lic on the path between r and r” in R, and
let xeX,nX,.. We may assume that re V(B,) and r"eV(B,), for
otherwise (W2) is clearly satisfied. Then xe CnD(U,cpm YIS Y
and hence xe X, by (W2) applied to (7, Y).

{154
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%) If |Xenl, [Xeol2IY, | for some teV(B), then |X.,,l,
}Xg:(,)‘<1Y,|.

For if, say, |X; | =1Y,[, then Y, < C, and thus
Xen=Y.nDsY nCnDY nY nCnDcY,,

where the last inclusion follows from (W2) and is strict because of (7).
Hence |X;,,,| <|Y,|, contrary to our assumption.

(10) (R, X) has smaller size than (T, Y).

By (7), |1Xeunl 1 Xeupt<!Y,]. Choose t,eV(B) with |X; .l
| X ey ] <1Y,,| such that |Y,| is maximum, and let n=1Y,,|. Let K be the
component of T restricted to {¢e V(T}): |Y,| =n} containing 7,, and let
d=|V(K)|. For m, I with m>=n, we shall define a mapping &=, , from
C(R, X, m,[) into C(T, Y, m, 1) as follows. Let Le C(R, X, m, ). Since
I X:ls 1 Xeopt<n, it follows that V(L) is a subset of one of
V(R)— V(B,uUB,), V(B,), and V(B,). If V(LY V(R)— V(B,u B,), we
define @(L)=L, and if V(L)< V(B,) for i=1 or 2, we define &(L) to be
the (m, I)-cell of (T, Y) containing {&; '(r): re V(L)}. Such a cell exists
because |Y,-1,| = |X,| = m for every re V(L). The mapping @, , is not a
bijection, because no (n, d)-cell is mapped onto K. Let us choose my, /,
such that @, , is not a bijection, but @,, , is for every m,  with m—1/2'>
mqy— 1/2%, Clearly, my—1/2">n—1/2¢.

Let =4, ,. We claim that @ is 1-1. Assume, to the contrary, that for
some distinct K, and K, in C(R, X, mg, ly), P(K,)=D(K,). Choose such a
pair {K,, K,} so that max(|V(K,)|, [V(K,)])is as large as possible. Let this
maximum be |W(K,)|. Suppose that |V(K,)|#|V(®(K,)). Let
[V(@(K,))| =1" Then "> |V(K,)| and @(K,) is an (mg, [')-cell of (T, Y).
Because my— 1/2" >m,— 1/2%, &, is a bijection from C(R, X, mq,!’) to
C(T, Y, my, I"). Thus, for some Kin C(R, X, my, '), @, (K)=D(K,). As
IVIK) 21> V(K,)|, K#K,. But ®(K)=®,, ,(K), so D(K)=D(K,) and
the maximality of |V(K,)| is contradicted. We conclude that |V(K )| =
|V(@(K,))|. Thus, by the definition of @, one of V(K,) and F(K,) is con-
tained in V(B,) and the other is contained in V(B,). Hence there is a vertex
t in B such that one of £,(¢) and &,(¢) is in V(K,) and the other is in V(K,).
Thus min(|X;,,|, 1 X0 |)=2me=n=1Y,|. Therefore, by (9), X,
|XeI <|Y,|. Hence n < |Y,|, contrary to the choice of ¢,. It follows that &
is 1-1. Thus, as & is not a bijection, |C(R, X, mq, I3)| < |C(T, Y, m,, l;)|. But
&,, ,is a bijection for all m, I such that m — 1/2'> m, — 1/2%. Hence, for such
mand [, |C(R, X, m, )| =|C(T, Y, m, [)|; (10) now follows immediately.

Claims (8) and (10) contradict the choice of (7, Y). Thus our assump-
tion that (T, Y) does not satisfy (W6) was incorrect, and hence (7, Y)
satisfies (W1)-(W6), as desired. ]
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3. PrROOF OF (1.4)

Let k>4 be an integer. The proof of the existence of the integer N
having the properties claimed in (1.4) will introduce several intermediate
numbers. In particular, the following integers will appear in the proof:

nl=202116k)5
n,= (2"11 - 3)k’
ny=(n,— 1) (2k—1),

—1
n4=n3<n]2 >+1,

ns=ng+(n,—1)(n, — 1),
ng={4ns;—1)n, +4,

n8=<"3‘)+4(’1‘> (k—1),

o =2+ng+ng(ng— 1)+ -« +nylng —1)1"21°2,
and

N=nn,.
We restate (1.4) as follows.
(3.1) Every internally 4-connected graph with at least N vertices contains
a subgraph isomorphic to a subdivision of one of A, O\, M, K4 ., and K, .

Proof. Let G be an internally 4-connected graph with at least N vertices
and with no subgraph isomorphic to a subdivision of any of O,, M, K, .,
and K, ,. We must show that G contains a subgraph isomorphic to a sub-
division of A4,. From (2.2), G has a tree-decomposition of width less than
n,. Moreover, by (2.5), G has a tree-decomposition (7, Y) which satisfies
(W1)-(W6) and has width less than #,.

(1) [T Zn,.
This follows immediately from (W1).
(2) Every vertex of T has degree at most ng.

Suppose that 1, V(T) has degree at least ng+ 1= (") +4(GHk—1)+ 1.
Let ¥ be the set of components of G\Y,. From (W5) and (2.3) we deduce
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that |€| = () +4(?)Wk—1)+ 1. For He ¥, let X(H) be the set of all ver-
tices v of Y, that are adjacent to some vertex of H. Since G is 3-connected,
it follows that |X(H)| =3 for every He%. Moreover, since G is inter-
nally 4-connected, ¥ does not contain distinct members H and H’ with
X(H)=X(H') and |X(H)| =3. Thus there is a subset €' of € such that
1€ Z4(Nk—1)+1 and |X(H)| =24 for every He¥'. Hence, for some
four-element subset of Z of Y, , there is a subset " of €’ such that
| 24(k— 1)+ 1 and Z< X(H) for every He€”". It now follows by an
elementary argument that G contains a subdivision of either K, , or K} ,,
a contradiction. Hence no such vertex t, exists and (2) follows.

(3) T contains a path R, with |V(R,)| = n,.
This follows from (1) and (2).

(4) V(R,) has a subset {r, ry, .., r,} of vertices occuring on V(R,) in
the order listed such that, for some non-negative integer s, |Y,|=s for all
i=1,2,.,ngand |Y,|>s for every r in V(R,) between r, and r, .. Moreover,
4<s<n,.

We begin by showing the existence of an integer s for which the first sen-
tence holds. We shall then verify the stated bounds on s. As n,=ng'* ! we
can find n, disjoint subpaths of R, each containing at least ny' vertices.
Now either every one of these subpaths contains a vertex r such that
|'Y,| =0, or there is such a subpath R} for which |Y,| =1 for all r in V(RY).
In the first case, the claim of the first sentence holds with s=0. In the
second case, we find ng disjoint subpaths of R} each containing at least
ng' ! vertices. In these subpaths of R}, we look for vertices r such that
|Y,| = 1. Continuing to argue in this way, we conclude that, since |Y,| <n,
for all # in V(R,), there must be some integer s for which the claim of the
first sentence holds. Moreover, s <#,. To prove the lower bound on s, we
note that, by (2.3), every path between ¥, v Y, and Y, U Y, uses a vertex
from Y,.But (Y, uY,)—Y, |, (Y, uY, j—Y,|>2by (W2)and (W4),
and so 5s=1|Y, | =4 by the internal 4-connectivity of G. This completes the
proof of (4).

Let R be the subpath of R, with ends r, and r,_,. By (W3), G has s
disjoint paths P,, P,, .., P, between Y, and Y, For the rest of the proof
we fix s and these s disjoint paths. If 7, '€ V(R) are such that |Y,|=
|Y,.|=s, then, by (2.3), [V(P;)nY,|=1 for every j=1,2,..,s. It follows
that, for every je {1, 2, .., s}, there is a unique subpath of P; which has one
end in Y, and the other end in Y,. We denote this subpath by P,(s, t').
Moreover, if ¢, t,,..,f, lie on R in this order, and |Y,|=s for
i=1,2,.,p, then Py(t,,1,) is obtained by pasting together P,(¢,, t,),
Pi(ty, t3), .., P;i(t,_, t,) in this order.
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(5) Let ty be a vertex of R such that |Y, | =s, let B be the component
of T\t, containing either ry or r, , and let u,ve Y, . Then G has a B-confined
path with ends u, v.

Let, say, ue V(P;) and ve V(P,). Since both P, and P, meet both Y, and
Y,%, it follows that u, v are B-tied. Hence the existence of the desired path
follows from (W6).

Let je {1,2,..,s}. A j-segmentation is a sequence f,, t,, ..., 1, of vertices
of R occurring on R in this order such that Y, |[=s (i=0, 1, .., p) and
|V(P/(tl ]’ti))|>5f0ri=1a 23 ’p

(6) For some je {1,2, .. s}, there is a j-segmentation t,, t, .., 1,,..

Let X=U {Y,:2<i<n,—1}. Tt follows from (W2) and (W4) that
|X|=s+n,—3=24nss+1. Thus |V(P,)n X|>4ns+1 for some je {1,2,...,5}.

Let {xq, Xy, .., X4, ) E V(P,) N X and assume that x,, x,, ..., X4,  OCCUT ON
P; in this order. For each i let 1; be a vertex of R such that x;e Y, and
|Y,.|=s Then t5, 1§, .y 145 s L34 1S as desired.

We may assume that j=1 satisfies (6). From now on by a segmentation
we shall mean a 1-segmentation. Thus (6) becomes:

(7)  There exists a segmentation ty, t, .., t,,.

If ¢, '€ V(T), we denote by Y(¢, ') the union of the sets Y,. over all ¢”
such that "€ {1, t'}, or, for each member x of {1, ¢'}, there is a pathin T
joining x to t” that avoids {7, 1"} — {x}.

(8) Lett, t' be vertices of R such that |Y,|=|Y,|=s, let ], j be distinct
integers in {1,2, .., s}, and let Q be a path between P,(t, ')\(Y, 0 Y,) and
P (1, t") with no internal vertex in Py o Pyu --- U P Then V(Q)S Y(¢,1').

Suppose that ve V(Q)— Y(¢,t'). Then ve Y, for some "€ V(T) by
(W1), and, from the symmetry, we may assume that " s ¢ and that ¢ lies
on the path between ¢ and ¢”. The path Q contains a subpath between v
and P,(t,')\Y, and, by (2.3), this subpath meets Y,. But this subpath
meets Y, in an internal vertex of Q and Y, < V(P,u P, --- UP,). Thus
we have a contradiction which proves (8).

We denote by H the (disconnected) graph P,uU Pyu --- U P,.

(9) Let 1, t' be vertices of R such that |Y,|=|Y,|=s, let P=P (1, 1),
and let u, v be the ends of P. Suppose that |V(P)| = 5. Then there are at least
two disjoint paths between P and H contained in Y(t, 'y — {u, v}.

We first prove that there are at least two disjoint paths between P and H
in G\{u, v}. Suppose that two such paths do not exist. Then, by Menger’s
theorem, there is a vertex x of G such that every path in G between
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P and H uses a vertex from {u, v, x}. Let 4’ be the set of all vertices w of
G such that there is a path that is disjoint from {4, v, x} and has one end
equal to w and the other end in V(P). Let A=A4'u {u, v, x} and let
B=V(G)—A'. Then (A, B) is a separation of G of order 3. Since
|V(P)| =5, we deduce that |4 — B| = 2. On the other hand, Y, n V(H)<
B—{u,v}and |Y,nV(H) =s~1, so |B— A| 22, because s> 4. Thus the
existence of (4, B) contradicts the internal 4-connectivity of G and hence
proves that there are two disjoint paths between P and H in G\{u, v}.
Now if we take two such paths with no internal vertex in
P,uP,u - UP,, it follows from (8) that they are contained in Y(z, t').
This completes the proof of (9).

Let ¢, t', P, u, v satisfy the hypotheses of (9), and let Q, Q' be two dis-
joint paths between P and H that are contained in Y(7, ') — {u, v} and
have no internal vertex in P, U P, --- U P_ Let w and w' be the ends of
Q and Q’, respectively, that are not in V(P) and suppose we V(P,} and
w' e V(P,). If I=1{" for every such pair Q, @', then we say that the pair ¢,
t' is singular; otherwise we say that it is regular. The pair of vertices w, w’
is called a destination pair for (¢, t'), and each of w, w' is called a destination
vertex for (t,1'). A p-ladder is a segmentation #,, t,, .., ¢, such that, for
some je{2,3,.., s}, there are distinct vertices v,, v,, .., v,€ V(P;) such
that v, is a destination vertex for (¢,_,,¢,) for all i=1, 2, .., p. A p-ladder
to, 1y, . t, is said to be free if for every j and v,, v,, .., v, as above and
every j'€{2,3,..,j—1,j+1,.., 5}, no path between P (14, 1,)U P;(ty,t,)
and P, (t,4,t,) is contained in Y(1,, t,).

(10) There is no free k-ladder.

Suppose that ¢, ¢, ..., ¢, is a free k-ladder, and let j, v, v,, .., v, be as
in the definition of a k-ladder. We may assume without loss of generality
that j=2. For i=1, 2, .., k, let P; be a path between P\(Y,_ v Y, ) and
v; that has no internal vertex in P, uP,u --- U P, and is contained in
Y(tr;,_,, 1) Let L=P (15, 1) Py(ty, t,) U PyuPyU --- UP,. By (23),
the paths P}, P;, .., P, are pairwise disjoint, and hence L contains a sub-
graph isomorphic to a subdivision of L,. Let Z= ¥ (P,(¢y, tx) U Pty 1)),
andlet A=Y, nZ, X=Y,nZ,and B=Y,nZ Then |4|=|B|=|X|=2.
We wish to apply (5). To do so, we first note that r, # 1, #r,,, because r|,
7. V(R). By (5) there are two paths, each of which has at least three ver-
tices and is internally disjoint from Y(#,, t,), such that one has both ends
in A and the other has both ends in B. We may now apply the internal
4-connectivity of G to deduce that there are two disjoint paths Q,, Q,
between A4 and B in G\ X. We claim that no internal vertex of either of Q,,
0, belongs to L. Assume the contrary. Then there is a path between
P (ty, t,) U Py(ty, 1) and B in G\(A4 U X), or a path between P (1., t,) U
Py(t5, 1) and 4 in G\(Xu B). From the symmetry, we may assume the

582b757 2-7
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former. Then, by (2.3), there is a path between (P,(t,, 15) U Py{(t5, 1)\
(AuX)and Y,,—X. Since Y,,— X< s <, V(P (1o, t3)), it follows that
there is a path Q between (P(tq, 1)U Py(ty, H)\N(A U X) and P.(1y, t,)
for some j'e€{3,4,..,s5} such that no internal vertex of @ is in
P, UP,u --- U P, But then V(Q)< Y(¢, t,) < Y(ty, t;) by (8), contrary
to the freedom of ¢, ¢,, ..., t,. This proves our claim that no internal vertex
of either of Q,, Q, belongs to L. Thus LU Q, u Q, is isomorphic to a sub-
division of either M, or O, a contradiction which proves (10).

(11) There is no ny-ladder.

Suppose that ¢, 1,, .., t,, is an n,-ladder. Let j, v, v,, ..., v, be as in the
definition of an n,-ladder. We may assume that j=2. For i=1, 2, .., n,, let
P; be a path between P\(Y,_, v Y,) and v, that has no internal vertex in
P,UP,u --- U P, and is contained in Y(t,_,, ;). Let ie {0, 1,.., n,—2}.
SInCe fh, Lo 415 -0 Liziy 1)k 1S @ k-ladder, it is not free by (10), and so, for
some /;e{1,2} and some j;e{3,4,..s}, there is a path Q, between
Ptz Laiv i) @0nd P (20, L1 1)) that is contained in Y(fy4, 20y 1y4)
and has no internal vertex in Py, U Pyu --- U P Leti,i'e{0,1, .., n —2}
be such that j,=j;,. We may assume that j,=j, =3 and that i <i’. By (5),
there are paths Q; and Q;, the first between Y, nV(P,_,) and
Y,,n V(P,), and the second between Y,,.  NV(P;_,)and ¥, . . "
V(P,), such that neither path has any internal vertices in Y(¢,, ..., ) It
follows from (2.3) that the union of the paths Q,, @/, P,, P,, P, P,, Q;,
Ois Ploiv kv 1> Plars 1y 20 = Py 1), contains a subgraph isomorphic to
a subdivision of either O, or M,, a contradiction which proves (11).

(12) For every segmentation t,, !,,..,1,, there are at most
(ny—1)(ny— 1) numbersie {1, 2, .., p} such that the pair (t,_, t,) is singular.

If not, then, for some je {2, 3, .., s} and some integers /,, /5, ..., ,, with
0</y< --- <l,<p, there are distinct vertices v;, u; of P, for every i in
{1,2, .., n,}, such that v, u; is a destination pair for (7, _,, ¢,) for all such
i. We may assume that the notation is chosen so that u,, v,, u,, v,, ..., u,,,,
v,, occur on P, in this order. Hence u,, u,, .., u,, are all distinct, and thus
s Ly s Ly is an n,-ladder, contrary to (11),

(13) There is a segmentation 1y, ty, ..., t,, such that (t;_, t;} is regular
for every i=1, 2, ..., n,.

Such a segmentation can be obtained from a segmentation as in (7) by
deleting all ¢,_, with (¢;_, t,) singular. By (12), it suffices to delete at most
{n, — 1)(n, — 1) such vertices.

Now we are ready to complete the proof of (3.1) by showing that G
contains a subdivision of A,. Recall that n,=n;(","')+ 1. Then, by
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considering the segmentation from (13), it follows that there is a segmenta-
tion £y, 1, .., Iy, such that, for some distinct j,j' € {2, 3, ..., s}, there are
Vertices u;, y, ..., U, € V(P,) and vertices u}, u, .., u,, . € V(P,) such
that u;, ] is a destination pair for (¢;_,, ;) for all i in {1, 2, .., ny+ 1}. At
most n,— 1 of the vertices u,, u,, .., u,,,, are distinct because otherwise
there is an n,-ladder. Thus, as n;+ 1 =(n,—1)? (2k— 1)+ 1, there are at
least (n, — 1)(2k — 1)+ 1 successive u,’s all of which are equal to some fixed
vertex, say u. Consider the corresponding set of u;’s. At most #n,—1
of these are distinct and so, among this set of u;’s, there are at least
(2k — 1)+ 1 successive ones that are all equal to some fixed vertex, say u'.
We conclude that there is a segmentation t¢,, ¢,,.., f,, and vertices
ue V(P,), u' € V(P,) such that u, u’ is a destination pair for (¢, ,, ;) for
every i=1, 2, .., 2k.

Fori=1,2, .., 2k, let Q,, Q; be two disjoint paths each of which is con-
tained in Y(z,_,, t;), has no internal vertex in P, u P, U --- U P,, and has
one end in P,(t;_, t;)\(Y, , U Y,); the other end of Q, is « and the other
end of @/ is «’. We may assume that j=2 and j' = 3. By (5) and (2.3), there
are paths Q and Q' between V(P,)nY, and V(P,)nY, and between
V(P)nY,, and V(P,)nY,,, respectively, such that neither path has any
internal vertices in Y(¢,, £, ). It follows that the union of the paths Q, O,
P(tg, ta) Paltos tar), @1, Q@5 (i=1, 2, ..., k) forms a subdivision of 4,
as desired. This completes the proof of (3.1). ||

4. PROOF OF (1.6)
We require the following two easy lemmas.

(4.1) Let G be a graph that is not internally 4-connected. Then there is
a separation (J,, J,) of G of order at most 3 with J, J, # V(G) and with the
property that both G, and G, are isomorphic to minors of G, where G, is
obtained from G by deleting vertices not in J,, and adding an edge joining
every pair of distinct vertices in J, N J,.

(4.2) Let (T, Y) be a tree-decomposition of a graph G, and let K be a
complete subgraph of G. Then there is a vertex t € V(T) such that V(K)<Y,.

Proof of (1.6). Let k>4 be given. We take N to be the “N” from (1.4)
and proceed by induction. Assume first that |V(G)| < N. Let T be a one-
vertex tree with V(T)= {¢,} say, let Y, =V(G), and let Y =(Y,). Then
(T, Y) is a tree-decomposition of G of width at most N and adhesion at
most 3, as desired. Now let G be a graph with |V(G) = N and with no
minor isomorphic to any of D, O,, M,, and K, ,. Then G contains no
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subgraph isomorphic to a subdivision of any of 4,, O,, M,, K, ,, and
K, «» and so, by (1.4), G is not internally 4-connected. We consider the
graphs G, G, as in (4.1). Clearly neither G, nor G, has a minor isomorphic
to any of D, O, M, and K, ,, and so, by the induction hypothesis, G,
has a tree-decomposition (77, Y’) of width at most N and adhesion at most
3 (i=1,2). By (4.2), there are vertices t,€ V(T'), t,e V(T?) such that
V(G )N V(Gy)= Y, n Y], Let T be the tree obtained by taking the disjoint
union of 7' and 7* and adding an edge joining ¢, and ¢,. Let Y, be Y! if
teV(T')and YZif te V(T?), and let Y=(Y,: te V(T)). Then it is easy to
see that (T, Y) is a tree-decomposition of G of width at most N and adhe-
sion at most 3. This completes the proof of (1.6). |

5. INFINITE GRAPHS

In this section we discuss an analog of (1.3) and (1.4) for infinite graphs.
Halin [ 1] proved the following:

(5.1) Let n be a positive integer. Every uncountable n-connected graph
contains a subgraph isomorphic to a subdivision of K, /.

Our objective is to prove a similar result for countable graphs. A ray is
a one-way infinite path. Let T be a finite tree and let R be a ray. By Tx R
we denote the following graph (a product of T and R): its vertices are pairs
(t,r), where te V(T') and re V(R), and two vertices (¢, r) and (', r') are
adjacent if either t=1¢" and r, r’ are adjacent in R, or r=r" and 1, ' are
adjacent in T. A semi-weighting on a tree T is a function from V(T into
the set of non-negative integers; a semi-weighting ¢ is a weighting if ¢(1) >0
for every re V(T) of valency one. The order of a semi-weighting is
IV(T) + %, cvr#(2). Let T be a finite tree and let ¢ be a semi-weighting
on 7. We define a graph G(T7, ¢) to be the graph obtained from T x R by
adding, for each re V(T), a set of ¢(¢) pairwise nonadjacent vertices and
joining each of these vertices to (¢, r) for every re V(R). We say that an
infinite graph G is essentially k-connected, where k is a positive integer, if
there is a constant C such that for every separation (A4, B) of G of order
less than k, either |4| < C or |B| <C. We remark that each G(T, ¢) is
essentially k-connected, where & is the order of ¢. The following is our
result for infinite graphs.

(5.2) Let k be a positive integer, and let G be an essentially k-connected
infinite graph. Then either G has a minor isomorphic to K, o, or, for some
finite tree T and some weighting ¢ on T of order k, the graph G has a minor
isomorphic to G(T, ¢).
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Proof. We begin with the following.

(1) If there is a finite subset X of V(G) such that G\X has infinitely
many components, then G has a minor isomorphic 1o K, .

Since G is essentially k-connected, |X| >k and (1) follows. We may
therefore assume that

(2) for every finite subset X of V(G), the graph G\ X has only finitely
many components.

We now claim the following.
(3) G has a ray.

Choose vye V(G) arbitrarily. Now assume that v,, v,,..,v,_, have
already been chosen in such a way that v,, v, ..., v,_; (in this order) form
the vertex-set of a path and v, _, has a neighbor in an infinite component
of G\ {v,, vy, .., v,_,}. We let v, be a neighbor of v, _, in an infinite com-
ponent of G\ {vg, vy, .., ,_}; it follows from (2) that v, has a neighbor
in an infinite component of G\ {v,, vy, .., v, }. This completes the inductive
definition. Now v, vy, ... form the vertex-set of a ray in G, as desired.

We say that two rays P, P’ are parallel if, for every finite set X < V(G),
all subrays of P\ X and P’'\ X belong to the same component of G\ X. This
defines an equivalence relation on rays. Let & be an equivalence class of
rays, and let P, P,, ..., P, be disjoint rays in &.

(4) G has a minor isomorphic to T x R for some tree T on m vertices.

To see this we define an auxiliary graph X with vertex set {1, 2, ..., m} in
which i is adjacent to i’ if there are infinitely many disjoint paths between
P, and P, each disjoint from P, for every je {1,2,..,m}—{i,i"}. We
claim that K is connected. Indeed, suppose i, i’ are two nonadjacent ver-
tices of K. Then, by an infinite analog of Menger’s theorem, there is a finite
subset X(i, ") of V(G) such that no path between P, and P, in G\X(i,i")
is disjoint from every P, for je {1,2,..,m}—{i,i'}. Let X={) X(i,i"),
where the union is taken over all nonadjacent pairs i, i’ of vertices of K.
Now if 7, i’ belong to different components of K, it follows that P\ X and
P\ X belong to different components of G\ X, contrary to the fact that
they are parallel. This proves that K is connected. Let T be a spanning tree
of K. A minor of G isomorphic to Tx R can now be constructed by a
simple greedy process. We omit the details.

For a finite subset X of V(G) let X denote the vertex-set of the compo-
nent of G\ X containing a subray of some (and hence every) ray of §. We say
that a vertex v of G is major if ve X' L X for every finite subset X of V(G).

(5) If no vertex is major, then, for every finite subset A of V(G), there
is a finite subset B of V(G) with Bu B< A.
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Let A4 be a finite subset of F(G). Then certainly there is a finite subset
B of V(G) such that B€ AU 4 and B < fA. Moreover, we may assume
that B is chosen so that |4 n B| is a minimum. We claim that A n B= .
Suppose to the contrary that v € 4 n B. Since v is not major, there is a finite
subset X of V(G) with vé XU pX. Then the set (Bu(XnfA))— {v}
contradicts the choice of B. This proves (5).

Let m=k if there are & disjoint rays in &, otherwise let m be the
maximum number of disjoint rays in &.

(6) There are at least k —m major vertices.

Let M be the set of major vertices. We may assume that |M| <k. Let
H=G\M. We define § in H by the same rule as in G. Then H has no
major vertices. Let 4, be an arbitrary nonempty finite subset of V(H), and
let 4,, A,, ... be finite subsets of V(H) such that, for every i 20,

(1) Ai+1UﬂA(+1§,BAi, and
(ii) 1A,.,| is minimal subject to (i).

It follows that [A4,| < |A4,| < ---, that for every finite subset X of V(H)
there is an i =0 such that X n 4,= & (this follows by examining shortest
paths from X~ fA; to A4;), and that there are |A,| disjoint paths between
A, and A4,, . By putting these paths together, we get lim, ., |4;| disjoint
rays. We claim that each such ray belongs to &. Indeed, suppose that one
of them, say P, does not belong to &. Then there is a finite subset X of
V(G) such that some subray P’ of P satisfies V(P')n X =¢. Choose i
such that X A4, =@F and A,,  n V(P')# . But 4, , = A, = X, a con-
tradiction which proves the claim that each of the specified rays belongs to
&. Thus min(k, |4;|) <m for all sufficiently large /, and since, for every
iz 1, A,u M separates G, and G is essentially k-connected, we deduce that
m+ |M| 2 k. This proves (6).

Let 7 be as in (4), where m is as specified prior to (6). Using the k —m
major vertices, it is now easy to construct a semi-weighting ¢ of order & on
T and a minor of G isomorphic to G(7, ¢). By contracting subgraphs of G
corresponding to rays {(#,r)},c ) of Tx R, where t has valency 1 in T
and ¢(¢) =0, we obtain a minor of G isomorphic to some G(T’, ¢'), where
¢’ is a weighting on T’ of order k. We omit further details. [

REFERENCES

1. R. HaniN, Simplicial decompositions of infinite graphs, in “Advances in Graph Theory”
(B. Bollobas, Ed.), Annals of Discrete Mathematics, Vol. 3, North-Holland, Amsterdam/
London, 1978.

2. I. K&iZ aAND R. THoMas, Clique-sums, tree decompositions and compactness, Discrete
Math. 81 (1990), 177-185.



3- AND 4-CONNECTED GRAPHS 257

3. N. RoBerTsON AND P. D. Seymour, Graph minors. V. Excluding a planar graph,
J. Combin. Theory Ser. B 41 (1986), 92-114.

4. N. ROBERTSON AND P. D. SEYMOUR, Graph minors. XV. Wagner's conjecture, manuscript.

5. N. RoserTsoN, P. D. SEyMOUR, AND R. THoMas, Quickly excluding a planar graph,
submitted for publication.

6. R. THomas, A Menger-like property of tree-width. The finite case, J. Combin. Theory Ser.

B 48 (1990), 67-76.



