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This paper develops a theory of Tutte invariants for 2-polymatroids that parallels
the corresponding theory for matroids. It is shown that such 2-polymatroid
invariants arise in the enumeration of a wide variety of combinatorial structures
including matchings and perfect matchings in graphs, weak colourings in hyper-
graphs, and common bases in pairs of matroids. The main result characterizes all
such invariants proving that, with some trivial exceptions, every 2-polymatroid
Tutte invariant can be easily expressed in terms of a certain two-variable polyno-
mial that is closely related to the Tutte polynomial of a matroid. ¢ 1993 Academic

Press. Inc,

1. INTRODUCTION

The theory of Tutte invariants for matroids had its origins within graph
theory and, in particular, in the consideration of colouring and flow
problems [1,16-19]. The applications of this theory now extend into
numerous diverse branches of combinatorics. These applications are sur-
veyed in [3]. The purpose of this paper is to develop a corresponding
theory for 2-polymatroids. The two highlights of this theory are that, just
as for matroids, there is essentially a unique universal Tutte invariant for
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2-polymatroids; and this universal invariant has many interesting evalua-
tions in a number of combinatorial contexts. Among these evaluations
are some important ones for graphs that do not come from the Tutte
polynomial for matroids.

Formally, a polymatroid is a normalized, increasing, submodular
function on the power set of a set E, but, without loss of generahty, one
can think of a polymatroid as a multiset of flats in a matroid; in particular,
a 2-polymatroid can be thought of as a multiset of lines, points, and loops
in a matroid. If this matroid is free, then the 2-polymatroid is called
Boolean. Such 2-polymatroids are essentially just graphs. The class of
Boolean 2-polymatroids will feature prominently throughout this paper.
Another way to obtain a 2-polymatroid is to add the rank functions of two
matroids on E. Several other examples of 2-polymatroids appear in
Section 2 and in the important paper of Lovasz [11] (see also [12,
Chap. 11]) which motivates the study of 2-polymatroids in general.

This paper is organized as follows: Section2 contains a general
discussion of 2-polymatroids and their properties; Section 3 defines Tutte
invariants for 2-polymatroids and states the main result of the paper,
Theorem 3.14. This theorem is proved in Section 5, while Section 4
describes some of the wide variety of examples of 2-polymatroid Tutte
invariants.

2. POLYMATROID-THEORETIC PRELIMINARIES

Let E be a finite set and let / be a function from the power set of E into
the integers. Then [ is normalized if f(J)=0; f is increasing if f(A4) < f(B)
whenever A< B< E; and [ is submodular if f(A)+f(B)=f(Au B)+
J(A~ B) for all subsets 4 and B of E. If {'is normalized, increasing, and
submodular, then fis a polymatroid on E. We say that E is the ground set
of f and f(E) is the rank of f. Let k be a positive integer. Then the
polymatroid f is a k-polymatroid if fle)<k for all elements ¢ of E.
A 1-polymatroid is a matroid. In regarding a matroid as a specialization
of a polymatroid, it is convenient to identify matroids with their rank
functions. We shall consistently follow this course.

Polymatroid Representation

Let / be a polymatroid on E and r be a matroid on the set S. Then fis
representable over r if there is a function s : E — 2* with the property that
for all subsets A of E, f(A)=r(,. , ¥(a)). Such a function is a representa-
tion of fin r. It is easily seen that if ¥ is a representation of fin r, then the
function y': E — 2° defined by y/'(e) = cl{i(e)) is also a representation of f
in r. It follows that if f is representable over r, then a representation can
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be chosen so that the image of each element of the ground set of fis a flat
of r. Conversely, if E is a multiset of flats of », then the function f': 2¥ - 7
defined, for all A< E, by f"(4)=r({J,.,a) is a polymatroid on E. It is a
fundamental fact (see for, example, [7, 10, 13]) that every polymatroid can
be obtained in this way. In other words, every polymatroid is representable
over some matroid.

A consequence of the above discussion is that one loses no generality in
picturing the elements of a 2-polymatroid as a multiset of lines, points, and
loops of some matroid. It may aid the reader’s intuition to observe that if
distinct elements of a 2-polymatroid are represented by lines of a matroid,
then the intersection of these lines may be nonempty. In the polymatroid,
the intersection of the elements is, of course, always empty.

Let F be a field. Then a polymatroid is representable over F if it is
representable over some matroid that is coordinatizable over [F.

Polymatroid Minors

Let f be a polymatroid on E, and let 4 be a subset of £. Then the
deletion of A from f, denoted f\A, is the polymatroid on E— A that is
defined, for all subsets X of E— A, by (f\NANX)=/f(X). The contraction of
A from f, denoted f/A, is the polymatroid on E— A4 defined, for all subsets
X of E— A, by (f/ANX)=f(Au X)—f(A).

It is routinely verified that /\4 and f/A4 are, indeed, polymatroids, and
are k-polymatroids whenever f is. It is also easily seen that deletion and
contraction commute, both with themselves and each other. In other
words, if 4 and B are disjoint subsets of E, then (f\AN\B=(/\BN\A =
SN(ACB); (fiA)/B=([/B)/A=f/(Au B): and (f\A4)/B=(f/B)\A.

The polymatroid g is a minor of fif g=(f\A)/B for some disjoint sub-
sets 4 and B of E. A class & of polymatroids is minor-closed if all minors
of members of # also belong to #.

The above definitions are all direct generalizations of standard ones for
matroids and are uncontentious for polymatroids except possibly that of
contraction. This definition is justified by the fact that contraction in a
polymatroid f corresponds to contraction in any matroid over which f is
represented. More precisely, we have the easily proved

(2.1) PROPOSITION. Let f be a polymatroid on E, let r be a matroid on S,
and let ¢ be a representation of [ in r. For all subsets A of E, let ¢(A)=
Uuca9la). Then the function ¢’ defined, for all xe E— A, by ¢'(x)=
d(A v x)—¢(A) is a representation of f{A in r/¢(A).

Duality

One of the attractive features of matroid theory is that it has a satis-
factory theory of duality. Let € be a class of structures with a well-defined
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notion of isomorphism. An operation on % is a function *: € — % with the
property that ¢* is isomorphic to d* whenever ¢ and d are isomorphic
members of €. (We write ¢* for *(c).) If ¢c**=c for all ¢ in €, then * is
an involution. If € is a class of polymatroids, then * interchanges deletion
and contraction if, for any fin ¥ and any element x of the ground set of f,

S \x=(f/x)*

Kung [9] has shown that orthogonal duality is the only involution on the
class of matroids which interchanges deletion and contraction.

Let %, denote the class of k-polymatroids. For fin %, with ground set
E, define the k-dual of f, denoted f*, by

S Ay=k|A| +f(E—-A)-f(E)

for all subsets A of E. It is easily seen that k-duality is an involution on the
class of k-polymatroids which interchanges deletion and contraction.
Moreover, it is shown in [21] that k-duality is the unique such involution.
Hence the definition of k-dual given here is the natural one to make to
preserve the fundamental link between deletion, contraction, and duality
that is of such basic importance in matroid theory.

Our primary interest is in the case k =2, but we are also interested in
matroid duality, that is, the case & = 1. The notation is ambiguous, since if
r is a matroid, then r* denotes both its 1-dual (that is, its orthogonal dual)
and its 2-dual. Unless specified to the contrary, when we use the notation
r* we shall mean the 2-dual of r. Note that the only matroids whose
2-duals are also matroids are free matroids.

Not surprisingly, a number of properties of matroid duals have
generalizations to k-duals. We briefly mention a few of these now. Let f
be a k-polymatroid on E and consider the k-dual f* of f. A trivial
computation shows that

NEY+/*(E)=k |E|,

which reduces to a well-known fact in the case k= 1. Let A4 be a subset of
E. Then A spans fif f(A)=f(E), and A is a k-matching if f(4)=k |A]|.
A perfect k-matching is a k-matching which spans. In the cases k=2 and
k =1 we specialize the language. A matching and a perfect matching are a
2-matching and a perfect 2-matching, respectively, in a 2-polymatroid. An
independent set is a 1-matching and a basis is a perfect 1-matching in a
matroid. A routine computation proves the following

(2.2) PROPOSITION. Let f be a k-polymatroid having ground set E. The
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subset A of E is a k-matching if and only if E— A is a spanning set in the
k-dual f* of f. Moreover, f has a perfect k-matching if and only if f* does.

We now consider representability of duals. The straightforward
arguments which establish the following assertions are omitted. Let f be a
k-polymatroid on E. Then fis representable over a given field if and only
if the k-dual of f'is. If /' is representable over a matroid r, then it does not,
in general, follow that the k-dual of f is representable over the orthogonal
dual of r. However, if there is a representation ¢ of / in r such that
{¢(e):e€ E} consists of disjoint subsets of the ground set of r, then the
k-dual of f is representable over the orthogonal dual of r. Such a represen-
tation can always be found in a suitable parallel extension of r. It follows
that if f is representable over r, then the &-dual of f is representable over
some series extension of the orthogonal dual of r.

Boolean 2-Polymatroids

Let G=(V, E) be a graph. In this paper we allow graphs to have free
loops, that is, edges that are incident with no vertices. This terminology is
due to Zaslavsky [22]. Define the set function f; as follows: For any
subset 4 of E,

folA)=|V(A4)].

Here V(A) denotes the set of vertices incident with at least one edge in A.
It is well known, and easily seen, that f; is a 2-polymatroid. A polymatroid
is Boolean if it is representable over some free matroid. It is easily seen that
the 2-polymatroid f is Boolean if and only if f=f, for some graph G. In
this situation, we say that fis represented by the graph G.

It is routinely verified that if G, and G, are graphs and f,; =/,
then, up to isolated vertices, G, = G,. It follows that f,; carries almost all
of the structure of G. This contrasts with the cycle matroid of G—which
1s, of course, also a 2-polymatroid-—where much of the information
about G is lost. This correspondence with graphs means that Boolean
2-polymatroids form a fundamental class. The correspondence also means
that Theorem 3.14, which characterizes all 2-polymatroid Tutte invariants
of Boolean 2-polymatroids, can be interpreted in a purely graph-theoretic
way.

We now consider minors of Boolean 2-polymatroids. Let e be an edge
of the graph G. It is immediate that f. =f,\e, where G\e is the
graph obtained from G by deleting the edge e in the usual way. Consider
contraction. Define the graph G T e as follows. Let V'’ be the set of vertices
incident with ¢ in G. We have |V'|e{0,1,2}. Then G Tl ¢ has edge set
E — e and vertex set V' — V. The vertices incident with an edge x in G O e
are the vertices incident with x in G with those in V' removed. We can now
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characterize contraction by f; ,=/fs/e. This fact follows easily from
Proposition 2.1.

It now follows that the class of Boolean 2-polymatroids is minor-closed.
A characterization of Boolean 2-polymatroids in terms of excluded minors
is given in [15]. Note that, in general, the dual of a Boolean 2-polymatroid
is not Boolean. Indeed, the class of Boolean 2-polymatroids with Boolean
duals is rather trivial as the reader can readily verify.

Diagrams of 2-Polymatroids

As with matroids, 2-polymatroids of low rank can be represented by
diagrams. The conventions for such geometric representations naturally
extend those for matroids. A Boolean 2-polymatroid can also be
represented by a graph. Figure 2.1 gives both a geometric representation
and a graphical representation of a 2-polymatroid f on the ground set
{1,2,3,4,5,6}. The following values of f should suffice to enable
the reader to determine the conventions used: f({6})=0, f({1})=
U2 =fUL 2D =1, A3 =,({4}) =S =r7({4. 51 =/({1,3})=2.
f({3,4})=13. See Fig.2.1.

We now fix some terminology for 2-polymatroids which is suggested by
geometric representations. Let f be a 2-polymatroid on E. If x is an element
of E, then x is a point of fif f({x})=1, and x is a line of fif f({x})=2.
If x and y are points of f, they are parallel if f({x,y})=1, and if x and y
are lines of f, they are parallel if f({x,y})=2. Also, x is a loop of f if
fx}y=0.

Assume that [ is Boolean and is represented by a graph G. Then x is a
loop of fif and only if x is a free loop of G, and x is a point of f if and
only if x is a loop of G.

3. THE MaIN REsuLT
In defining Tutte invariants for 2-polymatroids, we shall be extending the

definition of T— G invariants for matroids. Therefore we begin this section
by briefly reviewing the theory of T— G invariants for matroids.

O

2

FiG. 1. A graphical and a geometric representation of a 2-polymatroid.



216 OXLEY AND WHITTLE

Let .# be a class of matroids that is closed under isomorphism and the
taking of minors. A function « on .# that takes values in a field F is an
isomorphism invariant if a(r,)=a(r,) whenever r, =r,. Several numbers
that one can associate with a matroid r such as its number of bases, its
number of independent sets, and its number of spanning sets obey the
following two basic recursions:

(3.1} a(r)=al(r\e)al\(E—e)) if ¢ is a separator, that is, a loop or
coloop of r; and

(3.2) for some fixed nonzero members j and &k of F, a(r)=ju(r\e) +
ko(r/e) if e 1s a nonseparator of r.

An isomorphism invariant on .# that obeys (3.1) and (3.2) is called a
generalized T — G invariant on .#. Such an invariant for which both j and
k are identically one is called simply a T-— G invariant on .#. There are
many well-known important examples of generalized 7— G invariants; for
instance, both the chromatic and flow polynomials are generalized T— G
invariants on the class of graphic matroids. One of the attractive features
of these invariants is that they are all evaluations of a certain universal
invariant. The formal statement of this result will require another defini-
tion. For a polymatroid f having ground set E, the matroid rank generating
function is given by

S(fruv)=Y wlt) [Xipixt Sx),
Xek

When f is a matroid r, one can easily check that an equivalent definition
1s

" *ig L S
S(r;u, U): z ur(L) r(X)vr (£) - r*(E X),

XSk

where r* denotes the orthogonal dual of r here. It is not difficult to show
that the matroid rank generating function is a generalized T— G invariant
on any minor-closed class of matroids. Indeed, by extending a result of
Brylawski [2], Oxley and Welsh [14] showed that every generalized 7— G
invariant can be easily expressed in terms of this function.

(3.3) PROPOSITION. Let o be a generalized T — G invariant on a minor-
closed class of matroids .# and suppose that

U, )=x and a(Uo, )=

Then, for all r in M such that |E| 21,

afr)=jEI =B Eg (r; %— 1, %— 1).
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This result is more commonly stated in terms of the Tutte polynomial of
a matroid, this being #(r;u, v)=s(r;u— 1, v —1). However, the above form
of the result is more easily generalized to 2-polymatroids.

We now discuss the extension of this theory to 2-polymatroids. A
2-polymatroid isomorphism invariant is a function y on the class of all
2-polymatroids such that

P f)=7(g) whenever fx~g.

It was noted above that a generalized T — G invariant for matroids obeys
two basic recursions: a multiplicative recursion, which holds for those
elements which are separators, and an additive recursion, which holds for
those elements which are not. To mimic this approach for 2-polymatroids,
we need first to decide when an element is a separator. Following
Cunningham [5], we define an element e of a polymatroid f to be a
separator of f if

Sle)+f(E—e)=/(E).

Now consider those elements which are not separators. If ¢ is such an
element of a 2-polymatroid f on a set E, and * denotes 2-duality, then e
obeys one of the following three conditions:

(i) SIE—e)=f(E)and fYE—e)=f*E)-1;
(i) f(E—e)=f(E)—1 and f*(E—e)=f*(E); and
(i) f(E—e)=f(E)and f*(E—e)=f*(E).

Elements obeying (iii) most closely resemble the nonseparator elements
of a matroid, for if fis a matroid rank function, and » denotes orthogonal
duality, the elements obeying (i) are precisely the loops, while those
obeying (ii) are precisely the coloops.

Conditions (1) and (ii) are clearly dual to each other, while (iii) is self-
dual. It is straightforward to check that (i), (ii), and (ii1) are equivalent to
(1), (i1)’, and (iii)’, respectively, where (i)'-(iii)’ are as follows:

(i) f(E—e)=f(E)and fle)=1;
(1) f(E—e)=f(E)—1 and f(e)=2; and
(i) f(E—e)=f(E) and f(e)=2.

Because the nonseparator elements of a 2-polymatroid are of three different
types, we shall replace the single additive recursion (3.2) that holds for
matroids by three potentially distinct additive recursions.

Let & be a class of 2-polymatroids that is closed under isomorphism
and the taking of minors. Assume that X" contains U, ,, U, |, and U, ,
the single-element 2-polymatroids of ranks zero, one, and two. Let y be a
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2-polymatroid isomorphism invariant defined on .#" and taking values in a
field F. Let

WUz V=x, y(Us 1} =y, and (U, |)==: (34)

The function y is a generalized Tutte invariant for A over F if there are
fixed elements a, b, ¢, d, m, and n of F such that, whenever f is a member
of ¥, the following recursions hold for all ¢ in the ground set £ of f:

W) =7 \E—=e))y(f\e)  if {e}isaseparatorof f; (3.5)
ay(fre) + by(fie) if f(E—e)=f(E) and f(e)=1;

Ay =q el \e)+ dy{fle) if fIE—e)=f(E)—1 and f(e)=2;and
my(fre)+ny(fle) il fIE—e)=f(E) and f(e)=2.

Il

Il

(3.6)

Our task in this section is to determine precisely when a generalized
Tutte invariant exists. Specifically, we shall determine all points (x, y, z, «,
b, ¢, d, m, n) in F® for which such an invariant is well-defined.

Before considering some examples of generalized Tutte invariants, we
note that one special type of such invariant, which we call simply a Tutte
invariant, arises when we take both m and n to be identically one.

For an arbitrary 2-polymatroid f having ground set E, the 2-polymatroid
rank generating function S(f; u, v) is defined by

S(fiuv)y= Y u/tF IERTAL A,
Xe &
One easily checks that

S(fiuv)y=Y /e SXiprrE e v
Xck

Clearly the 2-polymatroid and matroid rank generating functions are
closely related. The precise link between these functions will be discussed in
the next section.

Let .#, denote the class of all 2-polymatroids.

(3.7) PROPOSITION.  S(f u, v) is a Tutte invariant on ., with x =1+ u?;
y=l1+v5z=u+v,a=1b=v;c=u;and d=1.

Proof. This is routine. To check (3.6), one breaks the summation up
into two summations corresponding to those subsets which contain ¢ and
those which do not. J

Next we define another function for 2-polymatroids which we shall see
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1s closely related to the rank generating function. For an arbitrary
2-polymatroid f having ground set E, let

U(f) — m'E‘ 1) Z (.f(l;')— ,/’(X)bZ [X( -~ f()l')(mn)ﬂk'l M'l,
Xe kb

where we suppose that neither m nor n is zero. By using the same technique
as in the last proof, it is not difficult to prove the following result:

(3.8) ProprosiTION.  U(f) is a generalized Tutte invariant on . #, provided
that the following hold:

a=m; d=n; mx=mn+c’; ny=mn+b* z=b+c; m#0; and n#0.

One striking contrast between U(f) and an arbitrary generalized T— G
invariant for matroids is that, for the latter, the four variables, x, v, /, and
k, are independent whereas, for the former, the nine variables, a, b, ¢, d, m,
n, x, y, and z, are clearly not. As we shall see, in the 2-polymatroid case,
there is no generalized Tutte invariant for which the nine variables are
independent.

Again straightforward manipulations give the following result and we
shall not reproduce the proof.

(3.9) PROPOSITION. Procvided neither m nor n is zero,
U(f)=m'E - E ) EV2S(fr e(mn) V2, blmn) V2).

We remark here that the left-hand side of the last equation is well-
defined for all fields F. However, for the right-hand side to be meaningful,
F must contain (mn)"'?. Adjoining this element to F if necessary, we can do
the calculations needed to evaluate the right-hand side in this extension
field. By the proposition, the result of these calculations must be in F. It
should be noted that the extension field of F used here for relating U and
S will not be needed elsewhere in the paper.

The main result of this section will be that, apart from some very special
invariants, each of which is a monomial or is zero, U is the only
generalized Tutte invariant on .#,. Before explicitly stating and then
proving this result, we shall introduce these special invariants. The first of
these is the trivial invariant which is zero on all 2-polymatroids having
nonempty ground sets.

For a 2-polymatroid f having ground set E, define

plEL NEIZ1GE) if fIE)<|E|;

O(f) =4 2/t if f(E)=|El;
EN B2 B f(E) if f(E)>|E]|.
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Another routine argument establishes the following:

(3.10) ProPOSITION. @ is a generalized Tutte invariant on #, provided
that the following hold:

=xy=ax+bz=cz+dv=mx+ny; yz=az+bhy;, and xz=cx+d-.

The next invariant we consider will be important in our main result in
spite of the fact that it is not a generalized Tutte invariant on .#,. For a
2-polymatroid f on E, let

x/UE) NEI2IET U if fley=2forallein E;

M-

otherwise.

Let .#¢ denote the class of all Boolean 2-polymatroids. The fact that N
is not a generalized Tutte invariant on .#, will follow from Theorem 3.14,
the main result of this section.

(3.11) PrOPOSITION. N is a generalized Tutte invariant on .#$ provided
that the following hold:

y=z=a=0; mx = ¢ and x#0.

Proof. Again this is routine, the key point being that if e is an element
of a Boolean 2-polymatroid f and {e} is not a separator of f, then f/e has
an element e’ such that (f/e)(e’) < 2. This follows because, in the graph G
corresponding to f, the element e corresponds to an edge; and, since {e}
is not a separator of f, at least one endpoint of ¢ is incident with some
other edge ¢'. In f/e, this element has rank less than two. |

In order to define certain other invariants, it will be convenient to intro-
duce some further notation. For a 2-polymatroid f on E and for i in
{0, 1, 2}, let

pi=I{eeE:f(e)=i}|

and let
q;=|{e€ E: f*(e)=i}I.
(3.12) LEMMA. g¢,=|{ec E: f(E)—f(E—e)=2—1}].
For a 2-polymatroid f on a set E, let
ypuamf/'(l:‘lmmzf(h‘) if f(E)<p1;

Il(f) = y”"z”'m”' + P2 E)SE) ~ i if P <f(E) <p,+ps;
y”“z”’c”' +2p2 7_/'(E)x_/'1E) -pP1—p if P+ D, éf(E)
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Also let I¥(fy=1,(f*), so that

1F)
xqozqubql+2«n+,f(£l——2|E|y2|lfi fE) q1-q2 if f(E)<2 |E| —q,~q-;
_\,40:q|nq|+qz+r'(£)r 2Il:'lbﬂlz‘l J(E) ¢ if 2 'E, —qi—¢q- <f(E)
<2|E|—q,;
NG HIE) - 21E] gz 2 |E] - AE) if 2 |E| —q, < SfLE).

It is not difficult to prove the following:

(3.13) ProPOSITION. (i) [, is a generalized Tutte invariant on M,
provided that the following hold:

b=d=n=0, mx =c?; ax=cz, and mz = ac.

(i1) IY¥ is a generalized Tutte invariant on .#, provided that the
Sfollowing hold:

a=c=m=0; ny = b, dy=bz; and nz=bd.

Each of the invariants already encountered can be specialized by fixing
the values of q, b, ¢, d, m, n, x, y, and z so that the conditions governing
the original invariant are still met. If the invariant 7, is obtained from 7,
in this way, then t, is called an evaluation of t,. The next result, the main
result of the paper, shows that every generalized Tutte invariant on .#¢ is
an evaluation of one of the generalized Tutte invariants identified above.

(3.14) THEOREM. Suppose that t is a generalized Tutte invariant on M §

over an arbitrary field F. Then one of the following occurs:

(G1) a=m; d=n; mx=mn+c* ny=mn+b* z=b+c; m#0;
n#0; and 1 is an evaluation of U,

(G2) z’=xy=ax+bz=cz+dy=mx+ny; yz=az+by; xz=cx+
dz; and t is an evaluation of Q;

(G3) y=:

(G4) b=d=n=0; mx=c? ax=cz; mz=ac; and t is an evaluation
of 1,;

(G3) a=c=m=0;ny=>5b%dy=>bz; nz=bd; and t is an evaluation of

=a=0; mx=c? x#0; and t is an evaluation of N;

(G6) x=y=z=0; and t is zero on all nonempty 2-polymatroids.

On combining this result with duality, we immediately obtain:



222 OXLEY AND WHITTLE

(3.15) CorOLLARY. Let t be a generalized Tutte invariant on .#,. Then
one of (G1), (G2), and (G4)-(G6) holds.

In fact, it is clear that the last corollary holds under the weaker
hypothesis that t is a generalized Tutte invariant on {f: for f*isin .#§}.

If one restricts attention to Tutte invariants on .#,, then many of the
special invariants disappear:

(3.16) COROLLARY. Suppose that t is a Tutte invariant on .f. Then one
of the following occurs:

(T1Y a=d=1; x=14+¢% y=1+4b% z=b+c; and t(f) is an
evaluation of S(f; ¢, b) for all { in ¥,

(T2) Z=xy=ax+bz=cz+dv=x+y; xc=cx+dz; yz=az+by;
and t is an evaluation of Q;

(T3) x=y=:z=0 and 1 is zero on all nonempty 2-polymatroids.

The six invariants in Theorem 3.14 may appear to belie the claim that
there is essentially a unique universal generalized Tutte invariant on .#¢.
However, we note that, for each of (G3)-(G6), at least three of the nine
variables are identically zero. Of the remaining two invariants, (G2) is a
monomial that conveys only the rank of the 2-polymatroid and the size of
its ground set. Also note that (G6) is clearly trivial, while each of
(G2)-(G5) can be determined immediately once the rank of f, the size
of its ground set, the value of f on singletons, and the value of f on
complements of singletons are known.

We defer the proof of Theorem 3.14 to Section S.

4, COMBINATORIAL SIGNIFICANCE

In this section we assume that all evaluations of Tutte invariants take
place in the complex numbers; that 1s, we take the field [ to be C. Our
aim is to provide enough examples to demonstrate the widespread
combinatorial significance of 2-polymatroid Tutte invariants. The examples
given here are certainly not exhaustive.

First recall some basic properties of the 2-polymatroid rank generating
function S(f; u, v). For single-element 2-polymatroids we have S(U, ;;u, v) =
W+ 1, S(U, ;u,0)=u+v; and S(U, ,;u,v)=0"+1. Also, if e is an
element of the 2-polymatroid f, then

S(fiu,v)=8(\e;u, v)+vS(fle;u,v) if f(E—e)=f(E)and fle)=1;
S(fiu,vy=uS(f\e;u, )+ S(fle;u,v) if f(IE—e)=f(E)—1and f(e)=2;
S(fiu,v)=S(\e;u, v)+S(fle;u,v) if f(E—e)=f(E)and fle)=2.
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We begin by examining the connection between the matroid and
2-polymatroid rank generating functions. A routine computation shows
that if ©#0, then the matroid rank generating function, s(f;u, v), is a
2-polymatroid generalized Tutte invariant. In fact,

s(fiu vy=v "E2S(fiuv"?, 0'?) if v#0, (4.1)
S(fiu,0y=v"Ps(fruw 1 0?)  if p#O. (4.2)

Now consider the case v=0. Evidently

s(fiu,0)= Y RIE (4.3)

X< b';/’(A’): {X}

S(f; 1, 0)= Y ¢! (E) -1 (44)

XS ESfiX)y=21Y]

It is readily verified that s(f; &, 0) is not a 2-polymatroid generalized Tutte
invariant.

There is an interesting analogy between the role played by s(f;u, 0)
in matroid theory and that played by S(f;u, 0) in the theory of
2-polymatroids. It follows immediately from (4.3) that if / is a matroid,
then s(f; u, 0) is, up to an obvious transformation, the generating function
for the number of independent sets of f of each cardinality. Indeed,

s(f;0,0) is the number of bases of /, and (4.5)

s(f;1,0) is the number of independent sets of f. (4.6)

Now, for an arbitrary 2-polymatroid f, a similar situation holds except that
one now considers matchings. Again, it is clear that S(f;u, 0) is, up to
an obvious transformation, the generating function for the number of
matchings of f of each cardinality. Indeed,

S(f;0,0) is the number of perfect matchings of f, and (4.7)
S(f: 1,0} is the total number of matchings of f. (4.8)
In fact, if f is the Boolean 2-polymatroid of a graph G, then
w¥¥2S(fu Y2 0) is the matching generating polynomial of G, (4.9)

and if G has no isolated vertices, then

i""BS(f; —iu, 0) is the matching defect polynomial of G. (4.10)

For a good discussion of matching generating polynomials and matching
defect polynomials of graphs, see [12, Sect. 8.5].
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Now assume that v # 0. The meaning of some evaluations of s(f; u, v} for
matroids extends to 2-polymatroids. For example,

S(f;0, 1)=s(/f;0, 1) is the number of spanning sets of f. 4.11)
Since, obviously,
S(f* u,0)=S(f, v, u), (4.12)

where f* denotes the 2-dual of f, (4.11) follows from (4.8) and
Proposition 2.2. This is straightforward to verify directly. It is also easily
seen that

2EL=S(fi 1, ly=5s(f; 1, 1). (4.13)

In fact, for any point on the hyperbola wr=1, S(f;u, v) is easily
computed. A routine induction argument shows that

S(fi /v, v)= (1 +0*)Elp 1B, (4.14)

This also generalizes a property of Tutte polynomials of matroids (see, for
example, [8, (2.15)]).
Another easily established fact is

SUfs —u, =)= (= 1" S(f3u, v). (4.15)

We now consider a somewhat less trivial evaluation. Suppose that every
element of a 2-polymatroid fon £ has, independently of all other elements,
a probability 1 —p of being deleted from f and assume that 0 <p<1. We
call the resulting restriction minor w{f) a random subpolymatroid of f. Let
Pr(/) denote the probability that w(f) has the same rank as /. If £= {e},
we have Pr(f)=p if fle)e {1,2}, and Pr(f)=1 if f(e) =0. Moreover, if
|El > 1, then

(1—p) Pr(\e)+p Pr(fle) if f(E—e)=f(e)and fle}e {1,2};

Pr(f) =< p Pr(fle) if f(E—e)=f(E)—landf(e)=2;
Pr{f\(E —e)) Pr(f\e) otherwise.

It is now easily seen—for example, by Proposition 3.9—that
Pr(f)=(1—p)!¥1-/E2p/E2S(£,0, p' (1 — p) '), (4.16)

This also extends a result for matroids [3, Example 2.12].

Now let G be a graph, let M(G) and f; denote its cycle matroid and
associated Boolean 2-polymatroid, respectively, and let w(G) be the sub-
graph obtained by independently deleting edges with probability 1 — p. By
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taking f to be M(G) in (4.16), we obtain a result noted in [14], namely,
that if G is connected, then

(I _p)lfl ‘f(M(G))/'2p'(ﬂ/(6))x’25(M(G); 0’ pl/l(l __p) - 1,’2) is
the probability that w(G) is connected. (4.17)

Another easy consequence of (4.16) is that if G has no isolated vertices,
then

(1 _p)IEIa/cll:‘}pr,l(;lElw‘ZS(fG;0,pl‘ﬂ2(1 _p)r—lx‘z) is the
probability that (G) has no isolated vertices. (4.18)

Helgason [7] defined the characteristic polynomial P(f;A) of a
polymatroid f by

P(f;2)= Z (—1)X¥1 (e 1),

XS FE
Evidently, if f'is a 2-polymatroid,
P(f; Ay=(—=1)""s(f, —4, —1)=i""BS(f; —i4, i). (4.19)

The combinatorial significance of characteristic polynomials is not
restricted to 2-polymatroids. For example, it is shown in [7] that
characteristic polynomials enumerate colourings of a hypergraph via a
polymatroid associated with the hypergraph (see also below). In [20] it is
shown that the critical problem of Crapo and Rota [4] extends to
polymatroids representable over finite fields. Critical exponents are
determined by an evaluation of the characteristic polynomial of the
polymatroid.

Let G be a graph and f; be its associated Boolean polymatroid. A set of
vertices of G is stable if no edge has both endpoints in the set. Suppose
each vertex of G is chosen independently of all the others with probability
p. and let A(G, p) denote the probability that the chosen set of vertices is
stable. It is shown in [6] that if G has no isolated vertices, then

AG,p)= Y (—1)!¥ pleth,

XS E

Hence,
A(G, p)=p" B P(fsip )V =(p)* S(fe; —ip ' i) (420)

A number of polynomials of graphs related to 4(G, p) have been studied.
For references the reader is referred to the introduction to {6].

We now consider a class of polymatroids which generalize cycle matroids
of graphs. We first fix terminology. A hypergraph is a triple H=(V, E, ),

582b:59.2-5
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where V and FE are finite sets whose members are called vertices and edges,
respectively, and ¢, is a function from E into the power set of V. A
component of H is a minimal nonempty subset V' of V' with the property
that if e is an edge of H, then either Yy (e)n V' = or Yule)cs V"
Evidently the components of H partition V. For a subset 4 of E, let k(4)
denote the number of components of the hypergraph (V, 4, y 4] ,). It is
well known that the function g,,: 2% — Z, defined, for all subsets A4 of E, by

guld)=1V|—k(A),

is a polymatroid. If H is, in fact, a graph, then g, is just the cycle matroid
of the graph. As noted earlier, some properties of characteristic polyno-
mials of cycle matroids of graphs generalize. In particular, if H has no
isolated vertices, then the number of proper weak k-colourings of H is
equal to kK~ 5'P(g,,; k).

The hypergraph H is a k-hypergraph if |¢(e}| <k for each edge e.
Evidently, g, is a 2-polymatroid if and only if H is a 3-hypergraph. Assume
then, that H is a 3-hypergraph. A triangular cactus of H is a matching of
gy A triangular cactus can be pictured as a tree-like or, more generally,
a forest-like structure based on triangles. (For a discussion of triangular
cacti in a slightly less general setting, see [12, Sect. 11.3].) It follows from
(4.16), that

S(gy; 1, 0) is the number of triangular cacti of H, and (4.21)
S(gx;0,0) is the number of spanning triangular cacti of H. (4.22)

Assume that H is connected, that is, k(E) =1, and let w(H) denote the
hypergraph obtained by independently deleting edges with probability
1 —p. It follows from (4.16) that

(1 _p)iEl *RH(E),»‘ZPXH(E)HZS(gH;0’ p”z(l _p)—— l,r‘z) is the pl‘Ob-
ability that w(H) is connected. (4.23)

This generalizes (4.17).

We conclude this section with some observations on sums of rank
functions of matroids. If r, and r, are matroids on a common ground
set E, then it is well known (see, for example, [12, p. 410]) that r, +r,
is a 2-polymatroid. Also, a set is independent in both r; and r, if and
only if it is a matching in r, + r,. It follows from (4.7), (4.8), and (4.11),
respectively, that

S(r,+ry; 1, 0} is the number of common independent sets
of r, and r,; (4.24)
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O_——OQ\\

FiG. 5.1. The 2-polymatroid g,.

S(r; +r;;0, 1) is the number of common spanning sets of

r, and r,; and (4.25)
S(ry+r,;0,0) is the number of common bases of r; and
ry. (4.26)

Also, a straightforward argument proves that, for any matroid r,

S(r+r;u, vy=s(r;u? v?). (4.27)

5. PROOF OF THEOREM 3.14

We shall begin by considering a number of examples of Boolean
2-polymatroids. Each example is accompanied by a figure with the same
number. This figure gives a geometric representation of the 2-polymatroid
being considered along with a corresponding graph. In each case, t is com-
puted in two ways using the recursions in (3.6) and one deduces an identity
that must be satisfied by a, b, ¢, d, m, n, x, y, and z if 1 is to be well defined.
The theorem will be proved by determining precisely which functions
satisfy all these identities.

{5.1) EXxaMPLE. By removing the point first, we find that z(g,)=
ax + bz. On the other hand, removing the line first gives 7(g,)=cz + dy.
Hence

ax+bz=cz+dy. (11)

(5.2) ExamMpPLE. By removing the line first, we find that t(g,)=mz>+
ny>. We can also determine (g,) by removing a point first. Equating these
two expressions and using the fact that t(g,) = cz + dy, we obtain

mzl+nyl=alb+c)z+ (b +ad)y. (12)

O—O ™~

FiG. 5.2. The 2-polymatroid g,.
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FiG. 5.2* The 2-polymatroid g¥.

{5.2)* ExampiE. By using 2-polymatroid duality, we obtain from (I2)
that
mxi4ni=db+c)z+(c+ad)x (I12)*

The next example will be presented in more detail since the procedure
used for it is typical of that used on all of the remaining examples. Two
elements in the polymatroid are chosen so that no automorphism of the
polymatroid maps one to the other. These two elements are then removed,
first in one order and then in the other. Some cancellation of like terms will
result and what is left is an identity which must be obeyed by a, b, ¢, d, m,
n, x, v, and z if t is to be well-defined. In the calculations below, we shall
abbreviate t(f) as simply (f). Each polymatroid will be represented
geometrically, an element e for which f(¢) =0 being written as |

(5.3) ExamPLE. On deleting and contracting the line 1 from g,, we
obtain

(g2) = (== ) = m(—s—) + (W I).

Now, on deleting and contracting 3 from the polymatroid in the first term,
we obtain

(g3)=ma(—)+mb(«)+n(B D).

If instead, we first remove 3 from g; and then remove 1 from the
resulting deletion, we obtain

(g3)=a(==)+b(=)
=am(— )+ an(l]) + b(e).

Therefore, on cancelling like terms in the two expressions for (g,) and
using the fact that (—)=x, ()=, and (»)=_z, we obtain that

mbz +ny?=any + bla(*)+ b( ],
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2
FiG. 5.3. The 2-polymatroid g;.
that 1s,
mbz + ny* = any + abz + b*y.

Rewriting the last equation, we obtain the identity

y(ny —an—b*)=bz(a—m). (13)

The next seven examples proceed similarly to the above so most of the
details are omitted.

(5.4) ExamMpLE. From Fig. 5.4, we deduce that

0=z(bc+ dy — ad — bz). (14)

(5.5) ExampLE. From Fig. 5.4, we deduce that

mdz + nyz = bdy + adz + cny. (I5)

(5.6) ExaMpLE. Removing 1 and 2 in the two possible orders and using
the fact that t(g,) = cz + dy, we obtain

mxz + nyz = acx + bcz + adz + bdy. (16)

F1G. 54. The 2-polymatroid g,.
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|

Fig. 5.5. The 2-polymatroid gs.

/oo

Fig. 5.6. The 2-polymatroid g,.

N

FiG. 5.7. The 2-polymatroid g,.

FiG. 5.8. The 2-polymatroid gg.
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(5.7) ExampLE. From Fig. 5.7, we deduce that

n(m~a)(yz—az—by)=0. (17)

(5.8) ExampLE. Evaluating t{gs) by removing the lines 1 and 2 in the
two possible orders, we obtain the identity

n(m—a)(z* —xy)=0. (18)

(5.9) ExampLE. Evaluating 1(g,) by removing 1 and 2 in the two
possible orders gives the identity

yz(ny —an—b7) = b(a—m)(ax + bz).
But, by (13),
y(ny —an —b*) = bz(a—m).

Hence
bla—m)(z* —ax—bz)=0. (19)

(5.10) ExaMpPLE. Evaluating t(g,,) by removing the elements 1 and 2
in the two possible orders gives the identity

(md - an)(z* —ax —bz)=0. (110)

(5.11) ExaMpLE. Evaluating t(g,,) by removing the elements 1 and 2
in the two possible orders gives the identity

b(m — a)(az + by) = y*(an + b* — ny).

Fi6. 59. The 2-polymatroid g,.
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FiG. 5.10. The 2-polymatroid g,,.

But, by (I3),
byz(m—a)=y>(an+ b> —ny).
Hence

b(m—a)(yz—az—by)=0. (I11)

The rest of the proof of Theorem 3.14 will use a sequence of lemmas to
show that the various identities noted in the above examples imply that a
generalized Tutte invariant on .#Y must satisfy one of (G1)-(G6). The
reader is unlikely to be surprised by the fact that the proofs of these
lemmas involve a lot of case analysis. The first four lemmas pick out some
special cases for separate treatment.

(5.12) LemMma. If y=2z=0, then (G3) or (G6) holds.

Proof. If x=0, then t is zero on all nonempty 2-polymatroids, and
(G6) holds. If x #0, then, by (I1), ax=0, so a=0. Thus (I2)* implies that
mx = ¢>. Hence (G3) holds. |

(5.13) LEMMA. If n=d=>b=0, then (G2), (G4), or (G6) holds.

<=0

Fig. 5.11. The 2-polymatroid g,.
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Proof. M x=z=0, then (G2) or (G6) holds. Thus we may assume that
at least one of x and : is nonzero. By (I1),

ax = ¢z, (E1.1)
by (16),
mxz = acx; (E1.2)
by (12),
mz? =acz; (E1.3)
and, by (12)*,
mx? =c*x. (E1.4)

Substituting from (E1.1) into (E1.2) gives
mxz=c2z. (EL.5)

As x or z is nonzero, (E1.2) and (E1.3) imply that mz =ac. Moreover,
(E1.4) and (E1.5) imply that mx = c% Hence (G4) holds. ||

(5.14) LEMMA. If a=m and d=n+#0, then (G1), (G3), (G5), or (G6)
holds.

Proof. Substituting into (I5) and (I3), we obtain

dy(b+c—z)=0 (E2.1)
and
y(ny —mn—b*)=0. (E2.2)
Suppose that
z=b+c (E2.3)
and
ny =mn+ b> (E2.4)

Then substituting into (I1) gives
mx+blb+c)=clb+c)+mn+ b2
Hence

mx =mn + c%. (E2.5)
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Thus if m is nonzero, then (G1) holds. We may now suppose that m=0.
Then, by (E2.5), ¢=0. Thus, by (I1) and (E2.4), bz=dy and ny=5h%
Moreover, by (E2.3), z=5. Since n=d, it follows that nz = bd and so (G5)
holds.

We may now suppose that at least one of (E2.3) and (E2.4) fails.
Then, since d#0, (E2.1} and (E2.2) imply that y=0. If z=0, then, by
Lemma 5.12, (G3) or (G6) holds. Hence we may assume that z#0. By
(12), mz>=a(b+c¢)z, and so mz=m(b+c). Thus either (i)z=5b+¢, or
(1) z#b + ¢ and m=0. In case (i), by (14),

bc—ad—bb+c)=0.
Hence, as a=m, n=d, and y =0,

b+ mn=ny.

This contradicts our assumption that one of (E2.3) and (E2.4) fails. Hence
we may assume that (ii) holds. Then, by (I1), since a=m=y=0and z#0,

b=c.

Moreover, by (16), bcz =0 so b’z =0, and hence b=0 and ¢=0. Thus, by
(I2)*, n=0; a contradiction. J

(5.15) LEMMA. Suppose that

2t=ax+ bz (E3.1)

and
yz=az+by. (E3.2)

Then
a(z®—xy)=0, (E3.3)
z[z7— (mx +ny)] =0, (E3.4)
alxz—{cx+dz)] =0, (E3.5)

and
mz(z? — xy)=0. (E3.6)

Proof. By (E3.1) and (E3.2), respectively,

yz?=axy + byz
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and

yz?=az’ + byz.
Combining these two equations gives

a(z* —xy)=0,

which is (E3.3).
Next we note that, by (16), (E3.1), and (E3.2),

mxz +nyz = clax + bz} + d(az + by)
=cz’ +dy:.

Thus
z(mx + ny)=z(cz +dy),

and so, by (E3.1) and (I1),
z(mx +ny)=2z3, (E3.7)

giving (E3.4).

Grouping the terms on the right-hand side of (16) differently, we obtain
from (E3.7) that

P =a(ex +dz) + b(cz + dy).
Thus, by (I1) and (E3.1),
2} =alex +dz) + bz

But, by (E3.1) again,
2} =axz + bz>

Combining the last two equations gives (E3.5).
Finally, by (12), (E3.2), (I1), and (E3.1), we have

mz? +ny’ =blaz + by) + a(cz + dy)
=byz + az?
=z(by + az)

Thus
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Moreover, by (E3.7),

mxyz +ny’z=2y.

Combining the last two equations gives (E3.6). |

With the above preliminaries, we now begin the main part of the case
analysis for the proof of Theorem 3.14. We focus attention on (I9) and
(I11). We shall assume that a# m. Under that assumption, the following
three cases, which will be considered in the next three lemmas, exhaust all
the possibilities:

iy b#0;
(it) b=0, n#0; and
(iii) b=n=0.

(5.16) Lemma. If a#m and b#0, then (G2), (G3), or (G6) holds.
Proof. By (19) and (I11), we have
P=ax+b: (E4.1)
and
yz=az+ by. (E4.2)

Thus, by Lemma 5.15, (G2) holds provided that neither @ nor : is zero. If
z=0, then by (E4.2), by =0 so y=0 and, by Lemma 5.12, (G3) or (G6)
holds. Hence we may assume that z #0 and that a=0. Then, by (E3.6),
since a # m, we obtain that

2= xy. (E4.3)
Thus
ezl =cxy
sO
cz? +dyz=cxy +dyz.
Hence

z(cz + dy) = y(cx + dz).
Therefore, by (E4.3), (E4.1), and (I1),

2(xy)=z(z%) = z(cz + dy) = y(cx + dz).
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Thus, as y #0,
xz=cx+d:z

and it follows by Lemma 5.15 that (G2) holds. |

(517) LemMa. If a#m, b=0, and n30, then (G2), (G3), or (G6)
holds.

Proof. By (17) and (I8),
yz=az+by=az (ES.1)

and
22 =xy. (ES.2)

By Lemma 5.12, we may assume that y or z is nonzero, since otherwise
{(G3) or (G6) holds. But, by (ES.2), if y=0, then z=0. Hence we may
assume y # 0. Since 7 is also nonzero, it follows by (13) that y=a.

If z=0, then, by (E5.2), x=0. Thus, by (I1), dy=0. Hence, by (12),
ny?=0; a contradiction. Therefore we may assume that - #0. By (ES5.2),
since y=a and b =0,

2=xy=ax=ax+ bz

Combining this with (E5.1), we see that both (E3.1) and (E3.2) hold. Since
neither a nor z is zero, (G2) holds by Lemma 5.15. |}

(5.18) LEMMA. [f a#m and b=n=20, then (G2), (G3), (G4}, or (G6)
holds.

Proof. By (15),
Iz =0.

If d=0, then, by Lemma 5.13, (G2), (G4), or (G6) holds. Thus we may
assume that d#0. Hence z =0. By (12) and (11),

0=ady =a(cz +dy)=alax+ bz) = a’x.

Thus ax =0, so, by (I1), dy =0. Hence, as d#0, we have y=0. Thus, by
Lemma 5.12, (G3) or (G6) holds. |

Having just dealt with all the possibilities when a #m, we now assume
that @ =m. Then, by (I13), (15), and (110), we have

ylny —an—5b*)=0, (E6.1)
y(ne+bd—nz)=0, (E6.2)
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and
m(d—n)(z> —ax —bhz)=0. (E6.3)

The following three cases, which will be treated in the next three lemmas,
exhaust all the possibilities when a = m:
(i) y=0;
(1) y#0and b=0; and
(iil) y#0 and b #0.

(5.19) LemMA. If a=m and y =0, then (G1), (G2), (G3), (G4), (GS),
or (G6) holds.

Proof. 1f z=0, then, by Lemma 5.12, (G3) or (G6) holds. Hence we
may assume that z #0.
Suppose first that m=0. Then a=0 and, by (I1), bz =c¢z, so, as z #0,

b=c.
By (I6), bcz=0. Hence, as z+#0, we obtain b=¢=0. Substituting into

(I12)* gives that n =0, Then ny = b>, dy = bz, and nz = bd. Thus (G5) holds.
We may now suppose that m #0. Then, by (12),

mz’=a(b+c¢)z,
so, as a=m#0 and z#0,

z=b+ec. (E7.1)

Next we distinguish the following three cases:
(1) n=d+#0;
(II) n=d=0; and
(Il) n+#d

In case (I), by Lemma 5.14, (G1), (G3), (GS), or (G6) holds. In case (II),
by (I4),

be —bz=0.

Substituting from (E7.1), we obtain #2=0, so b=0 and hence, by
Lemma 5.13, one of (G2), (G4), or (G6) holds. In case (III), by (E6.3),

?=ax+ bz (E7.2)
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Hence, by (I1), z2=cz, so, as z#0,

c=z (E7.3)
Thus, by (E7.1),

b=0.
Therefore, by (14), zad =0, so

d=0.
Thus, by (12)*,

mx? 4 nz?=c’x. (E7.4)
But, by (E7.2), as a=m and b=0,
2 =mx.

Substituting this into the first term of (E7.4) and using (E7.3), we obtain
xz’ 4+ nz’ = xz%
Hence » =0. But, since d =0, we have n=d; a contradiction. |

(5.20) LeEMMA. If a=m, y#0, and b=0, then (G1), (G2), (G4), or
(G6) holds.

Proof. As y#0 and h=0, (E6.1), (E6.2), and (E6.3) imply that

n(y—a)=0, (E8.1)
a(c—z)=0, (E8.2)
and
m(d—n)(z> — ax)=0. (E8.3)
Moreover, by (14),
d=(y —a)=0. (E8.4)

Suppose first that m=0. Then, by (E8.1), since a=m and y#0, we

obtain that n=0. Moreover, by (E84), ydz=0. Again, as y #0, we have

z=0.If d=0, then n=b=d=0, and so, by Lemma 5.13, (G2), (G4), or
(G6) holds. If d+#0, then z=0 and so, by (I1), dy =0; a contradiction.
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We may now assume that m # 0. By (12) and (I1),
mz’ + ny? = acz + ady = a(cz + dy) = a’x.
But, by (E8.1), ny =an. Hence, as a=m,
mz? + mny = m2x.
Since m #0, it follows that
22+ ny = mx, (E8.5)

Moreover, by (16),

mxz +nyz =acx + adz.
Thus, by (E8.1),

mxz + anz = acx + adz,
so, as a=m#0,

Xz 4 nz=cx+dz. (E8.6)

We shall break the rest of the proof into two cases: (I) n=0; and (II)
n#0. Assume that (I) holds. Then we may suppose that d #0; otherwise
n=b=d=0 and so (G2), (G4), or (G6) holds. By (E8.5),

P =ax=ax+bz. (E8.7)
Moreover, by (E8.4),
(y—a)=0.

If z=0, then, by (E8.7), ax=0 and so, by (I1), dyv=0; a contradiction.
Thus we may suppose that z #0. Hence y =a. Then

yz=az=az+ by.

Hence, by (E8.7), both (E3.1) and (E3.2) hold. Therefore, by Lemma 5.15,
since neither a nor z is zero, (G2) holds.
In case (II), by (E8.1) and (ES8.2),

y=a (E8.8)

and

c=z. (E8.9)
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Thus, by (E8.6),
nz=dz. (8.10)

If n=d, then, since a=m#0 and =0, (E8.5), (E8.8), and (E8.9) imply
that mx =mn+ c?, ny=mn+b?, and z = b + c; that is, (G1) holds. Thus we
may assume that n#d. Then, by (E8.10), z=0. Thus, by (E8.3), amx =0,
so x=0. But now (E8.5) implies that ny =0; a contradiction. |

(5.21) LeMMA. If a=m, y #0, and b #0, then (G1), (G2), (G3), (GS),
or (G6) holds.

Proof. By (E6.1) and (E6.2), respectively,
ny = an + b* (E9.1)
and
nz=nc+ bd. (E9.2)

By (E9.1), since b 0, it follows that »n # 0. We may also assume that n #d
otherwise, by Lemma 5.14, (G1), (G3), (GS5), or (G6) holds.
Now rewriting (I2) we have

mz(z — b —c)=y(b> + md — ny). (E9.3)

But, by (E9.1),
b*—ny= —an.
Substituting into (E9.3) and using the fact that a = m, we obtain
mz(z — b—c¢)=y(md—an)=my(d —n).

Hence

mz(nz — nc — nb) = mny(d —n).
But, by (E9.2), nz — nc = bd. Thus

mzb(d — n) =mny(d — n).
Therefore, as d #n,
mbz = mny. (E9.4)

The rest of the proof will be broken into the two cases: (I) m #0; and (II)

m=0.

582b:592-6
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In case (I), by (E9.4) and (E6.3),
bz =ny (E9.5)
and
2=ax+ bz (E9.6)

Moreover, by (E9.1),

so, by (E9.5),
nyz = anz + bny.

Since n #0, it follows that
yz=az+ by. (E9.7)

But neither »# nor y is zero, so, by (E9.5), z # 0. Hence, by (E9.6), (E9.7),
and Lemma 5.15, (G2) holds.
In case (I1), by (E9.1),

ny=b’ (E9.8)
Moreover, by (IS) and (16),
ney = bez. (E9.9)

If ¢=0, then, by (I1) and (E9.2), dy=bz and nz =bd. Thus (GS) holds.
Hence we may assume that ¢ #0. Then, by (E9.8) and (E9.9),

h’c =ncy = bez.
So, as neither b nor ¢ is zero,
b=z:. (E9.10)
By {I12)* and (E9.2), respectively, we have
22 =bhdz + cdz + ’x
and
nz®=ncz + bdz.

Thus

nez = cdz + ¢x.
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Hence, as ¢ #0,
nz=cx+d-.
But, by (E9.2) and (E9.10),

nz=nc+bd=nc+d:z,

s0, as ¢ #0,
n=x
Thus, by (E9.11),
Xz=cx+dz
By (E9.8), (E9.10), and (E9.12),
2 =xy.

Moreover, one now easily checks that
P=ax+bz=mx+ny=cz+dy
and
yz=az+by.
We conclude that (G2) holds. |
This completes the proof of Theorem 3.14. ||

243

(E9.11)

(E9.12)

It is natural to try to extend this theorem to k-polymatroids when k > 3.
But, in view of the lengthy case analysis needed in the above proof, such

an extension is unlikely to be easy to prove.
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