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Abstract. Brooks proved that the chromatic number of a loopless con-
nected graph G is at most the maximum degree of G unless G is an
odd cycle or a clique. This note proves an analogue of this theorem
for GF (p)-representable matroids when p is prime, thereby verifying a
natural generalization of a conjecture of Peter Nelson.

1. Introduction

The terminology and notation for matroids that is used here will follow
[10]. For a matroid M having ground set E and rank function r, the chro-
matic or characteristic polynomial of M is defined by

p(M ;λ) =
∑
X⊆E

(−1)|X|λr(M)−r(X).

If M is the cycle matroid of a graph G and G has ω(G) components, then
the chromatic polynomial PG(λ) of the graph G is linked to the chromatic
polynomial of its cycle matroid M(G) via the following equation:

PG(λ) = λω(G)p(M(G);λ).

Of course, the chromatic number χ(G) of G is the smallest positive integer j
for which PG(j) is positive unless G has a loop, in which case, the chromatic
number is ∞. Let M be a rank-r simple matroid that is representable over
GF (q) and let T be a subset of PG(r− 1, q) such that M ∼= PG(r− 1, q)|T .
Let Q be a flat of PG(r − 1, q) that avoids T and has maximum rank. The
critical exponent c(M ; q) of M is r− r(Q). If M is loopless but has parallel
elements, we define c(M ; q) = c(si(M); q). If M has a loop, c(M ; q) = ∞.
Ostensibly, c(M ; q) depends on the embedding of M in PG(r−1, q) but the
following fundamental result of Crapo and Rota [4] establishes that this is
not the case.

Theorem 1.1. Let M be a loopless matroid that is representable over GF (q).
Then

c(M ; q) = min{j : p(M ; qj) > 0}.

Evidently, the critical exponent is an analogue of the chromatic number of
a graph. Indeed, Geelen and Nelson [5] use the term ‘critical number’ rather

1



2 JAMES OXLEY

than ‘critical exponent’ to highlight this analogy. For a loopless graph G, it
is immediate that, for all prime powers q,

qc(M(G);q)−1 < χ(G) ≤ qc(M(G);q).

Brooks [1] proved the following well-known result. For a graph G, let
∆(G) denote its maximum vertex degree.

Theorem 1.2. Let G be a loopless connected graph. Then

χ(G) ≤ ∆(G) + 1.

Indeed, χ(G) ≤ ∆(G) unless G is an odd cycle or a complete graph.

The purpose of this note is to prove the following analogue of this result for
GF (q)-representable matroids when q is prime. This new result was essen-
tially conjectured by Peter Nelson [7]. An alternative analogue of Brooks’s
Theorem, one for regular matroids, was proved in [8, Theorem 2.12].

Theorem 1.3. Let p be a prime and M be a loopless non-empty GF (p)-
representable matroid whose largest cocircuit has c∗ elements. Then

c(M ; p) ≤ dlogp(1 + c∗)e.

Indeed, if M is connected, then c(M ; p) ≤ dlogp c
∗e unless M is a projective

geometry or M is an odd circuit, where the latter only occurs when p = 2.

The requirement that M be connected appears in the last part of the
theorem only to streamline the statement. It is not difficult to state a result
in the absence of that requirement since the critical exponent of a loopless
matroid M is the maximum of the critical exponents of its components while
the maximum cocircuit size of M is the maximum of the maximum cocircuit
sizes of its components.

We conjecture that Theorem 1.3 remains true if p is replaced by an arbi-
trary prime power q, but the proof technique used here only works when q
is prime.

2. The proof

The proof of the main result will use three lemmas, the first of which is [8,
Theorem 3.5]. For a matroid M , let R(M) be the set of simple restrictions
of M , and let C∗(M) be the set of cocircuits of M .

Lemma 2.1. Let M be a GF (q)-representable matroid having no loops.
Then

c(M ; q) ≤ dlogq(1 + max
N∈R(M)

( min
C∗∈C∗(N)

|C∗|))e.

Murty [6] considered the class of matroids in which all circuits have the
same cardinality. His main result, which can be stated as follows, determined
all binary matroids with this property.
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Lemma 2.2. Let M be a connected binary matroid with at least two ele-
ments. Then every cocircuit of M has the same cardinality if and only if,
for some positive integer t, the matroid M can be obtained by adding t − 1
elements in parallel to each element of one of the following:

(i) Ur,r+1 for some r ≥ 2;
(ii) PG(r − 1, 2) for some r ≥ 1; or
(iii) AG(r − 1, 2) for some r ≥ 2.

The proof of this result relies heavily on a property that characterizes
binary matroids, namely, that the symmetric difference of two circuits is a
disjoint union of circuits. Although the last result has not been generalized
to all GF (q)-representable matroids, the next result is a partial generaliza-
tion of it that treats the case when q is prime and the cardinality of all
cocircuits is a power of q. Recall that a point in a matroid is a rank-1 flat
in the matroid.

Lemma 2.3. Let p be a prime exceeding two and M be a loopless non-
empty GF (p)-representable matroid in which all cocircuits have pk elements
for some non-negative integer k. If M ′ is a component of M , then si(M ′) is
a projective geometry and every parallel class of M ′ has the same size, this
size being a power of p.

Proof. For each e in E(M), we write d(e) for |cl({e})|. We argue by induction
on r(M) noting that the result is immediate if r(M) = 1. If r(M) = 2,
then either M ∼= U1,pk ⊕ U1,pk , or M is a line with n points, for some
n ≥ 3. As the lemma holds in the former case, we consider the latter case,
letting {e1, e2, . . . , en} be a transversal of the set of points of M . Then
|E(M)| − d(ei) = pk for all i. Thus d(ei) = d(ej) for all distinct i and

j. Now (n − 1)d(e1) = pk. As p is prime, we deduce that n = p + 1 and
d(e1) = pk−1. Hence M is obtained from PG(1, p) by replacing each element
by pk−1 elements in parallel. Thus the lemma holds when r(M) = 2.

Assume the lemma holds when r(M) < r and let r(M) = r ≥ 3. If M is
disconnected, the result follows by the induction assumption. Thus we may
assume that M is connected.

We show next that

2.3.1. M/cl({e}) is connected for all e in E(M).

Assume that M/cl({e}) is disconnected for some e in E(M). Then every
cocircuit of M/cl({e}) has pk elements and, by the induction assumption,
each component is a projective geometry in which every parallel class has
the same size, this size being a power of p. As M/cl({e}) is disconnected,
by a result of Brylawski [2], M can be written as the parallel connection,
with basepoint e, of some set, S, of connected matroids. Let M1,M2, . . . ,Ms

be the matroids in S that have rank at least two. The only other possible
member of S is M |cl({e}) and it is present if and only if d(e) > 1. For
each i in {1, 2, . . . , s}, take Ni = M |[E(Mi) ∪ cl({e})]. Then Ni is certainly
connected.
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Consider si(Ni) for some i. By [9, Lemma 2.3] (see also [10, Lemma
4.3.10]), each cocircuit of si(Ni) has an element fi such that Ni/cl({fi})
is connected. Choose a cocircuit of Ni avoiding e. Then M/cl({fi}) is
connected and so its simplification is a projective geometry and all the
parallel classes of M/cl({fi}) have the same size. It follows that s = 2
and r(N1) = r(N2) = 2 otherwise M/cl({f1}) and M/cl({f2}) cannot be
matroids whose simplifications are projective geometries. We deduce that
r(M) = 3. As M/cl({fi}) is connected, si(Ni) ∼= U2,p+1 for each i. Thus

|clM ({f})| = pk−1 for all f 6= e. But, in M/cl({fi}), the parallel class con-
taining e has more than (p − 1)pk−1 elements whereas every other parallel
class has exactly pk−1 elements; a contradiction. Thus (2.3.1) holds.

By the induction assumption, M/cl({e}) is obtained from PG(r−2, p) by
replacing each element by the same number of parallel elements. Every co-
circuit of M/cl({e}) contains pk elements and contains pr−2 parallel classes.
Thus, in M/cl({e}), each parallel class has size pk−r+2. This number will
be the same irrespective of the choice of e.

Next we show the following.

2.3.2. Every parallel class of M has the same size, n1; and every line of M
contains the same number, n2, of points. Moreover, (n1, n2) is (pk−r+2, 2)
or (pk−r+1, p+ 1).

Consider a line L of M . Let {e1, e2, . . . , en} be a transversal of the set
of points of L. Then, in M/cl({ei}), we have a parallel class having exactly
[d(e1) + d(e2) + · · ·+ d(en)]− d(ei) elements. Thus, for all i,

pk−r+2 + d(ei) =
n∑

j=1

d(ej).

Therefore d(e1) = d(e2) = · · · = d(en). Hence

(n− 1)d(e1) = pk−r+2. (2.1)

Now let f be an element not in cl({e1}). Since L was chosen arbitrarily,
every point on the line cl({e1, f}) has the same size, so d(f) = d(e1). Thus
every parallel class of M has the same size. Morever, if some line containing
f has n′ points, then

(n′ − 1)d(f) = pk−r+2. (2.2)

From (2.1) and (2.2), we see that n′ = n, so every line of M contains the
same number of points. It follows since p is prime that (n1, n2) is (pk−r+2, 2)
or (pk−r+1, p+ 1), that is, (2.3.2) holds.

Suppose every line of M contains exactly two points. Take a 3-element
independent set, {e, f, g}, in si(M). Then, in si(M)/e, the line through f
and g must have p+1 elements. Thus, the plane in si(M) spanned by {e, f, g}
has p+ 2 elements. As p is odd, M does not have U3,p+2 as a minor (see, for
example, [10, Table 6.1]). This contradiction implies that every line of M
contains exactly p + 1 points. Hence M is a projective geometry in which
every point has pk−r+1 elements. Thus the lemma follows by induction. �
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We are now ready to prove the main result of the paper.

Proof of Theorem 1.3. By Lemma 2.1, M has a simple restriction N such
that

c(M ; p) ≤ dlogp(1 + min
C∗∈C∗(N)

|C∗|)e.

Every cocircuit of N is a subset of a cocircuit of M , so

c(M ; p) ≤ dlogp(1 + max
C∗∈C∗(M)

|C∗|)e. (2.3)

Hence the first part of the theorem holds.
Now suppose that M is connected and that

c(M ; p) > dlogp( max
C∗∈C∗(M)

|C∗|)e. (2.4)

By combining (2.3) and (2.4), we deduce that maxC∗∈C∗(M) |C∗| = pk for
some positive integer k. Then c(M ; p) = k + 1, so k + 1 ≤ dlogp(1 +

minC∗∈C∗(N) |C∗|)e. Hence minC∗∈C∗(N) |C∗| ≥ pk. Thus every cocircuit of

N has exactly pk elements.
Let N = M\T . The cocircuits of N are the minimal non-empty sets in

{C∗ − T : C∗ ∈ C∗(M)}. If M has a cocircuit D∗ that meets both T and
E−T , then |D∗| > pk; a contradiction. Thus T is a (possibly empty) union
of components of M . But M is connected, so T = ∅, and N = M . By
Lemmas 2.2 and 2.3, M is isomorphic to one of PG(r − 1, p), Ur,r+1, and
AG(r − 1, 2) with the last two possibilities only arising when p = 2. But
c(Ur,r+1; 2) = 1 when r is odd, while c(AG(r− 1, 2); 2) = 1 for all choices of
r, so the theorem follows. �

One may hope to be able to eliminate the ceiling function in Theorem 1.3
but this is not possible. To see this, observe that c(M(K5); 2) = 3 but
maxC∗∈C∗(M) |C∗| = 6. This example is far from the only exception one
would need to add. To show this, we shall use the following result of Bry-
lawski [3, Theorem 7.8].

Lemma 2.4. Let M1 and M2 be matroids such that E(M1) ∩ E(M2) = X
and M1|X = M2|X. Let X be a modular flat in M1 and let M be the
generalized parallel connection of M1 and M2 across X. Then

p(M ;λ) =
p(M1;λ)p(M2;λ)

p(M1|X;λ)
.

As is well known and follows easily from Theorem 1.1,

p(PG(r − 1, q);λ) = (λ− 1)(λ− q)(λ− q2) . . . (λ− qr−1).
Combining this with the last lemma, it is straightforward to check that, for
s ≤ r, the generalized parallel connection M of PG(r−1, q) and PG(s−1, q)
across a PG(t − 1, q) for 1 ≤ t < s < r has critical exponent r. Now a
largest cocircuit of PG(r − 1, 2) has qr−1 elements, and one easily checks
that a largest cocircuit of M has fewer than qr elements. Hence c(M ; q) >
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logq(maxC∗∈C∗(M) |C∗|). One can delete elements from PG(s−1, q) that are
not in the common PG(t − 1, q) to obtain numerous other examples that
exhibit this behaviour.
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