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JAMES OXLEY

ABSTRACT. Brooks proved that the chromatic number of a loopless con-
nected graph G is at most the maximum degree of G unless G is an
odd cycle or a clique. This note proves an analogue of this theorem
for GF(p)-representable matroids when p is prime, thereby verifying a
natural generalization of a conjecture of Peter Nelson.

1. INTRODUCTION

The terminology and notation for matroids that is used here will follow
[10]. For a matroid M having ground set E and rank function r, the chro-
matic or characteristic polynomial of M is defined by

p(M;0) = 37 (~)XINOD=r(0),
XCE

If M is the cycle matroid of a graph G and G has w(G) components, then
the chromatic polynomial P () of the graph G is linked to the chromatic
polynomial of its cycle matroid M (G) via the following equation:

P(N) = X Op(M(G); M.

Of course, the chromatic number x(G) of G is the smallest positive integer j
for which Pg(j) is positive unless G has a loop, in which case, the chromatic
number is co. Let M be a rank-r simple matroid that is representable over
GF(q) and let T be a subset of PG(r — 1, q) such that M = PG(r —1,q)|T.
Let @ be a flat of PG(r — 1, ¢) that avoids 7" and has maximum rank. The
critical exponent ¢(M;q) of M is r —r(Q). If M is loopless but has parallel
elements, we define ¢(M;q) = ¢(si(M);q). If M has a loop, ¢(M;q) = .
Ostensibly, ¢(M; q) depends on the embedding of M in PG(r —1,q) but the
following fundamental result of Crapo and Rota [4] establishes that this is
not the case.

Theorem 1.1. Let M be a loopless matroid that is representable over GF(q).
Then

o(M;q) = min{j : p(M;¢’) > 0}.
Evidently, the critical exponent is an analogue of the chromatic number of

a graph. Indeed, Geelen and Nelson [5] use the term ‘critical number’ rather
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than ‘critical exponent’ to highlight this analogy. For a loopless graph G, it
is immediate that, for all prime powers g,

¢MED=1 (@) < ¢ MG,

Brooks [1] proved the following well-known result. For a graph G, let
A(G) denote its maximum vertex degree.

Theorem 1.2. Let G be a loopless connected graph. Then
X(G) < A(G) + 1.
Indeed, x(G) < A(G) unless G is an odd cycle or a complete graph.

The purpose of this note is to prove the following analogue of this result for
GF(q)-representable matroids when ¢ is prime. This new result was essen-
tially conjectured by Peter Nelson [7]. An alternative analogue of Brooks’s
Theorem, one for regular matroids, was proved in [8, Theorem 2.12].

Theorem 1.3. Let p be a prime and M be a loopless non-empty GF(p)-
representable matroid whose largest cocircuit has c* elements. Then

c(M;p) < [log,(1 +¢)].

Indeed, if M is connected, then c(M;p) < [log, c*] unless M is a projective
geometry or M is an odd circuit, where the latter only occurs when p = 2.

The requirement that M be connected appears in the last part of the
theorem only to streamline the statement. It is not difficult to state a result
in the absence of that requirement since the critical exponent of a loopless
matroid M is the maximum of the critical exponents of its components while
the maximum cocircuit size of M is the maximum of the maximum cocircuit
sizes of its components.

We conjecture that Theorem 1.3 remains true if p is replaced by an arbi-
trary prime power ¢, but the proof technique used here only works when ¢
is prime.

2. THE PROOF

The proof of the main result will use three lemmas, the first of which is [8,
Theorem 3.5]. For a matroid M, let R(M) be the set of simple restrictions
of M, and let C*(M) be the set of cocircuits of M.

Lemma 2.1. Let M be a GF(q)-representable matroid having no loops.
Then
M;q) <1 1 i c*))].
c(M;q) < [log,(1+ Ngg(%(c*gggml )]
Murty [6] considered the class of matroids in which all circuits have the
same cardinality. His main result, which can be stated as follows, determined
all binary matroids with this property.
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Lemma 2.2. Let M be a connected binary matroid with at least two ele-
ments. Then every cocircuit of M has the same cardinality if and only if,
for some positive integer t, the matroid M can be obtained by adding t — 1
elements in parallel to each element of one of the following:
(1) Uy pq1 for somer > 2;
(ii) PG(r —1,2) for somer > 1; or
(i) AG(r —1,2) for some r > 2.

The proof of this result relies heavily on a property that characterizes
binary matroids, namely, that the symmetric difference of two circuits is a
disjoint union of circuits. Although the last result has not been generalized
to all GF(q)-representable matroids, the next result is a partial generaliza-
tion of it that treats the case when ¢ is prime and the cardinality of all
cocircuits is a power of ¢q. Recall that a point in a matroid is a rank-1 flat
in the matroid.

Lemma 2.3. Let p be a prime exceeding two and M be a loopless non-
empty GF (p)-representable matroid in which all cocircuits have p* elements
for some non-negative integer k. If M' is a component of M, then si(M') is
a projective geometry and every parallel class of M’ has the same size, this
size being a power of p.

Proof. For each e in E(M), we write d(e) for |cl({e})|. We argue by induction
on r(M) noting that the result is immediate if r(M) = 1. If r(M) = 2,
then either M = U, v @ Uy r, or M is a line with n points, for some
n > 3. As the lemma holds in the former case, we consider the latter case,
letting {e1,e2,...,e,} be a transversal of the set of points of M. Then
|E(M)| — d(e;) = p* for all i. Thus d(e;) = d(e;) for all distinct i and
j. Now (n — 1)d(e1) = p*. As p is prime, we deduce that n = p + 1 and
d(e1) = p*~1. Hence M is obtained from PG/(1,p) by replacing each element
by p*~! elements in parallel. Thus the lemma holds when r(M) = 2.

Assume the lemma holds when r(M) < r and let 7(M) =r > 3. If M is
disconnected, the result follows by the induction assumption. Thus we may
assume that M is connected.

We show next that

2.3.1. M/cl({e}) is connected for all e in E(M).

Assume that M/cl({e}) is disconnected for some e in E(M). Then every
cocircuit of M/cl({e}) has p* elements and, by the induction assumption,
each component is a projective geometry in which every parallel class has
the same size, this size being a power of p. As M/cl({e}) is disconnected,
by a result of Brylawski [2], M can be written as the parallel connection,
with basepoint e, of some set, S, of connected matroids. Let My, Ms, ..., My
be the matroids in S that have rank at least two. The only other possible
member of S is M|cl({e}) and it is present if and only if d(e) > 1. For
each i in {1,2,...,s}, take N; = M|[E(M;) Ucl({e})]. Then N; is certainly
connected.
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Consider si(N;) for some i. By [9, Lemma 2.3] (see also [10, Lemma
4.3.10]), each cocircuit of si(/V;) has an element f; such that N;/cl({f;})
is connected. Choose a cocircuit of N; avoiding e. Then M/cl({f;}) is
connected and so its simplification is a projective geometry and all the
parallel classes of M/cl({f;}) have the same size. It follows that s = 2
and r(N1) = r(Ny) = 2 otherwise M/cl({f1}) and M/cl({f2}) cannot be
matroids whose simplifications are projective geometries. We deduce that
r(M) = 3. As M/cl({f;}) is connected, si(N;) = U p41 for each i. Thus
Il ({fD)| = p*~ ! for all f # e. But, in M/cl({f;}), the parallel class con-
taining e has more than (p — 1)p*~! elements whereas every other parallel
class has exactly p"~! elements; a contradiction. Thus (2.3.1) holds.

By the induction assumption, M/cl({e}) is obtained from PG(r—2,p) by
replacing each element by the same number of parallel elements. Every co-
circuit of M/cl({e}) contains p* elements and contains p" 2 parallel classes.
Thus, in M/cl({e}), each parallel class has size p*~"+2. This number will
be the same irrespective of the choice of e.

Next we show the following.

2.3.2. Every parallel class of M has the same size, ny; and every line of M
contains the same number, ny, of points. Moreover, (ny1,ng) is (pk_7"+2,2)
or (PPt p 4+ 1).

Consider a line L of M. Let {ej,ea,...,e,} be a transversal of the set
of points of L. Then, in M/cl({e;}), we have a parallel class having exactly
[d(e1) +d(e2) + -+ d(en)] — d(e;) elements. Thus, for all i,

PP d(e) = dlej).
j=1

Therefore d(e;) = d(ez) = - -+ = d(e,,). Hence
(n—1)d(er) = p*" 2. (2.1)

Now let f be an element not in cl({e;}). Since L was chosen arbitrarily,
every point on the line cl({e1, f}) has the same size, so d(f) = d(e;). Thus
every parallel class of M has the same size. Morever, if some line containing
f has n’ points, then

(n' = 1)d(f) =p" "2 (2.2)
From (2.1) and (2.2), we see that n’ = n, so every line of M contains the
same number of points. It follows since p is prime that (n1,ns) is (p* 7712, 2)
or (pF=m+1 p 4+ 1), that is, (2.3.2) holds.

Suppose every line of M contains exactly two points. Take a 3-element
independent set, {e, f,g}, in si(M). Then, in si(M)/e, the line through f
and g must have p+1 elements. Thus, the plane in si(M ) spanned by {e, f, g}
has p+2 elements. As p is odd, M does not have Us 12 as a minor (see, for
example, [10, Table 6.1]). This contradiction implies that every line of M
contains exactly p + 1 points. Hence M is a projective geometry in which
every point has p*~"*! elements. Thus the lemma follows by induction. [
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We are now ready to prove the main result of the paper.

Proof of Theorem 1.3. By Lemma 2.1, M has a simple restriction N such
that

M:;p) <l 1 i N
c(M;p) < [log,( +cfenclfbv)|0 )]

Every cocircuit of N is a subset of a cocircuit of M, so
M;p) < [1 1 c*Dl. 2.3
(M) < [logy (1 4+ max [C")) (2.3)
Hence the first part of the theorem holds.
Now suppose that M is connected and that
M;p) > [1 c*NI. 2.4
) > [logy( max 1C"])] (2.4)
By combining (2.3) and (2.4), we deduce that maxc«cc«(ar) [C*] = pk for
some positive integer k. Then ¢(M;p) = k+ 1, so k +1 < [log,(1 +
ming«ec« () [C*])]. Hence mingscc(ny |C*| > p¥. Thus every cocircuit of
N has exactly p* elements.

Let N = M\T. The cocircuits of N are the minimal non-empty sets in
{C* =T :C* € C*(M)}. If M has a cocircuit D* that meets both T" and
E —T, then |D*| > p*; a contradiction. Thus T is a (possibly empty) union
of components of M. But M is connected, so T = (), and N = M. By
Lemmas 2.2 and 2.3, M is isomorphic to one of PG(r — 1,p), U, 41, and
AG(r — 1,2) with the last two possibilities only arising when p = 2. But
c(Urr+1;2) = 1 when r is odd, while ¢(AG(r —1,2);2) =1 for all choices of
r, so the theorem follows. O

One may hope to be able to eliminate the ceiling function in Theorem 1.3
but this is not possible. To see this, observe that ¢(M(K5);2) = 3 but
maxc«cc+(ar) |[C*| = 6. This example is far from the only exception one
would need to add. To show this, we shall use the following result of Bry-
lawski [3, Theorem 7.8].

Lemma 2.4. Let My and My be matroids such that E(M;) N E(Ms) = X
and Mi|X = My|X. Let X be a modular flat in M; and let M be the
generalized parallel connection of My and My across X. Then
p(Ma; N)p(Ma; )

p(Mi|X;50)

As is well known and follows easily from Theorem 1.1,

p(PGr =1, ) =A=DA-a)A=¢*)...(A=¢" ).
Combining this with the last lemma, it is straightforward to check that, for
s < r, the generalized parallel connection M of PG(r—1,q) and PG(s—1,q)
across a PG(t — 1,q) for 1 <t < s < r has critical exponent r. Now a
largest cocircuit of PG(r — 1,2) has ¢"~! elements, and one easily checks
that a largest cocircuit of M has fewer than ¢" elements. Hence ¢(M;q) >

p(M; ) =
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log, (maxc«ccx(ar) |[C*]). One can delete elements from PG(s—1,q) that are
not in the common PG(t — 1,q) to obtain numerous other examples that
exhibit this behaviour.
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