
ON MATROIDS OF BRANCH-WIDTH THREE

RHIANNON HALL, JAMES OXLEY, CHARLES SEMPLE, AND GEOFF WHITTLE

Abstract. For all positive integers k, the class Bk of matroids of branch-width
at most k is minor-closed. When k ∈ {1, 2}, the class Bk is, respectively, the
class of direct sums of loops and coloops, and the class of direct sums of series-
parallel networks. B3 is a much richer class as it contains infinite antichains
of matroids and is thus not well-quasi-ordered under the minor order. In this
paper, it is shown that, like B1 and B2, the class B3 can be characterized by
a finite list of excluded minors.

1. Introduction

Historically, matroid theory has benefited greatly from adapting and generalizing
techniques from graph theory. But it is not always possible to do this. For example,
the notion of tree-width has proved to be of enormous interest in graph theory
in recent years. It plays a vital role in the theory of graph minors developed by
Robertson and Seymour (see, for example, [11, 10]). Moreover, tree-width also plays
a key role in graph complexity theory. Many problems that are computationally
intractable for general graphs have polynomial-time algorithms when restricted to
graphs of bounded tree-width (see, for example, [12]).

While tree-width does not generalize routinely to matroids, a related notion,
namely branch-width, does. It is known [13] that a class of graphs has bounded
tree-width if and only if it has bounded branch-width. Thus, for many purposes,
branch-width serves just as well as tree-width. Moreover, branch-width has already
proved to be very useful in matroid theory. For example, Geelen, Gerards, and
Whittle [6] have shown that, within the class of matroids that are representable
over a fixed finite field GF (q) and have bounded branch-width, there are no infinite
antichains. In addition, they have proved [7] that, for all k and all q, the class
of matroids representable over GF (q) has only finitely many excluded minors that
have branch-width at most k.

This motivates a general study of branch-width in matroids, and the current
paper forms part of that study. It is straightforward to show that if a matroid
has branch-width k, then all its minors have branch-width at most k. Knowing
the excluded minors for the class of matroids of a given branch-width gives insight
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into the precise effect this parameter has on matroids. It is shown in [13] that the
class of matroids of branch-width at most 2 coincides with the class of direct sums
of series-parallel networks. Hence there are exactly two excluded minors for this
class, namely U2,4 and M(K4). Dharmatilake [2] has found the excluded minors
for the graphs of branch-width at most 3. He also gave a list of excluded minors for
the binary matroids of branch-width at most 3, and conjectured that his list was
complete.

The class B3 of matroids of branch-width at most 3 contains all spikes, a class of
matroids that contains infinite antichains [6, Section 7]. This containment implies
that B3 is not well-quasi-ordered under the minor order. However, in the main
result of this paper, we show that the number of excluded minors for B3 is finite. In
particular, we prove that all excluded minors for B3 have at most sixteen elements.
In her Master’s thesis [8], the first author has reduced this bound to fourteen
and has specifically determined some of the excluded minors, but we shall not
include the detailed analysis needed to obtain these results. The task of finding
all excluded minors appears too difficult to do by hand. It is certainly feasible to
write a computer program that would quickly find all excluded minors that are
representable over a given field. It is not clear that it is so straightforward to do
this for the non-representable ones.

The paper is constructed as follows. Fundamental to the notion of branch-
width are the concepts of connectivity functions and branch-decompositions, which
are introduced in Sections 2 and 3, respectively. Section 4 proves a result for
connectivity functions that is essential to our proof of the bound on the size of the
excluded minors for B3. Two further tools used in that proof, the concepts of a
partitioned matroid and a fully closed set in a matroid, are introduced in Sections 5
and 6, respectively. The main results of the paper appear in Sections 7 and 8, which
establish successively sharper bounds on the size of an excluded minor for the class
of matroids of branch-width at most 3.

Throughout the paper, we shall allow the empty set to occur as a block of a
partition. We assume that the reader is familiar with standard concepts in matroid
theory and follow Oxley [14] for notation. In particular, a triangle of a matroid is
a 3–element circuit and a triad is a 3–element cocircuit. A fan in a matroid is a
subset A of the ground set that has an ordering (a1, a2, . . . , an) with n ≥ 3 where,
in the sequence

{a1, a2, a3}, {a2, a3, a4}, . . . , {an−2, an−1, an},

either all even-numbered terms are triangles and all odd-numbered terms are triads,
or all odd-numbered terms are triangles and all even-numbered terms are triads.

2. Connectivity Functions

The primary interest in this paper will be in connectivity functions for matroids.
But we gain some advantage in stating the results in this section and Section 4, at a
somewhat broader level of generality that will encompass, for example, connectivity
functions of graphs.
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A function λ defined on the set of subsets of a finite ground set S is integer-

valued if λ(A) is an integer for all A ⊆ S; it is submodular if λ(A) + λ(B) ≥
λ(A ∩ B) + λ(A ∪ B) for all A, B ⊆ S; and it is symmetric if λ(A) = λ(S − A) for
all A ⊆ S.

Let M be a matroid with ground set E(M). The connectivity function λM of M
is defined for all subsets A of E(M) by

λM (A) = r(A) + r(E(M) − A) − r(M) + 1.

It is well-known that the connectivity function of a matroid is integer-valued, sub-
modular, and symmetric. Moreover, the connectivity function of a matroid M is
the same as the connectivity function of its dual matroid M ∗; that is, if A ⊆ E(M),
then λM (A) = λM∗(A). In general, a connectivity function on a finite set S is a
function λ defined on the set of subsets of S such that λ is integer-valued, submod-
ular, and symmetric. We call S the ground set of λ.

For an integer k, a subset A of the ground set of a matroid M is k–separating

if λM (A) ≤ k. We extend this notion by defining a subset A of the ground set
S of a connectivity function λ to be k–separating if λ(A) ≤ k. When equality
holds here, A is said to be exactly k–separating. When A is k–separating, and
both |A| and |E(M) − A| are at least k, the partition (A, E(M) − A) is called a
k–separation of M . For an integer n exceeding 1, the matroid M is n–connected

if it has no k–separations for all k with 0 ≤ k ≤ n − 1. Again we extend this by
defining a partition (A, B) of the ground set S of a connectivity function λ to be a
k–separation if λ(A) ≤ k and |A|, |B| ≥ k. Moreover, λ is n–connected if S has no
k–separations for all k with 0 ≤ k ≤ n−1. Evidently M is an n–connected matroid
if and only if its connectivity function is n–connected. Of particular interest to
us are connectivity functions λ that are 3–connected. We know from the above
definition that λ is 3–connected if

(i) λ(∅) = λ(S) = 1 and, λ(A) ≥ 2 for all proper non-empty subsets A of S; and
(ii) if A ⊆ S with |A| ≥ 2 and |S − A| ≥ 2, then λ(A) ≥ 3.

The next lemma [5] is well-known for matroids and follows immediately from the
submodularity of connectivity functions.

Lemma 2.1. Let λ be a connectivity function on S. If A and B are 3–separating

and λ(A ∩ B) ≥ 3, then λ(A ∪ B) ≤ 3. 2

The following lemmas deal with matroid closure operators. Let x be an element
of a matroid M , and let X be a subset of E(M). The coclosure cl∗(X) of X is the

closure of X in M∗. We will use the notation x ∈ cl(∗)(X) to mean that x ∈ cl(X)
or x ∈ cl∗(X). The closure operators of M and M∗ are linked through the following
well-known result.

Lemma 2.2. Let X, Y , and {x} be disjoint sets whose union is the ground set of

a matroid. Then x ∈ cl∗(X) if and only if x /∈ cl(Y ). 2

Lemma 2.3. If X is a subset of the ground set of a matroid M , and x ∈ cl(∗)(X),
then λM (X ∪ {x}) ≤ λM (X).
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Proof. Suppose that x ∈ cl(X). Then r(X ∪ {x}) = r(X) and r(Y − {x}) ≤ r(Y )
so

r(X ∪ {x}) + r(Y − {x}) − r(M) + 1 ≤ r(X) + r(Y ) − r(M) + 1.

Thus λM (X ∪ {x}) ≤ λM (X). The case when x ∈ cl∗(X) follows by duality.

The proof of the next lemma is similar to the last proof and is omitted.

Lemma 2.4. Let x be an element of a matroid M . Let X be a k–separating set of

M\x. If x ∈ cl(X), then X ∪ {x} is a k–separating set of M . 2

Lemma 2.5. Let X be an exactly k–separating set of a matroid M . If x ∈ X and

x is not a loop or a coloop of M , then X − {x} is exactly k-separating in M\x if

and only if x ∈ clM (X − {x}). Furthermore, X − {x} is exactly k–separating in

M/x if and only if x /∈ clM (E(M) − X).

Proof. We know that x is not a coloop of M so r(M\x) = r(M). Now, X − {x} is
exactly k–separating in M\x if and only if

r(X − {x}) + r(E(M) − X) − r(M\x) + 1 = r(X) + r(E(M) − X) − r(M) + 1.

But this equation holds if and only if r(X − {x}) = r(X), and the last equation
holds if and only if x ∈ clM (X − {x}). The last sentence of the lemma follows by
duality.

Lemma 2.6. Let x be an element of a matroid M , and let X be a subset of the

ground set of M where x ∈ X. Suppose that λM (X) = λM (X − {x}). Then either

(i) x ∈ cl(X − {x}) and x ∈ cl(E(M) − X), or

(ii) x ∈ cl∗(X − {x}) and x ∈ cl∗(E(M) − X).

Proof. Since λM (X) = λM (X − {x}), it follows from the definition of λM ,

r(X) + r(E(M) − X) = r(X − {x}) + r((E(M) − X) ∪ {x}).(1)

Clearly, either (a) x ∈ cl(X − {x}) or (b) x 6∈ cl(X − {x}). In the first case,
r(X) = r(X −{x}) so, by (1), r(E(M)−X) = r((E(M)−X)∪{x}) and hence x ∈
cl(E(M)−X). Now suppose x 6∈ cl(X−{x}). Then, by Lemma 2.2, x ∈ cl∗(E(M)−
X) and r(X − {x}) = r(X) − 1, so r(E(M) −X) = r((E(M) − X) ∪ {x}) − 1 and
hence x 6∈ cl(E(M) − X). Thus, by Lemma 2.2 again, x ∈ cl∗(X − {x}).

3. Branch-Decompositions

In the study of branch-width of connectivity functions, we use cubic trees. A
cubic tree T is a tree in which all vertices have degree zero, one, or three. Cubic trees
are sometimes called ternary trees. A branch of T is a subtree that is a component
of T\e for some edge e of T . Equivalently, a branch is a component of T\v for some
vertex v of T . We say that a branch is displayed by an edge e or a vertex v if it is
one of the components of T\e or T\v, respectively. Clearly, an edge displays two
branches, while a vertex of degree three displays three branches. The next three
lemmas are well-known results on cubic trees (see, for example, [3]).
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Lemma 3.1. Let T be a cubic tree with n leaves. Then there is an edge e of T
such that each of the two branches displayed by e has at least n/3 leaves. 2

Lemma 3.2. Let T be a cubic tree and let l1, l2, and l3 be three distinct leaves of

T . Then there is a vertex v of T so that each branch displayed by v contains exactly

one of l1, l2, and l3. 2

Lemma 3.3. Let T be a cubic tree and let A be a subset of the leaves of T , where

|A| ≥ 4. Then there is an edge e of T displaying branches B1 and B2 such that

both B1 and B2 contain at least two leaves from A. 2

Let λ be a connectivity function with ground set S. A branch-decomposition of
λ is a cubic tree T together with a one-to-one labelling of a subset of the leaves of
T by S. The set Ū displayed by a given subtree U of T consists of those members
of S that label leaves of U . An edge e or a vertex v of T displays a partition if each
block of the partition is displayed by one of the branches of e or v, respectively; e
or v displays a subset S ′ of S if S′ is displayed by one of the branches of e or v.

The width ω(e) of an edge e in T is equal to λ(S ′), where S′ is one of the two sets
displayed by e. Because the function λ is symmetric, ω(e) is well-defined. The width

of a branch-decomposition T is the maximum of the widths of the edges of T , and
the branch-width of λ is the minimum of the widths of its branch-decompositions.
If T has at most one vertex, we take the width of T to be λ(∅). The branch-width

of a matroid M is the branch-width of its connectivity function λM . Likewise, a
branch-decomposition of λM is called a branch-decomposition of M .

Let λ be a connectivity function with ground set S. For technical reasons, we
allow a branch-decomposition of λ to have leaves that are not labelled by elements
of S. If |S| ≥ 2, a branch-decomposition T of λ that has unlabelled leaves is easily
turned into one with the same width, but no unlabelled leaves, as follows. Consider
the minimal tree induced by the labelled leaves of T . In this tree, suppress all
degree–2 vertices, that is, replace each maximal path in which all internal vertices
have degree two by a single edge. The resulting tree T ′ is once again cubic. We call
such a branch-decomposition reduced. It is easily seen that every proper non-empty
subset of S displayed by the reduced branch-decomposition T ′ is also displayed by
the original branch-decomposition T .

For a positive integer k, let Bk denote the class of matroids of branch-width at
most k. The next well-known lemma notes some attractive properties of Bk.

Lemma 3.4. For a fixed positive integer k, the class Bk of matroids of branch-

width at most k is closed under duality, minors, direct sums, and 2–sums.

Proof. Let M be a member of Bk, and let T be a width–k′ branch-decomposition
of M for some k′ ≤ k. Let X be a subset of E(M). Then, as λM (X) = λM∗(X), it
follows that T is a width–k′ branch-decomposition of M∗. Hence Bk is closed under
duality. To show that Bk is closed under minors, let x be an element of E(M). By
deleting the leaf label x from T , we obtain a branch-decomposition for each of M\x
and M/x of width at most k′.



6 RHIANNON HALL, JAMES OXLEY, CHARLES SEMPLE, AND GEOFF WHITTLE

To show that Bk is closed under direct sums and 2–sums, let M1 and M2 be
members of Bk. Let T1 and T2 be branch-decompositions of M1 and M2, respec-
tively, each of width at most k. First consider the direct sum. Subdivide an edge of
T1 and an edge of T2. Join the new vertices with an edge e. The width of e is 1. It
is easily checked that the new tree is a branch-decomposition of M1 ⊕M2 of width
at most k.

Finally, consider the 2–sum of M1 and M2 with respect to the basepoints p1 and
p2. We may assume that each pi is neither a loop nor a coloop of Mi, for otherwise
the 2–sum is a direct sum. Thus k ≥ 2. Now identify the vertices of T1 and T2

labelled by p1 and p2 and suppress the resulting degree–2 vertex, letting f be the
resulting edge. Then f has width 2. The routine check that the resulting tree is a
branch-decomposition of the 2–sum of width at most k is omitted.

The next lemma about branch-decompositions will follow from some of the con-
nectivity lemmas in the previous section.

Lemma 3.5. Let T be a width–3 branch-decomposition of a 3–connected matroid

M with an edge e that displays a 3–separating set A of M . Suppose that x ∈ A and

x ∈ cl(∗)(E(M)−A). Then there is a width–3 branch-decomposition T̂ with a vertex

v that displays the partition {A− {x}, {x}, E(M)− A}. Indeed, T̂ can be obtained

from T by subdividing e inserting a new vertex v, adding a new leaf adjacent to v,
and then moving the label x from its original leaf in T to the new leaf.

Proof. The construction of T̂ is illustrated in Figure 1. To prove the lemma, we
need to check that T̂ is a width–3 branch-decomposition of M . Let f be some edge
of T̂ . Then either f displays some partition {X, Y } that was also displayed in T , in
which case, ω(f) ≤ 3; or f displays a partition {X −{x}, Y ∪{x}} where {X, Y } is
a partition displayed in T and x is in X . But, in the latter case, (E(M)−A)∪{x} ⊆

Y ∪ {x}. Therefore x ∈ cl(∗)(Y ) and so, by Lemma 2.3, λ(Y ∪ {x}) ≤ λ(Y ). We
conclude that ω(f) ≤ 3, as required.

B

T̂e

A B A − {x}

x

x

v

Figure 1

4. A Connectivity-Function Theorem

In this section, we prove the following theorem, which will play a key role in
bounding the size of an excluded minor for the class of matroids of branch-width
at most 3.



ON MATROIDS OF BRANCH-WIDTH THREE 7

Theorem 4.1. Let λ be a 3–connected connectivity function on a set S, and sup-

pose that λ has branch-width 3. Let A be a 3–separating subset of S that is not

displayed in any width–3 branch-decomposition of λ. Then there is a set X in

{A, S − A} such that |X | ∈ {2, 3}, and λ({x}) = 2 for all x in X.

Broadly speaking, Theorem 4.1 says if λ is a connectivity function of branch-
width 3 and λ is 3–connected, then most 3–separating subsets of the ground set of
λ can be displayed in some branch-decomposition of width 3. Before proving this
theorem, we first establish some preliminaries.

The technique used to prove the next lemma is very similar to that used in [6,
Theorem 2.1] to prove that connectivity functions have “linked” branch-decomposi-
tions.

Lemma 4.2. Let λ be a 3–connected connectivity function on a set S, and suppose

that λ has a width–3 branch-decomposition T . Let A be a 3–separating subset of S,

and let c and d be edges of T having the following properties:

(i) the label set C of the branch TC of c that does not contain d is a subset of A
and λ(C) = 3; and

(ii) the label set D of the branch TD of d that does not contain c is a subset of

S − A and λ(D) = 3.

Then there is a width–3 branch-decomposition of λ that displays A.

Proof. Since λ is 3–connected and λ(C) = 3 = λ(D), both C and D are non-empty.
If either |A| = 1 or |S −A| = 1, then T displays A. Therefore we may assume that
|A|, |S − A| ≥ 2.

Let u and v be the end-vertices of c and d, respectively, such that the path that
joins u and v in T does not contain c or d. Clearly, u and v need not be distinct.

Define a new tree T̂ as follows. Take a copy T + of the branch of T\d containing
c, and a copy T− of the branch of T\c containing d. Initially the leaves of T +

and T− will be unlabelled. Connect T + with T− by a new edge a joining the
vertex corresponding to v in T + to the vertex corresponding to u in T−. This
construction is illustrated in Figure 2 for the case when u 6= v. We turn T̂ into
a branch-decomposition by assigning labels to the leaves of T̂ as follows. Choose
s ∈ S. Then s labels a leaf l of T . Suppose first that s ∈ A. Then there is a copy
of l in T+, and we label this copy by s. On the other hand, if s ∈ S − A, then
there is a copy of l in T−, and we label this copy by s. With this labelling, T̂ is
a branch-decomposition in which A is displayed by the edge a. It remains to show
that T̂ has width 3.

The sets displayed by a are A and S − A, so the width of a is 3. Now choose
another edge f of T̂ . We lose no generality in assuming that f is in T +. First
suppose that f is an edge of TC . Then f is a copy of an edge f ′ in T . But the
partition of S displayed by f in T̂ is the same as the partition of S displayed by f ′

in T , so clearly ω(f) ≤ 3.
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S − A

A

C
u v D

C

T+

u

T−

D

c
d

v a

Figure 2

Now suppose that f is not an edge of TC . Then f is a copy of an edge f ′ in T .
Let {X, Y } be the partition of S displayed by f ′, where D ⊆ Y . Then f displays
the partition {X ∩ A, Y ∪ (S − A)}. It suffices to show that this is a 3–separation
of S. Consider the partition {X ∪ A, Y ∩ (S − A)}. We have D ⊆ Y ∩ (S − A).
If D = Y ∩ (S − A), then λ(Y ∩ (S − A)) = 3. If D $ Y ∩ (S − A), then
|Y ∩ (S − A)| ≥ 2 since D 6= ∅, and |X ∪ A| ≥ 2 since |A| ≥ 2. Therefore, as λ is a
3–connected connectivity function, λ(Y ∩(S−A)) ≥ 3. As {X, Y } is a 3–separation
of λ, it follows by Lemma 2.1 that λ(Y ∪ (S −A)) ≤ 3. Thus ω(f) ≤ 3 as required.

We conclude that T̂ is a width–3 branch-decomposition of λ that displays A.

Lemma 4.3. Let λ be a 3–connected connectivity function λ on S, and let A1 be

a 3–separating set and A2 be its complement where |A1|, |A2| ≥ 2. Suppose that λ
has a width–3 branch-decomposition T . Let e be an edge of T , and S1 and S2 be

the sets displayed by e. If either

(i) λ(S2 ∩ A1) ≥ 3 and λ(S2 ∩ A2) ≥ 3, or

(ii) λ(S2 ∩ A1) ≥ 3 and |S1 ∩ A1| = 1,

then there is a width–3 branch-decomposition T ′ of λ with a vertex v such that the

sets displayed by v are S1 ∩A1, S1 ∩A2, and S2. Moreover, each subset of S2 that

is displayed in T is also displayed in T ′.

Proof. The tree T is the union of two subtrees B1 and B2 that display S1 and
S2, respectively, and have e as their only common edge. We create a new tree T̂
as follows. Take B2 and two copies, B3 and B4, of B1 and identify the degree-
one vertices of the edges corresponding to e as a new vertex v. Note that if e
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is a pendant edge of T , then the end of e that has degree exceeding one in T is
identified with v. We assign labels to the leaves of T̂ as follows. The branch of T̂
corresponding to B2 is labelled with the elements of S2 just as in our original tree.
If s ∈ A1 ∩ S1 and s labels the leaf l of B1 in T , then there is a corresponding leaf
in B3. We label this leaf with s. We use a similar procedure to assign the elements
of A2 ∩ S1 to leaves of B4.

With the above labelling, T̂ is a branch-decomposition of λ. It remains to show
that if either (i) or (ii) holds, then this branch-decomposition has width 3. Evi-

dently, each edge of B2 has the same width in T̂ as in T . Let f be another edge of
T̂ . Suppose first that f is an edge of B4. We shall show that, since λ(S2 ∩A1) ≥ 3,
we have ω(f) ≤ 3. Now, f is a copy of an edge f ′ of B1 in T . Let {X, Y } be
the partition of S displayed by f ′ where S2 ⊆ X . Then f displays the partition
{X ∪ A1, Y ∩ A2}. We shall show that this is a 3–separation of S. Consider the
partition {X ∩ A1, Y ∪ A2}. We have S2 ∩ A1 ⊆ X ∩ A1. If S2 ∩ A1 = X ∩ A1,
then, by hypothesis, λ(X ∩ A1) ≥ 3. If S2 ∩ A1 $ X ∩ A1 then, as λ(S2 ∩A1) ≥ 3,
we have S2 ∩ A1 6= ∅ so |X ∩ A1| ≥ 2. Moreover, |Y ∪ A2| ≥ 2 as |A2| ≥ 2.
Thus λ(X ∩ A1) ≥ 3 since λ is a 3–connected connectivity function. Now we know
that {X, Y } is a 3–separation of S and that λ(X ∩ A1) ≥ 3 so, by Lemma 2.1,
λ(X ∪ A1) ≤ 3. Thus ω(f) ≤ 3 as required.

We may now assume that f is an edge of B3. Then, in case (i), λ(S2 ∩ A2) ≥ 3
and, by symmetry, the argument in the last paragraph shows that ω(f) ≤ 3. In
case (ii), |S1 ∩ A1| = 1 so the edge f either displays the partition {∅, S}, in which
case, ω(f) = 1, or f displays the singleton set A1∩S1. But singleton sets are always
3–separating in connectivity functions with branch-width 3. Thus ω(f) ≤ 3.

We now prove Theorem 4.1.

Proof of Theorem 4.1. Let P be a 3–separating subset of S, and let Q be its com-
plement. We will say that P is bad if {P, Q} contains a set X such that |X | ∈ {2, 3}
and λ({x}) = 2 for all x in X ; otherwise P is said to be good. The goal is to show
that every good 3–separating set of S can be displayed in some width–3 branch-
decomposition of λ.

Let T be a width–3 branch-decomposition of λ, and suppose that P is a good
3–separating set. If either |P | = 1 or |Q| = 1, then P is displayed in T . Therefore
we may assume that |P |, |Q| ≥ 2.

4.1.1. There is a subset P ′ of P with λ(P ′) = 3 such that P ′ can be displayed in a

width–3 branch-decomposition of λ.

Proof. If P has an element x with λ({x}) = 3, then let P ′ = {x}. If not, then, since
P is good, |P | ≥ 4. Therefore, by Lemma 3.3, there is an edge e of T displaying
branches B1 and B2 with |B̄1 ∩ P |, |B̄2 ∩ P | ≥ 2. This implies that λ(B̄1 ∩ P ) ≥ 3
because |B̄1 ∩ P | ≥ 2 and |B̄2 ∪ Q| ≥ 2. Similarly, λ(B̄2 ∩ P ) ≥ 3. Furthermore,
since |Q| ≥ 2 and S = B̄1 ∪ B̄2, one of the following holds:



10 RHIANNON HALL, JAMES OXLEY, CHARLES SEMPLE, AND GEOFF WHITTLE

(i) |B̄1 ∩ Q| ≥ 2 and so λ(B̄1 ∩ Q) ≥ 3 as |B̄2 ∪ P | ≥ 2;
(ii) |B̄2 ∩ Q| ≥ 2 and so λ(B̄2 ∩ Q) ≥ 3 as |B̄1 ∪ P | ≥ 2;
(iii) |B̄1 ∩ Q| = 1 = |B̄2 ∩ Q|.

In the third case, since Q is good, we deduce that λ({x}) ≥ 3 for some x in Q.
Therefore, in all three cases, either λ(B̄1 ∩ Q) ≥ 3 or λ(B̄2 ∩ Q) ≥ 3. Without loss
of generality, we may assume the former.

By Lemma 4.3, there is a width–3 branch-decomposition with a vertex v display-
ing the 3–separating sets B̄1, B̄2 ∩ P , and B̄2 ∩ Q. Since |B̄2 ∩ P | ≥ 2, we deduce
that λ(B̄2 ∩ P ) = 3. In this case, we take P ′ = B̄2 ∩ P .

4.1.2. There is a width–3 branch-decomposition of λ that displays both P ′ and some

subset Q′ of Q with λ(Q′) = 3.

Proof. Let T ′ be a width–3 branch-decomposition of λ that displays P ′. If Q has an
element x with λ({x}) = 3, then let Q′ = {x}. If not, then |Q| ≥ 4. By Lemma 3.3,
there is an edge e in T ′ displaying branches B3 and B4 with |B̄3 ∩Q|, |B̄4 ∩Q| ≥ 2.
Either P ′ ⊆ B̄3 or P ′ ⊆ B̄4. Without loss of generality, we may assume that
P ′ ⊆ B̄3.

Since λ is 3–connected, λ(B̄3 ∩ Q) ≥ 3 because |B̄3 ∩ Q| ≥ 2 and |B̄4 ∪ P | ≥ 2.
Moreover, since B̄3 ∩ P contains P ′, either |B̄3 ∩ P | ≥ 2 or B̄3 ∩ P = P ′. In either
case, since |B̄4 ∪ Q| ≥ 2, it follows that λ(B̄3 ∩ P ) ≥ 3.

We now deduce, by Lemma 4.3, that there is a width–3 branch-decomposition
of S with a vertex displaying the sets B̄3, B̄4 ∩ Q, and B̄4 ∩ P . Also, P ′ ⊆ B̄3

so P ′ is displayed in this branch-decomposition. Furthermore, |B̄4 ∩ Q| ≥ 2 so
λ(B̄4 ∩ Q) = 3. In this case, we take Q′ = B̄4 ∩ Q.

Now that we have a width–3 branch-decomposition displaying P ′ and Q′ with
λ(P ′) = 3 and λ(Q′) = 3, we may apply Lemma 4.2 to obtain a width–3 branch-
decomposition of λ that displays P .

An immediate consequence of Theorem 4.1 is the following.

Corollary 4.4. Let M be a 3–connected matroid with branch-width 3. If A is a

3–separating set such that no width–3 branch-decomposition of M displays A, then

either A or E(M) − A has 2 or 3 elements.

The next proposition shows that Corollary 4.4 is the best we can do, in the
sense that it is possible for a 3–connected matroid with branch-width 3 to have a
3–separating set of size 3 that cannot be displayed in any width–3 branch decom-
position. Let M9 denote the rank–3 matroid shown in Figure 3(a). Evidently M9

is 3–connected and so has branch-width at least 3.

Proposition 4.5. The matroid M9 has branch-width 3, but there is no branch-

decomposition of M9 that displays the 3–separating set {1, 2, 3} and has width 3.
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Figure 3. (a) The matroid M9. (b) A width–3 branch decompo-
sition of M9.

Proof. The labelled cubic tree shown in Figure 3(b) is easily checked to be a width–3
branch-decomposition of M9. Therefore this matroid has branch-width 3. We next
show that M9 has no width–3 branch-decomposition that displays the 3–separating
set {1, 2, 3}. Suppose, to the contrary, that T is such a branch-decomposition.
Without loss of generality, we may assume that T is reduced. Then, as T cubic
and has exactly nine leaves, T contains exactly six non-pendant edges. Each such
edge displays a 3–separating set A such that 2 ≤ |A| < |E(M9)−A| ≤ 7. Let A be
the collection of such sets A that are displayed by some non-pendant edge of T . By
assumption, {1, 2, 3} ∈ A. The rest of the proof considers the possibilities for the
remaining five members of A. Evidently, each such set has at most four elements.
But M9 has no 3–separating sets of size four. Thus each member of A has 2 or
3 elements. Apart from {1, 2, 3}, the only 3–separating sets of M9 of size 3 are
{1, 4, 5}, {2, 6, 7}, and {3, 8, 9}. It is easily seen that no cubic tree can display both
{1, 2, 3} and {1, 4, 5}, so {1, 4, 5} 6∈ A. By symmetry, neither {2, 6, 7} nor {3, 8, 9}
is in A.

Now consider 3–separating sets of size 2. Since {1, 2, 3} ∈ A, exactly one of
{1, 2}, {1, 3}, and {2, 3} is in A. Thus A contains exactly four other 3–separating
sets of size 2. But each such set must be a subset of {4, 5, 6, 7, 8, 9} and no two such
sets can meet. This contradiction completes the proof of the proposition.

5. Partitioned Matroids

In this section, we establish some results for matroids that will assist us in
bounding the size of an excluded minor for the class of matroids of branch-width 3.
We introduce the notion of a “partitioned matroid”. This enables us to say what
it means for a 3–separating set of a matroid to have branch-width 3.

Let M be a matroid, and let P be a partition of E(M). We say that the pair
(M, P ) is a partitioned matroid. Associated with a partitioned matroid is a set
function λP on P , defined as follows: if P ′ ⊆ P , then λP (P ′) = λM (

⋃
Q∈P ′ Q).

Evidently λP is a connectivity function.
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Assume that M is a 3–connected matroid, and let A be a 3–separating set in
M . For A = {a1, a2, . . . , an}, we say that A is branched if λP has branch-width 3,
where P = {S − A, {a1}, {a2}, . . . , {an}}.

Lemma 5.1. Let M be a 3–connected matroid.

(i) If both A and E(M) − A are branched, where A is a 3–separating set of M ,

then M has branch-width 3 and there is a width–3 branch-decomposition that

displays the 3–separating sets A and E(M) − A.

(ii) If {A, B, C} is a partition of E(M), where each of A, B, and C is 3–separating

and branched, then M has branch-width 3 and there is a width–3 branch-

decomposition that displays each of the 3–separating sets A, B, and C.

Proof. To prove (i), let A = {a1, a2, . . . , an} and E(M)−A = {b1, b2, . . . , bm}. Let
P1 = {E(M) − A, {a1}, {a2}, . . . , {an}} and P2 = {A, {b1}, {b2}, . . . , {bm}}, and
let T1 and T2 be width–3 branch-decompositions of λP1

and λP2
, respectively. Let

l1 be the leaf labelled by S − A in T1, and let l2 be the leaf labelled by A in T2.
We create a branch-decomposition T̂ of M by identifying l1 and l2 as a new vertex
and then suppressing this new vertex (see Figure 4). It is easily seen that T̂ is a

width–3 branch-decomposition as every edge in T̂ corresponds to an edge of T1 or
T2. This completes the proof of (i). The proof of (ii) is similar and we omit the
details.

T1

S − A

b3

b4

T2

T̂

a

b3

b4

b2

a3

a7

a5

a4

a6

A

b1

b2

a2

a1

b5

a5

a7

b5

b1

a6 a1

a2

a4

a3

Figure 4
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Lemma 5.2. Let M be a 3–connected matroid with branch-width 3. Let A be a

3–separating set in M , where |A| ≥ 4 and |E(M) − A| ≥ 4. Then both A and

E(M) − A are branched.

Proof. The proof of this follows immediately from Corollary 4.4 which says that
there is a width–3 branch-decomposition of M in which A and E(M) − A are
displayed.

|A| = 3

a2

|A| = 4

a2

S − A

a1

a3

a4

a1

S − A

a3

Figure 5

Lemma 5.3. Let M be a 3–connected matroid. Let {a1, a2, . . . , an} be a 3–separ-
ating set A in M , and let P = {E(M) − A, {a1}, {a2}, . . . , {an}}. If n ≤ 4,
then there is a width–3 branch-decomposition of the partitioned matroid (M, P ).
Moreover, every permutation of the elements of A in this branch-decomposition

produces another width–3 branch-decomposition of (M, P ).

Proof. Every 1– or 2–element set of a matroid is 3–separating. Therefore, if n ≤ 2,
then A is certainly branched. Moreover, Figure 5 shows width–3 branch-decomposi-
tions of the partitioned matroid (M, P ) when n = 3 and n = 4. As the ordering of
a1, a2, . . . , an in these branch-decompositions is arbitrary, the second part of the
lemma is also proved.

6. Fully Closed Sets

A set A of elements of a matroid M is coclosed if it is closed in M ∗. We say that
A is fully closed if A is both closed and coclosed. Since the intersection of closed sets
is closed, it follows that the intersection of fully closed sets is fully closed. Thus, for
a given set A, there is a unique minimal fully closed set containing A. Denote this
set by ccl(A). Then, for all sets X , we have ccl(cl(X)) = ccl(X). Using this, it is
easily checked that, to find ccl(A), one first takes cl(A), then the coclosure of cl(A),
then the closure of the result, and so on until, at some stage, no new elements are
added; at this point, we have found ccl(A). Thus, for example, if A is a triangle in
a wheel or a whirl, then ccl(A) is the ground set of the matroid. Clearly, there can
be elements of ccl(A) that are not in the closure or the coclosure of A.

Lemma 6.1. Let (A, B) be a 3–separation of a 3–connected matroid M , and sup-

pose that A is fully closed. Then there are at least two elements a1, a2 ∈ A such

that, for each i in {1, 2}, either M\ai or M/ai is 3–connected.



14 RHIANNON HALL, JAMES OXLEY, CHARLES SEMPLE, AND GEOFF WHITTLE

Proof. If, for all x in A, either M\x or M/x is 3–connected, then the result holds
since |A| ≥ 3. Thus we may assume that there is some x in A such that neither
M\x nor M/x is 3–connected. By a result of Bixby [1] (see also [14, Proposition
8.4.6]), either M\x or M/x has only minimal 2–separations. By duality, we may
assume the latter. Then the simplification of M/x is 3–connected and x is in a
triangle ∆ of M . We shall show next that A contains a triangle ∆′ containing x.
This is certainly true if ∆ ⊆ A for then we take ∆′ = ∆. Now assume that ∆ is
not contained in A. Then ∆ ∩ A = {x}, and x ∈ cl(∆ − {x}), so x ∈ cl(B). It
follows that (A − x, B) is a 2–separation of M/x by Lemma 2.5. Since M/x has
only minimal 2–separations, either A − {x} or B is a 2–circuit of M/x. But if B
is 2–circuit of M/x, then the elements of B are in clM (A). This contradicts the
fact that A is fully closed. Thus A − {x} is a 2–circuit of M/x, and hence A is a
triangle of M containing x. In this case, we let ∆′ = A.

By Tutte’s Triangle Lemma [16] (see also [14, Lemma 8.4.9]), if no element of
∆′ can be deleted from M without destroying 3–connectivity, there is a triad that
contains exactly two elements of ∆′. Since A is coclosed, this triad is contained
in A. Therefore A contains a 4–element fan F1. As A is fully closed, every fan
containing F1 is contained in A. Let F be a maximal fan of M containing F1.
Then, since F is maximal, it is well-known [15] that if f is one of the two ends of
F , then either M/f or M\f is 3–connected.

Lemma 6.2. Let (A, B) be a 3–separation of a 3–connected matroid M . Then

ccl(A) is 3–separating in M . Moreover,

(i) if A is branched, then ccl(A) is branched; and

(ii) if B − ccl(A) is branched, then B is branched.

Proof. To form ccl(A) from A, we add a sequence of elements b1, b2, . . . bn to A

where bi ∈ cl(∗)(A ∪ {b1, b2, . . . , bi−1}) for all i in {1, 2, . . . , n}. Now, λ(A) = 3 so,
by Lemma 2.3, for each i in {1, 2, . . . , n}, we have λ(A ∪ {b1, b2, . . . , bi}) ≤ 3, so
ccl(A) is 3–separating in M .

Now consider the partitioned matroid MP where P = {A, {b1}, {b2}, . . . {bn}, B−
ccl(A)}. We see that λP has branch-width 3 from the branch-decomposition given
in Figure 6. It follows immediately that if A is branched, then ccl(A) is branched,
and if B − ccl(A) is branched, then B is branched.

A

b1 bn−1

B − ccl(A)

b2 bn

Figure 6
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7. Bounding the Size of an Excluded Minor

We now bound the size of an excluded minor for the class of matroids of branch-
width at most 3 using the results of the earlier sections. In particular, we establish
a bound of 25, which will be sharpened in the subsequent section

The first lemma is a routine consequence of Lemma 3.4.

Lemma 7.1. If M is an excluded minor for B3, then M is 3–connected. 2

The following very useful lemma was proved in [6].

Lemma 7.2. Let x be an element of a matroid M , and let A and B be subsets of

E(M) − {x}. Then

λM\x(A) + λM/x(B) ≥ λM (A ∩ B) + λM (A ∪ B ∪ {x}) − 1.

2

A matroid M is k–connected up to separators of size l if, whenever A is a (k−1)–
separating set in M , either |A| ≤ l or |E(M) − A| ≤ l. We shall apply Lemma 7.2
to prove the next result.

Lemma 7.3. Let M be a matroid that is k–connected up to separators of size l.
Then, for all x in E(M), either M\x or M/x is k–connected up to separators of

size 2l.

Proof. Let x ∈ E(M), and suppose that M\x is not k–connected up to separators
of size 2l. Then there is a partition {A1, A2} of the ground set of M\x such that
|A1|, |A2| ≥ 2l +1 and A1 is (k − 1)–separating. Now, in M/x, let B1 be a (k− 1)–
separating set and B2 be its complement. Then, by Lemma 7.2,

λM\x(A1) + λM/x(B1) ≥ λM (A1 ∩ B1) + λM (A1 ∪ B1 ∪ x) − 1.

By assumption, λM\x(A1) ≤ k − 1 and λM/x(B1) ≤ k − 1. Moreover,

λM (A1 ∪ B1 ∪ {x}) = λM (A2 ∩ B2)

as A2 ∩ B2 is the complement of A1 ∪ B1 ∪ {x} in E(M). Thus

λM (A1 ∩ B1) + λM (A2 ∩ B2) ≤ 2k − 1.

It follows that either λM (A1 ∩ B1) ≤ k − 1 or λM (A2 ∩ B2) ≤ k − 1, which in
turn implies that either A1 ∩ B1 or A2 ∩ B2 is (k − 1)–separating in M . Since M
is k–separating up to separators of size l, it follows that either |A1 ∩ B1| ≤ l or
|A2 ∩B2| ≤ l. By interchanging B1 and B2 in the above argument, we obtain that
either |A1 ∩ B2| ≤ l or |A2 ∩ B1| ≤ l. Without loss of generality, we may assume
that |A1∩B1| ≤ l. It is not possible to have |A1∩B2| ≤ l as |A1| ≥ 2l+1. Therefore
we must have |A2 ∩ B1| ≤ l and so |B1| ≤ 2l. From this, we conclude that M/x is
k–connected up to separators of size 2l.

Lemma 7.4. Let M be an excluded minor for the class of matroids of branch-width

at most 3. Then M is 4–connected up to separators of size 4.
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Proof. Assume the contrary. Then there is a 3–separation (A, B) of M such that
|A| ≥ 5 and |B| ≥ 5. If both A and B are branched, then, by Lemma 5.1(i), M
has branch-width 3. Thus we may assume that B is not branched. By Lemma 6.2,
B − ccl(A) is not branched. By Lemma 5.3, in a 3–connected matroid, every 3–
separating set with at most four elements is branched. Thus |B − ccl(A)| ≥ 5.

It follows from the above that we lose no generality in assuming that A is fully
closed. By Lemma 6.1, there is an element x in A such that M\x or M/x is 3–
connected. By duality, we may assume that M\x is 3–connected. Thus (A−{x}, B)
is a 3–separation of M\x, where both |A − {x}| ≥ 4 and |B| ≥ 4. Hence, by
Corollary 4.4 and the fact that M\x has branch-width 3, there is a width–3 branch-
decomposition T of M\x with an edge e that displays B. Replace the branch of
T that displays A − {x} by a single leaf, and label this leaf by A. It is now easily
checked that this gives a branch-decomposition of the partitioned matroid (M, P )
where P = {{A} ∪ {{b} : b ∈ B}}. This contradicts the fact that B is not a
branched 3–separating set of M .

Theorem 7.5. Let M be an excluded minor for the class of matroids of branch-

width at most 3. Then M has at most 25 elements.

Proof. From Lemma 7.4, M is 4–connected up to separators of size 4. Let x ∈
E(M). Then, by Lemma 7.3, either M\x or M/x is 4–connected up to separators
of size 8. By duality, we may assume the former. Since M\x has branch-width
3, there is a reduced width–3 branch-decomposition T of M\x. Furthermore, by
Lemma 3.1, there is an edge e of T displaying branches B1 and B2 where both B1

and B2 have at least 1
3 |E(M\x)| leaves. But B̄1 and B̄2 are 3–separating sets of

M\x, so either |B̄1| ≤ 8 or |B̄2| ≤ 8. Since |B̄1|, |B̄2| ≥
1
3 |E(M\x)|, it follows that

|E(M\x)| ≤ 24 and hence |E(M)| ≤ 25.

8. Sharper Bounds

In this section, we reduce the bound on the size of an excluded minor for the
class of matroids of branch-width at most 3.

Let M be an excluded minor for the class of matroids of branch-width at most 3.
By Lemmas 7.1 and 7.4, M is 3–connected and is 4–connected up to separators of
size 4. We consider three cases:

(I) M is 4–connected;
(II) M is internally 4–connected, that is, M is 4–connected up to separators of

size 3; and
(III) M has a 3–separating set of size 4.

The next result sharpens Theorem 7.5 in Case I.

Theorem 8.1. Let M be a 4–connected excluded minor for B3. Then M has at

most 13 elements.
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Proof. Let x ∈ E(M). Then, by Lemma 7.3, either M\x or M/x is 4–connected up
to separators of size 4. By duality, we may assume the former. Let T be a reduced
width–3 branch-decomposition of M\x. Then by Lemma 3.1, there is an edge e of T
that displays a 3–separation (A, B) of M\x where |A|, |B| ≥ 1

3 |E(M\x)|. But since
M\x is 4–connected up to separators of size 4, we have that |A| ≤ 4 or |B| ≤ 4. It
follows that |E(M\x)| ≤ 12 and hence, |E(M)| ≤ 13.

We now consider Case II. To reduce the bound on the size of an internally 4–
connected excluded minor for B3, we shall use the following result of Hall [9].

Theorem 8.2. Let M be an internally 4–connected matroid, and let {a, b, c} be a

triangle of M . Then

(i) at least one of M\a, M\b, and M\c is 4–connected up to separators of size 4;
or

(ii) at least two of M\a, M\b, and M\c are 4–connected up to separators of size 5.

2

Theorem 8.3. Let M be an internally 4–connected excluded minor for B3. Then

M has at most 14 elements.

Proof. By Theorem 8.1, we may assume that M is not 4–connected, so we may
assume, by duality, that M contains a triangle {a, b, c}. Then, by Lemma 8.2, for
some e in {a, b, c}, say e = a, the matroid M\e is 4–connected up to separators of
size 5. Let T be a reduced width–3 branch-decomposition of M\a, and choose a 3–
separation (A, B) displayed in T for which min{|A|, |B|} is as large as possible. If no
such 3–separation exists, then, by Lemma 3.1, |E(M)| ≤ 8 and the theorem holds.
Assume that |A| ≤ |B| and (A, B) is displayed by the edge e. Now, since M\a is
4–connected up to separators of size 5, we may assume that |A| ≤ 5. Let v be the
vertex incident with e that displays the partition {A, X, Y }, where X ∪ Y = B.
Then, by the choice of (A, B), we have |X |, |Y | ≤ |A|, so |X |, |Y | ≤ 5.

The rest of the argument will rely simply on the fact that M has a reduced
branch-decomposition T and a degree–3 vertex v such that each set displayed by
v has at most five elements. We shall consider the positions of b and c in this
branch-decomposition. By symmetry, we have only two cases to check: (i) b, c ∈ A;
and (ii) b ∈ A and c ∈ X .

In case (i), a ∈ clM (A) since b, c ∈ A and {a, b, c} is a triangle of M . By
Lemma 2.4, A∪{a} is a 3–separating set in the internally 4–connected matroid M .
Thus either |A ∪ {a}| ≤ 3 or |B| ≤ 3. If |B| ≤ 3, then, since |A| ≤ 5, it follows
that |E(M)| ≤ 9. If |A∪ {a}| ≤ 3, then it follows by Lemma 2.4 that X and Y are
3–separating sets of M , so |X | ≤ 3 and |Y | ≤ 3 and, again, |E(M)| ≤ 9. Hence, in
the first case, the theorem holds.

In case (ii), a ∈ clM (A∪X) since b ∈ A and c ∈ X . By Lemma 2.4, A∪X∪{a} is a
3–separating set of M . Thus either |A∪X∪{a}| ≤ 3 or |Y | ≤ 3. If |A∪X∪{a}| ≤ 3,
then, since |Y | ≤ 5, we have |E(M)| ≤ 8. If |Y | ≤ 3, then, since |A|, |X | ≤ 5, we
have |E(M)| ≤ 14. We conclude that the theorem also holds in the second case.
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Finally, we sharpen the bound for Case III. In particular, we show that if M is
an excluded minor for B3 and M has a 3–separating set of size 4, then M has at
most 16 elements. To get this result, we first establish some properties of width–3
branch decompositions of matroids in B3 having a triangle or a triad that cannot
be displayed in such a branch-decomposition. Note that, in the figures that follow,
a large circle labelled by Z in a tree T indicates the branch of T for which the set
of leaf labels is Z.

Lemma 8.4. Let {x, y, z} be a triangle or triad of a 3–connected matroid M . Sup-

pose that M has a width–3 branch-decomposition T with an edge e that displays a

3–separating set Y of M . If |Y | ≤ 4 and y, z ∈ Y , then {x, y, z} can be displayed

in a width–3 branch-decomposition of M .

Proof. Suppose first that x ∈ Y . If |Y | = 3, then Y = {x, y, z}, so {x, y, z} is
displayed in T . If |Y | = 4 and Y = {x, y, z, w}, then both Y and Y − {w} are
3–separating sets of M . Hence E(M)−Y and (E(M)−Y )∪ {w} are 3–separating

sets of M and so, by Lemma 2.6, w ∈ cl(∗)(E(M)−Y ). Thus, by Lemma 3.5, there
is a width–3 branch-decomposition displaying {x, y, z}.

Now suppose that x ∈ E(M) − Y . Since |Y | ≤ 4, it follows by Lemma 5.3 that
there is a width–3 branch-decomposition of M having a vertex v that displays the
partition {E(M)−Y, {y, z}, Y −{y, z}}. Evidently, this branch-decomposition has

an edge that displays the 3–separating set E(M) − {y, z}. As x ∈ cl(∗)({y, z}), it
follows by Lemma 3.5 that there is a width–3 branch-decomposition of M having
a vertex v that displays the partition {E(M) − {x, y, z}, {x}, {y, z}}. The lemma
follows.

Lemma 8.5. Let {x, y, z} be a triangle or triad of a 3–connected matroid M with

branch-width 3. Suppose that M has a width–3 branch-decomposition T with a

vertex v that displays a partition {A, B, {y}} with x ∈ A and z ∈ B. Then {x, y, z}
can be displayed in a width–3 branch-decomposition of M .

Proof. Let eA and eB be edges of T that are incident with v and display the

partitions {A, B ∪ {y}} and {B, A ∪ {y}}, respectively. Now x ∈ cl(∗)(B ∪ {y}).

Thus, by Lemma 3.5, M has a width–3 branch-decomposition T̂1 that is obtained
from T by subdividing eA inserting a new vertex v1, adding a new leaf adjacent to v1,

and moving the label x from its leaf in T to this new leaf. As z ∈ cl(∗)(A∪{y}), we

can obtain a width–3 branch-decomposition T̂2 from T̂1 by subdividing eB inserting
a new vertex v2, adding a new leaf adjacent to v2, and moving the label z onto this
new leaf. The effect of these two moves is illustrated in Figure 7. From this, we

T

x

y

z
v1 v v2

T̂2

zyx

v

A B A − x B − z

Figure 7
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see that A − {x} and B − {z} are branched 3–separating sets of M . Also, from
Lemma 5.3, {x, y, z} is a branched 3–separating set of M . Hence, by Lemma 5.1(ii),
M has a width–3 branch decomposition in which each of the sets A−{x}, B−{z},
and {x, y, z} is displayed as in Figure 8.

x

A − x B − z

y

z

Figure 8

Now we consider what a branch-decomposition of a 3–connected branch-width 3
matroid M can look like when M contains a triangle or triad {x, y, z} that cannot be
displayed in any width–3 branch-decomposition. When this occurs, Theorem 4.1
and Lemma 5.3 imply that there is no element w of E(M) − {x, y, z} with w ∈

cl(∗)({x, y, z}).

Lemma 8.6. Let M be a 3–connected matroid with branch-width 3. Let {x, y, z} be

a triangle or triad that cannot be displayed in any width–3 branch-decomposition of

M . Then there is a partition {A, B, C, {x}, {y}, {z}} of E(M), where at least two

of A, B, and C have at least two elements. Moreover, there is a width–3 branch-

decomposition of M with vertices v1, v2, v3, and v4 such that v2, v3, and v4 are the

neighbours of v1 and

(i) v1 displays the partition {A ∪ {x}, B ∪ {y}, C ∪ {z}};
(ii) v2 displays the partition {A, {x}, B ∪ C ∪ {y, z}};
(iii) v3 displays the partition {B, {y}, A ∪ C ∪ {x, z}}; and

(iv) v4 displays the partition {C, {z}, A ∪ B ∪ {x, y}}.

Proof. Let T be a width–3 branch-decomposition of M . By Lemma 3.2, there is a
vertex v1 displaying branches B1, B2, and B3, where x ∈ B̄1, y ∈ B̄2, and z ∈ B̄3.
Let B̄1 −{x}, B̄2 −{y}, and B̄3 −{z} be A, B, and C, respectively, and let e1, e2,
and e3 be the edges of T that join v1 to B1, B2, and B3, respectively (see Figure 9).

Now, by Lemma 8.5, |A|, |B|, |C| ≥ 1, otherwise {x, y, z} can be displayed in
some width–3 branch-decomposition. We also see from Lemma 8.4 that |A∪B|, |A∪
C|, |B ∪ C| ≥ 3. This shows that at least two of A, B, and C have at least two

elements. Since x ∈ cl(∗)({y, z}), it follows by Lemma 3.5 that there is a width–

3 branch-decomposition T̂ that is obtained from T by subdividing the edge e1

inserting the vertex v2, adding a new leaf adjacent to v2, and moving the label x
onto this leaf. Thus v2 displays the partition {A, {x}, B ∪ C ∪ {y, z}}. Similarly,
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C ∪ {z}

T

A ∪ {x}

B ∪ {y}

e1

v1e3

e2

Figure 9

we may successively subdivide e2 and e3 inserting new vertices v3 and v4, adding
new leaves adjacent to these vertices, and moving the labels y and z onto these new
leaves so that we obtain, from T̂ , a width–3 branch decomposition in which v1, v2,
v3, and v4 display the partitions specified in the lemma (see Figure 10).

C

A

z

y

v1

v3

v4

B

v2 x

Figure 10

We will now reduce to 16 the bound on the size of an excluded minor for B3

that has a four-element 3–separating set. In [8], Hall further reduces the bound
in this case to 10, but this requires a very detailed case analysis which will not be
reproduced here.

Theorem 8.7. Let M be an excluded minor for B3, and suppose that M has a

four-element 3–separating set X. Then M has at most 16 elements.

Proof. Since |X | = 4, Lemma 5.3 implies that X is branched. Therefore, by
Lemma 5.1(i), if Y is the complement of X , then Y is not branched. By Lemma 7.4,
M is 4–connected up to separators of size 4. Thus X is fully closed, otherwise
|E(M)| ≤ 10 and the theorem holds. By Lemma 6.1, there is an element w of X
such that M\w or M/w is 3–connected. By duality, we may assume the former.
Then X − {w} is a 3–element 3–separating set in M\w. Thus X − {w} is a tri-
angle or a triad of M\w. Moreover, as both X − {w} and X are 3–separating,
r(X − {w}) = r(X).

Now suppose that M\w has a width–3 branch-decomposition T that displays X−
{w}. Assume that T is reduced. Then T has a vertex v1 that displays {Y, {x}, X−
{w, x}} for some x in X . Let e1 be the edge of T that joins v1 to the leaf labelled
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by x. Form T̂ by subdividing e1 inserting a new vertex v2 and adding a new leaf
adjacent to v2 and labelled by w. Since every 1– or 2–element set is 3–separating
in a 3–connected matroid, it follows that T̂ is a width–3 branch-decomposition of
M ; a contradiction. We conclude that M\w has no width–3 branch-decomposition
that displays X − {w}. By Lemma 8.6, M\w has a branch-decomposition of the
form shown in Figure 10, where X − {w} = {x, y, z}.

Now A is 3–separating in M\w and w ∈ cl(E(M) − A) so, by Lemma 2.4, A is
3–separating in M . Also, |E(M) − A| ≥ 7 because |B ∪ C| ≥ 3 from Lemma 8.4.
But M is 4–connected up to separators of size 4, so |A| ≤ 4. Similarly, |B|, |C| ≤ 4.
It follows that |E(M)| ≤ 16.
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