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On the Structure of 3-connected Matroids and Graphs

JAMES OXLEY AND HAIDONG WU

An elemente of a 3-connected matroidM is essential if neither the deletionM\e nor the con-
traction M/e is 3-connected. Tutte’s Wheels and Whirls Theorem proves that the only 3-connected
matroids in which every element is essential are the wheels and whirls. In this paper, we consider
those 3-connected matroids that have some non-essential elements, showing that every such matroid
M must have at least two such elements. We prove that the essential elements ofM can be partitioned
into classes where two elements are in the same class ifM has a fan, a maximal partial wheel, con-
taining both. We also prove that if an essential elemente of M is in more than one fan, then that fan
has three or five elements; in the latter case,e is in exactly three fans. Moreover, we show that ifM
has a fan with 2k or 2k + 1 elements for somek ≥ 2, thenM can be obtained by sticking together
a (k + 1)-spoked wheel and a certain 3-connected minor ofM . The results proved here will be used
elsewhere to completely determine all 3-connected matroids with exactly two non-essential elements.

c© 2000 Academic Press

1. INTRODUCTION

One of the main tools in the study of 3-connected matroids is the following result, Tutte’s
Wheels and Whirls Theorem [32], a generalization of an earlier graph result also due to
Tutte [31].

THEOREM 1.1. The following statements are equivalent for a3-connected matroid M.

(i) For every element e of M, neither the deletion nor the contraction of e from M is3-
connected.

(ii) M has rank at least three and is isomorphic to a whirl or the cycle matroid of a wheel.

Tutte [32] calls an elemente of a 3-connected matroidM essentialif neither the deletion
M\e nor the contractionM/e remains 3-connected. Evidently, Theorem1.1 characterizes
those 3-connected matroids in which no element is non-essential. This theorem has had a very
strong influence on the development of a large body of theory for 3-connected matroids (see,
for example, [1–6, 9–12, 15, 17–20, 29]). Moreover, a number of authors have generalized the
theorem in various ways (see, for example, [13, 14, 16, 21, 26–30]).

In this paper, we begin a study of the 3-connected matroids and graphs in which the set
of non-essential elements is small. We show, for example, that a 3-connected matroid can-
not have exactly one non-essential element; and, in another paper [24], we determine all
3-connected matroids with exactly two non-essential elements and all 3-connected simple
graphs with exactly three non-essential edges. However, we can say considerably more. In
particular, we prove a result that describes the local structure about an essential element in a
3-connected matroid. Part of this structure was determined by Tutte [32]:

THEOREM 1.2. An essential element in a3-connected matroid is in either a triangle or a
triad.

Here, atriangle is a 3-element circuit, and atriad is a 3-element cocircuit. Our first structure
theorem generalizes this result by showing that every essential element in a 3-connected ma-
troid M is in a submatroid ofM which can be viewed as a maximal partial wheel and which
we call a fan. Our second structure theorem describes how to break off such a partial wheel
from M to leave a smaller 3-connected matroid with at most one new non-essential element.
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The rest of this section will be devoted to introducing some terminology and basic results
needed to state the two main theorems. These statements, Theorems1.6 and1.8, appear to-
wards the end of the section. Section2 contains a number of properties of 3-connected ma-
troids that are needed in the proofs of the main theorems. These proofs appear in Sections3
and4. The main results have several important applications some of which will be discussed
elsewhere [24, 33]. In particular, these results can immediately be applied to give basic struc-
tural information for 3-connected simple graphs.

The matroid terminology used here will follow Oxley [21]. For a matroidM , the simple ma-
troid and the cosimple matroid associated withM will be denoted byM̃ andM˜, respectively.
We call these matroids thesimplificationand thecosimplificationof M . A basic property of
matroids that we shall use repeatedly is that a circuit and a cocircuit cannot have exactly one
common element. We shall refer to this property asorthogonality.

Suppose thatr ≥ 2. ThewheelWr of rank r is a graph havingr +1 vertices,r of which lie
on a cycle (therim); the remaining vertex is joined by a single edge (aspoke) to each of the
other vertices. Therank-r whirlWr is a matroid onE(Wr ) having as its circuits all cycles of
Wr other than the rim as well as all sets of edges formed by adding a single spoke to the edges
of the rim. The terms ‘rim’ and ‘spoke’ will be applied in the obvious way in bothM(Wr )

andWr . Moreover, we shall usually refer to the cycle matroid of a wheel as just a wheel.
The smallest 3-connected whirl isW2, which is isomorphic toU2,4; the smallest 3-connected
wheel isM(W3), which is isomorphic toM(K4). By contrast with wheels and whirls of larger
rank, inM(W3) andW2, we cannot distinguish rim elements from spokes by looking just at
the matroid. In these two cases, we arbitrarily designate a 3-element circuit and a 2-element
set, respectively, as the rim with the complementary set being the set of spokes.

A fundamental concept in the statement of our main results is that of a chain of triangles
and triads [22]. Let T1, T2, . . . , Tk be a non-empty sequence of sets each of which is a triangle
or a triad of a matroidM such that, for alli in {1, 2, . . . , k− 1}:

(a) in {Ti , Ti+1}, exactly one set is a triangle and exactly one set is a triad;
(b) |Ti ∩ Ti+1| = 2; and
(c) (Ti+1− Ti ) ∩ (T1 ∪ T2 ∪ · · · ∪ Ti ) is empty.

Then we callT1, T2, . . . , Tk a chain of M of length kwith links T1, T2, . . . , Tk. Evidently,
T1, T2, . . . , Tk is a chain ofM if and only if it is a chain ofM∗. The last assertion relies
on statement (a) being self-dual. Statement (a) corrects the corresponding condition in [22],
which was intended to be self-dual but which is not.

The next lemma can be proved by a straightforward induction argument using orthogonality.

LEMMA 1.3. Let T1, T2, . . . , Tk be a chain in a matroid M. Then M has k+ 2 distinct
elements a1,a2, . . . ,ak+2 such that Ti = {ai ,ai+1,ai+2} for all i in {1, 2, . . . , k}.

In this paper, we shall be concentrating on 3-connected matroids. A useful, but elementary,
fact about such matroids (see, for example, [21, Proposition 8.1.7]) is the following lemma.

LEMMA 1.4. The only3-connected matroid that has a triangle which is also a triad is U2,4.

Much of our interest here is in maximal chains in 3-connected matroids. The following
extension of Tutte’s Wheels and Whirls Theorem shows that such a chain has non-essential
elements at both ends. The proof of this result, which extends Tutte’s proof, will be delayed
until Section3.
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FIGURE 1. The three types of chain.

LEMMA 1.5. Let M be a3-connected matroid with at least four elements and suppose
that M is not a wheel or a whirl. Let T1, T2, . . . , Tk be a maximal chain in M. Then the
elements of T1∪ T2∪ · · · ∪Tk can be labelled such that neither a1 nor ak+2 is essential where
Ti = {ai ,ai+1,ai+2} for all i .

Although chains can certainly occur in both non-graphic and graphic matroids, we follow
Tutte [32] in keeping track of the triangles and triads in a chain by using graphs as in Figure1.
In each case, the chain isT1, T2, . . . , Tk whereTi = {ai ,ai+1,ai+2}. In (a), k is odd andT1
is a triangle, henceTk is also a triangle; in (b), k is odd andT1 is a triad, henceTk is also a
triad; in (c), k is even,T1 is a triangle andTk is a triad. The remaining case, whenk is even,
T1 is a triad, andTk is a triangle, is, up to relabelling, the same as (c). In each of (a)–(c),
every triangle in the graph is a triangle in the chain, while the triads in the chain correspond
to circled vertices.

Now suppose thatT1, T2, . . . , Tk is a maximal chain of a 3-connected matroidM whereM
is not a wheel or a whirl. We call this maximal chain afan of M with links T1, T2, . . . , Tk.
Let Ti = {ai ,ai+1,ai+2} for all i . Then{a1,a2, . . . ,ak+2} is theground setof the fan, and
a1,a2, . . . ,ak+2 are theelementsof the fan. Fork ≥ 2, Lemma1.5 implies that there are
exactly two non-essential elements inT1 ∪ T2 ∪ · · · ∪ Tk, namelya1 andak+2, for each of
a2,a3, . . . ,ak+1 is in both a triangle and a triad. We calla1 andak+2 the endsof the fan.
Whenk = 1, the fan hasT1 as its ground set and contains either two or three non-essential



670 J. Oxley and H. Wu

elements ofM . In the first case, we take the ends of the fan to be the non-essential elements
in T1; in the second case, we arbitrarily choose two of the elements ofT1 to be the ends of
the fan. Figure1(a), (b), and (c) show the three types of chains. Maximal chains of these
three types will be calledtype-1, type-2, andtype-3 fans, respectively. In the figure, the non-
essential elements of these fans have been marked in bold. Two fans areequalif they have the
same sets of links.

The next result, one of the two main theorems of this paper, extends Theorem1.2 by giv-
ing more detailed information concerning the structure around an essential element in a 3-
connected matroid. The proof of this theorem will be given in Section3.

THEOREM 1.6. Let M be a3-connected matroid that is not a wheel or a whirl. Suppose
that e is an essential element of M. Then e is in a fan, both ends of which are non-essential.
Moreover, this fan is unique unless:

(a) every fan containing e consists of a single triangle and any two such triangles meet
in {e} or:

(b) every fan containing e consists of a single triad and any two such triads meet in{e} or:
(c) e is in exactly three fans; these three fans are of the same type, each has five elements,

together they contain a total of six elements; and, depending on whether these fans are
of type-1 or type-2, the restriction or contraction, respectively, of M to this set of six
elements is isomorphic to M(K4).

This theorem implies that the fans in a 3-connected matroid other than a wheel or whirl
induce a partition of the set of essential elements.

COROLLARY 1.7. Let M be a3-connected matroid that is not a wheel or a whirl. Then
there is a partition of the set of essential elements of M such that two elements are in the same
class if and only if there is a fan whose ground set contains both.

Given a fan with at least five elements in a 3-connected matroidM , our second main result
describes howM can be constructed by sticking together a wheel and a certain 3-connected
minor of M . The operation used here to join these two matroids is relatively well known for
graphs and even binary matroids but, for matroids in general, it may be less familiar. LetM1
andM2 be matroids such thatM1|T = M2|T , whereT = E(M1) ∩ E(M2). Let N = M1|T
and suppose that̃N is a modular flat of the matroid̃M1. Thegeneralized parallel connection
PN(M1,M2) of M1 andM2 acrossN is the matroid onE(M1)∪ E(M2) whose flats are those
subsetsX of E(M1) ∪ E(M2) such thatX ∩ E(M1) is a flat of M1, and X ∩ E(M2) is a
flat of M2. This construction was introduced by Brylawski [8] when M1 and M2 are simple
matroids, but it extends easily to the more general case considered above (see, for example,
[21, Section 12.4]). Brylawski identified numerous attractive properties of the construction.
When|T | = 1, PN(M1,M2) is just the parallel connectionP(M1,M2) [7] of M1 andM2.

One special case of the generalized parallel connection will be of particular importance
here. LetN be a triangle1 in bothM1 andM2 and suppose that1 is a modular flat of̃M1. In
this case, we shall writeP1(M1,M2) for PN(M1,M2). Since every triangle is a modular flat
in a simple binary matroid [8], if M1 is binary, thenP1(M1,M2) is certainly well-defined.
Perhaps the best-known instance of this operation occurs when bothM1 and M2 are binary.
For example, letG1 andG2 be graphs whose sets of edge labels are disjoint except that each
has a triangle1 whose edges are labelled bye, f , andg. If G is the graph that is obtained
by identifying these triangles such that edges with the same labels coincide, then the cycle
matroid ofG is precisely the matroidP1(M(G1),M(G2)). We remark here that the graph
G\{e, f, g} is what Robertson and Seymour [25] call the 3-sumof G1 andG2.
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We are now ready to state the second main result of the paper, which will be proved in
Section4.

THEOREM 1.8. Let M be a3-connected matroid and suppose that, for some non-negative
integer n, the sequence{y0, x0, y1}, {x0, y1, x1}, {y1, x1, y2}, . . . , {yn, xn, yn+1} is a chain in
M in which{y0, x0, y1} is a triangle. Then

M = P11(M(Wn+2),M1)\z

where11 = {y0, yn+1, z}; Wn+2 is labelled as in Figure2; and M1 is obtained from the
matroid M/x0, x1, . . . , xn−1\y1, y2, . . . , yn by relabelling xn as z. Moreover, either:

(i) M1 is 3-connected; or
(ii) z is in a unique2-circuit {z, h} of M1, and M1\z is3-connected.

In the latter case,
M = P12(M(Wn+2),M2)

where12 = {y0, yn+1, h}; Wn+2 is labelled as in Figure2 with z relabelled as h; and M2 is
M1\z, which equals M\x0, x1, . . . , xn, y1, y2, . . . , yn.

An immediate consequence of this theorem is that the restriction ofM to {x0, x1, . . . , xn,

y0, y1, . . . , yn+1}, the ground set of the chain, is equal to the cycle matroid of the graph shown
in Figure2 with the edgez deleted.

In Section4, we shall describe how the essential elements behave when a wheel is broken
off as above. In particular, we shall show that, fori in {1, 2}, if Mi is 3-connected, then an
element ofMi that is essential inM remains essential inMi .

2. PRELIMINARIES

The purpose of this section is to present a number of results for 3-connected matroids that
will be used in the proofs of the main results to be given in Sections3 and4.

We begin with three known results due to Bixby [4], Tutte [32], and Seymour [26], respec-
tively. The first two of these results will be used frequently throughout the paper.

LEMMA 2.1. Let e be an element of a3-connected matroid M. Then either M\e˜ or M̃/e

is 3-connected.
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The following lemma is often called Tutte’s Triangle Lemma.

LEMMA 2.2. Let {e, f, g} be a triangle of a3-connected matroid M. If both e and f are
essential, then M has a triad containing e and exactly one of f and g.

The next lemma has been stated explicitly by Seymour [26], though it is also implicit in
Tutte’s proof of the Wheels and Whirls Theorem [32].

LEMMA 2.3. For some n≥ 2, let {e1, e2, . . . , en} and { f1, f2, . . . , fn} be disjoint sub-
sets of the ground set of a connected matroid M. Suppose that, for all i in{1, 2, . . . , n},
{ei , fi , ei+1} is a triangle and{ fi ,ei+1, fi+1} is a triad, where all subscripts are read modulo
n. Then E(M) = {e1, f1,e2, f2, . . . ,en, fn} and M is isomorphic to M(Wn) orWn.

In the last lemma, the hypothesis that{en, fn, e1} is a triangle can be eliminated if we know,
for example, thatM is 3-connected.

LEMMA 2.4. For some n≥ 2, let {e1, e2, . . . , en} and{ f1, f2, . . . , fn} be disjoint subsets
X and Y of the ground set of a3-connected matroid M. Suppose that, for all i in{1, 2, . . . , n−
1} and all j in {1, 2, . . . ,n}, {ei , fi , ei+1} is a triangle and{ f j , ej+1, f j+1} is a triad, where
all subscripts are read modulo n. Then M is isomorphic to M(Wn) orWn.

PROOF. Clearlyr (X ∪ Y) ≤ r (X)+ 1= n+ 1, andr ∗(X ∪ Y) ≤ |Y| = n. Hence

r (X ∪ Y)+ r ∗(X ∪ Y)− |X ∪ Y| ≤ 1,

that is,
r (X ∪ Y)+ r (E(M)− (X ∪ Y))− r (M) ≤ 1.

SinceM is 3-connected, it follows that|E(M)−(X∪Y)| ≤ 1. We now distinguish two cases:

(i) |E(M)− (X ∪ Y)| = 1; and
(ii) E(M) = X ∪ Y.

In case (i), letE(M)−(X∪Y) = {d}. SinceY spansE(M)−d in M∗ andM∗ is connected,
Y spansM∗. In addition, since all of{e1, f1, e2}, {e2, f2,e3}, . . . , {en−1, fn−1, en} are cocir-
cuits ofM∗, andY meets each of these cocircuits in a single element,Y is independent inM∗.
ThusY is a basis ofM∗. Let C∗ be the fundamental circuit ofd with respect to this basis of
M∗. By orthogonality,C∗ ⊆ {d, fn}. This is a contradiction sinceM is 3-connected having at
least four elements.

In case (ii),X spansE(M) − fn in M . HenceX spansM . Moreover,X is independent in
M since it meets each of then triads of the hypothesis in a single element. ThusX is a basis
of M . Let C be the fundamental circuit offn with respect to this basis. ThenC ⊆ X ∪ fn.
By orthogonality with then known triads, we deduce that none ofe2, e3, . . . ,en−1 is in C.
HenceC ⊆ {en, fn, e1}. Since|C| ≥ 3, we conclude thatC = {en, fn, e1}. It now follows by
Lemma2.3that M is isomorphic toM(Wn) orWn. 2

Now we show that aU2,4-restriction in a 3-connected matroid avoids all essential elements
of the matroid.

LEMMA 2.5. Let M be a3-connected matroid. If X⊆ E(M) and M|X ∼= U2,4, then no
element of X is essential in M.
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PROOF. Suppose that some elementx of X is essential inM . ThenM\x has a 2-separation
{S, T}. Without loss of generality, we may assume that|S∩ (X− x)| ≥ 2. Then{S∪ x, T} is
a 2-separation ofM ; a contradiction. 2

The last three results in this section concern connectivity. The first [23] will be used only in
the casen = 3.

LEMMA 2.6. Let n be an integer exceeding one and M be a matroid having no circuits
with fewer than n elements. If M|X and M|Y are n-connected and|cl(X) ∩ cl(Y)| ≥ n− 1,
then M|(X ∪ Y) is n-connected.

COROLLARY 2.7. Let M1 and M2 be matroids whose ground sets meet in a set1 that is a
triangle in both matroids and a modular flat of M1. Then P1(M1,M2) is 3-connected if and
only if both M1 and M2 are3-connected.

PROOF. By the last lemma, ifM1 and M2 are both 3-connected, then so isP1(M1,M2).
Now suppose thatP1(M1,M2) is 3-connected. Assume that, for somei in {1, 2} and some
k ≤ 2, the matroidMi has ak-separation,{S, T}. Then we may assume, without loss of
generality, that|S∩1| ≥ 2. It follows easily that{S∪ (E(M j )−1), T} is ak-separation of
P1(M1,M2) where{i, j } = {1, 2}; a contradiction. 2

The next result is an extension of this corollary.

COROLLARY 2.8. Let the ground sets of the matroids M1 and M2 meet in a set1 that is a
triangle of both matroids and a modular flat of M1. Suppose that both|E(M1)| and |E(M2)|

exceed three and let z be an element of1. Then P1(M1,M2)\z is3-connected if and only if:
(i) M1 is 3-connected; and (ii)(a) M2 is 3-connected, or (b) M2 has a unique2-circuit, which
contains z, and M2\z is3-connected.

PROOF. Suppose first thatP1(M1,M2)\z is 3-connected. Then eitherP1(M1,M2) is 3-
connected, orz is parallel to some elementy of P1(M1,M2). In the first case, by the previous
corollary, (i) and (ii)(a) hold. In the second case, as1 is a modular flat ofM1 containing
z, it follows that y ∈ E(M2), so {z, y} is a circuit of M2. Moreover, P1(M1,M2)\z ∼=
P1(M1,M2\y). Thus, by Corollary2.7again,M1 andM2\y are 3-connected, and it follows
easily that (i) and (ii)(b) hold.

A similar argument shows that if (i) and (ii)(b) hold, thenP1(M1,M2)\z is 3-connected.
Now assume that (i) and (ii)(a) hold. By Corollary2.7, P1(M1,M2) is 3-connected. Sup-
pose thatP1(M1,M2)\z is not 3-connected. Then this matroid has a 2-separation{S, T}. If
r (M2) = 2, then we may assume, without loss of generality, that|S∩ E(M2\z)| ≥ 2. Hence
{S∪ z, T} is a 2-separation ofP1(M1,M2); a contradiction. We conclude thatr (M2) > 2.
Clearlyr (M1) > 2. Thus the simplification ofP1(M1,M2)/z is a 2-sum of two matroids of
rank at least two and so is not 3-connected. Hence, by Lemma2.1, the cosimplification of
P1(M1,M2)\z is 3-connected. SinceP1(M1,M2)\z is not 3-connected itself,z must be in a
triad T∗ of P1(M1,M2). By orthogonality,|T∗ ∩1| ≥ 2. However, each ofM1 andM2 is a
restriction ofP1(M1,M2). Thus, fori = 1, 2, the setT∗ ∩ E(Mi ) contains a cocircuit ofMi

and so, asMi is 3-connected,|T∗∩E(Mi )| ≥ 3. ThereforeT∗∩E(M1) = T∗∩E(M2) = 1,
so T∗ = 1. It follows that1 is both a triangle and a triad ofM1. Hence, by Lemma1.4,
r (M1) = 2; a contradiction. 2
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3. PROOF OF THEFAN THEOREM

In this section, we shall prove Theorem1.6. Evidently, the properties of chains in 3-
connected matroids will be important in this proof. We begin this section with four lem-
mas describing such properties. The first of these is essentially a converse of Lemma1.5. Its
straightforward proof is omitted.

LEMMA 3.1. Let T1, T2, . . . , Tk be a chain in a3-connected matroid M. Suppose that Ti =

{ai ,ai+1,ai+2} for all i . If a1 is non-essential and k≥ 2, then there is no3-element subset T0
of E(M) such that T0, T1, T2, . . . , Tk is a chain in M.

LEMMA 3.2. Let T1, T2, T3 be a chain in a3-connected matroid M. Then there is at most
one set T4 such that T1, T2, T3, T4 is a chain.

PROOF. Let Ti = {ai ,ai+1,ai+2} for i = 1, 2, 3. Assume thatT1, T2, T3, T4 is a chain both
whenT4 = {a4,a5, b} and whenT4 = {a4,a5, c} whereb 6= c. Then the restriction ofM or
M∗ to {a4,a5, b, c} is isomorphic toU2,4. However,a4 is in two links of a chain and hence is
essential, contradicting Lemma2.5. 2

LEMMA 3.3. Let e1, e2,e3, e4,e5, e6 be distinct elements of a3-connected matroid M.
Suppose that T1, T2, T3, T4 is a chain in M such that Ti = {ei ,ei+1, ei+2} for all i , and
e1 is non-essential. Then the only triangles or triads of M containing e2 are T1 and T2.

PROOF. By switching to the dual if necessary, we may assume thatT1 is a triangle. Sup-
pose thatM has a triangleT containinge2 but different from{e1, e2, e3}. Then, by orthog-
onality with the triad{e2,e3, e4}, we deduce thatT containse3 or e4. If e3 ∈ T , then
M |(T ∪ {e1,e2, e3}) ∼= U2,4. Sincee2 is essential, this contradicts Lemma2.5. Thus we
may assume thate3 /∈ T . Hencee4 ∈ T . By orthogonality with the triad{e4,e5, e6}, we
deduce thatT containse5 or e6. If e5 ∈ T , then M|{e2, e3, e4,e5} ∼= U2,4, a contradiction
to Lemma2.5. Hencee5 /∈ T and soT = {e2, e4, e6}. Thus M|{e1,e2, . . . , e6} is spanned
by {e1,e3, e5}. Since{e2, e3, e4} is a triad ofM , it contains a cocircuit ofM|{e1,e2, . . . , e6}.
Thus{e1, e5,e6}, which avoids{e2, e3, e4}, is dependent inM|{e1,e2, . . . , e6} and hence is
a circuit of M . However now, by Lemma2.4, M ∼= M(W3) or W3 so every element, in-
cluding e1, is essential. This contradiction implies that{e1, e2, e3} is the only triangle ofM
containinge2.

Now suppose thatT∗ is a triad ofM that containse2 but is different from{e2, e3, e4}. By or-
thogonality with the circuit{e1, e2, e3}, we must have thate1 ore3 is in T∗. The first possibility
is out ase1 is non-essential. Hencee3 ∈ T∗. However, thenM∗|(T∗ ∪ {e2, e3, e4}) ∼= U2,4; a
contradiction to Lemma2.5sincee2 is essential. 2

LEMMA 3.4. Let e1,e2, e3, e4, e5 be distinct elements of a3-connected matroid M that
is not isomorphic to M(W3). Suppose that{e1, e2, e3} and {e3, e4, e5} are triangles and
{e2,e3, e4} is a triad of M. Then these two triangles and this one triad are the only trian-
gles and triads of M containing e3.

PROOF. Suppose first thatT∗ is a triad ofM containinge3 but thatT∗ 6= {e2, e3,e4}. Then,
by orthogonality and symmetry, we may assume thatT∗ is {e1,e3, e4} or {e1, e3, e5}. In the
first case,M∗|{e1,e2, e3,e4} ∼= U2,4. Sincee2 is essential, this contradicts Lemma2.5. Hence
T∗ = {e1, e3, e5}. Let A = {e1, e2, e3, e4, e5}. Then{e1, e3, e5} spansA in M , and{e1,e2, e3}

spansA in M∗. Thus
r (A)+ r ∗(A)− |A| = 1.
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SinceM is 3-connected, it follows that|E(M) − A| = 1, so|E(M)| = 6. Using the known
triangles and triads ofM , it is now routine to show thatM ∼= M(W3); a contradiction. We
conclude that{e2, e3, e4} is the only triad ofM containinge3.

Suppose next thatT is a triangle ofM containinge3 but different from{e1, e2,e3} and
{e3, e4, e5}. Then, by orthogonality with the triad{e2, e3, e4} and by symmetry, we may as-
sume thate2 ∈ T . ThusM|({e1, e2, e3} ∪ T) ∼= U2,4. Sincee2 is essential, we have a contra-
diction to Lemma2.5. 2

Next we insert the proof of Lemma1.5which was delayed from Section1.

PROOF OFLEMMA 1.5. We may assume thatk ≥ 2 for if k = 1, the lemma follows easily
by using the maximality of the chain along with Tutte’s Triangle Lemma.

As noted in Lemma1.3, the elements ofT1 ∪ T2 ∪ · · · ∪ Tk can certainly be labelled by
a1,a2, . . . ,ak+2 such thatTi = {ai ,ai+1,ai+2} for all i . It remains to show that this labelling
can be adjusted such that neithera1 nor ak+2 is essential. Suppose that this is not the case.
Then, by reversing the ordering ona1,a2, . . . ,ak+2 if necessary, we may assume thatak+2
is essential. Moreover, by duality, we may also assume thatTk is a triangle. Then, as neither
M\ak+1 nor M\ak+2 is 3-connected, Lemma2.2 implies thatM has a triadT∗ containing
ak+2 and exactly one ofak andak+1.

Suppose thatak+1 ∈ T∗. Then the maximality of the chainT1, T2, . . . , Tk implies thatT∗

must also contain one ofa1,a2, . . . ,ak−1. Thus if k = 2, thena1 ∈ T∗; if k > 2, then each
of a2,a3, . . . ,ak−1 is in a triangle of the chainT1, T2, . . . , Tk that avoids{ak+1,ak+2}, so
againa1 ∈ T∗. It follows by orthogonality and Lemma2.4 that M is a wheel or a whirl; a
contradiction.

We may now assume thatak+1 /∈ T∗. Thenak ∈ T∗. If k ≥ 3, then, takinge3 = ak in
Lemma3.4, we obtain the contradiction thatT∗ = {ak−1,ak,ak+1}. Thus we may assume
that k = 2. Let T∗ = {a2,a4, z}. If z 6= a1, thenT1, T2, T∗ is a chain contradicting the
maximality of the chainT1, T2. Thusz = a1. However, thenM∗|{a1,a2,a3,a4} ∼= U2,4 and
a2 is essential; a contradiction to Lemma2.5. 2

The following extension of Theorem1.1 is an immediate consequence of Lemma1.5.

COROLLARY 3.5. Let M be a3-connected matroid with at least four elements. Then either
M is a wheel or a whirl, or M has at least two non-essential elements.

Among the results in [24] is a specification of all the 3-connected matroids in which the set
of non-essential elements has rank two.

We are now ready to prove the fan theorem, and the remainder of the section will be devoted
to presenting this proof.

PROOF OFTHEOREM 1.6. BecauseM has an essential element and is not a whirl,|E(M)|
≥ 5. By Theorem1.2, sincee is essential, it is in a triangle or a triad ofM . ThusM has a chain
containinge. Let T1, T2, . . . , Tk be a maximal chain ofM such thate ∈ T1 ∪ T2 ∪ · · · ∪ Tk.
ThenT1, T2, . . . , Tk is a fanF of M containinge.

Now letT ′1, T
′

2, . . . , T
′
n be another fanF ′ of M containinge; let T1∪T2∪· · ·∪Tk = E(F);

let T ′1∪T ′2∪· · ·∪T ′n = E(F ′); and letTi = {ai ,ai+1,ai+2} for all i . The proof of the various
assertions concerning the fans containinge will be broken into the following four cases:

(i) |E(F)| = 3;
(ii) |E(F)| = 4;

(iii) |E(F)| = 5; and
(iv) |E(F)| ≥ 6.
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Consider case (i) assuming, without loss of generality, thatT1 is a triangle ofM . Thene
is not in a triad ofM otherwise the chain whose single link isT1 is not maximal. Since, in a
maximal chain of length at least two, every essential element is in a triad, we deduce that the
fanF ′ also has just one link, a triangle. Moreover, the fansF andF ′ meet in{e} otherwise
M |(E(F) ∪ E(F ′)) ∼= U2,4, contrary to Lemma2.5. We conclude that if|E(F)| = 3, then
(a) or (b) holds.

Now assume that (ii) holds and suppose, without loss of generality, thate = a3 and that
T1 is a triangle. Clearlya1 anda4 are non-essential. If|E(F ′)| = 3, then we may apply case
(i) interchangingF andF ′ to obtain a contradiction. Thus we may assume that|E(F ′)| ≥
4. Hence the links ofF ′ include a triangleT and a triadT∗ both containinga3. As a4 is
non-essential and is in the triadT2, it follows thata4 /∈ T . By orthogonality with the triad
{a2,a3,a4}, we deduce thatT containsa2 anda3. Since these two elements are essential,
Lemma2.5implies thatT = {a1,a2,a3}. A dual argument establishes thatT∗ = {a2,a3,a4}.
Hence, in this case,F = F ′; that is,e is in a unique fan.

We shall assume next that (iv) occurs. From cases (i) and (ii), we may assume that|E(F ′)| ≥
5. Next we shall distinguish the following two subcases of (iv):

(I) e is in just two ofT1, T2, . . . , Tk; and
(II) e is in at least three ofT1, T2, . . . , Tk.

Suppose that (I) occurs. Then we may assume, without loss of generality, thate = a2. By
Lemma3.3, the only triangles or triads ofM containinge areT1 andT2. Since|E(F ′)| ≥ 5
ande is essential,e is in at least two links ofF ′. HenceT1 andT2 must both be links ofF ′.
Moreover, sincea1 is non-essential, it follows by Lemma3.1thata1 is an end ofF ′. Thus we
may assume thatT ′1 = T1 andT ′2 = T2. Takinga3 equal toe3 in Lemma3.4 and using the
fact thatT ′1, T

′

2, . . . , T
′
n is a maximal chain, we deduce thatT ′3 = T3. Again using the fact that

T ′1, T
′

2, . . . , T
′
n is a maximal chain, this time with Lemma3.2, we find thatT ′j = Tj for all j in

{4, 5, . . . , k}. Now, sinceT1, T2, . . . , Tk is a maximal chain, it follows thatk = n and hence
thatF = F ′.

To complete the proof in case (iv), we need to treat subcase (II). Thus assume thate= a j for
somej in {3, 4, . . . , k}. By Lemma3.4or its dual, the only triangles or triads ofM containing
e areTj−2, Tj−1, andTj . If all three of these sets are links ofF ′, then, sinceF ′ is a maximal
chain, repeated applications of Lemma3.2 yield thatF ′ has exactly the same set of links as
F . Thus we may assume, without loss of generality, thatTj−2 andTj−1 are links ofF ′ but Tj

is not. Hencee is in exactly two links ofF ′, soe is in a link ofF ′ with some non-essential
element. Thereforea j−2 or a j+1 is non-essential. However,a j+1 is in bothTj−1 andTj so
it is essential. Hencea j−2 is non-essential, soa j−2 = a1. Applying Lemma3.3 to the chain
T1, T2, T3, T4, we find thatT1 and T2 are the only triangles or triads ofM containinga2.
However, nowT1 is a link ofF ′ containing two elements,a2 anda3, each of which is in just
two links ofF ′. HenceF ′ has exactly two links, a contradiction to the fact that|E(F ′)| ≥ 5.

It now remains to treat case (iii). First we note that|E(F ′)| = 5 otherwise we can obtain
the result by applying one of cases (i), (ii), and (iv) withF andF ′ interchanged. Now either:

(I) e is in all three ofT1, T2, andT3; or
(II) e is in exactly two ofT1, T2, andT3.

We may assume, by switching to the dual if necessary, thatT1 andT3 are triangles.
Consider (I). Evidentlye = a3. By Lemma3.4, T1, T2, andT3 are the only triangles or

triads of M containinga3. Since|E(F ′)| = 5 anda3 is essential, the links ofF ′ include
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both a triangle and a triad containinga3. Without loss of generality, we may assume thatT1
and T2 are links ofF ′. Sincea1 is non-essential, the remaining link ofF ′ is a triangleT
containinga4 and exactly one ofa2 anda3. If a3 ∈ T , then it follows by Lemma2.5 that
T = T3; that is,F = F ′. If a3 /∈ T , then T = {a2,a4, z} for somez 6= a3. The dual
of Lemma2.5 can now be used to show thatz 6= a1 and z 6= a5. ConsiderM|(E(F) ∪
E(F ′)). This matroid has ground set{a1,a2,a3,a4,a5, z}. It has{a2,a3,a4} as a basis and
{a2,a4, z} as a circuit. Thus, by Lemma2.5, this matroid has{a1,a3,a5} as a cocircuit. Since
M|(E(F)∪E(F ′)) is clearly 3-connected, it follows by Lemma3.4thatM |(E(F)∪E(F ′)) ∼=
M(K4). Moreover, one easily sees that, apart fromF andF ′, the only fan containinge is
{z,a2,a4}, {a2,a4,a3}, {a4,a3,a5}.

Finally consider (iii)(II). Without loss of generality, we may assume thate = a2. If a3 ∈

E(F ′), thena3 is an essential element that is in all three links ofF and is also an element
of F ′. Hence we may apply (iii)(I) to obtain the desired result. We may now assume thata3
is not in E(F ′). Certainlya2 is in a triadT∗ that is a link ofF ′. By orthogonality with the
triangle{a1,a2,a3}, we deduce thata1 ∈ T∗. Thusa1 is essential; a contradiction. 2

4. BREAKING OFF WHEELS

In this section, we shall prove Theorem1.8. In addition, we shall describe how the essential
elements behave when a wheel is broken off as in that theorem. We begin with a straight-
forward result showing that if one wants to perform two successive generalized parallel con-
nections across triangles, then the order in which these operations are performed does not
matter.

LEMMA 4.1. Let M1, M2, and M3 be matroids, the first two of which are binary. Suppose
that E(M1) and E(M2) meet in a set1 which is a triangle of both M1 and M2, that E(M2)

and E(M3) meet in a set1′ which is a triangle of both M2 and M3, and that E(M1) and
E(M3) meet in1 ∩1′. Then

P1(M1, P1′(M2,M3)) = P1′(P1(M1,M2),M3).

PROOF. First we remark that both sides of the asserted equation are well-defined. To see
this, note that, asM1 and M2 are binary,1 and1′ are modular flats of̃M1 and M̃2, re-
spectively. Moreover,P1(M1,M2) is also binary and hence has1′ as a modular flat of its
simplification.

Next we observe thatP1(M1, P1′(M2,M3)) and P1′(P1(M1,M2),M3) have the same
ground set, namelyE(M1) ∪ E(M2) ∪ E(M3). To complete the proof that these two ma-
troids are equal, we show that they have the same sets of flats. By definition,F is a flat of
P1(M1, P1′(M2,M3)) if and only if

F ∩ E(M1) is a flat ofM1 (1)

and
F ∩ E(P1′(M2,M3)) is a flat ofP1′(M2,M3). (2)

However, (2) holds if and only if

F ∩ E(M2) is a flat ofM2 (3)

and
F ∩ E(M3) is a flat ofM3. (4)
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FIGURE 3. A labelledM(K4).

Thus F is a flat of P1(M1, P1′(M2,M3)) if and only if (1), (3), and (4) hold. A similar
argument shows thatF is a flat ofP1′(P1(M1,M2),M3) if and only if (1), (3), and (4) hold.
The lemma follows immediately. 2

The next lemma, an extension of a result of Akkari and Oxley [3], will be used to prove
Theorem1.8 in the casen = 1. Following this lemma, we prove the theorem.

LEMMA 4.2. Let a1 and b1 be distinct elements of a3-connected matroid M. Suppose
that {a0, b1,a1} is a triad, {b1,a1, b2} is a triangle, and M is not isomorphic to U2,4. Then
M = P1(M(K4),M ′)\{c, c′} where1 = {c, c′, b2}; M (K4) is labelled as in Figure3; and
M ′ is obtained from M/a0 by relabelling a1 and b1 as c and c′, respectively. Moreover, one
of the following holds:

(i) M ′ is 3-connected;
(ii) a0 is in a unique triangle of M, this triangle contains a1, and M′\c is 3-connected;

(iii) a0 is in a unique triangle of M, this triangle contains b1, and M′\c′ is 3-connected;
(iv) a0 is in exactly two triangles of M, one of which also contains a1 and the other of which

also contains b1, and M′\c, c′ is 3-connected.

PROOF. The first part of the lemma is proved in [3]. It only remains to show that one
of (i)–(iv) holds. Suppose that (i) fails. ThenM/a0 is not 3-connected. SinceM/a1 has a
2-circuit and has rank exceeding one, it is not 3-connected. Applying the dual of Tutte’s
Triangle Lemma to the triad{a0,a1, b1} of M , we deduce thatM has a triangle containinga0
and exactly one ofa1 andb1. Moreover, as botha1 andb1 are essential, Lemma2.5 implies
that each of{a0,a1} and{a0, b1} is in at most one triangle ofM .

Now, by Lemma2.1, M\a0˜ or M̃/a0 is 3-connected. If the latter occurs, it follows without

difficulty from the preceding paragraph that one of (ii)–(iv) holds. Hence we may assume that
M\a0˜ is 3-connected. However,M\a0 has{a1, b1} as a cocircuit andM\a0/a1 has{b1, b2} as

a circuit. ThereforeM\a0˜ is not simple. AsM\a0˜ is 3-connected, this matroid is isomorphic

to U1,2 or U1,3. ThusM is a 3-connected matroid having corank equal to two or three. Since
M has both a triangle and a triad andM 6∼= U2,4, it follows thatr ∗(M) 6= 2. Hencer ∗(M) = 3.
ThusM∗ has rank three and has{a1, b1,b2} as a triad. The remaining elements ofM∗ lie on
a line, and it is straightforward to check that one of (i)–(iv) holds. 2

PROOF OFTHEOREM 1.8. We argue by induction onn. Whenn = 0, M1 ∼= M and the
theorem holds. Now suppose thatn = 1. Then, by Lemma4.2, M = P1(M(W3),M ′)\{z, z′}
where1 = {z, z′, y2}; M(W3) is labelled as in Figure4(a); andM ′ is obtained fromM/x0
by relabellingx1 andy1 asz andz′, respectively. However,y0 andy1 are in parallel inM/x0.
Thus

M = P11(M(W3),M ′)\{z, z′}
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FIGURE 4. Three labellings ofM(W3).

where11 = {z, y0, y2}; M(W3) is labelled as in Figure4(b). Therefore

M = P11(M(W3),M ′\z′)\z. (5)

Now, clearlyM ′\z′ is M/x0\y1 with x1 relabelled asz; that is,M ′\z′ is M1. Sincex0 is in
a triangle ofM , the matroidM ′ is not 3-connected. Thus, by Lemma4.2 again, either: (i)
M ′\z′ is 3-connected; or (ii)M ′\z′ has a unique 2-circuit{z, h} containingz, andM ′\z′, z
is 3-connected. However,M ′\z′ = M1, so, in the first case,M1 is 3-connected, and, in the
second case,M1\z is 3-connected. Moreover, in the second case, sincez andh are parallel in
M ′\z′, it follows by (5) that

M = P12(M(W3),M ′\z′\z)

where12 = {y0, y2, h} andM(W3) is labelled as in Figure4(c). Now, M ′\z′\z= M/x0\y1\x1,
andx0 is a coloop ofM\x1, y1, soM ′\z′\z = M\x0, x1, y1. This completes the proof of the
theorem in the casen = 1.

Now assume that the theorem holds forn < k and letn = k ≥ 2. By the induction
assumption,

M = P1(M(Wk+1),M ′)\z1 (6)

where1 = {y0, yk, z1};Wk+1 is labelled as in Figure5; andM ′ is M/x0, x1, . . . , xk−2\y1,

y2, . . . , yk−1 with xk−1 relabelled asz1. Moreover, either:

(i) M ′ is 3-connected; or
(ii) M ′\z1 is 3-connected.

However,{xk−1, yk, xk} is a triad of M , and hence{yk, xk} contains a cocircuit ofM ′\z1.
Since the last matroid has at least four elements, we conclude that (ii) does not hold.

We may now assume thatM ′ is 3-connected. Then, by repeated application of circuit elimi-
nation and orthogonality, we deduce that{y0, x0, x1, . . . , xk−1, yk} is a circuit ofM . It follows
that{y0, z1, yk}, {z1, yk, xk}, {yk, xk, yk+1} is a chain inM ′ in which {y0, z1, yk} is a triangle.
Thus, by the induction assumption,

M ′ = P11(M(W3),M1)\z (7)
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where11 = {y0, yk+1, z}; W3 is labelled as in Figure6; and M1 is M ′/z1\yk with xk rela-
belled asz. SinceM ′ is M/x0, x1, . . . , xk−2\y1, y2, . . . , yk−1 with xk−1 relabelled asz1, the
matroidM1 is

M/x0, x1, . . . , xk−2, xk−1\y1, y2, . . . , yk−1, yk

with xk relabelled asz. By (6) and (7),

M = P1(M(Wk+1), P11(M(W3),M1)\z)\z1

= P1(M(Wk+1), P11(M(W3),M1))\{z, z1}, (8)

whereWk+1 andW3 are labelled as in Figures5 and6, respectively. Thus, by Lemma4.1,

M = P11(P1(M(Wk+1),M(W3)),M1)\{z, z1}

= P11(P1(M(Wk+1),M(W3))\z1,M1)\z.

In addition,P1(M(Wk+1),M(W3))\z1 is M(Wk+2) whereWk+2 is labelled as in Figure2
with n = k. HenceM = P11(M(Wk+2),M1)\z where11 = {y0, yk+1, z} and M1 is
M/x0, x1, . . . , xk−1\y1, y2, . . . , yk with xk relabelled asz. We conclude that, whenn = k,
M is as asserted in the theorem.

We now need to check that either (i) or (ii) holds. Hence we may assume thatM1 is not
3-connected. We noted above thatM ′ is 3-connected, thatM ′ = P11(M(W3),M1)\z, and
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thatM1 is M ′/z1\yk with xk relabelled asz. By the induction assumption applied to the chain
{y0, z1, yk}, {z1, yk, xk}, {yk, xk, yk+1} of M ′, we deduce thatz is in a unique 2-circuit{z, h}
of M1, andM1\z is 3-connected. Moreover,

M ′ = P12(M(W3),M2)

where12 = {y0, yk+1, h}; W3 is labelled as in Figure6 with z relabelled ash; and M2 is
M ′\z1, xk, yk. Thus, by (6),

M = P1(M(Wk+1), P12(M(W3),M2))\z1 (9)

where1 = {y0, yk, z1};12 = {y0, yk+1, h};Wk+1 is labelled as in Figure5;W3 is labelled as
in Figure6with z relabelled ash; andM2 is M ′\z1, xk, yk. SinceM ′ is M/x0, x1, . . . , xk−2\y1,

y2, . . . , yk−1 with xk−1 relabelled asz1, we deduce that

M2 = (M/x0, x1, . . . , xk−2\xk−1, xk)\y1, y2, . . . , yk.

However, inM\y1, y2, . . . , yk, each of{x0, x1}, {x1, x2}, . . . , {xk−1, xk} is a union of cocir-
cuits. HenceM\y1, y2, . . . , yk\xk−1, xk hasxk−2 as a coloop, and so hasxk−3 as a coloop.
Continuing in this way, we deduce that all ofxk−2, xk−3, . . . , x0 are coloops. Thus

M2 = M\x0, x1, . . . , xk, y1, y2, . . . , yk.

By Lemma4.1and (9), we have that

M = P12(P1(M(Wk+1),M(W3)),M2)\z1

= P12(P1(M(Wk+1),M(W3))\z1,M2)

= P12(M(Wk+2),M2)

whereWk+2 is labelled as in Figure2 with n = k and with z relabelled ash; and M2
= M\x0, x1, . . . , xk, y1, y2, . . . , yk. We conclude, by induction, that the theorem holds for
all positive integersn. 2

COROLLARY 4.3. Let M be a3-connected matroid that is not a wheel or a whirl, and let e
be an essential element that is in more than one type-1 fan with five or more elements. Then e
is in a unique triad T∗ of M. Moreover, M has a triangle1 such that M|(T∗ ∪1) ∼= M(K4)

and
M = P1(M|(T

∗
∪1),M\T∗).

In addition, M\T∗ is 3-connected.

PROOF. By Theorem1.6, e is in exactly three fans each of which is of type-1 having five
elements. Moreover, these three fans contain a total of six elements, and the restriction ofM
to these six elements is isomorphic toM(K4). Let the elements of thisM(K4) be labelled
as shown in Figure7 where{y0, x0, y1}, {x0, y1, x1}, {y1, x1, y2} is one of the type-1 fans
containinge. It follows without difficulty from Theorem1.8that

M = P1(M(K4),M\x0, y1, x1)

whereM(K4) is labelled as indicated,1 = {y0, x2, y2}, and M\x0, y1, x1 is 3-connected.
Moreover, by applying Lemma3.4to one of the three type-1 fans containinge, it follows that
{x0, y1, x1} is the unique triad ofM containinge. 2
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We shall now describe how essential elements behave when a wheel is broken off as in
Theorem1.8. In that theorem, the resulting 3-connected matroid isM1 or M2. We shall first
consider the latter.

PROPOSITION4.4. Let M = P12(M(Wn+2),M2) where n is a positive integer and12
is a triangle. Suppose that M2 is 3-connected having at least four elements, and let e be an
element of M2. Then:

(a) M2/e is3-connected if and only if either M/e is3-connected or M2 ∼= U2,4;
(b) M\e is3-connected if and only if either M2\e is3-connected or e∈ 12.

Hence ife is essential in M, thene is essential in M2; and if e is non-essential in M, thene is
non-essential in M2 or e∈ 12.

PROOF. By Corollary 2.7, M is 3-connected. We shall first prove (a) by breaking the ar-
gument into the two cases: (i)e /∈ clM (12); and (ii) e ∈ clM (12). In case (i),M/e =
P12(M(Wn+2),M2/e) and (a) follows easily by Corollary2.7. In case (ii),M/e is non-simple
having at least four elements soM/e is not 3-connected. IfM2/e is 3-connected, then, since
this matroid is non-simple, butM2 has a triangle, it follows thatM2 ∼= U2,4. Conversely, if
M2 ∼= U2,4, thenM2/e is 3-connected. Hence (a) holds in case (ii), so (a) is proved.

We break the proof of (b) into the two cases: (i)e /∈ 12; and (ii) e ∈ 12. In case (i),
M\e = P12(M(Wn+2),M2\e) and (b) follows easily by Corollary2.7. In case (ii),M\e =
P12(M(Wn+2),M2)\e, so, by Corollary2.8, M\e is 3-connected. Hence (b) holds in case
(ii), so (b) is proved.

On combining (a) and (b), we deduce that if e is essential inM , then eithere is essential in
M2, or M2 ∼= U2,4. However, the latter cannot occur otherwiseM2\e is 3-connected and so,
by (b), M\e is 3-connected; a contradiction.

If e is non-essential inM , then, by (a) and (b) again,e is non-essential inM2 or e∈ 12. 2

The next result shows that, when the matroidM1 in Theorem1.8 is 3-connected, every
essential element ofM that is in M1 is also essential inM1. However, the behaviour of the
non-essential elements ofM is less straightforward.

PROPOSITION4.5. Let M be a3-connected matroid that is not a whirl. Suppose that there
is a positive integer n such that

M = P11(M(Wn+2),M1)\z

where11 = {y0, yn+1, z} andWn+2 is labelled as in Figure2. Let M1 be3-connected and e
be an element of E(M1)− z. Then:
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(a) M/e is 3-connected if and only if either M1/e is 3-connected; or e/∈ 11, there is a
unique triangle of M1 containing{e, z}, and M1/e\z is3-connected;

(b) M\e is3-connected if and only if either M1\e is3-connected; or e∈ 11 and e is not
in a triad of M.

Hence if e is essential in M, then e is essential in M1. However, if e is non-essential in M,
then either e is non-essential in M1; or e ∈ 11 and e is not in a triad of M; or e/∈ 11, there
is a unique triangle of M1 containing{e, z}, and M1/e\z is3-connected.

The proof of this proposition will use the following lemma, the straightforward proof of
which is omitted.

LEMMA 4.6. Let k be an integer exceeding two and suppose that E(M(Wk)) and E(U2,4)

meet in a set1 that is a triangle of both matroids. Let z be an element of1 that is a rim
element ofWk. Then

P1(M(Wk),U2,4)\z∼=Wk.

PROOF OFPROPOSITION4.5. Certainly|E(M1)| ≥ 3. If |E(M1)| = 3, thenM is a single-
element deletion ofM(Wn+2) and so is not 3-connected. Thus|E(M1)| ≥ 4. If |E(M1)| = 4,
then, asM1 is 3-connected,M1 ∼= U2,4 and so, by Lemma4.6, M is a whirl; a contradiction.
Hence we may assume that|E(M1)| ≥ 5. Therefore, asM1 has a triangle,r ∗(M1) ≥ 3 and
sor ∗(M) ≥ 4.

We shall break the proof of (a) into the two cases: (i)e ∈ clM (11); and (ii) e /∈ clM (11).
In case (i), neitherM/e nor M1/e is 3-connected since each has a 2-circuit and at least four
elements. Moreover, ife /∈ 11, then eitherr (M1) = 2, in which case{e, z} is not in a unique
triangle ofM1, or r (M1) > 2, in which caseM1/e\z has rank at least two and has a 2-circuit,
and so is not 3-connected. We conclude that (a) holds in case (i). In case (ii), we certainly have
thate /∈ 11. By Corollary2.8, M/e is 3-connected if and only if eitherM1/e is 3-connected,
or M1/e has a unique 2-circuit, which containsz, andM1/e\z is 3-connected. SinceM1 is
3-connected, (a) follows easily in case (ii).

The proof of (b) will be broken into the two cases: (i)e /∈ 11; and (ii) e ∈ 11. In case
(i), sinceM1 is 3-connected having at least five elements, Corollary2.8 implies thatM\e is
3-connected if and only ifM1\e is 3-connected. Thus (b) holds in case (i). Now assume that
(ii) holds. By symmetry, we may suppose thate = y0. If M\e is 3-connected, thene is not
in a triad of M . Thus the forward implication of (b) holds in case (ii). To prove the reverse
implication, suppose thatM\e is not 3-connected, letting{X,Y} be a 2-separation of it. Then,
since|E(M1) − {z, e}| ≥ 3, we may assume that|X ∩ (E(M1) − {z, e})| ≥ 2. Therefore, if
r (M1) = 2, then{X ∪ e,Y} is a 2-separation ofM ; a contradiction. Hence we may assume
that r (M1) > 2.Thus the simplification ofP11(M(Wn+2),M1)\z/e is a parallel connection
of two matroids of rank at least two and so is not 3-connected. Thus, by Lemma2.1, the
cosimplification ofP11(M(Wn+2),M1)\z\e, which equalsM\e˜, is 3-connected. SinceM\e

is not 3-connected, it follows thatM has a triadT∗ containinge. It remains to show thatM1\e
is not 3-connected. Ase = y0 and{x0, y0, y1} is a triangle ofM , orthogonality implies that
T∗ containsx0 or y1. EvidentlyT∗ or T∗ ∪ z is a cocircuit ofP11(M(Wn+2),M1). SinceM1
is a restriction of the last matroid, it follows that(T∗ ∪ z)∩ E(M1) contains a cocircuit ofM1
containinge. However,|(T∗ ∪ z) ∩ E(M1)| ≤ 3 yet M1 is 3-connected having at least five
elements, soM1 has a triad containinge. ThereforeM1\e is not 3-connected. This completes
the proof of (b) in case (ii).

The conclusions concerning essential and non-essential elements follow immediately on
combining (a) and (b). 2
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Propositions4.4 and4.5 will be used in [24] to investigate those 3-connected matroids in
which the set of non-essential elements is small. If we denote byν(Q) the set of non-essential
elements of a 3-connected matroidQ, then, by Proposition4.4,

ν(M2) ⊆ E(M2) ∩ ν(M) ⊆ ν(M2) ∪12.

In Proposition4.5, the situation is less straightforward. The set of non-essential elements of
M1 may includez, which is not inE(M), but otherwise this set is a subset ofν(M). Moreover,
if we suppose that the chain{y0, x0, y1}, {x0, y1, x1}, {y1, x1, y2}, . . . , {yn, xn, yn+1} in The-
orem1.8 is a fan, theny0 andyn+1 are non-essential elements ofM . The elementz is on the
line of M1 throughy0 andyn+1. Thus, althoughν(M1) need not be a subset ofE(M1)∩ν(M),
we do have that

ν(M1) ⊆ clM1(E(M1) ∩ ν(M)).

This fact will be very useful in [24].
Theorem1.6 indicates how one can break off a wheel from a 3-connected matroid having

a chain of odd length exceeding two. In fact, that theorem explicitly describes this break off
when the chain has a triangle as its first link and hence has a triangle as its last link. If the chain
has triads as its first and last links, then one can reduce to the case described in Theorem1.6
by taking duals. For chains of even length, the situation is slightly different. The result in this
case is stated in the next theorem, a generalization of Lemma4.2. The reader will observe
that, in this case, it is slightly more difficult to recover a 3-connected matroid in what is left
after the break off.

THEOREM 4.7. Let M be a3-connected matroid which is not a wheel or a whirl. Suppose
that, for some non-negative integer n, the sequence

{y0, x0, y1}, {x0, y1, x1}, . . . , {yn, xn, yn+1}, {xn, yn+1, xn+1}

is a chain in M in which{y0, x0, y1} is a triangle. Then

M = P1(M(Wn+3),M3)\{z
′, y′n+1}

where1 = {y0, z′, y′n+1}; Wn+3 is labelled as in Figure8; and M3 is obtained from the
matroid M/x0, x1, . . . , xn−1\y1, y2, . . . , yn/xn+1 by relabelling xn and yn+1 as z′ and y′n+1.
Moreover:

(i) M3 is 3-connected; or
(ii) z′ is in a unique2-circuit of M3, and M3\z′ is 3-connected; or

(iii) y′n+1 is in a unique2-circuit of M3, and M3\y′n+1 is 3-connected; or
(iv) each of z′ and y′n+1 is in a unique2-circuit of M3, and M3\z′, y′n+1 is 3-connected.

The proof of this will use another variant of Lemma2.3.

LEMMA 4.8. For some non-negative integer n, suppose that{y0, x0, y1}, {x0, y1, x1}, . . . ,

{yn, xn, yn+1}, {xn, yn+1, xn+1} is a chain in a simple matroid M. If E(M) = {x0, y0, x1, y1,

. . . , xn+1, yn+1}, then M is isomorphic to M(Wn+2) orWn+2.

PROOF. Since the chain has an even number of links, we may assume that the first link
is a triangle. Thus{xi , yi+1, xi+1} is a triad of M for all i in {0,1, . . . ,n}. Since each of
y1, y2, . . . , yn+1 is in exactly one of these triads andM is simple, it follows that{y0, y1, . . . ,

yn+1} is independent inM . As this set clearly spansE(M)− {xn+1} andxn+1 is not a coloop
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of M , we deduce that{y0, y1, . . . , yn+1} is a basis ofM . Consider the fundamental circuit of
xn+1 with respect to this basis. By orthogonality and the simplicity ofM , it follows that this
circuit is {yn+1, xn+1, y0}.

Now {y1, y2, . . . , yn+1} spans a hyperplane ofM that also contains all ofx1, x2, . . . , xn but
avoidsy0 and hence avoidsx0 andxn+1. Thus{y0, x0, xn+1} is a triad ofM and the lemma
follows by Lemma2.3. 2

PROOF OFTHEOREM 4.7. If n = 0, the theorem is just a restatement of Lemma4.2. Now
suppose thatn > 0. By the last lemma,|E(M)| ≥ 2n + 5. Moreover, Theorem1.8 implies
that

M = P11(M(Wn+2),M1)\z

where11 = {y0, yn+1, z}; Wn+2 is labelled as in Figure2; and M1 is obtained from the
matroidM/x0, x1, . . . , xn−1\y1, y2, . . . , yn by relabellingxn asz. Moreover, either: (i)M1 is
3-connected, or (ii)M1\z is 3-connected. In the latter case,M/x0, x1, . . . , xn−1\y1, y2, . . . ,

yn, xn is 3-connected. However,M has{xn, yn+1, xn+1} as a cocircuit, so the last matroid has
a cocircuit contained in{yn+1, xn+1}. Since this matroid has at least four elements, it cannot
be 3-connected. Therefore (ii) cannot occur. We conclude thatM1 is 3-connected.

Now {y0, yn+1, z} is a circuit of M1 and {yn+1, z, xn+1} is a cocircuit ofM1. Thus, by
Lemma4.2 M1 = P1(M(K4),M2)\{z′, y′n+1} where1 = {y0, z′, y′n+1}; M(K4) is labelled
as in Figure9; and M2 is obtained fromM1/xn+1 by relabellingz andyn+1 asz′ andy′n+1,
respectively.

By Lemma4.1

P11(M(Wn+2), P1(M(K4),M2)) = P1(P11(M(Wn+2),M(K4)),M2), (10)

whereM(Wn+2), M(K4), andM2 are labelled as above. Since

M = P11(M(Wn+2),M1)\z and M1 = P1(M(K4),M2)\{z
′, y′n+1},

it follows that

M = P11(M(Wn+2), P1(M(K4),M2)\{z
′, y′n+1})\z

= P11(M(Wn+2), P1(M(K4),M2))\{z
′, y′n+1, z}.
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Thus, by (10),

M = P1(P11(M(Wn+2),M(K4)),M2)\{z
′, y′n+1, z}

= P1(P11(M(Wn+2),M(K4))\z,M2)\{z
′, y′n+1}.

It is not difficult to see that

P11(M(Wn+2),M(K4))\z= M(Wn+3),

whereWn+3 is labelled as in Figure8. Therefore

M = P1(M(Wn+3),M2)\{z
′, y′n+1}

whereM2 is obtained fromM1/xn+1 by relabellingz andyn+1 asz′ andy′n+1, respectively.
However, M1 is obtained fromM/x0, x1, . . . , xn−1\y1, y2, . . . , yn by relabellingxn as z.
ThusM2 is obtained from

M/x0, x1, . . . , xn−1\y1, y2, . . . , yn/xn+1

by relabellingxn andyn+1 asz′ andy′n+1, respectively. HenceM2 = M3 and the first part of
the theorem is proved.

The fact that one of (i)–(iv) holds follows immediately by applying the second part of
Lemma4.2to the 3-connected matroidM1. 2

Propositions4.4 and4.5 tell us that, in breaking off a wheel as in Theorem1.8, an ele-
ment that is essential inM remains essential in the resulting 3-connected matroid,M1 or M2.
However, the corresponding result need not hold when one breaks off a wheel as in Theo-
rem4.7. For example, letM be the cycle matroid of the graph shown in Figure10(a). Then
{y0, x0, y1}, {x0, y1, x1}, {y1, x1, y2}, {x1, y2, x2} is a chain in this matroid. By Theorem4.7,
M = P1(M(W4),M3)\{z′, y′2} where1 = {y0, z′, y′2}; W4 is labelled as in Figure10(b);
andM3 is M/x0\y1/x2 with x1 andy2 relabelled asz′ andy′2 (see Figure10(c)). The element
e, which is essential inM , is non-essential inM3. Moreover,e is not even in the flat ofM3
that is spanned by those non-essential elements ofM that are inM3. In [24] where we shall
be examining the 3-connected matroids with a small number of non-essential elements, The-
orem1.8will be of more use than Theorem4.7because the former enables us to better keep
track of essential elements.
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