Europ. J. Combinatoric€2000)21, 667—688
Article No. 10.1006/eujc.2000.0407 @
Available online at http://www.idealibrary.com tbllikIL

On the Structure of 3-connected Matroids and Graphs

JAMES OXLEY AND HAIDONG WU

An elemente of a 3-connected matroitl is essential if neither the deletidvi \e nor the con-
traction M /e is 3-connected. Tutte’'s Wheels and Whirls Theorem proves that the only 3-connected
matroids in which every element is essential are the wheels and whirls. In this paper, we consider
those 3-connected matroids that have some non-essential elements, showing that every such matroid
M must have at least two such elements. We prove that the essential elemdntanbe partitioned
into classes where two elements are in the same cladshiés a fan, a maximal partial wheel, con-
taining both. We also prove that if an essential elengssitM is in more than one fan, then that fan
has three or five elements; in the latter casis,in exactly three fans. Moreover, we show thalif
has a fan with R or 2k + 1 elements for somk > 2, thenM can be obtained by sticking together
a (k + 1)-spoked wheel and a certain 3-connected minavlofThe results proved here will be used
elsewhere to completely determine all 3-connected matroids with exactly two non-essential elements.
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1. INTRODUCTION

One of the main tools in the study of 3-connected matroids is the following result, Tutte’s
Wheels and Whirls TheorenB%], a generalization of an earlier graph result also due to
Tutte [31].

THEOREM1.1. The following statements are equivalent fa3-aonnected matroid M.

(i) For every element e of M, neither the deletion nor the contraction of e from 34 is
connected.
(i) M has rank at least three and is isomorphic to a whirl or the cycle matroid of a wheel.

Tutte [32] calls an elemeng of a 3-connected matroitl essentiaif neither the deletion
M\e nor the contractiorM /e remains 3-connected. Evidently, Theordmi characterizes
those 3-connected matroids in which no element is non-essential. This theorem has had a very
strong influence on the development of a large body of theory for 3-connected matroids (see,
for example, 1-6,9-12 15, 17-20 29]). Moreover, a number of authors have generalized the
theorem in various ways (see, for exampleg, [L4, 16, 21, 26-30).

In this paper, we begin a study of the 3-connected matroids and graphs in which the set
of non-essential elements is small. We show, for example, that a 3-connected matroid can-
not have exactly one non-essential element; and, in another p24jeme determine all
3-connected matroids with exactly two non-essential elements and all 3-connected simple
graphs with exactly three non-essential edges. However, we can say considerably more. In
particular, we prove a result that describes the local structure about an essential element in a
3-connected matroid. Part of this structure was determined by T3#te [

THEOREM1.2. An essential element inZconnected matroid is in either a triangle or a
triad.

Here, driangleis a 3-element circuit, andtdad is a 3-element cocircuit. Our first structure
theorem generalizes this result by showing that every essential element in a 3-connected ma-
troid M is in a submatroid oM which can be viewed as a maximal partial wheel and which
we call a fan. Our second structure theorem describes how to break off such a partial wheel
from M to leave a smaller 3-connected matroid with at most one new non-essential element.
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The rest of this section will be devoted to introducing some terminology and basic results
needed to state the two main theorems. These statements, Thelofamsl 1.8, appear to-
wards the end of the section. Sect@rontains a number of properties of 3-connected ma-
troids that are needed in the proofs of the main theorems. These proofs appear in Sections
and4. The main results have several important applications some of which will be discussed
elsewhere?4, 33). In particular, these results can immediately be applied to give basic struc-
tural information for 3-connected simple graphs.

The matroid terminology used here will follow OxIe3]. For a matroidM, the simple ma-
troid and the cosimple matroid associated withwill be denoted byM and M, respectively.

We call these matroids th@mplificationand thecosimplificationof M. A basic property of
matroids that we shall use repeatedly is that a circuit and a cocircuit cannot have exactly one
common element. We shall refer to this propertypehogonality

Suppose that > 2. ThewheelW; of rankr is a graph having + 1 verticesy of which lie
on a cycle (theim); the remaining vertex is joined by a single edgesiaké to each of the
other vertices. Theank-r whirl W' is a matroid orE(1V;) having as its circuits all cycles of
Wi other than the rim as well as all sets of edges formed by adding a single spoke to the edges
of the rim. The terms ‘rim’ and ‘spoke’ will be applied in the obvious way in bbtli )
andW'. Moreover, we shall usually refer to the cycle matroid of a wheel as just a wheel.
The smallest 3-connected whirli&?2, which is isomorphic tdJ, 4; the smallest 3-connected
wheel isM (Ws), which is isomorphic taV (K4). By contrast with wheels and whirls of larger
rank, inM (W3) andW?, we cannot distinguish rim elements from spokes by looking just at
the matroid. In these two cases, we arbitrarily designate a 3-element circuit and a 2-element
set, respectively, as the rim with the complementary set being the set of spokes.

A fundamental concept in the statement of our main results is that of a chain of triangles
and triads 22]. Let T, Ty, ..., Tk be a non-empty sequence of sets each of which is a triangle
or a triad of a matroidV such that, forall in {1, 2, ...,k — 1}:

(a) in {T;, Ti+1}, exactly one set is a triangle and exactly one set is a triad;
(b) ITi N Tital =2; and
© (Ti;1—T)N(MUTU---UT) is empty.

Then we callTy, To, ..., Tx achainof M of length kwith links T, To, ..., Tk. Evidently,
T1, T2, ..., Tk is a chain ofM if and only if it is a chain ofM*. The last assertion relies
on statement (a) being self-dual. Statement (a) corrects the corresponding condifigh in [
which was intended to be self-dual but which is not.
The next lemma can be proved by a straightforward induction argument using orthogonality.

LEMMA 1.3. Let T, To, ..., Tk be a chain in a matroid M. Then M has-k 2 distinct
elements g ap, ..., a2 suchthat T= {a;, a1, &4+2} foralliin {1,2,...,k}.

In this paper, we shall be concentrating on 3-connected matroids. A useful, but elementary,
fact about such matroids (see, for examphd, Proposition 8.1.7]) is the following lemma.

LEMMA 1.4. The only3-connected matroid that has a triangle which is also a triad jsU

Much of our interest here is in maximal chains in 3-connected matroids. The following
extension of Tutte’s Wheels and Whirls Theorem shows that such a chain has non-essential
elements at both ends. The proof of this result, which extends Tutte’s proof, will be delayed
until Section3.
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FIGURE 1. The three types of chain.

LEMMA 1.5. Let M be a3-connected matroid with at least four elements and suppose
that M is not a wheel or a whirl. Let{T T, ..., Tx be a maximal chain in M. Then the
elements of TU T, U - - - U T can be labelled such that neither aor a2 is essential where
Ty = {a, a1, g 42} for alli.

Although chains can certainly occur in both non-graphic and graphic matroids, we follow
Tutte [32] in keeping track of the triangles and triads in a chain by using graphs as in Higure
In each case, the chainTg, To, ..., Tx whereT; = {&, & +1, g +2}. In (8), k is odd andTy
is a triangle, henc@y is also a triangle; inkj), k is odd andT is a triad, hencdy is also a
triad; in (C), k is even,T; is a triangle and is a triad. The remaining case, whiiis even,

T, is a triad, andT is a triangle, is, up to relabelling, the same &5 [n each of &)—(c),
every triangle in the graph is a triangle in the chain, while the triads in the chain correspond
to circled vertices.

Now suppose thaly, Ty, ..., Tk is @ maximal chain of a 3-connected matrddwhereM
is not a wheel or a whirl. We call this maximal chairfaa of M with links Ty, To, ..., Tk.

LetTi = {&, a+1, a2} foralli. Then{as, ap, ..., ak4+2} is theground sebf the fan, and

ai, ag, ..., aks2 are theelementof the fan. Fork > 2, Lemmal.5 implies that there are
exactly two non-essential elementsTinuU T, U - -- U T, namelya; andag o, for each of

ay, as, ..., a+1 is in both a triangle and a triad. We call andax> the endsof the fan.
Whenk = 1, the fan had as its ground set and contains either two or three non-essential
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elements oM. In the first case, we take the ends of the fan to be the non-essential elements
in Ty; in the second case, we arbitrarily choose two of the elements tf be the ends of
the fan. Figurel(a), (b), and €) show the three types of chains. Maximal chains of these
three types will be calletype-, type2, andtype3 fans respectively. In the figure, the non-
essential elements of these fans have been marked in bold. Two fatwaté they have the
same sets of links.

The next result, one of the two main theorems of this paper, extends Théaa2diy giv-
ing more detailed information concerning the structure around an essential element in a 3-
connected matroid. The proof of this theorem will be given in Se@ion

THEOREM1.6. Let M be a3-connected matroid that is not a wheel or a whirl. Suppose
that e is an essential element of M. Then e is in a fan, both ends of which are non-essential.
Moreover, this fan is unique unless:

(a) every fan containing e consists of a single triangle and any two such triangles meet
in {e} or:

(b) every fan containing e consists of a single triad and any two such triads mgston

(c) e isin exactly three fans; these three fans are of the same type, each has five elements,
together they contain a total of six elements; and, depending on whether these fans are
of typed or type=2, the restriction or contraction, respectively, of M to this set of six
elements is isomorphic to (K4).

This theorem implies that the fans in a 3-connected matroid other than a wheel or whirl
induce a partition of the set of essential elements.

COROLLARY 1.7. Let M be a3-connected matroid that is not a wheel or a whirl. Then
there is a partition of the set of essential elements of M such that two elements are in the same
class if and only if there is a fan whose ground set contains both.

Given a fan with at least five elements in a 3-connected mathidur second main result
describes hovM can be constructed by sticking together a wheel and a certain 3-connected
minor of M. The operation used here to join these two matroids is relatively well known for
graphs and even binary matroids but, for matroids in general, it may be less familiafl; Let
andM> be matroids such thafl1|T = M»|T, whereT = E(M1) N E(M2). LetN = M|T
and suppose thal is a modular flat of the matroit¥l;. Thegeneralized parallel connection
Pn (M1, M2) of M1 andM3 acrossN is the matroid oreE(M1) U E(M») whose flats are those
subsetsX of E(M1) U E(M2) such thatX N E(M3y) is a flat of M1, and X N E(My) is a
flat of M2. This construction was introduced by BrylawsR] fvhen M1 and M, are simple
matroids, but it extends easily to the more general case considered above (see, for example,
[21, Section 12.4]). Brylawski identified numerous attractive properties of the construction.
When|T| = 1, Py(M1, M) is just the parallel connectioR(M1, M») [7] of M1 andM».

One special case of the generalized parallel connection will be of particular importance
here. LetN be a triangleA in both M1 and M2 and suppose that is a modular flat oM. In
this case, we shall writ€x (M1, M2) for Py (M1, M2). Since every triangle is a modular flat
in a simple binary matroidg], if M1 is binary, thenPx (M1, My) is certainly well-defined.
Perhaps the best-known instance of this operation occurs wherivbo#imd M, are binary.

For example, leG; andG» be graphs whose sets of edge labels are disjoint except that each
has a triangleA whose edges are labelled by f, andg. If G is the graph that is obtained

by identifying these triangles such that edges with the same labels coincide, then the cycle
matroid of G is precisely the matroidPA (M (G1), M(G2)). We remark here that the graph
G\{e, f, g} is what Robertson and Seymo@4] call the 3sumof G1 andG,.
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Yn+1

FIGURE 2. A labelledW,, .

We are now ready to state the second main result of the paper, which will be proved in
Sectiond.

THEOREM1.8. Let M be a3-connected matroid and suppose that, for some non-negative

integer n, the sequend§o, Xo, Y1}, {Xo, Y1, X1}, {Y1, X1, Y2}, - - - , {¥n, Xn, Yn+1} is @ chain in
M in which{yo, Xo, y1} is a triangle. Then

M = Pa,(M(Wh+2), M1)\z
where A1 = {Yo, ¥n+1, Z}; Why2 is labelled as in Figure2; and M; is obtained from the
matroid M/xo, X1, ..., Xn—1\VY1, Y2, . . ., Yn by relabelling x as z. Moreover, either:

(i) Mgy is 3-connected; or
(ii) z is in a unique2-circuit {z, h} of M1, and M \z is3-connected.

In the latter case,
M = Pa,(M(Why2), M2)

whereAs = {Yo, Yn+1, h}; Wha2 is labelled as in Figure with z relabelled as h; and Mis

M1\z, which equals Mxg, X1, ..., Xn, Y1, Y2, - . ., ¥n.
An immediate consequence of this theorem is that the restrictiovh tf {Xg, X1, ..., Xn,
Yo, Y1, - - -, Yn+1}, the ground set of the chain, is equal to the cycle matroid of the graph shown

in Figure2 with the edgez deleted.

In Section4, we shall describe how the essential elements behave when a wheel is broken
off as above. In particular, we shall show that, fan {1, 2}, if M; is 3-connected, then an
element ofM; that is essential iM remains essential iM;.

2. PRELIMINARIES

The purpose of this section is to present a number of results for 3-connected matroids that
will be used in the proofs of the main results to be given in Sectiasd4.

We begin with three known results due to Bixbf,[Tutte [32], and Seymour26], respec-
tively. The first two of these results will be used frequently throughout the paper.

LEMMA 2.1. Let e be an element of &connected matroid M. Then either \d or M/e
is 3-connected.
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The following lemma is often called Tutte’s Triangle Lemma.

LEMMA 2.2. Let{e, f, g} be a triangle of a3-connected matroid M. If both e and f are
essential, then M has a triad containing e and exactly one of f and g.

The next lemma has been stated explicitly by Seymae}, though it is also implicit in
Tutte’s proof of the Wheels and Whirls Theore&#].

LEMMA 2.3. For some n> 2, let{er, e, ..., e} and {fy, fa, ..., fy} be disjoint sub-
sets of the ground set of a connected matroid M. Suppose that, for al{i, B ..., n},
{a, fi,a4+1} isatriangle and{ f;, g 11, fi+1} is atriad, where all subscripts are read modulo
n. Then EM) = {ey, f1, e, fo,..., &, fn} and M is isomorphic to NWW,) or W".

In the last lemma, the hypothesis theat, f, €1} is a triangle can be eliminated if we know,
for example, thaM is 3-connected.

LEMMA 2.4. For some n> 2, let{e;, e, ..., ey} and{f1, fo,..., fy} be disjoint subsets
X andY of the ground set oflaconnected matroid M. Suppose that, forall{ip 2, ..., n—
Landall jin{1,2,...,n},{g, fi,e41} is atriangle and{ f, 11, fj;1} is atriad, where
all subscripts are read modulo n. Then M is isomorphic to}) or W".

PrROOF Clearlyr(XUY) <r(X)+1=n+1,andr*(XUY) < |Y| = n. Hence
r(XUY)+r*(XuyY)—|XuY|<1,

that is,
r(XuyY)+r(E(M) —(XUY)) —r(M) < 1.

SinceM is 3-connected, it follows thaE(M) — (XUY)| < 1. We now distinguish two cases:

() [E(M) — (XUY)| =1;and
(i) E(M)=XUY.

In case (i), leE(M) — (XUY) = {d}. SinceY spansE(M)—d in M* andM* is connected,
Y spansM*. In addition, since all ofey, f1, e}, {e, f2, €3}, ..., {en—1, fn_1, €n} are cocir-
cuits of M*, andY meets each of these cocircuits in a single eleméig,independent it *.
ThusY is a basis oMM*. Let C* be the fundamental circuit af with respect to this basis of
M*. By orthogonalityC* < {d, f,}. This is a contradiction sindé is 3-connected having at
least four elements.

In case (ii),X spansE(M) — f, in M. HenceX spansM. Moreover,X is independent in
M since it meets each of thetriads of the hypothesis in a single element. Thus a basis
of M. Let C be the fundamental circuit of,, with respect to this basis. Theh € X U f.

By orthogonality with then known triads, we deduce that noneefes, ..., e,_1isin C.
HenceC C {e,, fn, e1}. Since|C| > 3, we conclude that = {e,, fn, €1}. It now follows by
Lemma2.3thatM is isomorphic toM (Wy) or W". O

Now we show that &, 4-restriction in a 3-connected matroid avoids all essential elements
of the matroid.

LEMMA 2.5. Let M be a3-connected matroid. If X2 E(M) and M|X = Uy 4, then no
element of X is essential in M.
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PROOF Suppose that some elementf X is essential ifM. ThenM\x has a 2-separation
{S, T}. Without loss of generality, we may assume tf&m (X — x)| > 2. Then{SUX, T}is
a 2-separation o¥1; a contradiction. a

The last three results in this section concern connectivity. The 28till be used only in
the casen = 3.

LEMMA 2.6. Let n be an integer exceeding one and M be a matroid having no circuits
with fewer than n elements. If M and MY are n-connected angl(X) Nncl(Y)| > n— 1,
then M|(X U Y) is n-connected.

COROLLARY 2.7. Let My and M, be matroids whose ground sets meet in asséat is a
triangle in both matroids and a modular flat ofiMThen R (M1, M») is 3-connected if and
only if both My and M, are 3-connected.

PROOF By the last lemma, iM; and M2 are both 3-connected, then soRs (M1, M»).
Now suppose thaP (M1, My) is 3-connected. Assume that, for somim {1, 2} and some
k < 2, the matroidM; has ak-separation{S, T}. Then we may assume, without loss of
generality, thatSN A| > 2. It follows easily tha{SU (E(Mj) — A), T} is ak-separation of
Pa (M1, M2) whereli, j} = {1, 2}; a contradiction. a
The next result is an extension of this corollary.

COROLLARY 2.8. Let the ground sets of the matroids; lnd M, meet in a sei that is a
triangle of both matroids and a modular flat of{MSuppose that botHE (M1)| and |[E(M2)|
exceed three and let z be an elemenhofThen R (M1, M2)\z is3-connected if and only if:
(i) M1 is 3-connected; and (ii)(a) Mis 3-connected, or (b) Mhas a unique-circuit, which
contains z, and M\z is3-connected.

PROOFE Suppose first thaPx (M1, M2)\z is 3-connected. Then eithéx (M1, M») is 3-
connected, oz is parallel to some elememgtof P (M1, M>). In the first case, by the previous
corollary, (i) and (ii)(a) hold. In the second case,/&ss a modular flat ofM1 containing
z, it follows thaty € E(My), so{z, y} is a circuit of Ma. Moreover, P (M1, M2)\z =
Pa (M1, M2\Y). Thus, by Corollary2.7 again,M; andMz\y are 3-connected, and it follows
easily that (i) and (ii)(b) hold.

A similar argument shows that if (i) and (ii)(b) hold, théh (M1, M2)\z is 3-connected.
Now assume that (i) and (ii)(a) hold. By Corollagy7, PA(M1, M>2) is 3-connected. Sup-
pose thatPA (M1, M2)\z is not 3-connected. Then this matroid has a 2-separgsom }. If
r(My) = 2, then we may assume, without loss of generality, tBat E(M2\z)| > 2. Hence
{SU z T} is a 2-separation oA (M1, M»); a contradiction. We conclude thatM2) > 2.
Clearlyr (M1) > 2. Thus the simplification oPA (M1, M2)/z is a 2-sum of two matroids of
rank at least two and so is not 3-connected. Hence, by Leththdhe cosimplification of
Pa (M1, M2)\z is 3-connected. SincBx (M1, M2)\z is not 3-connected itself, must be in a
triad T* of PA (M1, M2). By orthogonality| T* N A| > 2. However, each oM; andMs is a
restriction ofPA (M1, M»). Thus, fori = 1, 2, the sefT* N E(M;) contains a cocircuit oM;
and so, a; is 3-connected,T*NE(M;)| > 3. ThereforeT*NE(M1) = T*NE(M>2) = A,
soT* = A. It follows that A is both a triangle and a triad dfl;. Hence, by Lemma4 .4,
r(M1) = 2; a contradiction. O
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3. PROOF OF THEFAN THEOREM

In this section, we shall prove Theorein6. Evidently, the properties of chains in 3-
connected matroids will be important in this proof. We begin this section with four lem-
mas describing such properties. The first of these is essentially a converse of llehitsa
straightforward proof is omitted.

LEMMA 3.1. Let T3, Ty, ..., Tk be a chain in @-connected matroid M. Suppose that
{ai, a1, a42} foralli. If a; is non-essential and k 2, then there is n@-element subsefyT
of E(M) such that §, Ty, To, ..., Tk isachainin M.

LEMMA 3.2. Let Ty, T», T3 be a chain in a3-connected matroid M. Then there is at most
one set Tsuch that T, Tp, T3, T4 is a chain.

PROOF LetT, = {a, a+1, 82} fori =1, 2, 3. Assume thaly, Tp, T3, T4 is a chain both
whenT, = {a4, a5, b} and whenT, = {a4, as, ¢} whereb # c¢. Then the restriction oM or
M* to {a4, as, b, c} is isomorphic tdJ; 4. Howevera, is in two links of a chain and hence is
essential, contradicting Lemn2ab. O

LEMMA 3.3. Let €, &, €3, &4, €5, 65 be distinct elements of &connected matroid M.
Suppose that 1T T, T3, T4 is a chain in M such that T= {e, g+1, 42} for all i, and
e1 is non-essential. Then the only triangles or triads of M containingre T; and T,.

PROOF By switching to the dual if necessary, we may assume Thas a triangle. Sup-
pose thatM has a triangl€l containingey but different from{es, e, e3}. Then, by orthog-
onality with the triad{ep, e3, &4}, we deduce thal containses or e;. If e3 € T, then
M|(T U {e1, &, €3}) = Uy 4. Sinceey is essential, this contradicts Lemr2sb. Thus we
may assume thats ¢ T. Henceeq € T. By orthogonality with the triadey, es, s}, we
deduce thal containses or eg. If &5 € T, thenM|{ep, €3, €4, &5} = Uz 4, a contradiction
to Lemma2.5 Hencees ¢ T and soT = {ep, &, &}. ThusM|{ey, &, ..., es} is spanned
by {e1, 3, e5}. Since{ey, e3, €4} is a triad ofM, it contains a cocircuit oM |{e;, e, ..., €5}
Thus{e, es5, es}, which avoids{ey, e3, €4}, is dependent iM|{e1, e, ..., &} and hence is
a circuit of M. However now, by Lemm&.4 M = M(Ws3) or W2 so every element, in-
cluding ey, is essential. This contradiction implies tHat, e, e3} is the only triangle oM
containinges.

Now suppose thal* is a triad ofM that containg, but is different from{ey, e3, e4}. By or-
thogonality with the circuite;, &, es}, we must have that orezisin T*. The first possibility
is out ase; is non-essential. Henas € T*. However, therM*|(T* U {ey, €3, €1}) = U24; @
contradiction to Lemma&.5sincee; is essential. O

LEMMA 3.4. Let g, e, €3, &4, &5 be distinct elements of &connected matroid M that
is not isomorphic to MW3). Suppose thafer, e, e3} and {es, e4, e5} are triangles and
{e2, €3, &4} is a triad of M. Then these two triangles and this one triad are the only trian-
gles and triads of M containingze

PROOF Suppose first thal * is a triad ofM containinges but thatT* £ {ey, e3, €4}. Then,
by orthogonality and symmetry, we may assume thais {e1, e3, &4} or {ey, €3, es}. In the
first caseM*|{e1, e, €3, &4} = U3 4. Sincee; is essential, this contradicts Lemraa. Hence
T* = {e1, e3,65}. Let A = {e1, &, €3, &4, 5}. Then{ey, e, es} spansAin M, and{ey, &, €3}
spansAin M*. Thus

r(A) +r (A — A =1
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SinceM is 3-connected, it follows thaE(M) — A] = 1, so|E(M)| = 6. Using the known
triangles and triads oM, it is now routine to show that! = M (W3); a contradiction. We
conclude thate,, e3, e4} is the only triad ofM containinges.

Suppose next thal is a triangle ofM containinges but different from{es, e, es} and
{es, &4, es}. Then, by orthogonality with the triafky, es, &4} and by symmetry, we may as-
sume thaty € T. ThusM|({e1, e, &3} U T) = U, 4. Sinceey is essential, we have a contra-
diction to Lemma2.5. ]

Next we insert the proof of Lemmk5which was delayed from Sectidn

PROOF oFLEMMA 1.5. We may assume th&t> 2 for if k = 1, the lemma follows easily
by using the maximality of the chain along with Tutte’s Triangle Lemma.

As noted in Lemmadl..3 the elements ol U To U - .- U Ty can certainly be labelled by
ai, ag, ..., a2 suchthafl, = {a, a+1, g2} foralli. It remains to show that this labelling
can be adjusted such that neittagrnor ay,» is essential. Suppose that this is not the case.
Then, by reversing the ordering @, az, ..., a2 if necessary, we may assume tlgat,
is essential. Moreover, by duality, we may also assumeThéat a triangle. Then, as neither
M\aks+1 hor M\ax2 is 3-connected, Lemm2.2 implies thatM has a triadT * containing
ax+2 and exactly one od anday 1.

Suppose thaty 1 € T*. Then the maximality of the chaify, To, ..., T implies thatT *
must also contain one @f, ap, ..., ax_1. Thus ifk = 2, thena; € T*; if k > 2, then each
of ap, a3, ..., a_1 is in a triangle of the chaify, To, ..., Tk that avoids{aky1, ak+2}, SO
againa; € T*. It follows by orthogonality and Lemma2.4 that M is a wheel or a whirl; a
contradiction.

We may now assume that,1 ¢ T*. Thenax € T*. If k > 3, then, takinges = a in
Lemma3.4, we obtain the contradiction that* = {ax_1, a, a+1}. Thus we may assume
thatk = 2. Let T* = {ap, a4,z}. If z # a1, thenTq, To, T* is a chain contradicting the
maximality of the chainTy, To. Thusz = a;. However, therM*|{ay, az, az, as} = Uz 4 and
ay is essential; a contradiction to Lemr. ]

The following extension of Theorethlis an immediate consequence of Lemina

COROLLARY 3.5. Let M be a3-connected matroid with at least four elements. Then either
M is a wheel or a whirl, or M has at least two non-essential elements.

Among the results ind4] is a specification of all the 3-connected matroids in which the set
of non-essential elements has rank two.

We are now ready to prove the fan theorem, and the remainder of the section will be devoted
to presenting this proof.

PROOF OFTHEOREM1.6. BecauseéM has an essential element and is not a whiz(,M)|
> 5. By Theoremnl.2, sinceeis essential, itis in a triangle or a triad Bf. ThusM has a chain
containinge. Let Ty, Ty, ..., Tx be a maximal chain oM such that € TTU T, U --- U T.
ThenTy, Ty, ..., Tk is a fanF of M containinge.

Now letT;, T,, ..., T, be another fadF’ of M containinge; let TiU T U - - - U Ty = E(F);
let T;UT,U---UT, = E(F); and letT; = {&;, aj41, 82} for alli. The proof of the various
assertions concerning the fans contairengill be broken into the following four cases:

() [E(P)]=3;
(i) 1E(A)] =4,
(i) |E(F)| =5;and
(V) |E(F)| > 6.
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Consider case (i) assuming, without loss of generality, Thas a triangle ofM. Thene
is not in a triad ofM otherwise the chain whose single linkTis is not maximal. Since, in a
maximal chain of length at least two, every essential element is in a triad, we deduce that the
fan 7' also has just one link, a triangle. Moreover, the fanand 7’ meet in{e} otherwise
M|(E(F) U E(F")) = U4, contrary to Lemm&.5. We conclude that ifE(F)| = 3, then
(a) or (b) holds.

Now assume that (ii) holds and suppose, without loss of generalityethataz and that
T1 is a triangle. Clearlya; andas are non-essential. |E(F’)| = 3, then we may apply case
(i) interchangingF and F’ to obtain a contradiction. Thus we may assume {E&{F")| >
4. Hence the links ofF’ include a triangleT and a triadT* both containingas. As a4 is
non-essential and is in the tridd, it follows thatay ¢ T. By orthogonality with the triad
{ap, a3, au}, we deduce thal containsa, andaz. Since these two elements are essential,
Lemma2.5implies thatT = {a1, az, ag}. A dual argument establishes that = {ay, az, a4}.
Hence, in this caser = F7; that is,eis in a unique fan.

We shall assume next that (iv) occurs. From cases (i) and (ii), we may assunethgy >
5. Next we shall distinguish the following two subcases of (iv):

() eisinjusttwo ofTy, To, ..., Tk; and
(II) eisin atleastthree ofy, To, ..., Tk.

Suppose that (I) occurs. Then we may assume, without loss of generalitg that,. By
Lemma3.3, the only triangles or triads d¥l containinge are T, andT». Since|E(F")| > 5
ande is essentiale is in at least two links ofF’. HenceT; and T> must both be links ofF’.
Moreover, sincey is non-essential, it follows by Lemn®althata; is an end ofF’. Thus we
may assume thal; = T; andT, = T,. Takingag equal toez in Lemma3.4 and using the
fact thatT], T,, ..., T is a maximal chain, we deduce thg{t= Ts. Again using the fact that
T/, T, ..., T;is amaximal chain, this time with Lemn@2, we find thafT| = T; for all j in
{4,5,...,k}. Now, sinceTy, To, ..., Tx is a maximal chain, it follows th&k = n and hence
thatF = F'.

To complete the proof in case (iv), we need to treat subcase (). Thus assume-thator
somej in {3,4, ..., k}. By Lemma3.4or its dual, the only triangles or triads bf containing
eareTj_2, Tj_1, andT;. If all three of these sets are links &7, then, sinceF” is a maximal
chain, repeated applications of Lem®2 yield that 7’ has exactly the same set of links as
F. Thus we may assume, without loss of generality, hap andT;j_1 are links of 7’ but T;
is not. Hencee is in exactly two links of#’, soeis in a link of 7" with some non-essential
element. Thereforej_, or aj1 is non-essential. Howeves, ;1 is in bothT;_1 andT; so
it is essential. Hencej_» is non-essential, saj_» = a;. Applying Lemma3.3to the chain
Ty, T2, T3, T4, we find thatT; and To are the only triangles or triads dfl containingay.
However, nowT; is a link of 7’ containing two elementsy, andag, each of which is in just
two links of /. HenceF’ has exactly two links, a contradiction to the fact tHatF’)| > 5.

It now remains to treat case (iii). First we note th&t{F’)| = 5 otherwise we can obtain
the result by applying one of cases (i), (ii), and (iv) wihand.F’ interchanged. Now either:

() eisin all three ofTy, T2, andTs; or
(I1) eis in exactly two ofTy, T2, andTs.

We may assume, by switching to the dual if necessary,thahdTs are triangles.
Consider (I). Evidentlye = a3. By Lemma3.4, T1, T2, and T3 are the only triangles or
triads of M containingas. Since|E(F’)| = 5 andas is essential, the links af” include
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both a triangle and a triad containiag. Without loss of generality, we may assume that
and T are links of F'. Sincea; is non-essential, the remaining link g% is a triangleT
containingas and exactly one oé; andaz. If ag € T, then it follows by Lemma2.5 that
T = Tg; thatis,7 = F.Ifag ¢ T, thenT = {ap, a4, z} for somez # az. The dual
of Lemma2.5 can now be used to show that#4 a; andz # as. ConsiderM|(E(F) U
E(F")). This matroid has ground séds, ay, as, a4, as, z}. It has{ay, ag, a4} as a basis and
{ap, a4, Z} as a circuit. Thus, by Lemnia5, this matroid hasa;, as, as} as a cocircuit. Since
M|(E(F)UE(F")) is clearly 3-connected, it follows by Lemn3adthatM |(E(F)UE(F)) =
M (K4). Moreover, one easily sees that, apart fréirand 7', the only fan containing is
{z, ap, as}, {ag, au, a3}, {au, ag, as}.

Finally consider (iii)(II). Without loss of generality, we may assume #at ap. If ag €
E(F"), thenaz is an essential element that is in all three linksfofind is also an element
of F'. Hence we may apply (iii)(I) to obtain the desired result. We may now assumagthat
is not in E(F’). Certainlyay is in a triadT* that is a link of /. By orthogonality with the
triangle{as, ap, az}, we deduce thady € T*. Thusa; is essential; a contradiction. m]

4. BREAKING OFFWHEELS

In this section, we shall prove Theoren8. In addition, we shall describe how the essential
elements behave when a wheel is broken off as in that theorem. We begin with a straight-
forward result showing that if one wants to perform two successive generalized parallel con-
nections across triangles, then the order in which these operations are performed does not
matter.

LEMMA 4.1. Let Mg, M2, and Mg be matroids, the first two of which are binary. Suppose
that E(M1) and E(M2) meet in a setA which is a triangle of both Mand M,, that E(M>)
and E(M3) meet in a se\’ which is a triangle of both M and Mg, and that EM;) and
E(M3) meetinA N A’. Then

Pa (M1, Pa/(M2, M3)) = Par(Pa(Mz, M2), M3).

PROOFE First we remark that both sides of the asserted equation are well-defined. To see
this, note that, aM; and M, are binary,A and A’ are modular flats oM, and My, re-
spectively. MoreoverP, (M3, M) is also binary and hence has as a modular flat of its
simplification.

Next we observe thaPa (M1, Par(M2, M3)) and Pa/(Pa (M1, M2), M3) have the same
ground set, namele(M1) U E(M2) U E(M3). To complete the proof that these two ma-
troids are equal, we show that they have the same sets of flats. By defititism flat of
Pa (M1, Par(M2, M3)) if and only if

F N E(My) is a flat of My (1)

and
F N E(Pa (M2, M3)) is a flat of Pa/ (M2, M3). (2)

However, @) holds if and only if
F N E(My) is a flat of M2 3)

and
F N E(M3) is a flat of M3. 4)
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by

FIGURE 3. A labelledM (Ky).

Thus F is a flat of PAo(M1, Pa/(M2, M3)) if and only if (1), (3), and @) hold. A similar
argument shows thdt is a flat of Po/(PA (M1, M2), M3) if and only if (1), (3), and @) hold.
The lemma follows immediately. O

The next lemma, an extension of a result of Akkari and Ox®y Will be used to prove
Theoreml.8in the casen = 1. Following this lemma, we prove the theorem.

LEMMA 4.2. Let & and by be distinct elements of &connected matroid M. Suppose
that {ap, b1, a1} is a triad, {b1, a1, bp} is a triangle, and M is not isomorphic todd. Then
M = PA(M(Ky), MH\{c, ¢’} whereA = {c, ¢/, by}; M (Ky) is labelled as in Figure3; and
M’ is obtained from Mag by relabelling a and b as ¢ and ¢ respectively. Moreover, one
of the following holds:

(i) M’is3-connected;

(i) ap is in a unique triangle of M, this triangle containg,aand M\c is 3-connected;

(iii) agis in a unigue triangle of M, this triangle containg,tand M'\c’ is 3-connected;

(iv) agisinexactly two triangles of M, one of which also containgad the other of which

also contains b, and M'\c, ¢’ is 3-connected.

ProOOFE The first part of the lemma is proved i8] It only remains to show that one
of (i)—(iv) holds. Suppose that (i) fails. TheM /agp is not 3-connected. Sinckl/a; has a
2-circuit and has rank exceeding one, it is not 3-connected. Applying the dual of Tutte’s
Triangle Lemma to the triahy, a;, b1} of M, we deduce tha#l has a triangle containinap
and exactly one of; andb;. Moreover, as botla; andb; are essential, Lemm&5 implies
that each ofag, a1} and{ag, b1} ié_i\r]/at most one triangle d¥l.

Now, by Lemma2.1, M\ag or M/ag is 3-connected. If the latter occurs, it follows without

difficulty from the preceding paragraph that one of (ii)—(iv) holds. Hence we may assume that
M\ag is 3-connected. Howevel \ag has{a, b1} as a cocircuit and1\ap/a; has{bs, by} as

a circuit. ThereforeM \ag is not simple. AsM\ay is 3-connected, this matroid is isomorphic

to Uy 2 orUjp 3. ThusM is a 3-connected matroid having corank equal to two or three. Since
M has both a triangle and a triad ald% Uy 4, it follows thatr *(M) # 2. Hence *(M) = 3.
ThusM* has rank three and has, bi, bp} as a triad. The remaining elementsif lie on
aline, and it is straightforward to check that one of (i)—(iv) holds. O

PROOF OFTHEOREM 1.8. We argue by induction on. Whenn = 0, M; = M and the
theorem holds. Now suppose timat= 1. Then, by Lemmd.2, M = PA (M (W3), M)\{z, Z}
whereA = {z, Z, y»}; M(Ws) is labelled as in Figurd(a); and M’ is obtained fromM /xg
by relabellingx; andy; asz andz/, respectively. Howeveryp andy; are in parallel inM /xg.
Thus

M = Pa, (M(W3), M)\(z, Z}
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FIGURE 4. Three labellings oM (W3).

whereA1 = {z, o, Y2}; M(W3) is labelled as in Figurd(b). Therefore
M = Pa,(M(OWV3), M\Z)\z ©)

Now, clearlyM’\Z is M/xg\Yy1 with x; relabelled ag; that is,M’\Z is M;. Sincexg is in

a triangle ofM, the matroidM’ is not 3-connected. Thus, by Lemma again, either: (i)
M’\Z is 3-connected; or (iiM’\Z has a unique 2-circuifz, h} containingz, andM’\Z, z
is 3-connected. Howevel’\Z = M1, so, in the first caseM; is 3-connected, and, in the
second caséVl;\z is 3-connected. Moreover, in the second case, sirscelh are parallel in
M’\Z, it follows by (5) that

M = Pa,(M(W3), M'\Z'\2)

whereAz = {yo, Y2, h} andM (W) is labelled as in Figuré(c). Now, M’'\Z'\z = M /Xo\ y1\X1,
andxg is a coloop ofM\x1, y1, SOM’\Z'\Z = M\Xo, X1, y1. This completes the proof of the
theorem in the case = 1.

Now assume that the theorem holds for< k and letn = k > 2. By the induction
assumption,

M = PA(M(Wis1), MO\z1 (6)
whereA = {yo, Yk, Z1}; Wk+1 is labelled as in Figurg; andM’ is M/xg, X1, . . . , Xk—2\ Y1,
Vo, ..., Yk—1 With xx_1 relabelled ag;. Moreover, either:

(i) M’is 3-connected; or
(i) M’\z; is 3-connected.

However, {xk_1, Yk, Xk} is a triad of M, and hencdyk, xx} contains a cocircuit oM’\ z;.
Since the last matroid has at least four elements, we conclude that (ii) does not hold.

We may now assume thMt’ is 3-connected. Then, by repeated application of circuit elimi-
nation and orthogonality, we deduce ths, Xo, X1, ..., Xk—1, Yk} iS a circuit ofM. It follows
that{yo, z1, Yk}, {Z1, ¥k» Xk}, {¥k, Xk, Yka-1} iS @ chain inM’ in which {yo, z1, Yk} is a triangle.
Thus, by the induction assumption,

M’ = Pa,;(M(W3), M1)\z (7)
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FIGURE 5. A labelledW, 1.

Yo

yk+1
FIGURE 6. A labelledW 1.

whereA1 = {yo, Yk+1, Z}; Ws is labelled as in Figuré; and M1 is M’/z1\ yk with Xk rela-
belled asz. SinceM’ is M/Xg, X1, ..., Xk—2\Y1, Y2, . . ., Yk_1 With xx_1 relabelled ag;, the
matroidM; is

M/Xo0, X1, -+ s Xk—2> Xk—1\Y1, ¥2, - - - » Yk—1, Yk
with x relabelled ag. By (6) and (7),

M = Pa(M(Wk+1), Pa;(M(W3), MD\2)\Z1
= PA(MWict1), Pa, (M(WV3), Mi)\(z, 1}, €

whereWi1 andWjz are labelled as in Figurésand®6, respectively. Thus, by Lemn#al,

M = Pa; (PA(MWicr1), M(W3a)), MD\{z, 21}
= Pa (PAMM Wict1), M(W2))\z1, M1)\z.

In addition, P (M (Wk+1), M(W3))\z1 is M(Wi+2) whereWk.2 is labelled as in Figur@
with n = k. HenceM = Pa,(M(Wk42), M1)\z where A1 = {yo, Yk+1. 2} and My is
M/Xo, X1, ..., Xk—1\Y1, Y2, . . ., Yk With xi relabelled az. We conclude that, when = Kk,
M is as asserted in the theorem.

We now need to check that either (i) or (ii) holds. Hence we may assumévithét not
3-connected. We noted above thét is 3-connected, thatl’ = Pa, (M (V3), M1)\z, and
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that M1 is M’/z;\ yk with xi relabelled ag. By the induction assumption applied to the chain
{Yo, Z1, Yk}, {Z1, Yk, Xk}» {Yk, Xk, Yke1} of M’, we deduce that is in a unique 2-circuifz, h}
of M1, andM1\z is 3-connected. Moreover,

M’ = Pa,(M(W3), M2)

where Az = {yo, Yk+1, h}; W is labelled as in Figuré with z relabelled as; and M3 is
M"\z1, X, Yk. Thus, by 6),

M = PA(M(Wiy1), Pa,(M(OWV3), M2)\ 21 9)
whereA = {yo, Yk, z1}; A2 = {Yo, Yk+1, h}; Wk41 is labelled as in Figurg; Wz is labelled as
in Figure6 with zrelabelled af; andMa is M\ z1, Xk, Yk. SinceM’ is M/xg, X1, . . ., Xk—2\ Y1,
Yo, ..., Yk—1 With xx_1 relabelled ag;, we deduce that

M2 = (M/Xo, X1, . . ., Xk—2\Xk—1, XK)\Y1, Y2, - . ., Yk-

However, inM\Vy1, Y2, ..., Yk, each of{xg, X1}, {X1, X2}, ..., {Xk—1, Xk} is @ union of cocir-
cuits. HenceM\yy, yo, ..., Yk\Xk—1, Xk hasxx_» as a coloop, and so hag_3 as a coloop.
Continuing in this way, we deduce that allxf_», Xk_3, ..., Xo are coloops. Thus

M2 = M\X05 X17 ‘-'5Xk7 yl7 y2, sy Yk-
By Lemma4.1and @), we have that

M = Pa,(PA(M(Wky1), MOWV3)), M2)\ 71
= Pa,(PAMM Wk11), MOWV3)\ 71, M)
= Pa,(M(Wk42), M)

where Wic;» is labelled as in Figur@ with n = k and with z relabelled ash; and M
= M\Xo, X1, ..., Xk, Y1, ¥2, - . -, Yk- We conclude, by induction, that the theorem holds for
all positive integers. ]

COROLLARY 4.3. Let M be a3-connected matroid that is not a wheel or a whirl, and let e
be an essential element that is in more than one tiyfa with five or more elements. Then e
is in a unique triad T of M. Moreover, M has a trianglé such that M(T* U A) = M(Ky)
and

M = PA(M[(T*UA), M\T¥).

In addition, M\T* is 3-connected.

PROOFE By Theoreml.6, eis in exactly three fans each of which is of type-1 having five
elements. Moreover, these three fans contain a total of six elements, and the restrition of
to these six elements is isomorphic M(K,). Let the elements of thid (K4) be labelled
as shown in Figur& where{yo, Xo, Y1}, {Xo0, Y1, X1}, {Y1, X1, Y2} is one of the type-1 fans
containinge. It follows without difficulty from Theoremni.8that

M = Pa(M(K4), M\Xo, Y1, X1)

where M (Ky) is labelled as indicatedy = {yp, X2, Y2}, and M\ Xg, y1, X1 is 3-connected.
Moreover, by applying Lemma.4to one of the three type-1 fans containmgt follows that
{Xo0, Y1, X1} is the unique triad oM containinge. O
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FIGURE 7. A labelledM (Ky).

We shall now describe how essential elements behave when a wheel is broken off as in
Theoreml.8. In that theorem, the resulting 3-connected matroilflisor M2. We shall first
consider the latter.

PROPOSITION4.4. Let M = Pa,(M(Wh+2), M2) where n is a positive integer antl,
is a triangle. Suppose that Ms 3-connected having at least four elements, and let e be an
element of M. Then:

(a) M2/e is3-connected if and only if either & is3-connected or M = Uy 4;
(b) M\e is3-connected if and only if either Me is3-connected or & As.

Hence ifeis essential in M, theris essential in M; and if e is non-essential in M, thexis
non-essential in Mor e e A».

ProOOF By Corollary2.7, M is 3-connected. We shall first prove (a) by breaking the ar-
gument into the two cases: @ ¢ clm(A2); and (i) e € clm(A2). In case (i),M/e =
Pa,(M(Whi2), M2/€) and (a) follows easily by Corollarg.7. In case (ii),M /e is non-simple
having at least four elements 8&/e is not 3-connected. IM2/e is 3-connected, then, since
this matroid is non-simple, butl, has a triangle, it follows thal; = Uj 4. Conversely, if
M2 = Uy 4, thenMy/eis 3-connected. Hence (a) holds in case (ii), so (a) is proved.

We break the proof of (b) into the two cases: €i)}¢ A»; and (i) e € Az. In case (i),
M\e = Pa,(M(MWh42), M2\e) and (b) follows easily by Corollarg.7. In case (ii),M\e =
Pa,(M(Wh42), M2)\e, so, by Corollary2.8, M\e is 3-connected. Hence (b) holds in case
(i), so (b) is proved.

On combining (a) and (b), we deduce that if e is essenti® jihen eithee is essential in
M2, or M2 = Uy 4. However, the latter cannot occur otherwigig\e is 3-connected and so,
by (b), M\eis 3-connected; a contradiction.

If eis non-essential iM, then, by (a) and (b) agaig,is non-essential if; ore € A,. O

The next result shows that, when the matrtdd in Theorem1.8 is 3-connected, every
essential element d¥l that is in M, is also essential itM1. However, the behaviour of the
non-essential elements bf is less straightforward.

PrROPOSITION4.5. Let M be a3-connected matroid that is not a whirl. Suppose that there
is a positive integer n such that

M = Pa,(M(Whai2), MD\Z

whereA1 = {Yo, Yn+1, 2} and Wy is labelled as in Figure. Let My be3-connected and e
be an element of 8M,) — z. Then:
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(a) M/e is3-connected if and only if either Me is 3-connected; or e¢ A1, there is a
unique triangle of M containing{e, z}, and M, /€e\z is3-connected;

(b) M\e is3-connected if and only if either Me is3-connected; or e A; and e is not
in a triad of M.

Hence if e is essential in M, then e is essential in. Mowever, if e is non-essential in M,
then either e is non-essential inybr e € A; and e is not in a triad of M; or e A1, there
is a unique triangle of M containing{e, z}, and M, /e\z is3-connected.

The proof of this proposition will use the following lemma, the straightforward proof of
which is omitted.

LEMMA 4.6. Letk be an integer exceeding two and suppose thd 8Vk)) and E(U3 1)
meet in a setA that is a triangle of both matroids. Let z be an elemenpathat is a rim
element ofVk. Then

Pa(M (W), Uz.4)\z = WK,

PROOF OFPROPOSITION4.5. Certainly|E(M1)| > 3. If [E(M1)| = 3, thenM is a single-
element deletion oM (Wh12) and so is not 3-connected. THUS(M1)| > 4. If |[E(M1)| = 4,
then, asMj is 3-connectedM; = U 4 and so, by Lemm4.6, M is a whirl; a contradiction.
Hence we may assume th&(M1)| > 5. Therefore, adl; has a triangler*(M;) > 3 and
sor*(M) > 4.

We shall break the proof of (a) into the two casese(g cly (A1); and (i) e ¢ cly (A1).

In case (i), neitheM /e nor M1/e is 3-connected since each has a 2-circuit and at least four
elements. Moreover, i ¢ Aj, then either (M1) = 2, in which casde, z} is not in a unique
triangle of M1, orr (M1) > 2, in which caseM1/€e\z has rank at least two and has a 2-circuit,
and so is not 3-connected. We conclude that (a) holds in case (i). In case (ii), we certainly have
thate ¢ Aj. By Corollary2.8 M/eis 3-connected if and only if eithevl; /e is 3-connected,

or M1/e has a unique 2-circuit, which contairsand My /e\z is 3-connected. Sinckl; is
3-connected, (a) follows easily in case (ii).

The proof of (b) will be broken into the two cases: €)¢ A1; and (ii))e € Aj. In case
(i), sinceM; is 3-connected having at least five elements, Corolla8implies thatM\e is
3-connected if and only iM;\e is 3-connected. Thus (b) holds in case (i). Now assume that
(ii) holds. By symmetry, we may suppose tlat yp. If M\e is 3-connected, theais not
in a triad of M. Thus the forward implication of (b) holds in case (ii). To prove the reverse
implication, suppose thafl \e is not 3-connected, lettingX, Y} be a 2-separation of it. Then,
since|E(M1) — {z, €}| > 3, we may assume thgX N (E(Mj1) — {z, €})| > 2. Therefore, if
r(Mip) = 2, then{X U e, Y} is a 2-separation of1; a contradiction. Hence we may assume
thatr (M) > 2.Thus the simplification oPa, (M (Why2), M1)\z/eis a parallel connection
of two matroids of rank at least two and so is not 3-connected. Thus, by Le2rinthe
cosimplification ofPa, (M (Wh12), M1)\z\e, which equalsM\e, is 3-connected. Sinddl\e
is not 3-connected, it follows th&ll has a triadl * containinge. It remains to show thatli\e
is not 3-connected. As = yp and{Xg, Yo, Y1} is a triangle ofM, orthogonality implies that
T* containsxg or y;. Evidently T* or T* U zis a cocircuit ofPa, (M(Wh42), M1). SinceM;
is a restriction of the last matroid, it follows th@* U z) N E(M1) contains a cocircuit o
containinge. However,|(T* U z) N E(M1)| < 3 yet M; is 3-connected having at least five
elements, sd1 has a triad containing. ThereforeM1\e is not 3-connected. This completes
the proof of (b) in case (ii).

The conclusions concerning essential and non-essential elements follow immediately on
combining (a) and (b). |
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Propositionst.4 and4.5 will be used in 4] to investigate those 3-connected matroids in
which the set of non-essential elements is small. If we denot& @y the set of non-essential
elements of a 3-connected matrd@jd then, by Propositiod.4,

v(M2) € E(M2) Nv(M) € v(M2) U Az.

In Propositior4.5, the situation is less straightforward. The set of non-essential elements of
M1 may includez, which is notinE(M), but otherwise this set is a subset¢M). Moreover,
if we suppose that the chaiyo, xo, Y1}, {X0, Y1, X1}, {Y1, X1, ¥2}, . . ., {¥n, Xn, Yn+1} in The-
orem1.8is a fan, thenyp andyn+1 are non-essential elementsidf The element is on the
line of M1 throughyp andyp1. Thus, althougty(M1) need not be a subset B M) Nv (M),
we do have that

v(Myp) C clm, (E(M1) Nv(M)).

This fact will be very useful in24].

Theoreml.6indicates how one can break off a wheel from a 3-connected matroid having
a chain of odd length exceeding two. In fact, that theorem explicitly describes this break off
when the chain has a triangle as its first link and hence has a triangle as its last link. If the chain
has triads as its first and last links, then one can reduce to the case described in Théorem
by taking duals. For chains of even length, the situation is slightly different. The result in this
case is stated in the next theorem, a generalization of Leftha he reader will observe
that, in this case, it is slightly more difficult to recover a 3-connected matroid in what is left
after the break off.

THEOREM4.7. Let M be a3-connected matroid which is not a wheel or a whirl. Suppose
that, for some non-negative integer n, the sequence

{yOa X0, yl}v {XO» YL Xl}, sy {Yna Xn, yn+l}1 {an yn-'rls Xn+1}

is a chain in M in which{yp, Xg, Y1} is a triangle. Then

M = Pa(M(Whi3), Ma)\(Z, Y1)

where A = {yo, Z, yr/1+1}; Wi+ 3 is labelled as in FigureB; and Mg is obtained from the
matroid M/Xo, X1, - - ., Xn-1\Y1, Y2, - - - » Yn/Xn+1 by relabelling x and y1as Zand y, ;.
Moreover:

(i) Msis 3-connected; or
(i) Z isin a unique2-circuit of M3, and Mg\ Z' is 3-connected; or
(ii)) y), 4 isin a unique2-circuit of Mz, and Ms\y;, . , is 3-connected; or
(iv) eachofzand Yy, , isin a unique2-circuit of Mg, and Ms\Z,, y; , ; is 3-connected.

The proof of this will use another variant of Lemraa.

LEMMA 4.8. For some non-negative integer n, suppose f{lyat Xo, Y1}, {Xo, Y1, X1}, - - -,

{Yn, Xn» Yn+1}> {Xn» Yn+1, Xn+1} IS @ chain in a simple matroid M. If BM) = {Xo, Yo, X1, Y1,
<.y X4l Yne), then M is isomorphic to MW 2) or W2,

PrROOFE Since the chain has an even number of links, we may assume that the first link
is a triangle. ThugXi, Vit1, Xj+1} is a triad of M for all i in {0, 1,...,n}. Since each of
Y1, Y2, . .., Yn+1 iS in exactly one of these triads ailis simple, it follows thafyo, v1, ...,
Yn+1} is independent itM. As this set clearly sparis(M) — {Xn+1} andx,1 is not a coloop
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!
yn+1

FIGURE 8. A labelledW), 3.

of M, we deduce thatyo, v1, ..., Ynt+1} is a basis oM. Consider the fundamental circuit of
Xn+1 With respect to this basis. By orthogonality and the simplicityvbfit follows that this
circuit is {Yn+1, Xn+1, Yo}

Now {y1, Yo, ..., Yn+1} Spans a hyperplane ™ that also contains all of, xo, .. ., X, but
avoidsyp and hence avoidsg andxn+1. Thus{yo, Xo, Xn+1} is a triad ofM and the lemma
follows by Lemma2.3. ]

PROOF OFTHEOREMA4.7. If n = 0, the theorem is just a restatement of Lenria Now
suppose thah > 0. By the last lemmalE(M)| > 2n 4 5. Moreover, Theorem.8implies
that

M = Pa,(M(Wh+2), M1)\z
where A1 = {Yo, ¥n+1, Z}; Wha2 is labelled as in Figur@; and M1 is obtained from the
matroidM /Xo, X1, ..., Xn—1\Y1, Y2, . .., ¥n Dy relabellingx, asz. Moreover, either: (iM1 is
3-connected, or (iiM1\z is 3-connected. In the latter cadd,/xg, X1, ..., Xn—1\Y1, Y2, - . -,
Yn, Xn IS 3-connected. Howevek] has{x,, Yn+1, Xn+1} &S a cocircuit, so the last matroid has
a cocircuit contained ifiyn+1, Xn+1}. Since this matroid has at least four elements, it cannot
be 3-connected. Therefore (ii) cannot occur. We concludeMhas 3-connected.

Now {VYo, ¥n+1, 2} is a circuit of My and {yn+1, Z, X1} is a cocircuit ofM;. Thus, by
Lemma4.2 M1 = PA(M(Ky), M2)\{Z, yr’1+1} whereA = {yo, Z, yr’1+1}; M (Ky) is labelled
as in Figured; and M is obtained fromM1/xn 1 by relabellingz andyn 1 asz’ andyy, 4,
respectively.

By Lemma4.1

Pa; (M(Whi2), Pa(M(Kg), M2)) = PA(Pa; (M(Why2), M(Ka)), M2), (10)
whereM Whi2), M(Kg), andMy are labelled as above. Since
M = Pa; (M(Whyi2), MD\z and M1 = Pa(M(Ka), M2\{Z, yp 41},
it follows that

M = Pa;(M(Wh+2), PA(M(Ka), M2\{Z, Y5, 1)\2
= Pa; (M(Whi2), Pa(M(Ka), M2)\{Z, yp 41, 2}
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yn+1

Xn+1
Yo

7
yn+1

FIGURE 9. A labelledM (Ky).

(b) (©

FIGURE 10. An essential element becomes non-essential.
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Thus, by (0),

M = Pa(Pa;(MWhi2), M(Ka)), M)\(Z, Y541, 2}
= Pa(Pa,(M(Whi2), M(Ka)\z, M2\(Z,, Y 14)-

Itis not difficult to see that
Pa; (M(Whi2). M(K4)\z = M (Wh13),
whereW, 3 is labelled as in Figur8. Therefore
M = Pa(M(Why3), M2\{Z,, Yp 14}

whereM is obtained fromM1/xn1 by relabellingz andyn1 asz’ andyy,  ,, respectively.
However, M1 is obtained fromM/xg, X1, ..., Xn—1\VY1, Y2, ..., Yn by relabellingx, asz.
ThusMs; is obtained from

M/X09 X1, .ees anl\yla YZ, DRI yn/Xn+l

by relabellingxn andyni1 asz’ andyy, ;, respectively. Henc#l, = Mg and the first part of
the theorem is proved.

The fact that one of (i)—(iv) holds follows immediately by applying the second part of
Lemma4.2to the 3-connected matroid;. O

Propositions4.4 and 4.5 tell us that, in breaking off a wheel as in Theordn8, an ele-
ment that is essential ik remains essential in the resulting 3-connected matididor Ma.
However, the corresponding result need not hold when one breaks off a wheel as in Theo-
rem4.7. For example, leM be the cycle matroid of the graph shown in Figif¥a). Then
{Yo, X0, Y1}, {X0, Y1, X1}, {Y1, X1, Y2}, {X1, Y2, X2} is a chain in this matroid. By Theoret?,
M = PA(M(Wa), M3)\{Z, y,} Wwhere A = {yo, Z, y,}; Wa is labelled as in Figur@Q(b);
andMz is M/xg\Y1/X2 with x; andy, relabelled ag’ andy, (see Figurel0(c)). The element
e, which is essential irM, is non-essential itM3. Moreover,e is not even in the flat oM3
that is spanned by those non-essential elemenks diat are inM3. In [24] where we shall
be examining the 3-connected matroids with a small number of non-essential elements, The-
orem1.8will be of more use than Theoret7 because the former enables us to better keep
track of essential elements.
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