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Structure Theory and Connectivity for Matroids

James Oxley

ABSTRACT. The concept of 3—connectedness for graphs was generalized to ma-
troids by Tutte in 1966. Tutte identified wheels and whirls as being the only
3—connected matroids for which no single-element deletion or contraction re-
mains 3—connected. This Wheels and Whirls Theorem has played a founda-
tional role in the establishment of a coherent theory for 3-connected matroids.
The Splitter Theorem, a powerful generalization of the Wheels and Whirls
Theorem, was proved by Seymour in 1980. This survey of structure theory
and connectivity results for matroids focuses particularly on how profoundly
the Wheels and Whirls and Splitter Theorems have influenced the development
of these areas.

1. Introduction

Throughout mathematics, there is widespread interest in breaking large objects
into smaller, more easily understood, pieces. For matroids, the first such decom-
position result was proved by Whitney [106] when he showed that every matroid
can be uniquely written as the direct sum of its connected components. This trans-
fers attention from arbitrary matroids to connected matroids. For such matroids,
a decomposition theorem was established by Cunningham and Edmonds [22]. In
particular, their result proved that every connected matroid can be built up from
some of its 3—connected minors by a sequence of 2-sums. The attention is thus
transferred from connected matroids to 3—connected matroids. These are the ma-
troids that will be the focus of this paper. One important reason for stopping with
3—connected matroids and not looking at, say, 4—connected matroids is that, al-
though there has been some work done for graphs in the latter case [19, 73], there
is no known decomposition theorem for arbitrary 4-connected matroids.

2. Preliminaries

Any unexplained matroid terminology used here will follow Oxley [62]. For a
matroid M, the simple matroid and the cosimple matroid associated with M will be
denoted by M and M, respectively. We call these matroids the simplification and
the costmplification of M. The basic matroid property that a circuit and a cocircuit
cannot have exactly one common element will be referred to as orthogonality.
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Ficure 1. G.

The notion of a connected or non-separable matroid as one in which every pair of
distinct elements is in a circuit was introduced by Whitney [106]. But it was Tutte
[99] who originated the concept of higher connectivity for matroids. His motivation
appears to derive from a desire to generalize the notion of n—connectedness for
graphs and a wish to incorporate duality into the theory.

Consider the graph G shown in Figure 1. Evidently, G is not 3—connected.
The 2-vertex cut {u,v} of G induces a natural partition of F(G). Letting X =
{1,2,3,4,5,6}, we have

r(X)+r(E(G) - X) _ r(M(G)) =1.

In general, for a positive integer k£ and a matroid M, a partition {X,Y} of
E(M) is a k—separation if

min{|X|, Y|} > k;
and
r(X)+r(Y)—r(M)<k-1

If equality holds in the last inequality, then the k—separation is ezact. For n > 2,
the matroid M is n—connected provided that, for all k in {1,2,... ,n — 1}, M has
no k-separation. Hence M is 2—connected exactly when it is connected. Moreover,
a routine rank argument establishes that a matroid is n—connected if and only
if its dual is n—connected. The link between the graph and matroid concepts of
n—connectedness is contained in the following result.

PROPOSITION 2.1. For n > 2, let G be a graph without isolated vertices and
suppose that |V(G)| > n+ 1. Then M(G) is n—connected if and only if G is n-
connected and has no cycles with fewer than n edges.

In particular, if |V(G)| > 4 and G has no isolated vertices, then M (G) is 3-
connected if and only if G is 3—connected and simple. Indeed, every 3—connected
matroid with at least four elements is both simple and cosimple. It is straightfor-
ward to check that the only 3—connected matroids with fewer than four elements are
Uo,0,Uo,1,U1,1,U1,2, U 3, and Uz 3. We shall frequently follow the common practice
of restricting attention to 3—connected matroids with at least four elements.
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FIGURE 2. G is the 2-sum of G; and G across the edge p.
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FIGURE 3. A wheel.

The graph G in Figure 1 is the 2-sum across the edge p of the graphs Gy and
G in Figure 2, that is, G is obtained from G; and G, by identifying the (directed)
edges labeled p, respecting their directions, and then deleting this composite edge.
This graph operation has a natural matroid generalization because the cycles in G
can be specified in terms of those of G; and G5. Let M; and M, be 2—connected
matroids each having at least three elements such that E(M;)NE(Ms) = {p}. The
2-sum of M; and M, (with respect to p) is the matroid M; ®o M, with ground set
[E(M;) U E(Ma)] — {p} for which the circuits are the following: all circuits of M,
avoiding p; all circuits of M> avoiding p; and all sets of the form (C; U Cs) — {p},
where C; is a circuit of M; containing p.

The following basic link between 2-sum and 3-connectedness was proved by
several authors [8, 20, 82].

THEOREM 2.2. A 2-connected matroid M is not 3—connected if and only if
M = M; @ M, for some matroids My and M, each of which is 1somorphic to a
proper manor of M.

A complete decomposition of a 2-connected matroid into 3-connected pieces
was determined by Cunningham and Edmonds [22]. The details of this decompo-
sition together with an example may be found on pp. 290-291 of [62].

We now know that a matroid that is not 3—connected can be built up by
direct sums and 2-sums from 3-connected matroids, each of which is isomorphic
to a minor of the original matroid. It is straightforward to show that many basic
matroid properties are preserved under both direct sum and 2-sum. Hence it is
natural to focus on 3-connected matroids. Two particularly important families of
3—connected matroids are the wheels and the whirls. For r > 2, the wheel W, of
rank 7 is a graph having r + 1 vertices, r of which lie on a cycle (the rim); the
remaining vertex is joined by a single edge (a spoke) to each of the other vertices
(see Figure 3). The rank-r whirl W™ is the matroid on E(W,) that has as its
circuits all cycles of W, other than the rim as well as all sets of edges formed by
adding a single spoke to the edges of the rim. The terms “rim” and “spoke” will
be applied in the obvious way in M(W,) with the following warning. The case
r = 3 differs from all other cases in that one cannot distinguish rim elements from
spokes by looking just at the matroid. In that case, we arbitrarily designate one of
the 3~element circuits of M(Ws) to be the rim. We shall usually refer to the cycle
matroid of a wheel as just a wheel. The smallest 3—connected whirl is W2, which is
isomorphic to Uz 4; the smallest 3—connected wheel is M (W3), which is isomorphic
to M(Ky) (see Figure 4).

Every element of a wheel or whirl is in both a triangle, a 3—element circuit, and a
triad, a 3—element cocircuit. Thus if M is a wheel or whirl with at least six elements,
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FIGURE 4. Three wheel graphs with geometric representations of
their cycle matroids and of the corresponding whirls.

then M has no single-element deletion or contraction that is 3-connected. Tutte’s
Wheels and Whirls Theorem [99], which we state next, asserts that the wheels and
whirls are the only matroids with this property. The usefulness of such a result in
induction arguments is clear and, indeed, this theorem has had a profound influence
on the development of results for 3—connected matroids.

THEOREM 2.3 (The Wheels and Whirls Theorem). The following statements
are equivalent for a 3-connected matroid M having at least one element.

(i) For every element e of M, neither M\e nor M/e is 3—connected.
(i) M has rank at least three and is isomorphic to a wheel or a whirl.

The fact that no corresponding result is known for arbitrary n—connected ma-
troids when n > 4 goes a long way towards explaining the relative lack of develop-
ment of results for such matroids. Evidently Theorem 2.3 distinguishes a prominent
role for wheels and whirls within the class of 3—connected matroids. Indeed, using
the elementary observation that the only 4-element 3—connected matroid is Uz 4,
which is isomorphic to the rank—2 whirl, we deduce the following consequence of
the last theorem.
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COROLLARY 2.4. Let M be a 3-connected matroid having at least four ele-
ments. Then there is a sequence My, My, ... , M, of 3-connected matroids such
that My = M; M, is a wheel of rank at least three, or a whirl of rank at least
two; and, for all i in {1,2,... ,n}, the matroid M; is a single-element deletion or
a single-element contraction of M;_,. ‘

The Wheels and Whirls Theorem and the corollary just noted have served as
the foundation upon which the theory of 3-connected matroids has been built. The
importance of this foundation will be apparent throughout this paper. The next
section gives some examples of well-known structural results for graphs. Section 4
presents a powerful extension of Corollary 2.4 known as the Splitter Theorem. This
theorem is then used to derive some structural results for matroids that are similar
to the graph results in Section 3. In particular, these results describe the structure
of certain excluded-minor classes of matroids with much of the attention focusing
on cases where a small wheel or a small whirl is among the excluded minors.

The Splitter Theorem was originally used to prove an important decomposition
theorem for the class of regular matroids, and this theorem is discussed in Section
5. Section 6 considers the problem of characterizing the 3—-connected matroids for
which every sequence of the type discussed in Corollary 2.4 ends in an isomorphic
copy of the same matroid. In Section 7, some examples are given of other structural
results that have been obtained by using the technique that arises naturally from
the Splitter Theorem.

In Section 8, the concern is with identifying partial wheels in 3-connected ma-
troids and then breaking these off to leave smaller 3-connected matroids. The
results from that section are used in Section 9 to obtain another extension of the
Wheels and Whirls Theorem in which the extremal connectivity hypothesis of the
latter result is weakened slightly. This result is an example of a number of such
extremal results that are known for matroids. Many of these results mimic cor-
responding results for graphs or have played important roles as lemmas in the
derivation of other matroid theorems. Secticns 10 and 11 discuss these results for
2— and 3—connected matroids, respectively.

Section 12 examines an alternative definition of n—connectedness for matroids
that exactly generalizes the familiar graph concept. Finally, Section 13 looks at
some further questions that arise naturally from the Splitter Theorem and also
discusses some of the other directions of research in this area. Many of the topics
treated in this survey are examined in more detail in Seymour’s survey [84], the
author’s book [62] (see particularly Chapters 8 and 11), or Truemper’s book [95].
Both [62] and [95] have long lists of references that should be used to supplement
the list of references for this paper. In particular, each chapter of [95] concludes
with a section containing historical notes and references to further readings.

3. Some structural results for graphs

The structural results for matroids that will be presented later in the paper
were foreshaddowed by certain results for graphs. We now briefly discuss these
graph results.

One of the best-known theorems in graph theory is the Kuratowski-Wagner
characterization of planar graphs [38, 102].

THEOREM 3.1. A graph G has no Ks 3-minor and no Ks-minor iof and only if
G is planar.
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FIGURE 5. An example of a 3—sum of graphs.

Stated in this form, the theorem raises the questions as to whether one can
specify all graphs with no K3 s-minor and all graphs with no Ks-minor. These
questions were answered by D.W. Hall [31] and by Wagner [103]. Before presenting
their answers, we recall the definition of the graph operation of n—sum. An example
of a 2-sum was given in Figure 2. More generally, let G; and G2 be graphs each
of which has a distinguished K,,-subgraph. To form an n-sum of G| and G2, one
first pairs the vertices of the chosen K,-subgraph of G; with distinct vertices of
the chosen K,-subgraph of G5. The paired vertices are then identified, as are the
corresponding pairs of edges. Finally, all identified edges are deleted. In Figure 5,
for example, it is shown how K3 3 can be obtained as a 3-sum of K4 and Ks\e, the
last graph being the unique graph that is obtained from K5 by deleting a single
edge. The operation of O-sum is just disjoint union, while 1-sum involves sticking
two graphs together at a vertex. Clearly the O-sum and all the 1-sums of graphs
G, and G5 have identical cycle matroids, namely M(G1) ® M(Ga).

THEOREM 3.2 (D.W. Hall). A graph G has no Kss-minor if and only if G
can be obtained from planar graphs and copies of Ks by repeatedly applying the
operations of 0—sum, 1-sum, and 2-sum.

The graph V; that features in the next theorem is the 4-rung Mobius ladder.
It is drawn in two different ways in Figure 6. For comparison, we note that K3 3 is
the 3—rung Mdbius ladder.

THEOREM 3.3 (Wagner). A graph G has no Ks-minor if and only if G can be
obtained from planar graphs and copies of Vg by repeatedly applying the operations
of 0-sum, 1-sum, 2—sum, and 3-sum.

The last two theorems distinguish prominent roles for the graphs K5 and V.
Indeed, M(Ks) is a maximal 3—connected member of the class of graphic matroids
with no M (K3 3)-minor, and M (V) is a maximal 3-connected member of the class
of graphic matroids with no M(Kj5)-minor. In general, for a minor-closed class M
of matroids, a splitter is a member N of M such that no 3-connected member of
M has N as a proper minor. The last two assertions are that M(K5) is a splitter
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FIGURE 6. Two drawings of the graph Vs.

for the class of graphic matroids with no M (K3 3)-minor, and M (V3) is a splitter
for the class of graphic matroids with no M (K5)-minor. The task of checking these
assertions is potentially immense. The main result of the next section is Seymour’s
Splitter Theorem, a consequence of which is that, in order to check whether a 3—
connected member M is a splitter for a minor-closed class M of matroids, one needs
only to show that M has no 3-connected single-element extensions or coextensions
in M. If we accept this assertion, it is easy to see that M(Kj) is a splitter for
the class of graphic matroids with no M (K3 3)-minor. Certainly M(Ks) has no
simple graphic single-element extension, and so M (Kj) has no 3—connected such
extension. Moreover, the unique graphic coextension of M(K5) is M (Hg) where Hg
is the graph shown in Figure 7. Since M (Hs)\e, f = M (K3 3), it follows that every
3—connected single-element graphic coextension of M(K5) has an M (K3 3)-minor.

To see that M (Vg) is a splitter for the class of graphic matroids with no M (Ks)-
minor, we note first that, as V3 is a cubic graph, M(V3) has no 3—connected graphic
single-element coextension. Moreover, by symmetry, M(Vz) has exactly two non-
isomorphic 3—connected graphic single-element extensions, and each of these is eas-
ily shown to have an M (K)-minor.

4. The Splitter Theorem and some applications

A far-reaching extension of Corollary 2.4 is Seymour’s Splitter Theorem [82],
which he proved on the way to his regular matroids decomposition theorem.

THEOREM 4.1 (The Splitter Theorem). Let M and N be 3—connected matroids
such that N is a minor of M, |E(N)| > 4, and if N is a wheel, then M has no
larger wheel as a minor, while if N is a whirl, then M has no larger whirl as a
minor. Then there is a sequence My, M, ... , M, of 3-connected matroids such

FiGURE 7. Hg.



136 JAMES OXLEY

that My = M; M, = N; and, for all i in {1,2,... ,n}, M; is a single-element
deletion or a single-element contraction of M;_,.

The crux of this theorem is that, while removing elements one at a time in going
from M to an isomorphic copy of N, one is able to maintain 3—connectedness.
It should also be noted here that M, while it is isomorphic to N, cannot be
guaranteed to be equal to N. The Splitter Theorem was also proved independently
by Tan [85] for matroids and by Negami [46] for graphs. A proof of the theorem,
due to C.R. Coullard and L.L. Gardner, may be found in Section 11.1 of [62].

Two examples of splitters within classes of graphic matroids were given in the
last section. The next proposition gives another example of a splitter. Two matroids
that are important in this example are the vector matroids of the following matrices
over GF(2):

01 1 1 01 1 1
101 1 101 1
Iy 1 10 1| 2d Iy 110 1
1110 11 1

The first of these matroids is the affine geometry AG(3,2); the second is denoted
by Sg.

'PROPOSITION 4.2 (Seymour [82]). Let M be the class of binary matroids hav-
ing no minor isomorphic to the Fano matroid, F;. Then F7 is a splitter for M.

Proor. Evidently F € M. Moreover, since F; & PG(2,2), there is no simple
binary single-element extension of F7. Hence F7 has no 3-connected single-element,
coextension in M. Now F7 is represented by the matrix A over GF(2) where

1 2 3456 7

0 1

1 0 1

A= Iy 110
11 1

A 3-connected binary single-element extension M of F77 can be represented by the
matrix that is obtained from A by adjoining the column (z;,%,%3,24)7 where
each of x1, zo, z3, and z4 is in {0,1}. As M is 3—connected and therefore simple,
at least two of z,, zo, z3, and x4 are non-zero. By symmetry, we may assume
that (z1, %2, z3,74)7 is one of (1,1,1,0)7, (1,1,1,1)7T, (1,1,0,0)7, and (1,0,0,1)7.
Adjoining the first of these columns to A gives a representation for AG(3,2). Ad-
joining the second of the columns to A gives a representation for Sg. Moreover, it is
straightforward to check that adjoining any one of the two remaining columns to A
also gives a representation for a matroid isomorphic to Sg. Since each of AG(3,2)
and Sg has a representation of the form [I4|D] where D is symmetric, each is iso-
morphic to its dual. As each has F7 as a minor, each also has F; as a minor, and
so F¥ has no 3-connected binary single-element extension in M. Hence F7 is a
splitter for M. O

The last result can be used in conjunction with Tutte’s excluded-minor char-
acterization of regular matroids [97] to give the following structural result [82].

COROLLARY 4.3. Fwvery binary matroid that has no Fr-minor can be obtained
from reqular matroids and copies of F5 by a sequence of direct sums and 2—sums.
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The last result used a relatively straightforward application of the Splitter The-
orem. Before presenting a more complicated example, we motivate this example.
The fundamental role played by wheels and whirls within the class of 3—connected
matroids prompts consideration of the structure of a minor-closed class of matroids
which avoids some small wheel or some small whirl. The class of matroids for which
the smallest whirl W? is the unique excluded minor is precisely the class of binary
matroids. If we exclude as minors both the smallest whirl W2 and the smallest
3—connected wheel M (Ws), then the only non-empty matroids we get are direct
sums of series-parallel networks. Here a series-parallel network is the cycle matroid
of a graph that can be obtained from one of the two connected single-edge graphs
by a sequence of the operations of replacing an edge by either two edges in parallel
or two edges in series.

Next we shall describe the structure of the class of matroids that have no
minor isomorphic to W? or M(Wj), or equivalently, the class of binary matroids
with no 4~wheel minor. Since every member of this class that is not 3—connected
can be constructed from 3—connected members of the class by direct sums and 2-
sums, it suffices to specify the 3—connected members of the class. In general, for a
set {Mi1, My, ...} of matroids, EX (M;, Ms,...) will denote the class of matroids
having no minor isomorphic to any of My, Ms, ... .

The strategy that will be used to find the 3-connected members of EX (W2,
M(W,)) is as follows. First we note that all 3-connected matroids with fewer than
four elements are trivially in the class. Next we let M be a 3—connected member of
the class having four or more elements. Then, by Corollary 2.4, M has an M (Ws)-
minor. Moreover, since M has no M(W;,)-minor, it has no minor isomorphic to
M(W;,) for any r > 4. Thus, by Corollary 2.4, there is a sequence My, M1, ... , M,
of 3-connected matroids such that M,, & M(W;); My = M; and, for all i in
{1,2,...,n}, M;_; is a single-element extension or a single-element coextension
of M;. Clearly each of My, M, ... , M, is binary. The unique 3—connected binary
extension of M (Wj) is Fr; by duality, the unique 3—connected binary coextension of
M(Ws) is Ff. Thus M,,_; is F; or E7. Tt now follows, by the proof of Proposition
4.2, that My is AG(3,2) or Sg. The fact that each of W? and M(W,) is self-dual
means that EX(W? M(Wy;)) is closed under duality. Moreover, as both AG(3,2)
and Sg are self-dual, either M,,_5 or M _, is a binary 3—connected extension of Ss or
AG(3,2). To determine the possible such extensions, we take matrices representing
Sg and AG(3,2) over GF(2) and consider what columns can be added to these
matrices so as to avoid creating an M (W,)-minor. We are relying here on the
unique representability of binary matroids. Continuing to analyze the sequence
My, My, ..., M, in this way, a pattern emerges and, from this, one can formulate
and then prove the structure theorem stated below. The details of this proof can
be found in [56].

Let 7 be an integer exceeding two and Z, be the vector matroid of the following
matrix over GF(2):

ay Qs ... Qp b1 bg b3 br Cp
0 1 1 111

1 01 111

I, 1 1 0 141

—
ja—y
<o
—
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FiGURE 8. The graphs Hg, Q3, K222, and Hy.

Then Z, and its minors have the following properties:
(i) Zg = F7; Z4\C4 = AG(3,2); and Z4\b4 = Sg;
(11) Z: = Zr+1\br_|_1, Cr41 for all r > 3;

(iii) Z,\e & Z.\b, for all e # cr;
(iv) Z,\b, and Z.\c, are isomorphic to their duals.

THEOREM 4.4. Let M be a binary matroid with at least four elements. Then
M is 3—connected and has no M (Ws)-minor if and only if M = Z,, Z}, Zy\b., or
Z\c, for somer > 3.

Theoretically, the technique used above of building up, an element at a time,
from a wheel or a whirl could be applied to find the structure of EX (W?, M(W;))
for any 7 > 5. But, even when 7 = 5, the number of possibilities to be considered is
large. This makes it much more difficult to detect the patterns in the building-up
process, and the class of binary matroids with no M (Ws)-minor has so far defied
analysis. However, if one confines attention to the class of graphic matroids with
no M(Ws)-minor, the case analysis becomes manageable [59].

For k > 3, consider the graph K3 x, labeling its vertex classes V7 and V5 where
[Vi| = 3. Let K} ,, KY,, and Kg’}, be obtained from K3 by adding one, two,
and three pairwise non-parallel edges joining vertices in V. It is straightforward to
check that g’ . has no Ws-minor. Hence none of K3’ s :’,,’ k> K3 i, and K3z has a
Ws-minor. Similarly, none of the graphs Hg; Q3, K222, and H7 shown in Figure 8
has a Ws-minor.

THEOREM 4.5. Let G be a graph. Then G is simple and 3—connected having
no Ws-minor if and only if
(i) G is isomorphic to a simple 3-connected minor of one of Hg, Q3, K222,
and Hr; or
(ii) for some k >3, G is isomorphic to one of K3, 5 50 Ko g and Ky

When one turns to excluding M (Ws) as a minor, the number of cases seems
unmanageable even in the graphic case. This prompts consideration of the planar
graphs with no 6-wheel minor. Gubser [28] proved the following structural theorem
for this class.

THEOREM 4.6. Let G be the class of planar graphs having no We-minor. Then
every simple 3—connected member of G is a minor of one of the thirty-eight splitters
for G, thirty-siz of which have seventeen edges and two of which have sizteen edges.

The increasing complexity of the case analyses needed in the last three results
suggests that a general result concerning exclusion of a wheel minor will not be able
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to provide such specific structural information as in these three results. The last
result provides a hint at what can be proved in general by showing that, for r = 6,
there are only finitely many simple 3—connected planar graphs with no W,-minor.
A proof that the last assertion is true for all r initiated work of Oporowski, Oxley,
and Thomas [47] that lead to the following result and the corresponding result for
4-connected graphs.

THEOREM 4.7. For every integer n > 3, there is an integer N such that every
3-connected graph with at least N vertices has a minor wsomorphic to Wy, or Ks .

The argument used to prove this theorem relies on results and techniques [76,
86] from Robertson and Seymour’s graph minors project (see, for example, [74,
75]). The reader who is familiar with this work will not be surprised to learn that
the bounds obtained on the number N are huge.

Theorem 4.7 gives information about unavoidable minors in large 3—connected
graphs. It raises the question as to what can be said for binary matroids or, indeed,
for matroids in general. For binary matroids, Ding, Oporowski, Oxley, and Vertigan
[24] proved the following result.

THEOREM 4.8. For every integer n > 3, there is an integer N such that every
3-connected binary matroid with at least N elements has a minor 1somorphic to
M(K&n), M*(Kg,n), M(Wn), or Zn\Cn.

The proof of this result treats binary matroids via their matrix representations
and depends heavily on certain Ramsey-theoretic results for matrices. Very recently,
using new techniques, Ding, Oporowski, Oxley, and Vertigan [25] have extended
the last result to matroids in general. Before stating this result, we make some
observations concerning Z,. This matroid has the following properties:

(i) the ground set is the union of n lines, L1, Lo, ... , L, all having three points
and passing through a common point, p;
(ii) for all k in {1,2,... ,n — 1}, the union of any k of L1, Lo, ... , L, has rank
k+1; )
(iii) 7(L1UL2 U...UL,) = n.
An arbitrary matroid satisfying these conditions will be called an n-sptke with tip
p. It is not difficult to see that Z, is the unique binary n-spike. But it is certainly
not the only n-spike. In general, if M is an n—spike with tip p, then

(i) L; is a circuit of M for all i;
(ii) (LsUL;) —pis a circuit of M for all distinct ¢ and j;
(iii) every non-spanning circuit of M other than those listed in (i) and (ii) avoids
~ p and contains a unique element from each of L; —p, Ly —p,... , L, — p;
(iv) M/p can be obtained from an n—element circuit by replacing each element
by two elements in parallel; and
(v) if Ly = {p,2:,%:}, then each of M\p/z; and (M\p\z;)* is an (n — 1)-spike
with tip y;.
We are now ready to state the generalization of the last theorem to arbitrary
matroids.

THEOREM 4.9. For every integer n > 3, there is an integer N such that every
3—connected matroid with ot least N elements has a minor wsomorphic to Us p,

In—2n, M(K3y,), M*(K3,), M(W,), W", or an n-spike.
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When one is unable to obtain specific structural information for a minor-closed
class of matroids, one can often bound the size of a simple rank-r member of the
class. Kung has proved numerous such results and these are surveyed in [37]. The
following is a result of this type that relates specifically to the problem of excluding
wheels from binary matroids.

THEOREM 4.10. Let g(r) be the mazimum number of elements in a simple
rank-r member of EX(W?, M(Wy)). Then

g(r) — g(r — 1) < 2263 for all r.

Kung observed that, since both PG(k — 2,2) and PG(k — 3,2) are members of
EX(W? M(Wy)), it follows that g(k — 1) — g(k — 2) = 2¥~2. Kung also remarked
that it is probable that the bound in Theorem 4.10 can be sharpened to 2¢~2 for
all r.

5. The decomposition of regular matroids

The most significant application of the Splitter Theorem remains its original
use in the proof of a decomposition theorem for regular matroids. That result differs
from the matroid structural results stated so far in that it allows, in addition to
the operations of direct sum and 2-sum, the operation of 3—sum for matroids.
An example of the 3—sum operation for graphs is given in Figure 5. For another
example of this operation, we refer to Figure 8. In that figure, consider the central
triangle in the drawing of K33 2. The 3-sum of K3 32 and K4 across this triangle
produces the last graph H7 in Figure 8. A 3-—sum of this type where one of the
graphs involved is K} is often called a A — Y ezchange.

The operation that Seymour [82] called 3—sum of binary matroids can be de-
rived from a more general matroid operation that involves sticking two matroids
together across a common restriction. To ensure that such an operation is well-
defined, one needs some additional conditions. Let M; and M, be matroids such
that M;|T = Ms|T where T = E(M;) N E(M,). Assume that T is a triangle A
and that A is a modular flat in M;. This last condition is always satisfied if M; is
binary. The generalized parallel connection Pa(My, Ms) of My and Ms across A is
the matroid on E(M;)U E(M,) whose flats are those subsets X of E(M;)U E(Ms)
such that X N E(M,) is a flat of M1, and X N E(My) is a flat of M5. This operation
is a special case of an operation introduced by Brylawski [15]. For our particular
interests here, it is sufficient to note that if M, is binary, then Pa(M;y, M3) is cer-
tainly well-defined. If we delete A from Pa(M;, M>), we have completed a matroid
operation that generalizes the graph operation of 3-sum. If M; and M, are both
binary having more than six elements and A does not contain a cocircuit of M;
or of My, then Pa(Mj, M2)\A is what Seymour called the 3—sum of M; and M,.
Seymour actually used an equivalent definition of 3—sum taking it to be the matroid
on [E(M;)UE(M2)] — A whose circuits are the minimal non-empty sets of the form
(X3 U X3) — (X1 N X>) where X; is a disjoint union of circuits of M;. We remark
that Truemper [95] uses the name A-sum for this operation and uses “3-sum” for
a somewhat different operation. It is also interesting to observe that

PA(M(K4), F\A = F and Pa(M(Ky), B \A = (F7)".

The first of these constructions is illustrated in Figure 9.
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FIGURE 9. A A —Y exchange on F; produces F.

'T'wo matroids that play an important role in the proof of the regular matroids
decomposition theorem are Rjo and R)2, which are represented over GF(2) by the
matrices Ajg and Aio.

1100 1 11100 O0

110100

11100 1 00010

A10= I5 01 110 A12= _IG 01000 1
0 0111

100 1 1 0 01011

i 000111,

We are now able to state Seymour’s theorem [82].

THEOREM 5.1. Every regular matroid M can be constructed by means of direct
sums, 2-sums, and 3-sums starting with matroids each of which is isomorphic to a
minor of M, and each of which is either graphic, cographic, or isomorphic to Rio.

A key step in the proof of this theorem is the following:

THEOREM 5.2. Let M be a 3-connected regular matroid. Then either M is
graphic or cographic, or M has a minor isomorphic to one of Riy and Ri».

This results breaks the rest of the proof of the theorem into two cases: (i) M
has an Rjp—minor; and (ii) M has an R;o—minor. The first case is disposed of by
showing that R is a splitter for the class of regular matroids. This is achieved
by checking that every simple binary extension of Rio has an F- or F-minor. In
case (ii), the rest of the argument begins with the observation that R;» has an
exact 3-separation (Y1,Y2) in which Y} is the 6—element set that is the union of
the only two triangles in R;5. The argument proceeds by showing that this exact
3—separation of R, induces an exact 3—separation of every regular matroid M with
an Rjp-minor, that is, every such matroid M has an exact 3-separation (Z, Z)
in which Z; 2 Y; and Z; D Y. This exact 3-separation of M implies that M can
be decomposed as the 3-sum of two smaller matroids, M; and M,, each of which
is isomorphic to a minor of M. To describe the construction of M; and My, we
shall assume that M is simple, for the general case follows easily from this case.
We may view M as a restriction of the binary projective geometry PG(r — 1,2)
where 7 = r(M). Then, as 7(Z1) + r(Z2) = r + 2, modularity in the projective
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geometry implies that the closures of Z; and Z; in PG(r — 1,2) meet in a line L
of PG(r —1,2). Now let M; = PG(r —1,2)|(Z; UL). Then M is the 3-sum of M,
and M> unless L meets Z; or Zs. In the exceptional case, M is again the 3—sum of
M; and M, if we modify M; by replacing each element of L N Z; by two elements
in parallel.

As an example of the process just described, we note that R;s itself is the
3—sum of M*(K33) and M(Ks\e) where the distinguished triangle in the latter is
the one whose vertices are disjoint from the endpoints of e. To show that each of
the matroids M; and M, constructed above is a minor of M requires some effort
and we omit the details, which may be found in Seymour’s original paper [82].

The above discussion allows us to rewrite Theorem 5.2 as follows.

THEOREM 5.3. Let M be a 3—connected regular matroid. Then
(i) M is graphic or cographic; or
(11) M= Rw,‘ or
(iii) M has an Ria—minor, this minor has an exact 3-separation, and this 3-
separation induces an éxact 3-separation of M.

The last theorem provided the model for a general theory of matroid decom-
position developed in a sequence of papers by Truemper [88]-[94] and described in
his book [95]. The most significant difference between this scheme and the method
used in Section 4 is that it incorporates a separation algorithm that efficiently de-
cides whether or not a given k—separation of a minor N of a matroid M induces a
k—separation of M.

Among the numerous applications of the regular matroids decomposition theo-
rem is an algorithm that tests in polynomial time whether or not a given real matrix
is totally unimodular. For the details of this, the reader is referred to [77]; other ap-
plications of Theorem 5.1 may also be found in [84]. One relatively easy application
of the theorem is in extending Theorem 4.5 to describe the structure of all reqular
matroids with no M (Ws)-minor. Indeed, if the columns of the matrix A;2 repre-
senting Ry, are labeled 1,2,...,12, it is easy to check that R;2/3\10 & M(Ws).
The next theorem [59] now follows immediately from combining Theorems 4.5 and
5.2.

THEOREM 5.4. Let M be a regular matroid. Then M is 3—-connected and has
no M(Ws)-minor if and only if
(i) for some k > 3, M is isomorphic to one of M(K3 ), M(K3 ), M(K3 ),
or M(K3',), or their duals; or
(ii) M is isomorphic to a 3—connected minor of one of Rio, M(Q3), M(Kz22),
M(H7), M(Hg), or M*(Hs).

6. Reductions to wheels and whirls

By Corollary 2.4, for every 3—connected matroid M with at least four elements,
there is a sequence My, My, . .. , M, of 3-connected matroids such that My = M; for
alliin {1,2,...,n}, M, is a single-element deletion or a single-element contraction
of M;_1; and the end, M, of the sequence is a wheel or a whirl. Indeed, for a given
matroid M, there are potentially several such sequences having possibly different
ends. We shall call such a sequence a reduction of M and say that M has a unique
reduction if there is just one matroid N such that the end of every reduction of M
is isomorphic to N.
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For the cycle matroid M of the first graph in Figure 10, one obvious reduction
is the sequence M, M\e since the last matroid is isomorphic to M(Ws). Another
reduction, shown in the figure, is M, M\ f, M\ f\g, M\ f\g/h. In this case, the last
matroid is isomorphic to M(W;). Thus the matroid M does not have a unique
reduction. A natural problem here is to determine all the 3—connected matroids
that do have a unique reduction. This problem was raised for graphic matroids by
Hamza Ahmad in a private communication. In this section, we present the answer
to this problem which, in light of the theorems presented in the last section, is
intriguing.

We begin by noting an extension of the Splitter Theorem due to Coullard [17].
This theorem weakens the restriction on how the Splitter Theorem applies to wheels
and whirls. A proof of this result may be found in Coullard and Oxley [18].

THEOREM 6.1. Let M and N be 3—connected matroids such that N is a minor
of M, |E(N)| > 4, M is not a wheel or whirl, and if N = W2, then M has no
larger whirl as a minor, while if N & M(W3), then M has no larger wheel as a
minor. Then there is a sequence My, My, ..., M, of 3-connected matroids such
that Mo = M; M, = N; and, for all i in {1,2,...,n}, M; is a single-element
deletion or a single-element contraction of M;_;.

The next theorem determines all the matroids having a unique reduction.

THEOREM 6.2. Let M be a 3—connected matroid. Then M has a unique reduc-
tion if and only if

(i) M is a wheel or a whirl;

(ii) M is a binary matroid having no M(W,)-minor;
(iii) M is a regular matroid having no M(Ws)-minor;
(iv) M is a ternary matroid having no M (Ws)-minor; or
(v) M has no M(Wj3)-minor and no W3-minor-

The proof of this theorem will use the following extension of Theorem 4.4 [56].
The matroid M (W) has exactly three non-isomorphic binary 3—connected single-
element extensions, namely M*(K33), M(Ks\e), and a matroid denoted Py. A
geometric representation for the last matroid is shown in Figure 11. Evidently P,
is isomorphic to Pa (M (K4), F7)\p where p is an arbitrary element of A.

THEOREM 6.3. Let M be a binary matroid. Then M is 3—connected having no
manor isomorphic to Py or Py if and only if

(i) M is regular and 3-connected; or
(ii) for somer >3, M =2 Z,., 7% Z:\b,, or Z \c,.

PROOF OF THEOREM 6.2. We distinguish three cases:
(I} M is a wheel or a whirl;

N A A,
NaVAVAVAVA

FIGURE 10. A reduction to a 4—wheel.
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(IT) M is not a wheel or a whirl and has M(Ws) or W* as a minor;
(IIT) M is not a wheel or a whirl and has neither M (Ws) nor W* as a minor.

In case (I), M clearly has a unique reduction. In case (II), if M has an M (Ws)-
minor, then M also has an M (W}, )-minor. Thus, by Theorem 6.1, M has a reduction
whose end is isomorphic to M (Ws) and another whose end is isomorphic to M (W,).
Hence if M has an M (Ws)-minor, it does not have a unique reduction. Similarly,
if M has a W*-minor, it has reductions to both W* and W*. Thus, in case (II),
M does not have a unique reduction.

In case (III), suppose first that M has no W?-minor. Then M is binary hav-
ing no M(Ws)-minor. If M has no M(W,)-minor, then clearly M has a unique
reduction. Suppose now that M has an M (W;)-minor. Then either (a) M has Py
or P§ as a minor; or (b) M has no minor isomorphic to Py or P§. In case (a), we
may assume, by duality, that M has a Py-minor. Theorem 4.1 implies that there
is a sequence of 3—connected matroids, My, My, ..., M, with each member being
a single-element deletion or contraction of its predecessor, My = M, and M,, = Py.
But Py is a single-element extension of both M (W,) and Sg, the latter is a single-
element extension of F; which, in turn, is a single-element coextension of M (Ws).
Thus Py, and hence M, has reductions to both M(Wy) and M(Ws). Therefore,
in case (a), M does not have a unique reduction. On the other hand, in case (b),
Theorem 6.3 implies that M is regular. Thus M is regular having an M (W, )-minor
but no M(Ws)-minor. Because M (W3) has no 3—connected regular single-element
extension or coextension, it follows that M has a unique reduction.

To complete the proof in case (III), we need to consider the case when M has
a W2-minor. If M has no M{(Ws)-minor and no W3-minor, then every reduction
of M must have its end isomorphic to W2. Thus, in this case, M has a unique
reduction. We may now assume that M has M(Wj3) or W? as a minor. In the
first case, M has reductions that end in both the largest wheel minor of M and
the largest whirl minor of M, so M does not have a unique reduction. Thus we
may assume that M has no M (Ws;)-minor. Hence M has a W3-minor. If M has a
Uz 5- or Us 5-minor, then M has a reduction to W? that goes through such a minor,
and M has another reduction to W3. Thus if M has a Uy 5- or Uz s-minor, then
M does not have a unique reduction. We may now suppose that M has no Us 5-

5o

FIGURE 11. Pg.
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FIGURE 12. J.

or Uz s-minor. Since M also has no M (W3)-minor, M has no Fy- or FZ-minor.
We conclude that M is a ternary matroid having no M (Ws3)-minor and that such
matroids have a unique reduction. 1

The feature of Theorem 6.2 that seems particularly striking is that, even be-
fore the problem was raised, the matroids listed under (ii), (iii), and (iv) had been
explicitly described. Moreover, those results were essentially the only known struc-
tural results involving exclusion of wheels or whirls. The theorems that specify the
matroids listed under (ii) and (iii) were stated above. The matroids listed under
(iv) were determined in [57]. Before stating that result, we observe that it means
that all the matroids having a unique reduction are known explicitly except for
those that have no M (Ws)-minor and no W3-minor. Hence we have the following:

PROBLEM 6.4. Determine all the matroids that have no M(Ws)-minor and no
W3 -minor.

The class of matroids with no M (Wj;)-minor and no W3-minor includes, for
example, all rank-3 matroids in which there are at most two elements that are on
more than one non-trivial line. The task of determining all the matroids in this
class seems difficult, although it should be noted that the quaternary members of
that class were listed in [57]. Moreover, Hipp [32] proved the following theorem, a
proof of which may also be found in [37].

THEOREM 6.5. A rank-r simple matroid M in EX(W3, M(Ws),Us 412) has
at most q(r — 1) + 1 elements. Moreover, equality is attained if and only if M can
be formed from r — 1 copies of Uz q41 by using r — 2 parallel connections.

Two special matroids appear in the next result, namely the splitters for the
class of ternary matroids with no M (Wjs)-minor. One of these matroids is J, the
rank-4 self-dual matroid for which a geometric representation is shown in Figure
12. The second such matroid is the vector matroid of the matrix D15 over GF(3)
where Dy is

0 1 1 1 1 1
1 0 1-1-1 1
I 1 1 0 1 -1-1
6 1 -1 1 0 1-1
1 -1-1 1 0 1
I 1 1-1-1 1 0]

The last matrix and its associated matroid are actually very well known in a
slightly different context. The matrix D, is a generator matrix for the ternary
Golay code, this being a member of the special class of perfect codes (see, for
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FIGURE 13. Tg.

example, Chapter 20 of [41]). Moreover, if E is the set of elements of M|[D;s]
and H is its set of hyperplanes, then the pair (E,H) is the unique Steiner system
5(5,6,12); that is, every member of H contains exactly six elements and every
5-element subset of F is contained in a unique member of H. The matroid M[D;2]
has many attractive properties. For instance, both the set of circuits and the
set of cocircuits of this matroid equal H. Hence M[Dis] is identically self-dual.
Moreover, M[D;2] has as its automorphism group the Mathieu group, M2, which
is 5-transitive; that is, if (e1,e2,... ,es) and (fi, f2,..., f5) are ordered 5-tuples
of distinct elements of M|[D;2], then there is an automorphism of M[D;] that, for
all 4, maps e; to f;. In particular, if | X| = 3, then M[D;2]/X is isomorphic to the
ternary affine plane, AG(2,3). We shall follow convention in denoting the matroid
M|D;2] by S(5,6,12).

THEOREM 6.6. A matroid M is 3—connected, ternary, and has no M(Ws)-
minor if and only if M is 4somorphic to J, to W™ for some r > 2, or to a 3-
connected minor of §(5,6,12).

7. More applications of the Splitter Theorem

The technique that was used to derive Theorems 4.4, 4.5, and 6.5 has also
been successfully employed to prove numerous other results. Many of these are
noted in Chapter 11 of [62]. In this section, we give some examples of such results
concentrating on newer results not noted in {62].

A matroid is called paving if it has no circuits of size less than its rank. For
comparison, a matroid is uniform if and only if it has no circuits of size less than or
equal to its rank. It is straightforward to show that the class of paving matroids is
minor-closed and that the unique excluded minor for the class is Uz 2 @ Up,1 [61].
It is not difficult to determine all paving matroids that are not 3-connected and
these are listed in [61]. The following result was proved directly by Acketa [1].

THEOREM 7.1. The 3—connected binary paving matroids are precisely the 3—
connected minors of AG(3,2).

It is straightforward to prove this result using the building-up technique ex-
emplified in Section 4. The same technique can also be used to determine all
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3-connected ternary paving matroids although more work is needed for this. Some
of the matroids that arise here are familiar or have appeared earlier. Two that we
have not yet seen here are Rg and Tg. The first of these is the real affine cube; the
second has the geometric representation shown in Figure 13. These matroids are
represented over GF'(3) by the matrices

01 1 1 1 1 1 1
101 1 1 -1 1 1
Ly 110 1| @nd Iy 1 1 -1 11
1110 1 1 1 -1

respectively. Evidently both Rg and T3 are isomorphic to their duals.

THEOREM 7.2. The 3—connected ternary paving matroids are precisely the 3—
connected minors of PG(2,3), 5(5,6,12), Rg, and Tg.

Evidently there are relatively few 3—connected GF(q)-representable paving ma-
troids for ¢ € {2,3}. Rajpal [70] proved that, in general, there are only finitely
many 3-connected GF(g)-representable paving matroids by establishing the follow-
ing result.

PROPOSITION 7.3. Let M be a rank-r GF(q)-representable paving matroid with
1<r<|EM)| Ifr > q, then
(i) M* is a paving matroid; and
(ii) |E(M)| < 4q and r < 2q.

By using the same technique that was used to prove Theorem 7. 2, Rajpal [71]
was able to determine all quaternary paving matroids. The case—checkmg required
here is considerable and needed the aid of a computer.

THEOREM 7.4. Every 3-connected quaternary paving matroid is a minor of
one of the fifteen splitters for the class of such matroids. These splitters consist of
(i) PG(2,4);
(i) eight matroids of rank four of which five have twelve elements and one each
have thirteen, fourteen, and sirteen elements;
(iii) three matroids of rank five all having ten elements; and
(iv) the dual of the Pappus matroid and two other matroids of rank siz having
ten and twelve elements, respectively.

One of the graph results that motivated the matroid structural results that we
have discussed here is D.W. Hall’s Theorem (3.2). A restatement of that result is
that every simple 3—connected graph with a Ks-minor must have a K. 3,3-minor, the
only exception being K itself. Kingan [36] proved an attractive generalization of
this result to binary matroids. We denote by T}, the vector matroid of the following
matrix over GF(2): '

I

_0 O O =
=0 o O =
o O OO
O e = OO
O O e =D
OO O =
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This matroid has a transitive automorphism group, and 732 /e will denote the unique
single-element contraction of Tia.

THEOREM 7.5. Let M be a 3—connected binary matroid with an M (Ks)-minor.
Then either M has an M (K3 3)- or M* (K3 3)-minor, or M is isomorphic to M (Ks),
T12, or T12/€.

The matroid T}o has an interesting link with the Petersen graph, Pjg. Take
the 15 x 12 binary matrix whose rows are indexed by the edges of Pig and whose
columns are indexed by the 5-cycles of Pjo with each column being the incidence
vector of the corresponding 5—cycle. Then the vector matroid of this matrix is 3.

The matroid Ty arises in another interesting context. The classes of binary
and ternary matroids are relatively well understood, as is their intersection, the
class of regular matroids. The union of the classes of binary and ternary matroids
is also minor-closed, but it not known whether the set of excluded minors for this
union is finite. The following conjecture is due to Oporowski, Oxley, and Whittle
(private communication).

CONJECTURE 7.6. Let M be the class of matroids that are binary or ternary.
Then the excluded minors for M are Us 4@ F7, Uy a®FF, Uz 4®2F7, Uz 4®2F7, Us s,
Us s, and the unique matroids that are obtained by relazing a circuit-hyperplane in
each of AG(3,2) and T12.

Oporowski, Oxley, and Whittle have proved that the above list contains all
the excluded minors for M with at most twenty-three elements. Moreover, they
have shown that, for every remaining excluded minor N, there is a 2—connected
binary matroid M whose ground set is the union of two disjoint circuit-hyperplanes
such that relaxing one of these produces N and relaxing both produces a ternary
matroid. This implies, in particular, that |E(N)| is divisible by 4.

The finiteness problem considered above is a special case of the general ques-
tion: If M; and M, are minor-closed classes of matroids, each characterized by a
finite set of excluded minors, is M; U Ms also characterized by a finite set of ex-
cluded minors? This problem, the intertwining problem for matroids, was posed by
Brylawski [16] and, independently, by several others. It appears as Problem 14.1.8
in [62] and was recently answered in the negative by Vertigan [101]. While Verti-
gan gave a large collection of examples of classes M; and My for which MiUM,
does not have a finite set of excluded minors yet M; and Ms do, it appears to be
very difficult to characterize precisely when this occurs.

In Section 4, we considered sets of unavoidable minors in large 3—connected
matroids. The next result, which is much easier to prove, identifies another collec-
tion of small unavoidable matroids [54, 104]. Geometric representations for the
matroids Q¢ and Ps are shown in Figure 14.

: .

FiGURE 14. Qg and Ps.
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PROPOSITION 7.7. Let M be a 3-connected matroid having rank and corank at
least three. Then M has a minor tsomorphic to one of the matroids M (Ws), W3,
Qs, Ps, or Us .

This list of five small matroids raises the question of describing the structure
of the classes that arise when one excludes certain of these as minors. For instance,
it is not difficult to see that EX (W3, Qs, Ps, Us ) consists of those matroids that
can be constructed from binary matroids and uniform matroids of rank or corank
two by direct sums and 2-sums. We noted above that the problem of describing
the members of the class EX (M (W;), W3) is unsolved. But we should certainly
expect to be able to describe those classes that arise when four of M(Ws), W3,
Qs, Ps, and Us g are excluded as minors [58]. However, there is one problematic
case: the structure of EX (M (Ws), W3, Qs, Us,6) has yet to be determined, whereas,
by contrast, the members of EX (W3, Ps) have been specified [60]. This raises a
general issue that looms over all results of this type, namely its unpredictability.
With current methods, it seems impossible to foretell when one is likely to be able
to determine the structure of a certain class. One applies the building-up method
and hopes that a pattern can be detected before the number of cases explodes.
Another interesting feature of this process is that, even when the method produces
an answer, knowing the answer helps little in verifying that this answer is correct.

8. Essential elements and fans

An element e in a 3—connected matroid M is essential if neither M \e nor M/e
is 3-connected. The Wheels and Whirls Theorem identified wheels and whirls of
rank at least three as being precisely those 3-connected matroids in which every
element is essential. In this section, we consider what can be said concerning the
local structure about an essential element in a 3-connected matroid. Since a 3-
connected matroid with at least four elements is both simple and cosimple, one way
for an element to be essential is for it to be in both a triangle and a triad. Indeed,
Tutte [99] proved the following:

THEOREM 8.1. An essential element in q 3—connected matroid is in either a
triangle or a triad.

In both wheels and whirls, we have sequences of interlocking triangles and
triads. We shall be interested in such sequences in arbitrary 3—connected matroids.
For instance, in the cycle matroid of the graph G in Figure 15, the members of
the sequence {a1, a2, a3}, {az,as, as},...,{as,as,a7} are alternately triangles and
triads. In general, a non-empty sequence 13,75, . . . , Ty of triangles and triads is a
chain of length k in a matroid M if, for all i in {1,2,...,k—1},

(i) exactly one of T; and T}, is a triangle;

(i) |T;NTiy1)-=2; and

(ili) (i1 —T)N(T1UT2U...UT;) is empty.
Since the only 3-connected matroid with a triangle that is also a triad is Us 4,
condition (i) here is redundant if M is 3-connected having at least five elements.
Evidently T1,T5,... ,T} is a chain in M if and only if it is a chain in M*. More-
over, a straightforward induction argument using orthogonality establishes that if
T;,T5,...,T} is a chain in M, then M has k + 2 distinct elements a3, ao, . . . ) Okt2
such that T; = {a;,ait1,a:42} for all i in {1,2,... ,k}. The sets T}, T,... , T} are
called links in the chain.
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FIGURE 15. A graph G containing several chains.

Although chains can certainly occur in both non-graphic and graphic matroids,
we follow Tutte [99] in keeping track of the triangles and triads in a chain by using
graphs as in Figure 16(a)—(c). In each case, the chain is T1,T2,... , T, where
T; = {a;,a:11,8:+2}, and every triangle in the graph is a triangle in the chain,
while the triads in the chain correspond to circled vertices.

The following result, known as Tutte’s Triangle Lemma [99], is an important
tool in dealing with chains particularly in extending a given chain.

THEOREM 8.2. Let {z,v, 2z} be a triangle in a 3—connected matroid M. If nei-
ther M\z nor M\y is 3—connected, then x is in a triad with ezactly one of y and
z.

Much of our interest is in maximal chains in 3—connected matroids. By extend-
ing Tutte’s proof of the Wheels and Whirls Theorem, one can show that such a
chain has non-essential elements at both ends [65].

"THEOREM 8.3. Let M be a 3-connected matroid with at least four elements
and suppose that M is not a wheel or a whirl. Let 11,13, ... ,Tr be a mazimal
chain in M. Then the elements of Ty UTo U ... UTy can be labeled so that neither
a) nor axyo is essential where T; = {ai, @it1,aiv2} for all .

As an immediate consequence of this, we have the following result [65].

COROLLARY 8.4. Let M be a 3—connected matroid with at least four elements.
Then either M is a wheel or a whirl, or M has at least two non-essential elements.

A maximal chain Ty,T%,...,T% in a 3—connected matroid M other than a
wheel or a whirl is called a fan. Type-1, type-2, and type-3 fans correspond to the
chains shown in (a), (b), and (c), respectively, in Figure 16. In that figure, the
non-essential elements of the fans have been marked in bold.

Theorem 8.1 established that every essential element e in a 3—connected matroid
M is in some chain. Thus, provided M is neither a wheel nor a whirl, e is in some
fan. The next result [65] specifies exactly when this fan is unique.

THEOREM 8.5. Let M be a 3—connected matroid that is not a wheel or a whirl,
Suppose that e is an essential element of M. Then e is in a fan. Moreover, this
fan is unique unless
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FIGURE 16‘. The three types of chains.

(a) every fan containing e consists of a single triangle and any two such triangles
meet in {e};

(b) every fan containing e consists of a single triad and any two such triads
meet in {e};

(c) e is in exactly three fans; these three fans are of the same type, each has five
elements, together they contain a total of siz elements; and, depending on
whether these fans are of type—-1 or type-2, the restriction or contraction,
respectively, of M to this set of siz elements is isomorphic to M (Ky).

An example of the third possibility above may be found in Figure 15. There,
each of by, b3, and by is essential and is in the three fans of the form T3, {b2, b3, b4}, T3
where T; and T3 are any two of {b1,b2,b3}, {b3,bs,b5}, and {bs, bg, bs}.

When M is graphic, case (b) in Theorem 8.5 can be strengthened to the asser-
tion that e is in exactly two fans each of which is a single triad corresponding to a
vertex of degree three. The proof of this fact relies on the following strengthening
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¥

FIGURE 17. Breaking off a wheel; the outer graph is G;.

(Y

of Theorem 8.1 due to Tutte [98]: In a 3-connected graphic matroid M (G), every
essential element that is not in a triangle meets a degree-3 vertex of G.

Theorem 8.5 implies that the fans in a 3—connected matroid other than a wheel
or whirl induce a partition of the set of essential elements.

COROLLARY 8.6. Let M be a 3—connected matroid that is not a wheel or a
whirl. Then there is a partition of the set of essential elements of M such that
two elements are in the same class if and only if there is a fan whose ground set
contains both.

Returning to the cycle matroid M of the graph G in Figure 15, we observe
that the fan with ground set {a;,as,...,ar} can be viewed as a partial wheel.
Indeed, we can break off a wheel from the original matroid leaving a 3—connected
matroid. Figure 17 shows two disjoint graphs with one, a 4-wheel, drawn inside
the other G;. If the bold edges are identified in the natural way and then the
identified edge z is deleted, we recover the original graph. On the other hand, the
graph G can be obtained from G by deleting the edges a3 and a5, contracting the
edges az and a4, and then relabeling ag as z. The next theorem [65] asserts that
any 3—connected matroid M having a chain of odd length exceeding two can be
constructed by sticking together a wheel and a certain 3—connected minor of M,
just as in this example.

THEOREM 8.7. Let M be a 3—connected matroid and suppose that, for some
non-negative integer n, the sequence
{yo,zo, 11}, {0, vy, T b, {yn, 21, w2} - -+ {¥ns Ty Yngr
is a chain in M in which {yo,zo,y1} 15 a triangle. Then
M = Pp,(M(Wny2), M1)\z

where A1 = {Yo, Yn+1, 2}; Wh2 is labeled as in Figure 18; and M is obtained frgin
the matroid M/xo,z1,... ,Zn-1\¥1,Y2,--. ,Yn by relabeling x,, as z. Moreover, M;
15 3—connected. More precisely, either

(i) M, is 3—connected; or

(i) z is in a unique 2—circuit {z,h} of My, and M1\z is 3—connected.
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FIGURE 18. A labeled (n + 2)-wheel.

In the latter case,

M = Pp,(M(Why2), M2)
where Ay = {Yo, Yn+1,}; Waio is labeled as in Fzgure 18 with z relabeled as h;
and My 1s Mi\z, which equals M\xo,Z1,... ,Tn,Y1,Y2,-- . ,Yn-

An immediate consequence of this theorem is that the restriction of M to
{%0,Z1,... ,Zn,Y0,Y1,--- ,Yn+1}, the ground set of the chain, is equal to the cycle
matroid of the graph shown in Figure 18 with the edge z deleted. Thus our view
of a chain as a partial wheel is validated.

The behavior of essential elements when a wheel is broken off as above is deter-
mined in [65]. In particular, it is shown that, for i in {1,2}, if M; is 3—connected,
then an element of M, that is essential in M remains essential in M;. Non-essential
elements behave somewhat less straightforwardly but still predictably.

Theorem 8.7 indicates how one can break off a wheel from a 3—connected ma-
troid having a chain of odd length exceeding two. In fact, that theorem explicitly
describes this break off when the chain has a triangle as its first link and hence has
a triangle as its last link. If the chain has triads as its first and last links, then
one can reduce to the case described in Theorem 8.7 by taking duals. A similar
result [65] holds for chains of even length although, in this case, it is slightly more
difficult to recover a 3—connected matroid in what is left after the break off.

THEOREM 8.8. Let M be a 3—connected matroid that is not a wheel or a whirl,
Suppose that, for some non-negative integer n, the sequence
{yO) Zo, yl}; {Z'(), Y1, xl}a ey {y'n.7 Tn, yn+1}, {-'L"na Yn+1, m'n+1}

is.a chain in M in which {yo,zo,y1} is a triangle. Then

M = Pa(M(Whn43), Ms)\{', yn 11}
where A = {yo, 2, Y5, 1}; Whys is labeled as in Figure 19; and Ms is obtained from
the matroid M/xo,x1,... ,Zn—1\Y1,%2,--- »Yn/ZTn+1 by relabeling z,, and Y,y as
Z' and y, . Moreover, J\f/:f:o, is 3—connected. More precisely,
(i) Ms is 3—connected; or
(ii) 2’ is in a unique 2-circuit of M3, and M3\2' is 3-connected; or
(iii) yy41 45 in @ unique 2-circuit of M3, and Ms\y,, is 3-connected; or
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FIGURE 19. A labeled (n + 3)—wheel.

(iv) each of 2’ and y, ., is in a unique 2—circuit of M3, and M3\2',yp, 1 15
3—connected.

By breaking off wheels in the manner described above, one is able to reduce
the size of the 3—connected matroid being considered by removing a piece of the
matroid whose behavior is well-understood. The reader may be curious that, in
the general matroid case, one is always breaking off wheels rather than wheels or
whirls. This can be explained relatively simply. If A is a triangle in a wheel and z is
a rim element in this triangle, then the matroid Pa(M(Whp+2),Uz,4)\z is precisely
Wn+2 Thus, loosely speaking, attaching wheels and attaching whirls are really the
same process with only the points of attachment altering.

9. Matroids with few non-essential elements

A 3—connected matroid with no non-essential elements is a wheel or a whirl.
Moreover, by Corollary 8.4, there are no 3—connected matroids with exactly one
non-essential element. In this section, following [66], we describe the 3—connected
matroids that have exactly two non-essential elements.

FIGURE 20. Construction of a twisted wheel from Kjy.
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We know from Theorem 8.3 that if M is a 3—connected matroid other than a
wheel or a whirl, then every essential element of M is in a fan the ends of which
are non-essential. Thus if M has exactly two non-essential elements, these two
elements must occur as the ends of every fan. Therefore M is formed by somehow
attaching these fans together across the two non-essential elements. In what follows,
we shall describe precisely how these attachments are done. If M is graphic, it is
not difficult to find some examples of such attachments. The graph in Figure 20(b)
is called a twisted wheel. It can be obtained from Ky, drawn as in Figure 20(a),
by subdividing each of the edges s and ¢ into at least two edges and then joining
each of the newly created vertices to one of u and v as shown. Evidently z and y
are the only non-essential elements in the cycle matroid of such a graph. It is clear
that a twisted wheel can also be constructed by appropriately joining two type-3
fans with ends z and y.

The graph in Figure 21(b) is an example of a 3—dimensional wheel. In general,
a multidimensional wheel is constructed as follows: begin with the 3—vertex graph
in Figure 21(a) in which » and v are joined by a path u, h, v of length two and by &
parallel edges z;, 2, ... , Zk, for some k > 3. Subdivide each of these parallel edges
into at least two edges and, finally, join each newly created vertex to h. Evidently
the cycle matroid of the resulting graph has z and y as its only non-essential
elements. Moreover, this matroid can be obtained by appropriately joining k type-
1 fans with ends z and y. Observe that if each of z1,xzs,. ..,z is subdivided into
exactly two edges, the resulting k—dimensional wheel is isomorphic to K. é’ k-

Based on Theorem 8.5, it is fairly straightforward to prove that the only graphic
matroids with exactly two non-essential elements are those described above.

THEOREM 9.1. Let M be a 3—connected graphic matroid. Then M has exactly
two non-essential elements if and only if M is the cycle matroid of a twisted wheel
or a multidimensional wheel.

There are many non-graphic 3—connected matroids that have exactly two non-
essential elements and we now proceed to describe them. Theorem 8.7, which
specifies how to break off a wheel, is crucial in deriving this description.

Let M be a 3—connected matroid with exactly two non-essential elements. Then
every element of M is in a fan so every element is in a triangle or a triad. Hence,

(a) (b)

FIGURE 21. Construction of a multidimensional wheel.
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for every element z of M, at least one of M\x and M/z fails to be 3-connected.
We call an element e of a 3—connected matroid N deletable if N\e is 3—connected;
e is contractible if N/e is 3—connected. In M, we must have one of the following:

(i) both non-essential elements are deletable but not contractible;
(ii) both non-essential elements are contractible but not deletable;
(iil) one non-essential element is deletable but not contractible and the other is
contractible but not deletable.

Hence, for example, the cycle matroid of a multidimensional wheel satisfies (1),
whereas the cycle matroid of a twisted wheel satisfies (jii). Evidently, in cases
(i), (i), and (iii), every fan of M is of type-1, type-2, or type-3, respectively.
Accordingly, in these three cases, we shall refer to M itself as being of type-1, type-
2, or type-3. Clearly the class of type-2 matroids coincides with the class of duals
of type-1 matroids, so it will suffice to specify the matroids of type-1 and those of
type-3.

To see how to construct all type-1 matroids, it is instructive to consider a
geometric construction for the cycle matroid of a multidimensional wheel. Begin
with a 3-point line {z,y, 2z} and k wheels for some k > 3. Let {z,y, 2z} also label
a triangle in each of these wheels with z and y being spokes. Attach the wheels
to the line, one at a time, via generalized parallel connection. Finally, delete the
element z to obtain the desired matroid.

THEOREM 9.2. The class of 3—connected matroids that have ezactly two non-
essential elements each of which is deletable coincides with the class of matroids M
that are constructed as follows.

(i) Let L be an n—point line for some n > 3, and = and y be two elements of L.

(ii) Let N1, Na, ..., Ny be a collection of wheels of rank at least three such that
E(L),E(Ny1), E(N2),...,E(N) are disjoint and k > 3.

(ili) Let Aq, Ay, ..., Ay be a collection of triangles in L each containing {z,y},
and A}, Ay, ..., AL be triangles in Ny, N, ... , Ni, respectively.

(iv) For each i in {1,2,...,k}, identify the elements of Al with the elements of
A; so that z and y are identified with spokes of N;.

(v) Let Ap = L and, for all i in {1,2,... ,k}, let A; = Pa,(N;, Ai1).

(vi) Let M = Ag\(L — {z,y}).

It should be noted here that the triangles A;, Ay, ..., Ak in the above con-
struction need not be distinct. We also remark that if (vi) is modified so that one
deletes some subset of L — {x,y} rather than the whole set, then (i)—~(vi) describe
the construction for all 3—connected matroids in which every non-essential element
is deletable and the set of such elements has rank two.

Like the type-1 matroids, the type-3 matroids are obtained by attaching wheels
to a certain root matroid. This root matroid is again a familiar one.

LEMMA 9.3. For some n > 3, let N be an n-spike with tip y and let {z,y, 2}
be a triangle of N. Then N\z is a 3—connected matroid whose set of non-essential
elements is contained in {x,y}. Indeed, y is deletable and z is contractible in N \z
unless n = 3 and N\z is a wheel or a whirl.

PROOF. Clearly each element of E(N\z) — {z,y} is in both a triangle and a
triad. Moreover, y is in a triangle and z is in a triad. It is not difficult to check
that N\z is 3-connected, and so the lemma follows. U
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THEOREM 9.4. The class of 3-connected matroids that have ezactly two non-
essential elements one of which is deletable and one of which is contractible coin-
cides with the non-wheels and non-whirls that are in the class of matroids M that
are constructed as follows.

(1) Let A, Ay, A, ..., A,_; be the triangles of an n—spike N that contain the
tipy of N where A = {y,x,z} and A; = {y, z;, zi} for all 3.

(i) Let No = N\z and, for somet < n — 1, let N1, Na, ... , N, be a collection of
wheels of rank at least three such that E(Ny), E(N:1), E(Ny),... ,E(N;) are
disjoint.

(iii) Let A, AL,..., AL be triangles in N1, Ny, ..., N, respectively.

(iv) For eachi in {1,2,...,t}, identify the elements of A} with the elements of
A; so that y is identified with a spoke and z; with a rim element of N;.

(V) Let Ro = NO and, fO’f‘ all i in {1, 2, ce ,t}, let Rl = PAi(Ni,Ri—l)-

(Vl) Let M = Rt\zl, 22y ... 4 2¢.

By using the last result together with the modification of Theorem 9.2 discussed
immediately following it, it is not difficult to deduce a description of all 3-connected
matroids in which the set of non-essential elements is collinear. Moreover, in [67],
all 3—connected graphic matroids with exactly three non-essential elements are de-
termined.

10. Extremal results for 2—-connected matroids

The Wheels and Whirls Theorem characterizes the 3—connected matroids M
that are extremal in the sense that, for every element e, neither M\e nor M/e is
3-connected. As we have seen, this result is particularly useful in the development
of matroid structure theory. It is one of a number of extremal connectivity results
that are not only interesting in their own right but have also been used as valuable
tools in other areas of matroid theory. In this section and the next, we review such
results. Since so many of the results for 3—connected matroids mimic corresponding
results for 2-connected matroids, our discussion in this section will focus on the
latter results. The matroid results obtained here were strongly influenced by a well-
established body of extremal connectivity results for graphs that includes work of
Dirac [26], Plummer [68], Halin [29, 30], and Mader [42, 43, 44].

One of the most powerful tools in induction arguments for 2—connected ma-
troids is the following result of Tutte [99].

THEOREM 10.1. Let e be an element of a 2~connected matroid M. Then M \e
or M/e is 2—connected.

The following useful extension of this result was proved independently by Bry-
lawski {14] and Seymour [78].

THEOREM 10.2. Let N be a 2—connected minor of a 2—connected matroid M
and suppose that e € E(M)— E(N). Then M\e or M/e is 2—connected and has N
as a minor.

Let N be a k-connected minor of a k—connected matroid M. The Splitter
Theorem told us that, when k = 3, provided N satisfies some very weak restrictions,
we can remove elements from M one at a time in some order staying k—connected
until we arrive at an isomorphic copy of N. The last result tells us that, for k = 2
and an arbitrary ordering of the elements of E(M) — E(N ), we can remove these
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elements in the specified order staying k—connected until we arrive at N itself.
The only aspect of the last process that we do not control is how each element is
removed, that is, whether it is deleted or contracted.

For n > 2, an n—connected graph G is minimally n—connected if, for all edges e
of G, the deletion G\e is not n—connected. One obvious way for the deletion of an
edge to destroy n—connectedness is if the edge meets a degree-n vertex. In fact, a
minimally n—connected graph must have many vertices of degree n. The following
result was proved by Dirac [26] for n = 2, by Halin [30] for n = 3, and by Mader
[43] in general.

THEOREM 10.3. Let G be a minimally n—connected graph where n > 2. Then
the number of degree-n vertices in G is at least

(n=DIV(G)|+2n
2n—1

An n—connected matroid M is minimally n—connected if, for all elements e of
M, the matroid M\e is not n—connected. One potential matroid analogue of the
last theorem would be that a minimally n—connected matroid has a lot of n—element
cocircuits. For n > 4, it is not known whether such a result is true. But, if nis 2
or 3, such a result does hold. First we describe what is known for n = 2. Murty
[45], White [105], and Seymour [80] independently proved that every minimally
2-connected matroid with at least two elements has a 2—cocircuit. This result was
later strengthened by Seymour [81] when he proved the following result.

PROPOSITION 10.4. Let M be a 2-connected matroid having at least two ele-
ments and let C be a circuit of M such that M\e is not 2—connected for all e in C.
Then C contains some 2—cocircuit of M.

A slight improvement on this result was obtained by Oxley [51].

PROPOSITION 10.5. Let M be a 2—connected matroid having at least two ele-
ments. Let f be an element of a circuit C' of M such that M \e is not 2—connected
for all e in C — f. Then C — f contains a 2—cocircuit of M.

The last result was used to prove the following:

THEOREM 10.6. Let M be a 2-connected matroid other than a single circuit.
Suppose that A C E(M) and M\a is not 2-connected for all a in A. Then either A
is independent in M, or A contains at least |A| —r(A) 41 non-trivial series classes
of M.

As a consequence of this, we are able to show that a minimally 2-connected
matroid has a lot of 2-cocircuits [51].

COROLLARY 10.7. Let M be a minimally 2-connected matroid. Then either
M is a circuit, or M has at least r* (M) + 1 non-trivial series classes and 50 has
at least r*(M) + 1 pairwise disjoint 2—cocircuits.

The minimally 2-connected matroids M for which the number of 2—cocircuits
is exactly 7*(M) + 1 were determined in [52]. While the last result maintains the
spirit of Theorem 10.3 in the case n = 2, the bound obtained is not analogous to
the graph bound. The fact that the analogous bound does hold was proved by a
different method in [53].
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THEOREM 10.8. Let M be a minimally 2—connected matroid having at least
Jour elements. Then the number of pairwise disjoint 2-cocircuits of M is at least
(r(M) +2).

The matroids attaining equality in this theorem were determined in [52]. The
last result is a matroid theorem that was motivated by a graph result. The next two
results [51] are graph analogues of two matroid results, Theorem 10.6 and Corollary
10.7. The number of connected components of a graph G is denoted by w(G).

'THEOREM 10.9. Let G be a 2-connected loopless graph other tham a cycle.
Suppose that A is a set of edges of G such that G\a is not 2-connected for all a in
A. Then either A is a forest, or V(A) contains at least |A| — |V (A)| +w(G[A]) + 1
pairwise non-adjacent vertices having degree two in G.

COROLLARY 10.10. A minimally 2—connected graph G having at least four
edges has at least |E(G)| — |V(G)| + 2 pairwise non-adjacent vertices of degree
two.

By combining the last result with Theorem 10.3 in the case n = 2, one obtains
the following result [51] after a little additional argument.

THEOREM 10.11. Let G be a minimally 2—connected graph with at least four
edges. Then the number vy of degree-two vertices in G satisfies

vy > { 3(IV(G)| +5) for |E(G)| < 3(4|V(G)| - 2);
L IB@I=IV(@)I+2 for 3(4V(G)|-2) < |B(G)]-

The next result [53] is obtained by combining Corollary 10.7 and Theorem 10.8.

THEOREM 10.12. Let M be a minimally 2—connected matroid. Then the num-
ber d5 of pairwise disjoint 2—cocircuits in M satisfies

oz >{ L(r(M)+2) for |E(M)| < (4r(M) - 1);
2= (M) +1 for 3(4r(M) — 1) < |E(M)).

Brylawski [13] showed that if a single-element deletion of a 2-connected matroid
M is not 2-connected, then M can be written as a series connection of two of
its minors. Building on this, we have the following decomposition result [51] for
minimally 2—-connected matroids.

THEOREM 10.13. A matroid M is minimally 2—connected if and only if M has
at least three elements, and either M is 2-connected having every element in a
2—cocircuit, or M = S((My/qi;p1), (M2/q2;p2)) where My and My are minimally
2—connected matroids each of which is isomorphic to a minor of M and has at least
fve elements, and {p1,q1} and {p2, g2} are 2-cocircuits of My and Mo, respectively.

As one of several applications of the last theorem, we note that it can be used
to prove the following result of Murty [45] .

COROLLARY 10.14. For r > 3, a minimally 2—connected matroid M of rank r
has at most 2r — 2 elements, the upper bound being attained if and only if M =
M(KQ,T—I) .

The next result is another extremal connectivity result of Seymour [80]. He
used it as a tool in his proof of the excluded-minor characterization of the class of
ternary matroids.
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PrOPOSITION 10.15. Us 4 s the only 2-connected matroid with more than
one element in which no 2—element deletion and no 2—element contraction is 2—
connected, but every l-—element deletion and every 1-—element contraction is 2-
connected.

Another extremal connectivity lemma is used in Kahn and Seymour’s short
proof of the excluded-minor theorem for ternary matroids (see [62],10.2.4). In [53],
minor-minimally-connected matroids are considered, these being those 2—connected
matroids M such that, for all elements e, either M\e or M/e is not 2—connected.
A characterization of such matroids similar to Theorem 10.13 is proved and it is
shown that every such matroid must contain a number of 2—element sets that are
circuits or cocircuits.

11. Extremal results for 3—connected matroids

In this section, we turn our attention to 3—connected matroids with much of
our focus being on which of the results for 2—-connected matroids noted in the last
section can be generalized. Some examples of extremal connectivity results for
n~connected matroids for arbitrary values of n may be found in [3, 4].

Although Theorem 10.1 certainly fails if one replaces “2—connected” by “3—
connected”, the following useful analogue of the theorem was proved by Bixby [10].

THEOREM 11.1. Let e be an element of a 3—connected matrotd M. Then M\e
or W e is 3—connected.

It is well known that if X and Y are subsets of the ground set of a matroid
M and both M|X and M|Y are 2—connected, then, provided X NY is non-empty,
M|(X UY) is also 2—connected. The following useful generalization of this fact was
proved by Oxley and Wu [64].

THEOREM 11.2. Let n be an integer exceeding one and M be a matroid having
no circuits with fewer than n elements. If M|X and M|Y are n—connected and
the closures of X andY have at least n —1 common elements, then M|(X UY) is
n-connected.

Halin [30] made crucial use of the next lemma in his proof that a minimally
3—connected graph G has at least £(2|V(G)| + 6) vertices of degree three.

LEMMA 11.3. Ewery cycle in a minimally 3—connected graph meets at least two
vertices of degree three.

By using the fact that the minimal sets meeting every cycle in a graph G are
the cobases of M(G), one can also use this lemma to obtain a second bound on
the number of degree-3 vertices in a minimally 3—connected graph. The next result
combines these two bounds, identifies the intervals on which each is sharper, and
slightly improves Halin’s bound on the specified interval.

THEOREM 11.4. Let G be a minimally 3—connected graph. Then the number
vy of degree-three vertices in G satisfies
s2IV(OI+T) for |E(G)| < 5(9IV(G)| = 3);
vy 2
sUE@G) = V(G)|+3) for g(9IV(G)] - 3) < |E(G)].
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The following matroid analogue of Lemma 11.3 was proved by Oxley [51].

LEMMA 11.5. Let C be a circuit in a minimally 3—connected matroid M where
|E(M)| > 4. Then M has at least two distinct triads meeting C.

Using this, one can prove the following analogue of the second bound in Theo-
rem 11.4.

THEOREM 11.6. A minimally 3—connected matroid M with at least four ele-
ments has at least 3r*(M) + 1 triads.

A 3-connected matroid M for which every 2-element deletion fails to be 2—
connected is easily seen to be minimally 3-connected as long as |[E(M)| > 5. The
last result guarantees that such a matroid has many triads but, as Akkari and Oxley
[3] showed, one can say considerably more.

THEOREM 11.7. The following statements are equivalent for a matroid M hav-
ing at least four elements.

(i) M is 3—connected and no 2—element deletion from M is 2-connected.
(ii) Every pair of elements of M is in a triad.
(iii) M and all its 1-element deletions are 2—connected but no 2—element deletion
from M 1is 2—-connected.

Proposition 10.15 follows easily by combining the last result with its dual.

The first bound on v3 in Theorem 11.4 and the corresponding results for min-
imally 2—-connected graphs suggest that one may be able to show that a minimally
3—connectea matroid M has at least %T‘(M ) + c triads for some constant c. How-
ever, John Leo (private communication) has found an infinite family of minimally
3—connected non-binary matroids M each of which has only £ (r(M) + 6) triads.

The next theorem, which was proved by Lemos [39], answers a question of
Oxley [51]. It is a generalization of Proposition 10.5 and shows that the conclusion
to Lemma 11.5 holds under a weaker hypothesis.

THEOREM 11.8. Let C be a circuit in a 3—connected matroid M such that, for
all e in C, the matroid M\e is not 3—connected. Then C meets at least two triads
of M.

The last result played a crucial role in the proofs of Theorems 4.8 and 4.9.
Using it, one can show that a 3—connected matroid with a k—element circuit has
a 3—connected minor of rank at least £ — 1 that has a spanning circuit. Lemos
also noted that the following graph-theoretic analogue of his result is true, and this
graph result was also independently proved by Mader [44].

THEOREM 11.9. Let C be a cycle of a simple 3—connected graph G. If G\e is
not 3-connected for all e in C, then C meets at least two degree-3 vertices of G.

Leo [40] noted that by combining Theorem 11.8 with the proof technique used
to give Theorem 10.6, one can obtain the following analogue of that result.

THEOREM 11.10. Let M be a 3—connected matroid. Suppose that A C E(M)
and M\a is not 3-connected for all a in A. Then either A is independent, or A
meets at least (]A| — r(A)) + 1 distinct triads of M.

Theorems 11.7 and 11.8 suggest consideration of those 3—connected matroids
having a circuit such that the deletion of any pair of elements from this circuit
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produces a matroid that is not 2—connected. The following attractive generalization
of Theorem 11.7 was proved by Akkari [2].

THEOREM 11.11. Let C be a circuit in a 3—connected matroid M such that, for
all pairs {e, f} of distinct elements of C, the matroid M\e, f is not 2—connected.
Then either every pair of elements of C is in a triad, or M is a wheel of rank at
least four and C is its rim.

In view of Proposition 10.5 for 2—connected matroids, it is natural to ask
whether the corresponding result is true for 3—connected matroids. Leo [40] an-
swered this question affirmatively.

THEOREM 11.12. Let C be a circuit in a 3-connected matroid M and f be an
element of C. If M\e is not 3—connected for all e in C — f, then M has a triad

meeting C — f.

Halin [29] proved the following upper bound on the number of edges in a
minimally 3—connected graph.

THEOREM 11.13. Let G be a minimally 3—connected graph. Then

AV 2 if IV(C)] <6
(G} < { V(E) -9 V(@) >T

Moreover, the only graphs attaining equality in these bounds are W,, for3<m < 6
and K3 ,, forn > 4.

The next result [49] shows that precisely the same bounds hold for arbitrary
minimally 3—connected matroids.

THEOREM 11.14. Let M be a minimally 3—connected matroid having at least
four elements. Then
2r(M) if (M) < 5;
<
[B(M)] < { 3r(M)— 6 if r(M) > 6.

A characterization of the matroids that attain equality in these bounds is given
in [49]. The only binary matroids attaining equality are the cycle matroids of the
graphs that attain equality in the bounds in Theorem 11.13.

In Section 9, we discussed the 3—connected matroids with a small number of
non-essential elements. The following result of Wu [109] gives interesting informa-
tion about how the non-essential elements are arranged in a minimally 3--connected
matroid.

THEOREM 11.15. Let M be a minimally 3-connected matroid that is not a
wheel or a whirl. Then every largest circuit of M contains a non-essential element

of M.

12. Vertical connectivity

It was noted in Section 2 that the notions of n—connectedness for graphs and
matroids, while similar, do not coincide precisely. One difference lies in the fact
that, whereas a circuit of size less than n does not prevent a graph from being
n—connected, it does prevent its cycle matroid from being n—connected unless the
graph has fewer than 2n — 2 edges. In this section, we shall see that this is the
fundamental difference between the graph and matroid concepts. We shall present
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a slight modification of the definition of n—connectedness which produces a ma-
troid notion that exactly generalizes the graph concept. The cost of making this
modification is that one loses invariance under duality with this alternate concept.

For a positive integer k and a matroid M, a partition {X,Y} of E(M) is a
vertical k—separation if

min{r(X),r(Y)} > k;
and
r(X)+r(Y)—r(M) <k-1

For 2 < n < r(M), the matroid M is vertically n—connected provided that, for
all k¥in {1,2,...,n — 1}, M has no vertical k-separation. Hence M is vertically
2—connected exactly when the matroid obtained by deleting all loops from M is
2-connected. Here “vertical” is used as the adjective corresponding to “vertex”.
This usage, which was originated by Tutte [100], is justified by the following result
[21, 33, 48].

THEOREM 12.1. Let G be a connected graph and n be an integer exceeding one.
Then G is an n—connected graph if and only if M(G) is a vertically n—connected
matroid.

The next result, a generalization of Proposition 2.1, describes the link between
vertical n—connectedness and n—connectedness as defined in Section 2. The latter
concept is sometimes called Tutte n-connectedness.

THEOREM 12.2. Let M be a matroid that is not isomorphic to any uniform
matroid U, ,, with m > 2r — 1. For all integers n exceeding one, M is n—connected
if and only if M is vertically n-connected and has no circuits with fewer than n
elements. '

If the dual of a matroid is vertically n—connected, then the matroid itself is
called cyclically n—connected. The next result notes that Tutte n—connectedness is
basically the conjunction of vertical n—connectedness and cyclic n—connectedness.

PROPOSITION 12.3. Let M be a matroid that is not isomorphic to any uniform
matroid Uy, with 2r — 1 < m < 2r + 1. For all integers n exceeding one, M is
n~connected if and only if M 1is both vertically and cyclically n—connected.

Although a wheel M(W,) with r > 4 has no element e such that M(W,)/e
is 3—connected, for every rim edge f of W,, the matroid M (W, )/f is vertically
3-connected. In general, Cunningham [21}], and independently Seymour, proved
the following result.

PROPOSITION 12.4. Let M be a non-empty 3—-connected matroid. Then M has
an element e such that M /e is vertically 3—connected.

If M is the cycle matroid of a 3—connected graph G, then, by Theorem 12.1,
M is vertically 3—connected. Moreover, for every edge e of G, the matroid M/e is
vertically 3—connected if and only if the graph G/e is 3—connected. An edge x in
a 3—connected graph G is contractible if G/x remains 3—connected. Several papers
over the last decade (see, for example, [6, 27, 23, 5]) have studied the number
of contractible edges in 3—connected graphs. Recently Wu [109] considered the
corresponding problem for matroids. An element z in a 3—connected matroid M
is vertically contractible if M /x is vertically 3—connected. Proposition 12.4 asserts
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FIGURE 22. G.

that every non-empty 3—connected matroid has at least one vertically contractible
element. Wu [109] sharpened this result.

PROPOSITION 12.5. Fvery 3—connected matroid with at least three elements
has at least three vertically contractible elements.

Wu [109] deduced the last result from the following theorem. It is interesting
to observe the presence of a familiar class of matroids in this result.

THEOREM 12.6. Let M be a minimally 3—connected matroid with at least four
elements. Then M has at least maz{Z|E(M)|—r(M) +2, 3} vertically contractible
elements. Moreover, M has exactly three vertically contractible elements if and only
M = M*(K3Y) for some k > 2.

13. Isomorphism versus equality, and roundedness

Let M be the cycle matroid of the graph G in Figure 22, and let M/{1,2,3} =
N. Evidently N is a 3—connected minor of M, which is also 3—connected. The Split-
ter Theorem guarantees the existence of a sequence My, My, M5, M3 of 3—connected
matroids each a single-element deletion or contraction of its predecessor such that
My = M and M3 = N. Indeed, such a sequence is M, M /5, M/5/4, M/5/4\2. The
point that we wish to note here is that M/5/4\2, while it is isomorphic to N is
not equal to N. Moreover, the reader can easily check that there is no sequence
My, My, M5, M3 of the required type in which M3 = N. In fact, M has no proper
3—connected minor that has N itself as a proper minor.

One is often interested in maintaining a specific minor rather than just a copy
of that minor. Suppose that N; is a k—connected minor of a k—connected matroid
M,. If we seek a k—connected minor No of M; that has N; as a proper minor
so that the gap, |E(N2) — E(Ni)|, is as small as possible, then, when k = 2,
Theorem 10.2 guarantees that N> can be found so that |E(N2) — E(N;)| = 1.
Rajan [69] gave a family of examples to show that, when k = 4, arbitrarily large
gaps exist between N; and a next largest k—connected minor N, of M; having N;
as a minor. But Truemper [87] showed that, when k = 3, this gap has size at most
three. Truemper’s result was strengthened slightly by Bixby and Coullard {11] who
proved the following result.

THEOREM 13.1. Let N be a 3—connected proper minor of a 3—connected ma-
troid M. Then M has a 3—connected minor M, and an element e such that N is a
cosimple matroid associated with Mj\e or a simple matroid associated with M /e,

and |E(M;) — E(N)| < 3.
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FIGURE 23. A graphic depiction of (iii)—(v) of Theorem 11.2.

Bixby and Coullard [11] strengthened the last result when N has no circuits or
cocircuits with fewer than four elements. The details of this and many of the other
results considered in this section may be found in Section 11.3 of [62]. Another
very useful result of Bixby and Coullard [12] considers a variant of Theorem 13.1 in
which one seeks a 3—connected minor M; of M that not only has N as a minor but
also contains some nominated element e of E(M) — E(N). They show that such a
matroid M; can be found so that |E(M;) — E(N)| < 4. Moreover, their result also
contains much very helpful structural information.

‘THEOREM 13.2. Let N be a 3—connected minor of a 3—connected matroid M.
Suppose that |E(N)| > 4, e € E(M) — E(N), and M has no 3-connected proper
minor that both uses e and has N as a minor. Then, for some (Ni, M) in
{(N, M), (N*, M*)}, one of the following holds where | E(M) — E(N)| =mn.

(i) n=1 and N; = M\e.

(ii) » = 2, Ny = Mj\e/f, and Ny has an element = such that {e,f,xz} is a
triangle of M.

(iii) n = 3, N1 = Mi\e,g/f, and Ny has an element = such that {e, f,z} is
a triangle of My and {f,g,z} is a triad of M,. Moreover, M;\e is 3-
connected.

(V) n =3, Ny = Mi\e,g/f = Mi\e,f/g = Mi\f,g/e = My\e,f,g, and
{e,f, g} is a triad of My. Moreover, N1 has distinct elements = and Yy
such that {e, g,z2} and {e, f,y} are triangles of M.

(v) n=4, Ny = Mi\e,g/f,h and Ny has an element z such that {e, f, z} and
{g,h a:} are triangles of M1, and {f, g,x} is a triad of M. Moreover, M, \e
and Mi\e/f are 3—connected.

Although the last result applies to all matroids and not just graphic ones,
Bixby and Coullard use graphs to depict what happens in (iii)—(v) (see Figure 23).
Note that a vertex is circled if it corresponds to a known triad in the matroid; all
cycles shown are indeed circuits of the matroid; and the shaded part of the diagram
corresponds to the rest of the matroid.

Theorem 13.2 has a number of applications that relate to what is called “round-
edness” in matroid theory. This subject is concerned with relating certain minors
of a matroid to particular elements of the matroid. An example of one of the many
such results is the following theorem of Seymour [83]. This result, which extends
an earlier result of Bixby [9] for 2-connected matroids, played an important role
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in the proof of Kahn’s theorem [34] that determines precisely when a quaternary
matroid is uniquely GF'(4)-tepresentable.

THEOREM 13.3. Let M be a 3-connected matroid having a Uz 4-minor and
suppose that e and [ are distinct elements of M. Then M has a Uz 4-minor using

{e, f}.

The last result, a statement about 3—connected non-binary matroids, was ex-
tended to non-graphic matroids by Asano, Nishizeki, and Seymour [7] when they
proved the following result, a further extension of which was later obtained by Reid
[72].

THEOREM 13.4. Let T be a triangle in a 3—connected non-graphic matroid M.
Then M has a minor N using T such that N is isomorphic to

(i) M*(Ks33) if M is regular;

(ii) Fy if M is binary and non-regular; and
(iii) Uaq of M is non-binary.

A more recent result of the same type is the following theorem [63]. The
matroid F¥ is obtained from the Fano matroid by freely adding an element to one
of the lines.

THEOREM 13.5. Let M be a 3—connected matroid having a Uz 5-minor and a
subset X such that M|X = Uz 4. Then M has a minor N using X such that N is
isomorphic to Ua 5 or Fif.

This theorem is of crucial importance in Oxley, Vertigan, and Whittle’s [63]
proof that, when ¢ = 5, a 3-connected GF(g)-representable matroid has a bounded
number of inequivalent G F(q)-representations. The best-possible bound here is six
since, for instance, Us 5 has six inequivalent GF'(5)-representations. The existence
of inequivalent representations is a major difficulty that arises when dealing with
matroid representations. The above result verifies a conjecture of Kahn [34] in the
case ¢ = 5. Kahn had conjectured that the same result holds for all prime powers
g, but examples in [63] show that this conjecture is false for all ¢ > 5.

A 3—connected matroid M is internally 4—connected if min{|X|,|Y|} = 3 for ev-
ery 3-separation {X,Y} of M. Loosely speaking, such a matroid M is 4-connected
except that it may have triangles and triads. The following structural result of
Tseng and Truemper [96] can be used to prove a matroid extension of the edge
form of Menger’s Theorem, which was originally derived by Seymour [79]. A formal

_statement of the last result and its relationship to Menger’s Theorem are described
in [84] and Section 11.3 of [62]. Tseng and Truemper’s result is stated here as
an example of another matroid structural result that has interesting consequences
elsewhere.

THEOREM 13.6. Let e be an element of a 3—connected, internally 4-connected
binary matroid M and suppose that e € E(M). Then ezactly one of the following
holds.

(i) There is an F7-minor of M using e.

(ii) M is regular.
(i) M = F;.

To conclude this section, we note yet another connectivity result that has played
a vital role in the proof of a result from another area of matroid theory. The fol-
lowing result is due to Whittle [107] and is of central importance in the proofs of
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his very attractive recent theorems [107, 108] that characterize the ternary ma-
troids that are representable over some other field. The result has a more intricate
hypothesis than most of the connectivity results noted earlier, so it is probably not
surprising that the proof is very difficult.

THEOREM 13.7. Let M be a 3—connected non-binary matroid having rank at
least four. Then M has an independent set {a, b, c} such that the simplifications of
all of the matroids M/a, M/b,M/c, M/a,b, and M/a,c are 3—connected and non-
binary.
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