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JAMES OXLEY

Abstract. Matroids were introduced by Whitney in 1935 to try to
capture abstractly the essence of dependence. Whitney’s definition em-
braces a surprising diversity of combinatorial structures. Moreover, ma-
troids arise naturally in combinatorial optimization since they are pre-
cisely the structures for which the greedy algorithm works. This survey
paper introduces matroid theory, presents some of the main theorems
in the subject, and identifies some of the major problems of current
research interest.

1. Introduction

A paper with this title appeared in Cubo 5 (2003), 179–218. This pa-
per is a revision of that paper. It contains some new material, including
some exercises, along with updates of some results from the original paper.
It was prepared for presentation at the Workshop on Combinatorics and
its Applications run by the New Zealand Institute of Mathematics and its
Applications in Auckland in July, 2004.

This survey of matroid theory will assume only that the reader is familiar
with the basic concepts of linear algebra. Some knowledge of graph theory
and field theory would also be helpful but is not essential since the concepts
needed will be reviewed when they are introduced. The name “matroid”
suggests a structure related to a matrix and, indeed, matroids were intro-
duced by Whitney [61] in 1935 to provide a unifying abstract treatment of
dependence in linear algebra and graph theory. Since then, it has been rec-
ognized that matroids arise naturally in combinatorial optimization and can
be used as a framework for approaching a diverse variety of combinatorial
problems. This survey is far from complete and reviews only certain aspects
of the subject. Two other easily accessible surveys have been written by
Welsh [58] and Wilson [64]. The reader seeking a further introduction to
matroids is referred to these papers or to the author’s book [34]. Frequent
reference will be made to the latter throughout the paper as it contains most
of the proofs that are omitted here.

This paper is structured as follows. In Section 2, Whitney’s definition of a
matroid is given, some basic classes of examples of matroids are introduced,
and some important questions are identified. In Section 3, some alternative
ways of defining matroids are given along with some basic constructions for
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matroids. Some of the tools are introduced for answering the questions raised
in Section 2 and the first of these answers is given. Section 4 indicates why
matroids play a fundamental role in combinatorial optimization by proving
that they are precisely the structures for which the greedy algorithm works.
In Section 5, the answers to most of the questions posed in Section 2 are
given. Some areas of currently active research are discussed and some major
unsolved problems are described. Section 6 presents what is probably the
most important theorem ever proved in matroid theory, a decomposition
theorem that not only describes the structure of a fundamental class of
matroids but also implies a polynomial-time algorithm for a basic problem
in combinatorial optimization. Section 7 provides a brief summary of some
parts of matroid theory that were omitted from the earlier sections of this
paper along with some guidance to the literature. It is hoped that the
presence of exercises throughout the text will be helpful to the reader.

2. The Definition and Some Examples

In this section, matroids will be defined, some basic classes of examples
will be given, and some fundamental questions will be identified.

2.1. Example. Consider the matrix

A =





1 2 3 4 5 6 7

1 0 0 1 0 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 0



.

Let E be the set {1, 2, 3, 4, 5, 6, 7} of column labels of A and let I be the
collection of subsets I of E for which the multiset of columns labelled by
I is linearly independent over the real numbers R. Then I consists of all
subsets of E−{7} with at most three elements except for {1, 2, 4}, {2, 3, 5},
{2, 3, 6}, and any subset containing {5, 6}. The pair (E,I) is a particular
example of a matroid. The set E and the members of I are the ground set
and independent sets of this matroid.

Now consider some of the properties of the set I. Clearly

(I1) I is non-empty.

In addition, I is hereditary:

(I2) Every subset of every member of I is also in I.

More significantly, I satisfies the following augmentation condition:

(I3) If X and Y are in I and |X| = |Y |+ 1, then there is an element x
in X − Y such that Y ∪ {x} is in I.

Whitney’s paper [61], “On the abstract properties of linear dependence”,
used conditions (I1)–(I3) to try to capture abstractly the essence of de-
pendence. A matroid M is a pair (E,I) consisting of a finite set E and a
collection of subsets of E satisfying (I1)–(I3).
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2.2. Exercise. Show that if I is a non-empty hereditary set of subsets of
a finite set E, then (E,I) is a matroid if and only if, for all X ⊆ E, all
maximal members of {I : I ∈ I and I ⊆ X} have the same number of
elements.

The name “matroid” has not always been universally admired. Indeed,
Gian-Carlo Rota, whose many important contributions to matroid theory in-
clude coauthorship of the first book on the subject [9], mounted a campaign
to try to change the name to “geometry”, an abbreviation of “combina-
torial geometry”. At the height of this campaign in 1973, he wrote [22],
“Several other terms have been used in place of geometry, by the successive
discoverers of the notion; stylistically, these range from the pathetic to the
grotesque. The only surviving one is “matroid”, still used in pockets of the
tradition-bound British Commonwealth.” Today, almost thirty years since
those words were written, both “geometry” and “matroid” are still in use
although “matroid” certainly predominates.

What is the next number in the sequence 1, 2, 4, 8, . . .? The next example
suggests one way to answer this and a second way will be given later.

2.3. Example. If E = ∅, then there is exactly one matroid on E, namely
the one having I = {∅}. If E = {1}, then there are exactly two matroids
on E, one having I = {∅} and the other having I = {∅, {1}}. If E = {1, 2},
there are exactly five matroids on E, their collections of independent sets
being {∅}, {∅, {1}}, {∅, {2}}, {∅, {1}, {2}}, and {∅, {1}, {2}, {1, 2}}. But the
second and third matroids, M2 and M3, have exactly the same structure.
More formally, there is a bijection from the ground set of M2 to the ground
set of M3 such that a set is independent in the first matroid if and only if
its image is independent in the second matroid. Such matroids are called
isomorphic, and we write M2

∼= M3. Since two of the five matroids on a 2-
element set are isomorphic, we see that there are exactly four non-isomorphic
matroids on such a set.

The answer to the second part of the next exercise will be given at the
end of this section.

2.4. Exercise. Let E = {1, 2, 3}.

(i) Show that there are exactly eight non-isomorphic matroids on E.
(ii) How many non-isomorphic matroids are there on a 4-element set?

2.5. Example. Let E be an n-element set and, for an integer r with 0 ≤
r ≤ n, let I be the collection of subsets of E with at most r elements. Then
it is easy to verify that (E,I) is a matroid. It is called the uniform matroid
Ur,n. The three matroids on a set of size at most one are isomorphic to
U0,0, U0,1, and U1,1.

We have yet to verify that matrices do indeed give rise to matroids. We
began with a matrix over R. But we could have viewed A as a matrix over
C and we would have obtained exactly the same matroid. Indeed, A yields
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the same matroid when viewed over any field. This is because, as is easily
checked, all square submatrices of A have their determinants in {0, 1,−1}
so such a subdeterminant is zero over one field if and only if it is zero over
every field. We shall say more about this property in Section 5, specifically
in Exercise 5.17. In this paper, we shall be interested particularly in finite
fields although we shall need very few of their properties. Recall that, for
every prime number p and every positive integer k, there is a unique finite
field GF (pk) having exactly pk elements, and every finite field is of this
form. When k = 1, these fields are relatively familiar: we can view GF (p)
as the set {0, 1, . . . , p−1} with the operations of addition and multiplication
modulo p. When k > 1, the structure of GF (pk) is more complex and is
not the same as that of the set of integers modulo pk. We shall specify the
precise structure of GF (4) in Exercise 2.9 and, in Section 5, the matroids
arising from matrices over that field are characterized.

2.6. Theorem. Let A be a matrix over a field F. Let E be the set of column
labels of A, and I be the collection of subsets I of E for which the multiset
of columns labelled by I is linearly independent over F. Then (E,I) is a
matroid.

Proof. Certainly I satisfies (I1) and (I2). To verify that (I3) holds, let X
and Y be linearly independent subsets of E such that |X| = |Y | + 1. Let
W be the vector space spanned by X ∪ Y . Then dimW , the dimension of
W , is at least |X|. Suppose that Y ∪ {x} is linearly dependent for all x in
X−Y . Then W is contained in the span of Y , so W has dimension at most
|Y |. Thus |X| ≤ dimW ≤ |Y |; a contradiction. We conclude that X − Y
contains an element x such that Y ∪ {x} is linearly independent, that is,
(I3) holds. �

The matroid obtained from the matrix A as in the last theorem will be
denoted by M [A]. This matroid is called the vector matroid of A. A matroid
M that is isomorphic to M [A] for some matrix A over a field F is called F-
representable, and A is called an F-representation of M . It is natural to
ask how well Whitney’s axioms succeed in abstracting linear independence.
More precisely:

2.7. Question. Is every matroid representable over some field?

Not every matroid is representable over every field as the next proposition
will show. Matroids representable over the fieldsGF (2) andGF (3) are called
binary and ternary, respectively.

2.8. Proposition. The matroid U2,4 is not binary but is ternary.

Proof. Suppose that U2,4 is represented over some field F by a matrix A.
Then, since the largest independent set in U2,4 has two elements, the column
space of A, the vector space spanned by its columns, has dimension 2. A
2-dimensional vector space over GF (2) has exactly four members, three of
which are non-zero. Thus, if F = GF (2), then A does not have four distinct
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non-zero columns so A has a set of two columns that is linearly dependent
and therefore A does not represent U2,4 over GF (2). Thus U2,4 is not binary.
The matrix

[

1 0 1 1
0 1 1 −1

]

represents U2,4 over GF (3) since every two columns
of this matrix are linearly independent. Hence U2,4 is ternary. �

2.9. Exercise. Show that

(i) neither U2,5 nor U3,5 is ternary;
(ii) U3,6 is representable over GF (4), where the elements of this field are

0, 1, ω, ω + 1 and, in this field, ω2 = ω + 1 and 2 = 0.

In light of the last proposition, we have the following:

2.10. Question. Which matroids are regular, that is, representable over
every field?

Once we focus attention on specific fields, a number of questions arise.
For example:

2.11. Question. Which matroids are binary?

2.12. Question. Which matroids are ternary?

All of Questions 2.7, 2.10, 2.11, and 2.12 will be answered later in the
paper. As a hint of what is to come, we note that a consequence of these
answers is that a matroid is representable over every field if and only if it is
both binary and ternary.

1

3

7

5

6

2

a

b c

d

4

Figure 1. The graph G.

It was noted earlier that graph theory played an important role in moti-
vating Whitney’s founding paper in matroid theory and we show next how
matroids arise from graphs. Consider the graphG with 4 vertices and 7 edges
shown in Figure 1. Let E be the edge set of G, that is, {1, 2, 3, 4, 5, 6, 7},
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and let I be the collection of subsets of E that do not contain all of the
edges of any simple closed path or cycle of G. The cycles of G have edge
sets {7}, {5, 6}, {1, 2, 4}, {2, 3, 5}, {2, 3, 6}, {1, 3, 4, 5}, and {1, 3, 4, 6}.

2.13. Exercise. Show that the set I just defined coincides with the set of
linearly independent sets of columns of the matrix A in Example 2.1.

A consequence of this exercise is that the pair (E,I) is a matroid. As we
shall show in the next theorem, we get a matroid on the edge set of every
graph G by defining I as above. This matroid is called the cycle matroid of
the graph G and is denoted by M(G).

2.14. Exercise. Use a graph-theoretic argument to show that if G is a graph,
then M(G) is indeed a matroid.

A matroid that is isomorphic to the cycle matroid of some graph is called
graphic. It is natural to ask:

2.15. Question. Which matroids are graphic?

We shall show next that every graphic matroid is binary. This proof will
also show that every graphic matroid is actually a matroid. It will use the
vertex-edge incidence matrix of a graph. For the graph G in Figure 1, this
matrix AG is









1 2 3 4 5 6 7

a 1 0 0 1 0 0 0
b 1 1 1 0 0 0 0
c 0 1 0 1 1 1 0
d 0 0 1 0 1 1 0









.

We observe that the rows of AG are indexed by the vertices a, b, c, and d of
G; the columns are indexed by the edges of G; the column corresponding
to the loop 7 is all zeros; and, for every other edge j, the entry in row i of
column j is 1 if edge j meets vertex i, and is 0 otherwise.

2.16. Theorem. Let G be a graph and AG be its vertex-edge incidence ma-
trix. When AG is viewed over GF (2), its vector matroid M [AG] has as its
independent sets all subsets of E(G) that do not contain the edges of a cycle.
Thus M [AG] = M(G) and every graphic matroid is binary.

Proof. It suffices to prove that a setX of columns of AG is linearly dependent
if and only if X contains the set of edges of a cycle of G. Assume that X
contains the edge set of some cycle C. If C is a loop, then the corresponding
column is the zero vector, so X is linearly dependent. When C is not a
loop, each vertex that is met by C is met by exactly two edges of C. Thus
the sum, modulo 2, of the columns of C is the zero vector. Hence X is
linearly dependent. Conversely, suppose that X is a linearly dependent
set of columns. Take a subset D of X that is minimal with the property
of being linearly dependent, that is, D is linearly dependent but all of its
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proper subsets are linearly independent. If D contains a zero column, then
D contains the edge set of a loop. Assume that D does not contain a zero
column. Now GF (2) has 1 as its only non-zero entry. As D is a minimal
linearly dependent set, the sum, modulo 2, of the columns in D is the zero
vector. This means that every vertex that meets an edge of D is met by
at least two such edges. It follows that D contains the edges of a cycle.
To see this, take an edge d1 of D and let v0 and v1 be the vertices met by
d1. Clearly v1 is met by another edge d2 of D. Let v2 be the other end-
vertex of d2. In this way, we define a sequence d1, d2, . . . of edges of D and a
sequence v0, v1, . . . of vertices. Because the graph is finite, eventually one of
the vertices v in the sequence must repeat. When this first occurs, a cycle
in D has been found that starts and ends at v. �

2.17. Exercise. For a graph G, let A′
G be obtained from AG by replacing

the second 1 in each non-zero column by −1. Show that M [A′
G] represents

M(G) over all fields.

We noted earlier that the number of non-isomorphic matroids on an n-
element set behaves like the sequence 2n for small values of n. As Table 1
shows, the sequence 2n persists even longer when counting non-isomorphic
binary matroids on an n-element set. Each of the matroids on a 3-element
set is graphic.

2.18. Exercise. Find 8 graphs each with 3 edges such that the associated
cycle matroids are non-isomorphic.

We note here that non-isomorphic graphs can have isomorphic cycle ma-
troids. For instance, the cycle matroid of any graph is unchanged by adding
a collection of isolated vertices, that is, vertices that meet no edges. More
significantly, the 3-vertex graph having a single loop meeting each vertex
has the same cycle matroid as the single-vertex graph having three loops
meeting the only vertex. In general, if a graph G has connected components
G1, G2, . . . , Gk and vi is a vertex of Gi for all i, then the graph that is ob-
tained by identifying all of the vertices vi has the same cycle matroid as G
since the identifications specified do not alter the edge sets of any cycles. In
a paper that preceded and doubtless motivated his paper introducing ma-
troids, Whitney [60] determined precisely when two graphs have isomorphic
cycle matroids (see also [34, Theorem 5.3.1]).

All 16 of the binary matroids on a 4-element set are graphic. The one
non-binary matroid on a 4-element set is the one that we have already noted,
U2,4.

In spite of its early similarity to 2n, the number f(n) of non-isomorphic
matroids on an n-element set behaves much more like 22

n

. Indeed, by results
of Piff [38] and Knuth [24], there are constants c1 and c2 and an integer N
such that, for all n ≥ N ,

n− 3
2 log2 n+ c1 log2 log2 n ≤ log2 log2 f(n) ≤ n− log2 n+ c2 log2 log2 n.
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n 0 1 2 3 4 5 6 7 8
matroids 1 2 4 8 17 38 98 306 1724

binary matroids 1 2 4 8 16 32 68 148 342

Table 1. Numbers of non-isomorphic matroids and non-
isomorphic binary matroids on an n-element set.

Let b(n) be the number of non-isomorphic binary matroids on an n-
element set. One can obtain a crude upper bound on b(n) by noting that
every n-element binary matroid can be represented by an n × n matrix in

which every entry is in {0, 1}. Thus b(n) ≤ 2n
2

. On combining this with the
lower bound on f(n), we deduce that most matroids are non-binary, that is,

limn→∞
b(n)
f(n) = 0.

For functions g and h defined on the set of positive integers, g is asymp-
totic to h, written g ∼ h, if limn→∞ g/h = 1. Let [ nk ]2 be the number of
k-dimensional vector spaces of an n-dimensional vector space over GF (2).
Evidently [ n0 ]2 = 1 and it is not difficult to show by counting linearly inde-
pendent sets (see, for example, [34, Proposition 6.1.4]) that, for all k ≥ 1,

[

n
k

]

2

=
(2n − 1)(2n−1 − 1) . . . (2n−k+1 − 1)

(2k − 1)(2k−1 − 1) . . . (2− 1)
.

In 1971, Welsh [57] raised the problem of finding the asymptotic behaviour
of b(n). Wild [62, 63] solved Welsh’s problem by proving the next theorem.
Wild’s initial solution in [62] contained errors that were noted in the Math-
ematical Reviews entry for the paper, MR2001i:94077, and in a paper of
Lax [28]. However, there errors were corrected in MR2001i:94077 and
[63]. Curiously, the asymptotic behaviour of b(n) depends upon the parity
of n.

2.19. Theorem. The number b(n) of non-isomorphic binary matroids on an
n-element set satisfies

b(n) ∼
1

n!

n
∑

k=0

[

n
k

]

2

.

Moreover, if β(n) = 2n
2/4−n log

2
n+n log

2
e−(1/2)log2n for all positive integers n,

then there are constants d1 and d2 such that

b(2n+ 1) ∼ d1β(2n + 1) and b(2n) ∼ d2β(2n).

Rounded to 6 decimal places, d1 = 2.940982 and d2 = 2.940990.

For the reader familiar with coding theory, it is worth noting that b(n)
equals the number of inequivalent binary linear codes of length n, where two
such codes are equivalent if they differ only in the order of the symbols.
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3. Circuits, Bases, Duals, and Minors

In this section, we consider alternative ways to define matroids together
with some basic constructions for matroids. We also introduce some tools
for answering the questions from the last section and give three answers to
Question 2.11. A set in a matroid that is not independent is called dependent.
The hereditary property, (I2), means that a matroid is uniquely determined
by its collection of maximal independent sets, which are called bases, or by
its collection of minimal dependent sets, which are called circuits. Indeed,
the cycle matroid M(G) of a graph G is perhaps most naturally defined in
terms of its circuits, which are precisely the edge sets of the cycles of G.

By using (I1)–(I3), it is not difficult to show that the collection C of
circuits of a matroid M has the following three properties:

(C1) The empty set is not in C.
(C2) No member of C is a proper subset of another member of C.
(C3) If C1 and C2 are distinct members of C and e ∈ C1 ∩ C2, then

(C1 ∪ C2)− {e} contains a member of C.

These three conditions characterize the collections of sets that can be the
circuits of a matroid. More formally:

3.1. Theorem. Let M be a matroid and C be its collection of circuits. Then
C satisfies (C1)–(C3). Conversely, suppose C is the collection of subsets
of a finite set E satisfying (C1)–(C3) and let I be those subsets of E that
contain no member of C. Then (E,I) is a matroid having C as its collection
of circuits.

We leave the proof of this result as an exercise noting that it may be found
in [34, Theorem 1.1.4]. The next result characterizes matroids in terms of
their collections of bases. Its proof may be found in [34, Theorem 1.2.3].

3.2. Theorem. Let B be a set of subsets of a finite set E. Then B is the
collection of bases of a matroid on E if and only if B satisfies the following
conditions:

(B1) B is non-empty.
(B2) If B1 and B2 are members of B and x ∈ B1 − B2, then there is an

element y of B2 −B1 such that (B1 − {x}) ∪ {y} ∈ B.

It follows immediately from (I3) that, like the bases of a vector space, all
bases of a matroid M have the same cardinality, r(M), which is called the
rank of M . Thus the rank of a vector matroid M [A] is equal to the rank of
the matrix A. If G is a connected graph, then the bases of M(G) are the
maximal sets of edges that do not contain a cycle. These sets are precisely
the edge sets of spanning trees of G and, if G has m vertices, each spanning
tree has exactly m− 1 edges, so r(M(G)) = m− 1.

Let us return to the graph G considered in Figure 1 to introduce a basic
matroid operation. Evidently G is a plane graph, that is, it is embedded in
the plane without edges crossing. To construct the dual G∗ of G, we insert a
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single vertex of G∗ in each face or region determined by G and, for each edge
e of G, if e lies on the boundary of two faces, then we join the corresponding
vertices of G∗ by an edge labelled by e, while if e lies on the boundary of
a single face, then we add a loop labelled by e at the corresponding vertex
of G∗. This construction is illustrated in Figure 2. We observe from that
figure that if we had begun with G∗ instead of G and had constructed the
dual of G∗, then we would have obtained G; that is, (G∗)∗ = G. The last
observation holds for all connected plane graphs G, that is, for all plane
graphs in which every two vertices are joined by a path.

7

41
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5

6

7

5
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1

2

3

4

(a) (b)

Figure 2. (a) Constructing the dual G∗ of G. (b) G∗.

Now the edge sets of the graphs G∗ and G are the same. The collection
of circuits of the cycle matroid M(G∗), which is the collection of edge sets
of cycles of the graph G∗, equals

{{1, 4}, {1, 2, 3}, {2, 3, 4}, {3, 5, 6}, {1, 2, 5, 6}, {2, 4, 5, 6}}.

What do these sets correspond to in the original graph G? They are
the minimal edge cuts of G, that is, the minimal sets of edges of G with
the property that their removal increases the number of connected pieces or
components of the graph. To see this, the key observation is that the set of
edges of G corresponding to a cycle C of G∗ consists of the edges that join
a vertex of G that lies inside of C to a vertex of G that lies outside of C.

A minimal edge cut of a graph is also called a bond of the graph. We
have seen how the bonds of a graph G are the circuits of a matroid on the
edge set of G in the case that G is a plane graph. In fact, this holds for
arbitrary graphs as can be proved using Theorem 3.1. Again we leave this
as an exercise.
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3.3. Proposition. Let G be a graph with edge set E(G). Then the set of
bonds of G is the set of circuits of a matroid on E(G).

The matroid in the last proposition is called the bond matroid of G and
is denoted by M∗(G). This matroid is the dual of the cycle matroid M(G).
A matroid that is isomorphic to the bond matroid of some graph is called
cographic. Every matroid M has a dual but it is easier to define this in terms
of bases rather than circuits. In preparation for the next result, the reader
is urged to check that the set of edge sets of spanning trees of the graph G
in Figure 1 is

{{1, 2, 3}, {1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 4, 5},

{1, 4, 6}, {2, 3, 4}, {2, 4, 5}, {2, 4, 6}, {3, 4, 5}, {3, 4, 6}}.

The dual G∗ of G, which is shown in Figure 2, has as its spanning trees
every set of the form {7} ∪X where X is in the following set:

{{1, 2, 5}, {1, 2, 6}, {1, 3, 5}, {1, 3, 6}, {1, 5, 6}, {2, 3, 5}, {2, 3, 6},

{2, 4, 5}, {2, 4, 6}, {2, 5, 6}, {3, 4, 5}, {3, 4, 6}, {4, 5, 6}}.

Observe that the spanning trees of G∗ are the complements of the spanning
trees of G.

3.4. Theorem. Let M be a matroid on a set E and B be the collection of
bases of M . Let B∗ = {E − B : B ∈ B}. Then B∗ is the collection of bases
of a matroid M∗ on E.

The proof of this theorem may be found in [34, Theorem 2.1.1]. The
matroid M∗ is called the dual of M . The bases and circuits of M∗ are called
cobases and cocircuits, respectively, of M . Evidently

3.5. (M∗)∗ = M.

It can be shown that, for every graph G,

3.6. (M(G))∗ = M∗(G).

For the uniform matroid Ur,n, the set of bases is the set of r-element
subsets of the ground set. Theorem 3.4 implies that the set of bases of the
dual matroid is the set of (n− r)-element subsets of the ground set. Hence

3.7. (Ur,n)
∗ ∼= Un−r,n.

3.8. Exercise. A matroid is self-dual if it is isomorphic to its dual.

(i) For all ranks r, give an example of a rank-r graphic matroid that is
self-dual.

(ii) Give an example of a self-dual matroid that is not equal to its dual.

The set of cocircuits of Ur,n consists of all (n − r + 1)-element subsets
of the ground set. Thus, in this case, the cocircuits are the minimal sets
meeting every basis. We leave it as an exercise to show that this attractive
property holds in general.
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3.9. Theorem. Let M be a matroid.

(i) A set C∗ is a cocircuit of M if and only if C∗ is a minimal set having
non-empty intersection with every basis of M .

(ii) A set B is a basis of M if and only if B is a minimal set having
non-empty intersection with every cocircuit of M .

This blocking property suggests the following two-person game. Given a
matroid M with ground set E, two players B and C alternately tag elements
of E. The goal for B is to tag all the elements of some basis of M , while the
goal for C is to prevent this. Equivalently, by the last result, C’s goal is to
tag all the elements of some cocircuit of M . We shall specify when B can
win against all possible strategies of C. If B has a winning strategy playing
second, then it will certainly have a winning strategy playing first. The next
result is obtained by combining some attractive results of Edmonds [11] one
of which extended a result of Lehman [30]. The game that we have described
is a variant of Shannon’s switching game (see [31]).

3.10. Theorem. The following statements are equivalent for a matroid M
with ground set E.

(i) Player C plays first and player B can win against all possible strate-
gies of C.

(ii) The matroid M has 2 disjoint bases.
(iii) For all subsets X of E, |X| ≥ 2(r(M)− r(M\X)).

Edmonds also specified when player C has a winning strategy but this
is more complicated and we omit it. If the game is played on a connected
graph G, then B’s goal is to tag the edges of a spanning tree, while C’s
goal is to tag the edges of a bond. If we think of this game in terms of a
communication network, then C’s goal is to separate the network into pieces
that are no longer connected to each other, while B is aiming to reinforce
edges of the network to prevent their destruction. Each move for C consists
of destroying one edge, while each move for B involves securing an edge
against destruction. By applying the last theorem to the cycle matroid of
G, we get the following result where the equivalence of (ii) and (iii) was first
proved by Tutte [53] and Nash-Williams [32]. For a partition π of a set, we
denote the number of classes in the partition by |π|.

3.11. Corollary. The following statements are equivalent for a connected
graph G.

(i) Player C plays first and player B can win against all possible strate-
gies of C.

(ii) The graph G has 2 edge-disjoint spanning trees.
(iii) For all partitions π of the vertex set of G, the number of edges of

G that join vertices in different classes of the partition is at least
2(|π| − 1).

Proof. We shall show that (ii) implies (i) by describing a winning strategy
for B when G has two edge-disjoint spanning trees T1 and T2. We may
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assume that C picks an edge in T1 or T2, otherwise B’s task is simplified.
Suppose C picks the edge c1 of T1. Consider T1 − {c1} and T2. Both
these sets are independent in M(G) and |T2| = |T1 − {c1}| + 1. Thus, by
(I3), there is an edge b1 of T2 − (T1 − {c1}) so that (T1 − {c1}) ∪ {b1} is
independent in M(G). Hence (T1−{c1})∪{b1} is the edge set of a spanning
tree in G. Now both (T1 − {c1}) ∪ {b1} and T2 are spanning trees of G
containing b1. Thus T1−{c1} and T2−{b1} are edge-disjoint spanning trees
of the connected graph G\c1/b1. Therefore, after one move each, B has
preserved the property that the game is being played on a connected graph
with two edge-disjoint spanning trees. Continuing in this way, it is clear
that B will win. Hence (ii) implies (i). We omit the proofs of the remaining
implications. �

In the last theorem and corollary, parts (ii) and (iii) remain equivalent if,
in each part, we replace 2 by an arbitrary positive integer k.

3.12. Exercise. Let (E,I1) and (E,I2) be matroids M1 and M2.

(i) Show that (E,I) is a matroid where I = {I1∪I2 : I1 ∈ I1, I2 ∈ I2}.
This matroid is the union M1 ∨M2 of M1 and M2.

(ii) Show that a matroid M has 2 disjoint bases if and only if M ∨M
has rank 2r(M).

(iii) Use the fact (and prove it if you can) that the rank of a set X in M1∨
M2 is min{r1(Y )+r2(Y )+|X−Y | : Y ⊆ X} to show the equivalence
of (ii) and (iii) in each of Theorem 3.10 and Corollary 3.11.

We deduce from (3.7) that the sum of the ranks of a uniform matroid and
its dual equals the size of the ground set. This is true in general and follows
immediately from Theorem 3.4.

3.13. For a matroid M on an n-element set, r(M) + r(M∗) = n.

Before considering how to construct the dual of a representable matroid,
we look at how one can alter a matrix A without affecting the associated
vector matroid M [A]. The next result follows without difficulty by using
elementary linear algebra and is left as an exercise.

3.14. Lemma. Suppose that the entries of a matrix A are taken from a
field F. Then M [A] remains unaltered by performing any of the following
operations on A.

(i) Interchange two rows.
(ii) Multiply a row by a non-zero member of F.
(iii) Replace a row by the sum of that row and another.
(iv) Delete a zero row (unless it is the only row).
(v) Interchange two columns (moving the labels with the columns).
(vi) Multiply a column by a non-zero member of F.

If A is a zero matrix with n columns, then clearly M [A] is isomorphic to
U0,n. Now suppose that A is non-zero having rank r. Then, by performing
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a sequence of operations (3.14)(i)–(v), we can transform A into a matrix in
the form [Ir|D], where Ir is the r × r identity matrix. The dual of M [Ir|D]
involves the transpose DT of D.

3.15. Theorem. Let M be an n-element matroid that is representable over
a field F. Then M∗ is representable over F. Indeed, if M = M [Ir|D], then
M∗ = [−DT |In−r].

3.16. Exercise. Using the facts that a matroid is determined by its set of
bases and that one can use determinants to decide whether or not a certain
set is a basis in a vector matroid, prove the last theorem. The details of this
proof may be found in [34, Theorem 2.2.8].

The last result provides an attractive link between matroid duality and
orthogonality in vector spaces. Recall that two vectors (v1, v2, . . . , vn) and
(w1, w2, . . . , wn) are orthogonal if

∑n
i=1 viwi = 0. Given a subspace W of

a vector space V , the set W⊥ of vectors of V that are orthogonal to every
vector in W forms a subspace of V called the orthogonal subspace of W . It
is not difficult to show that if W is the vector space spanned by the rows
of the matrix [Ir|D], then W⊥ is the vector space spanned by the rows of
[−DT |In−r]. The reader familiar with coding theory will recognize that if
W is a vector space over GF (q), then W is just a linear code over that
field. Moreover, the matrix [Ir|D] is a generator matrix for this code, while
[−DT |In−r] is a parity-check matrix for this code. The last matrix is also a
generator matrix for the dual code, which coincides with W⊥.

1
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G / 4G \ 4

Figure 3. Deletion and contraction of an edge of a graph.

Taking duals is one of three fundamental matroid operations which gen-
eralize operations for graphs. The other two are deletion and contraction.
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If e is an edge of a graph G, then the deletion G\e of e is the graph obtained
from G by simply removing e. The contraction G/e of e is the graph that
is obtained by identifying the endpoints of e and then deleting e. Figure 3
shows the graphs G\4 and G/4 where G is the graph from Figure 1. We note
that the deletion and contraction of a loop are the same. These operations
have a predictable effect on the independent sets of the cycle matroid M(G):
a set I is independent in M(G\e) if and only if e 6∈ I and I is independent in
M(G); and, provided e is not a loop of G, a set I is independent in M(G/e)
if and only if I ∪ {e} is independent in M(G). By generalizing this, we can
define the operations of deletion and contraction for arbitrary matroids.

Let M be a matroid (E,I) and e be an element of E. Let I ′ = {I ⊆
E−{e} : I ∈ I}. Then it is easy to check that (E−{e},I ′) is a matroid. We
denote this matroid byM\e and call it the deletion of e fromM . If e is a loop
of M , that is, {e} is a circuit of M , then we define M/e = M\e. If e is not
a loop, then M/e = (E − {e},I ′′) where I ′′ = {I ⊆ E − {e} : I ∪ {e} ∈ I}.
Again it is not difficult to show that M/e is a matroid. This matroid is the
contraction of e from M . If e and f are distinct elements of a matroid M ,
then it is straightforward to check that

3.17. M\e\f = M\f\e; M/e/f = M/f/e; and M\e/f = M/f\e.

This means that, for disjoint subsets X and Y of E, the matroids M\X,
M/Y , and M\X/Y are well-defined. A minor of M is any matroid that
can be obtained from M by a sequence of deletions or contractions, that is,
any matroid of the form M\X/Y or, equivalently, of the form M/Y \X. If
X ∪ Y 6= ∅, then M\X/Y is a proper minor of M .

The next result specifies the independent sets, circuits, and bases of M\T
and M/T . The proof is left as an exercise.

3.18. Proposition. Let M be a matroid on a set E and let T be a subset of
E. Then M\T and M/T are matroids on E− T . Moreover, for a subset X
of E − T ,

(i) X is independent in M\T if and only if X is independent in M ;
(ii) X is a circuit of M\T if and only if X is a circuit in M ;
(iii) X is a basis of M\T if and only if X is a maximal subset of E − T

that is independent in M ;
(iv) X is independent in M/T if and only if X ∪ BT is independent in

M for some maximal subset BT of T that is independent in M ;
(v) X is a circuit in M/T if and only if X is a minimal non-empty

member of {C − T : C is a circuit of M};
(vi) X is a basis of M/T if and only if X ∪BT is a basis of M for some

maximal subset BT of T that is independent in M .

Duality, deletion, and contraction are related through the following at-
tractive result which can be proved, for example, by using (iii) and (vi) of
the last proposition.

3.19. M∗/T = (M\T )∗ and M∗\T = (M/T )∗.
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Certain important classes of matroids are closed under minors, that is,
every minor of a member of the class is also in the class.

3.20. Theorem. The classes of uniform, graphic, and cographic matroids
are minor-closed. Moreover, for all fields F, the class of F-representable
matroids is minor-closed. In particular, the classes of binary and ternary
matroids are minor-closed.

Proof. If the uniform matroid Ur,n has ground set E and e ∈ E, then

Ur,n\e ∼=

{

Ur,n−1 if r < n;

Ur−1,n−1 if r = n;

and

Ur,n/e ∼=

{

Ur−1,n−1 if r > 0;

Ur,n−1 if r = 0.

Hence the class of uniform matroids is indeed minor-closed.
To see that the class of graphic matroids is minor-closed, it suffices to

note that if e is an edge of a graph G, then

M(G)\e = M(G\e) and M(G)/e = M(G/e).

On the other hand, the class of cographic matroids is minor-closed because,
by (3.19), (3.6), and the last observation,

M∗(G)\e = (M(G)/e)∗ = (M(G/e))∗ = M∗(G/e)

and
M∗(G)/e = (M(G)\e)∗ = (M(G\e))∗ = M∗(G\e).

Finally, to see that the class of F-representable matroids is minor-closed,
we note that ifM = M [A] and e is an element ofM , thenM\e is represented
over F by the matrix that is obtained by deleting column e from A. Thus
the class of F-representable matroids is closed under deletion. Since it is
also closed under duality by Theorem 3.15, we deduce from (3.19) that it is
closed under contraction. Hence it is minor-closed. �

From the last result, we know that, for all fields F, every contraction
M/e of an F-representable matroid M is F-representable. However, the
construction of an F-representation for M/e that can be derived from the
last paragraph of the preceding proof is rather convoluted. There is a much
more direct method, which we now describe. Let M = M [A]. If e is a
loop of M , then e labels a zero column of A and M/e is represented by the
matrix that is obtained by deleting this column. Now assume that e is not
a loop of M . Then e labels a non-zero column of A. Suppose first that e
labels a standard basis vector. For example, let e be the element 3 in the
matrix A in Example 2.1. Then e determines a row of A, namely the one
in which e has its unique non-zero entry. By deleting from A this row as
well as the column labelled by e, it is not difficult to check using elementary
linear algebra that we obtain a representation for M/e. In our example, the
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row in question is the third row of A and, by deleting from A both this row
and the column labelled by 3, we obtain the matrix

[

1 2 4 5 6 7

1 0 1 0 0 0
0 1 1 1 1 0

]

.

This matrix represents the contraction M/3.
What do we do if the non-zero column e is not a standard basis vector?

By operations (3.14)(i)–(v), we can transform A into a matrix A′ in which
e does label a standard basis vector. Moreover, M [A] = M [A′] and we may
now proceed as before to obtain an F-representation for M/e.

Now that we know that certain basic classes of matroids are minor-closed,
we can seek to describe such classes by a list of the minimal obstructions
to membership of the class. Let M be a minor-closed class of matroids and
let EX (M) be the collection of minor-minimal matroids not in M, that is,
N ∈ EX (M) if and only if N 6∈ M and every proper minor of N is in
M. The members of EX (M) are called excluded minors of M. While the
collection of excluded minors of a minor-closed class certainly exists, actually
determining its members may be very difficult. Indeed, even determining
whether it is finite or infinite may be hard. However, for the class U of
uniform matroids, finding EX (U) is not difficult. To describe EX (U), it will
be useful to introduce a way of sticking two matroids together.

3.21. Proposition. Let M1 and M2 be the matroids (E1,I1) and (E2,I2)
where E1 and E2 are disjoint. Let

M1 ⊕M2 = (E1 ∪ E2, {I1 ∪ I2 : I1 ∈ I1, I2 ∈ I2}).

Then M1 ⊕M2 is a matroid.

We omit the proof of this proposition, which follows easily from (I1)–(I3).
The matroid M1 ⊕M2 is called the direct sum of M1 and M2. Evidently if
G1 and G2 are disjoint graphs, then M(G1) ⊕M(G2) is graphic since it is
the cycle matroid of the graph obtained by taking the disjoint union of G1

and G2. Thus the class of graphic matroids is closed under direct sums. It
is easy to check that, in general,

3.22. (M1 ⊕M2)
∗ = M∗

1 ⊕M∗
2 .

From this, it follows that the class of cographic matroids is also closed
under direct sums. Moreover, the class of F-representable matroids is closed
under direct sums. To see this, note that if A1 and A2 are matrices over F,

then M [A1]⊕M [A2] is represented over F by the matrix
[

A1 0
0 A2

]

.

One consequence of the next result is that the class of uniform matroids
is not closed under direct sums.

3.23. Proposition. The unique excluded minor for the class U is U0,1⊕U1,1.
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Proof. The matroid U0,1 ⊕ U1,1 is certainly not uniform since it has a 1-
element independent set but not every 1-element set is independent. More-
over, every proper minor of U0,1 ⊕ U1,1 is easily seen to be uniform. Thus
U0,1 ⊕ U1,1 is an excluded minor for U .

Now suppose that N is an excluded minor for U . We shall show that
N ∼= U0,1 ⊕ U1,1. Since N is not uniform, there is an integer k such that
N has both a k-element independent set and a k-element dependent set.
Pick the least such k and let C be a k-element dependent set. Then C is a
circuit of M . Choose e in C and consider C−{e}. This is a (k− 1)-element
independent set of M . Since M has a k-element independent set, it follows
by (I3) that M has an element f such that (C −{e})∪ {f} is independent.
Now M/(C − {e}) has {e} as a circuit and has {f} as an independent set.
Since M is an excluded minor for U , we deduce that M/(C − {e}) = M so
C − {e} is empty. If we now delete from M every element except e and f ,
we still have a matroid in which {e} is a circuit and {f} is an independent
set. The fact that M is an excluded minor now implies that E(M) = {e, f}
and we conclude that N ∼= U0,1 ⊕ U1,1. �

3.24. Exercise. Let M be a rank-r matroid.

(i) Show that the following statements are equivalent:
(a) M is uniform;
(b) every circuit of M has at least r + 1 elements; and
(c) every circuit of M meets every cocircuit of M .

(ii) The matroid M is paving if and only if every circuit has at least
r elements. Show that M is paving if and only if it has no minor
isomorphic to U0,1 ⊕ U2,2.

Finding the collections of excluded minors for the various other classes of
matroids that we have considered is not as straightforward. It is worth not-
ing that once we know the excluded minors for the class of graphic matroids,
we simply take the duals of these excluded minors to get the excluded minors
for the class of cographic matroids. Another useful general observation is
that if M is a class of matroids that is closed under both minors and duals,
then the dual of every excluded minor for M is also an excluded minor for
M. In Section 5, we shall answer the following question:

3.25. Question. What is the collection of excluded minors for the class of
graphic matroids?

We showed in Proposition 2.8 that U2,4 is not binary. In fact, U2,4 is
an excluded minor for the class of binary matroids because if e is an ele-
ment of U2,4, then U2,4\e ∼= U2,3 and U2,4/e ∼= U1,3. Both U2,3 and U1,3

are binary being represented by the matrices [ 1 0 1
0 1 1 ] and [111], respectively.

Tutte [50] established a number of interesting properties of binary matroids
and thereby showed that U2,4 is the unique excluded minor for the class:

3.26. Theorem. The following statements are equivalent for a matroid M .
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(i) M is binary.
(ii) For every circuit C and cocircuit C∗ of M , |C ∩ C∗| is even.
(iii) If C1 and C2 are distinct circuits of M , then (C1 ∪C2)− (C1 ∩ C2)

is a disjoint union of circuits.
(iv) M has no minor isomorphic to U2,4.

3.27. Exercise. In the last theorem, show that (i) implies (ii).

The last theorem gives several different answers to Question 2.11. A proof
of the equivalence of (i) and (iv) will be given later in Theorem 5.15. In view
of this equivalence, it is natural to ask:

3.28. Question. What is the collection of excluded minors for the class of
ternary matroids?

Many of the attractive properties of binary matroids are not shared by
ternary matroids. Nevertheless, the collection of excluded minors for the
latter class has been found. As we shall see in Theorem 5.14, it contains
exactly four members. Motivated in part by the knowledge of the excluded
minors for the classes of binary and ternary matroids, Rota [40] made the
following conjecture in 1970 and this conjecture has been a focal point for
matroid theory research ever since, particularly in the last five years.

3.29. Conjecture. For every finite field GF (q), the collection of excluded
minors for the class of matroids representable over GF (q) is finite.

As we shall see in Section 5, until recently, progress on this conjecture has
been relatively slow and it has only been settled for one further case. By
contrast, it is known that, for all infinite fields, F, there are infinitely many
excluded minors for F-representability. Theorem 5.9 establishes this for an
important collection of fields including Q,R, and C.

4. Matroids and Combinatorial Optimization

Matroids play an important role in combinatorial optimization. In this
section, we briefly indicate the reason for this by showing first how matroids
occur naturally in scheduling problems and then how the definition of a ma-
troid arises inevitably from the greedy algorithm. A far more comprehensive
treatment of the part played by matroids in optimization can be found in
the survey of Bixby and Cunningham [4] or the book by Cook, Cunningham,
Pulleyblank, and Schrijver [8, Chapter 8]. We begin with another example
of a class of matroids. Suppose that a supervisor has m one-worker one-day
jobs J1, J2, . . . , Jm that need to be done. The supervisor controls n workers
1, 2, . . . , n, each of whom is qualified to perform some subset of the jobs.
The supervisor wants to know the maximum number of jobs the workers
can do in one day. As we shall see, this number is the rank of a certain
matroid.

Let A be a collection (A1, A2, . . . , Am) of subsets of a finite set E. For
example, let A = ({1, 2, 4}, {2, 3, 5, 6}, {5, 6}, {7}). A subset {x1, x2, . . . , xk}
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of E is a partial transversal of A if there is a one-to-one mapping φ from
{1, 2, . . . , k} into {1, 2, . . . ,m} such that xi ∈ Aφ(i) for all i. A partial
transversal with k = m is called a transversal. In our specific example,
{2, 3, 6, 7} is a transversal because 2, 3, 6, and 7 are in A1, A2, A3, and A4,
respectively.
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Figure 4. (a) ∆(A). (b) A matching in ∆(A).

4.1. Theorem. Let A be a collection of subsets of a finite set E. Let I be
the collection of all partial transversals of A. Then (E,I) is a matroid.

Proof. Clearly every subset of a partial transversal is a partial transversal,
and the empty set is a partial transversal of the empty family of subsets of
A. Thus (I2) and (I1) hold. To prove that I satisfies (I3), we associate
a bipartite graph ∆(A) with A as follows. Label one vertex class of the
bipartite graph by the elements of E and the other vertex class by the sets
A1, A2, . . . , Am in A. Put an edge from an element e of E to a set Aj if
and only if e ∈ Aj . As an example, the bipartite graph associated with the
specific family listed above is shown in Figure 4(a). A partial transversal
of A corresponds to a matching in ∆(A), that is, a set of edges no two of
which meet at a common vertex. The matching associated with the partial
transversal {2, 3, 6, 7} noted above is shown in Figure 4(b).

Let X and Y be partial transversals of A where |X| = |Y |+ 1. Consider
the matchings in ∆(A) corresponding to X and Y and colour the edges of
these matchings blue and red, respectively, where an edge that is in both
matchings is coloured purple. Thus there are |X−Y | blue edges and |Y −X|
red edges, and |X − Y | = |Y −X|+1. Focussing on the red edges and blue
edges only, we see that each vertex of the subgraph H induced by these
edges either meets a single edge or meets both a red edge and a blue edge.
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It is a straightforward exercise in graph theory to show that each component
of H is a path or a cycle where in each case, the edges alternate in colour.
Because ∆(A) is a bipartite graph, every cycle in H is even and so has the
same number of red and blue edges. Since there are more blue edges than
red in H, there must be a component H ′ of H that is path that begins and
ends with blue edges. In H ′, interchange the colours red and blue. Then the
edges of ∆(A) that are now coloured red or purple form a matching, and it
is not difficult to check that the subset of E that is met by an edge of this
matching is Y ∪{x} for some x in X −Y . We conclude that I satisfies (I3)
and so (E,I) is a matroid. �

We denote the matroid obtained in the last theorem by M [A] and call a
matroid that is isomorphic to such a matroid transversal. We leave it to the
reader to check that when A is the family ({1, 2, 4}, {2, 3, 5, 6}, {5, 6}, {7})
considered above, the transversal matroid M [A] is isomorphic to the cycle
matroid of the graph G∗ in Figure 2. This can be achieved by showing,
for example, that the list of edge sets of spanning trees of G∗, which was
compiled just before Theorem 3.4, coincides with the list of transversals of
A.

Returning to the problem with which we began the section, if we let Ai

be the set of workers that are qualified to do job Ji, then the maximum
number of jobs that can be done in a day is the rank of M [A]. This is given
by the following result, a consequence of a theorem of Ore [33].

4.2. Theorem. Let A be a family (A1, A2, . . . , Am) of subsets of a finite set
E. Then the rank of M [A] is

min{| ∪j∈J Aj| − |J |+m : J ⊆ {1, 2, . . . ,m}}.
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Figure 5. (a) M(G1) is transversal. (b) M(G1/7) is not transversal.

The class of transversal matroids differs from the other classes that we
have considered in that it is not closed under minors.
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4.3. Example. Consider the graphsG1 and G1/7 shown in Figure 5. The cy-
cle matroid M(G1) is transversal since, as is easily checked, M(G1) = M [A]
whereA = ({1, 2, 7}, {3, 4, 7}, {5, 6, 7}). On the other hand, M(G1)/7, which
equals M(G1/7), is not transversal. To see this, we note that if M(G1/7) is
transversal, then there is a family A′ of sets such that M(G1/7) = M [A′].
Each single-element subset of {1, 2, . . . , 6} is independent but {1, 2}, {3, 4},
and {5, 6} are dependent. This means that each of {1, 2}, {3, 4}, and {5, 6}
is a subset of exactly one member of A′. Let these sets be A′

1, A
′
2, and

A′
3, respectively. Then, since {1, 3}, {1, 5}, and {3, 5} are all independent,

A′
1, A

′
2, and A′

3 are distinct. Thus {1, 3, 5} is a partial transversal of A′ and
so is independent in M(G1/7); a contradiction. We conclude that the class
of transversal matroids is not closed under contraction, although it is clearly
closed under deletion.

4.4. Exercise. Show that

(i) every uniform matroid is transversal;
(ii) M(K4) is not transversal.

We have seen a number of examples of structures that give rise to ma-
troids. We now look at one that does not. If G is a graph and I is the
collection of edge sets of matchings in G, then (E(G),I) need not be a ma-
troid. To see this, let G be a 3-edge path whose edges are labelled, in order,
1, 2, 3. Let X = {1, 3} and Y = {2}. Then X and Y satisfy the hypotheses
but not the conclusion of (I3). In fact, if one wants to use the matchings
in a graph G to define a matroid, then this matroid should be defined on
the vertex set V (G) of G. Indeed, Edmonds and Fulkerson [12] proved the
following result.

4.5. Theorem. Let G be a graph and I be the set of subsets X of V (G) such
that G has a matching whose set of endpoints contains X. Then (V (G),I)
is a matroid.

Interestingly, Edmonds and Fulkerson [12] also proved that the class of
matroids arising as in the last theorem coincides with the class of transversal
matroids.

While matroids arise in a number of places in combinatorial optimization,
their most striking appearance relates to the greedy algorithm. Let G be a
connected graph and suppose that each edge e of G has an assigned positive
real weight w(e). Let I be the collection of independent sets of M(G).
Kruskal’s Algorithm [25], which is described next, finds a maximum-weight
spanning tree of G, that is, a spanning tree such that the sum of the weights
of the edges is a maximum. It is attractive because, by pursuing a locally
greedy strategy, it finds a global maximum.

4.6. The Greedy Algorithm.

(i) Set BG = ∅.
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(ii) While there exists e 6∈ BG for which BG ∪ {e} ∈ I, choose such an e
with w(e) maximum, and replace BG by BG ∪ {e}.

Now let M be a matroid (E,I) and assume that each element e of E has
an associated positive real weight w(e). Then the Greedy Algorithm also
works for M .

4.7. Lemma. When the Greedy Algorithm is applied to M , the set BG it
produces is a maximum-weight independent set and hence a maximum-weight
basis of M .

Proof. Since all weights are positive, a maximum-weight independent set
B of M must be a basis of M . Moreover, the set BG is also a basis of
M . Let BG = {e1, e2, . . . , er} where the elements are chosen in the order
listed. Then w(e1) ≥ w(e2) ≥ . . . ≥ w(er). Let B = {f1, f2, . . . , fr} where
w(f1) ≥ w(f2) ≥ . . . ≥ w(fr). We shall show that w(ej) ≥ w(fj) for all j in
{1, 2, . . . , r}. Assume the contrary and let k+1 be the least integer for which
w(ek+1) < w(fk+1). Let Y = {e1, e2, . . . , ek} and X = {f1, f2, . . . , fk+1}.
Since |X| = |Y |+1, (I3) implies that Y ∪{fi} ∈ I for some i in {1, 2, . . . , k+
1}. But w(fi) ≥ w(fk+1) > w(ek+1). Hence the Greedy Algorithm would
have chosen fi in preference to ek+1; a contradiction. We conclude that we
do indeed have w(ej) ≥ w(fj) for all j. Thus

∑r
j=1w(ej) ≥

∑r
j=1w(fj);

that is, BG has weight at least that of B. Since B has maximum weight, so
does BG. �

While it is interesting that the Greedy Algorithm extends from graphs to
matroids, the particularly striking result here is that matroids are the only
non-empty hereditary structures for which the Greedy Algorithm works.

4.8. Theorem. Let I be a collection of subsets of a finite set E. Then (E,I)
is a matroid if and only if I satisfies (I1), (I2), and

(G) for all positive real weight functions w on E, the Greedy Algorithm
produces a maximum-weight member of I.

Proof. If (E,I) is a matroid, then it follows from the definition and the
last lemma that (I1), (I2), and (G) hold. For the converse, assume that I
satisfies (I1), (I2), and (G). We need to show that I satisfies (I3). Assume
it does not and let X and Y be members of I such that |X| = |Y | + 1 but
that Y ∪{e} 6∈ I for all e in X −Y . Now |X −Y | = |Y −X|+1 and Y −X
is non-empty, so we can choose a real number ε such that 0 < ε < 1 and

0 < (1 + 2ε)|Y −X| < |X − Y |.

Define a weight function w on E by

w(e) =























2, if e ∈ X ∩ Y ;
1

|Y−X| , if e ∈ Y −X;
1+2ε
|X−Y | , if e ∈ X − Y ;

ε
|X−Y ||E−(X∪Y )| , if e ∈ E − (X ∪ Y ) 6= ∅.
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The Greedy Algorithm will first pick all the elements of X ∩ Y and then all
the elements of Y −X. By assumption, it cannot then pick any element of
X − Y . Thus the remaining elements of BG will be in E − (X ∪ Y ). Hence
w(BG), the sum of the weights of the elements of BG, satisfies

w(BG) ≤ 2|X ∩ Y |+
|Y −X|

|Y −X|
+

|E − (X ∪ Y )|ε

|X − Y ||E − (X ∪ Y )|

≤ 2|X ∩ Y |+ 1 + ε.

But, by (I2), X is contained in a maximal member X ′ of I, and

w(X ′) ≥ w(X) = 2|X ∩ Y |+ |X − Y |
1 + 2ε

|X − Y |

= 2|X ∩ Y |+ 1 + 2ε.

Thus w(X ′) > w(BG), that is, the Greedy Algorithm fails for this weight
function. This contradiction completes the proof of the theorem. �

A number of proofs of the last result have been published. Curiously,
what seems to be the first of these was obtained by Bor̊uvka [5] in 1926
nearly a decade before Whitney introduced matroids.

5. Excluded-minor Theorems

In this section, we answer many of the questions that were raised earlier
by giving excluded-minor characterizations of each of the classes of ternary,
regular, graphic, and cographic matroids. In addition, some problems that
are the focus of current research attention are identified. Most of the results
in this section concern matroid minors. For a more detailed survey of this
topic, see Seymour [47]. Very few proofs are included here but many may be
found in [34]. We begin this section by describing another way to represent
certain matroids.

1

2 3

4 5
7

1

2 3

4 5

6

7

6

(a) (b)

Figure 6. (a) The non-Fano matroid. (b) The Fano matroid.

Consider the diagram in Figure 6(a). Let E be the set {1, 2, . . . , 7} of
points and let I be the collection of subsets X of E such that |X| ≤ 3 and
X does not contain 3 collinear points. Then it is not difficult to check that
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(E,I) is a matroid. Indeed, this matroid is represented over GF (3) by the
matrix

A7 =





1 2 3 4 5 6 7

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1



.

Now suppose that we view A7 as a matrix over GF (2). Then M [A7] has
{4, 5, 6} as a circuit. We can represent this new matroid as in Figure 6(b)
where 4,5, and 6 lie on a curved line as shown. This configuration of 7
points and 7 lines is known as the Fano projective plane, PG(2, 2). The
corresponding matroid is called the Fano matroid and is denoted by F7.
The matroid in Figure 6(a), which does not have the curved line, is denoted
by F−

7 and is called the non-Fano matroid. The Fano matroid has more
symmetry than Figure 6(b) may suggest. For example, if we add row 1 to
row 2 in A7, then, modulo 2, we recover A7 with its columns reordered.
Thus F7 has a symmetry that interchanges 1 with 4 and 5 with 7. It follows
that, up to symmetry, all the points of F7 look the same, as do all the lines.

In general, suppose we have a finite set E of points in the plane and a
distinguished collection of subsets of the points, called lines, such that any
two distinct lines have at most one common point.

5.1. Exercise. Show that we get a matroid on E having as its independent
sets all subsets of E of size at most 3 that do not contain 3 points from a
common line.

Another example of a matroid that is obtained as in the last exercise is
the 13-point matroid shown in Figure 7, which has thirteen lines includ-
ing {1, 2, 4, 5}, {5, 6, 8, 11}, {5, 7, 9, 10}, {1, 8, 10, 13}, and {2, 6, 10, 12}. The
reader may recognize this diagram as the 13-point projective plane, PG(2, 3).
We leave it as an exercise to check that this matroid is the vector matroid
of the following matrix over GF (3):





1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 0 1 1 1 1 0 0 1 1 1 1
0 1 0 1 −1 0 0 1 1 1 1 −1 −1
0 0 1 0 0 1 −1 1 −1 1 −1 1 −1



.

The diagrams of the matroids that appear in Figures 6 and 7 are called
geometric representations of the matroids. If we delete the point 6 in Fig-
ure 6(b), we obtain the diagram in Figure 8(a). It is not difficult to check
that this is a geometric representation for M(K4) where K4 is the graph
labelled as in Figure 8(b). The symmetry of the Fano matroid implies that
all of its single-element deletions are isomorphic to M(K4) and hence are
graphic.

If B is a basis of a matroid M with ground set E and e ∈ E − B, then
B∪{e} contains a circuit C(e,B). Moreover, by (C3), this circuit is unique.
We call C(e,B) the fundamental circuit of e with respect to B. Now suppose
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Figure 7. A 13-point matroid with 13 lines.

that M is represented over a field F by the matrix [Ir|D] where the first r
columns b1, b2, . . . , br of this matrix correspond to the basis B. Suppose
e labels a column of D and let C(e,B) = {bi1 , bi2 , . . . , bik , e}. Then some
linear combination of the columns bi1 , bi2 , . . . , bik , e must be the zero vector.
Moreover, since C(e,B) is a minimal dependent set, no coefficient in this
linear combination is zero. It follows that column e is non-zero in row j if and
only if j ∈ {i1, i2, . . . , ik}. Hence the fundamental circuits of B completely
determine the pattern of zero and non-zero entries in D. In particular, if F is
GF (2), then, because GF (2) has a single non-zero element, the fundamental
circuits uniquely determine D. Formally, we have the following:

1

2 3

4 5
7

1

4

7

3

5

2
(a) (b)

Figure 8. (a) A geometric representation for M(K4). (b) K4.
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5.2. Lemma. If M is a binary matroid with ground set E and a basis B,
then M is uniquely determined by B and the set of circuits C(e,B) such
that e ∈ E −B.

We shall use the Fano and non-Fano matroids to show that there is a
matroid that is not representable over any field. The next result uses the
notion of the characteristic of a field F. This is the least positive integer m
such that m ·1 = 0 in F; if no such integer m exists, then F has characteristic
0. Thus, for example, for all primes p, the field GF (pk) has characteristic p,
while the fields Q,R, and C all have characteristic 0. Moreover, by consid-
ering the elements that can be produced by sums, differences, products, and
quotients starting with 1, it is not difficult to see that every field of prime
characteristic p has GF (p) as a subfield, while every field of characteristic 0
has Q as a subfield.

5.3. Proposition. Let F be a field.

(i) F7 is F-representable if and only if the characteristic of F is two;
and

(ii) F−
7 is F-representable if and only if the characteristic of F is not

two.

Proof. Suppose that M ∈ {F7, F
−
7 } and that M is F-representable for some

field F. Because we know that M is represented over some field by the
matrix A7, it follows, from considering fundamental circuits, that an F-
representation of M has the same pattern of zeros and non-zeros as A7.
Thus we may assume that M has an F-representation A′ of the form





1 2 3 4 5 6 7

∗ 0 0 ∗ ∗ 0 ∗
0 ∗ 0 ∗ 0 ∗ ∗
0 0 ∗ 0 ∗ ∗ ∗



,

where each ∗ represents some non-zero member of F and two different ∗-
entries need not be equal. Now, by multiplying columns of A′ by non-zero
members of F, we may assume that the first ∗-entry in each column is 1.
Then, by multiplying rows 2 and 3 and then columns 2, 3, and 6 by non-
zero elements of F, we can make all entries in column 7 equal to 1 while
maintaining the fact that the first ∗-entry in each column is 1. Hence we
may assume that

A′ =





1 2 3 4 5 6 7

1 0 0 1 1 0 1
0 1 0 a 0 1 1
0 0 1 0 b c 1



,

where a, b, and c are non-zero elements of F. Because M has each of
{3, 4, 7}, {2, 5, 7}, and {1, 6, 7} as a circuit, it follows that each of a, b, and
c is 1. Thus A′ = A7. We conclude that if M is F-representable, then M
is represented over F by the matrix A7. Now the 3 × 3 matrix labelled by
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columns 4, 5, and 6 has determinant −2. In F7, the set {4, 5, 6} is a circuit,
while, in F−

7 , it is a basis. Thus if F7 is F-representable, then −2 = 0 in F,
so F has characteristic 2. Similarly, if F−

7 is F-representable, then −2 6= 0
so F has characteristic not 2. By its definition, F7 is GF (2)-representable
so it is representable over all fields of characteristic 2, and we deduce that
(i) holds. To complete the proof of (ii), we just need to show that M [A7]
and F−

7 have the same set of circuits when A7 is viewed over any field of
characteristic other than 2. But since we already know that M [A7] and F−

7
share as circuits all sets consisting of 3 collinear points in Figure 8(a), this
leaves little to check and (ii) follows without difficulty. �

We are now able to answer Question 2.7.

5.4. Corollary. The matroid F7 ⊕ F−
7 is not representable.

Proof. Both F7 and F−
7 are minors of F7 ⊕ F−

7 . The corollary now follows
immediately from the last proposition. �

1
2

3

(b)(a)

Figure 9. Non-representable matroids with 11 and 9 elements.

One may ask whether F7 ⊕ F−
7 is a smallest non-representable matroid

and that question is easily resolved. If we stick F7 and F−
7 together in the

plane along a line as in Figure 9(a), then we obtain an 11-element matroid
having both F7 and F−

7 as minors. This matroid is also non-representable.
As an aside for the reader familiar with projective geometry, we note that,
by Pappus’s Theorem, if the configuration shown in Figure 9(b) exists in
a projective geometry over a field, then the points 1, 2, and 3 must be
collinear. It follows from this that the 9-element rank-3 matroid for which
Figure 9(b) is a geometric representation is non-representable. But there are
even smaller non-representable matroids and we now describe one of these.
This construction will use the following result, which can be proved using
Theorem 3.2.
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5.5. Proposition. Let M be a matroid with ground set E and collection of
bases B. If C is a circuit of M such that E − C is a cocircuit of M , then
B ∪ {C} is the set of bases of a matroid M ′

C on E.

The matroid M ′
C in the last proposition is said to be obtained from M

by relaxing C. Thus, for example, the non-Fano matroid is obtained from
the Fano matroid by relaxing the line {4, 5, 6}. The proof of the next result
is not difficult.

5.6. Lemma. Let M be a matroid with ground set E and let C be a circuit
of M such that E − C is a cocircuit of M .

(i) If e ∈ C, then M ′
C\e = M\e, and if |C| ≥ 2, then C − {e} is a

circuit of M/e whose complement in M/e is a cocircuit of M/e, and
M ′

C/e is obtained from M/e by relaxing C − {e}.
(ii) If f ∈ E − C, then M ′

C/f = M/f , and if |E − C| ≥ 2, then C is
a circuit of M\f whose complement in M\f is a cocircuit of M\f ,
and M ′

C\f is obtained from M\f by relaxing C.

Consider the matroid AG(3, 2) that is represented over GF (2) by the
matrix









1 2 3 4 5 6 7 8

1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1









.

Thus the columns of AG(3, 2) consist of all the vectors (x1, x2, x3, x4)
T in

the 4-dimensional vector space over GF (2) such that x1 + x2 + x3 + x4 6= 0.
Evidently AG(3, 2)/4 ∼= F7. Moreover, {1, 4, 5, 8} is a circuit C of AG(3, 2)
whose complement is a cocircuit. Thus we can relax C to obtain AG(3, 2)′C
and, by the last lemma, AG(3, 2)′C/2 = AG(3, 2)/2 ∼= F7. Moreover,
AG(3, 2)′C/1 is the matroid that is obtained from AG(3, 2)/1 by relaxing
{4, 5, 8}. But AG(3, 2)/1 ∼= F7 and it follows, by the symmetry of F7, that
AG(3, 2)′C/1

∼= F−
7 . We conclude that AG(3, 2)′C has both F7 and F−

7 as
minors so it is non-representable. It is a smallest non-representable matroid,
for Fournier [13] proved the following:

5.7. Theorem. Every matroid on a set of at most 7 elements is repre-
sentable. Moreover, every non-representable matroid on an 8-element set
has rank 4.

We have seen how to define matroids using points and lines in the plane.
One can also define matroids using points, lines, and planes in 3-dimensional
space. In particular, if E is a finite set of points in R3 and I consists of
all subsets of E that contain at most four points but do not contain three
collinear points or four coplanar points, then (E,I) is a matroid. This
construction can be generalized so that, as in Exercise 5.1, one relaxes the
definition of a line and a plane. The rules governing these structures are
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geometrically intuitive and can be found, for example, in [34, p. 42]. Indeed,
geometrical reasoning is a fundamental tool in matroid theory. The next
exercise, the first part of which is somewhat vague, gives some of the flavour
of the role of geometry in the subject.

5.8. Exercise. Show that

(i) by sticking F7 and F−
7 together along a 3-point line to give a rank-

4 matroid and then deleting the three points of this line, one can
construct an 8-element non-representable matroid that is different
from AG(3, 2)′.

(ii) M(K5) can be represented geometrically as described above by ten
points in 3-space. The reader familiar with projective geometry
will recognize this configuration of 10 points and 10 lines as the
3-dimensional Desargues configuration.

We noted at the end of Section 3 that, for all infinite fields, the set of
excluded minors for representability over that field is infinite. The next
result shows this for all fields of characteristic 0 and hence, in particular, for
Q,R, and C. Let J ′

k be the k×k matrix that has zeros on the main diagonal
and ones elsewhere. Lazarson [29] proved the following result.

5.9. Theorem. Let F be a field of characteristic 0. For all prime numbers
p, let Lp be the vector matroid of the matrix [Ip+1|J

′
p+1] viewed over GF (p).

Then Lp is an excluded minor for F-representability.

The model for all theorems that characterize classes of matroids by ex-
cluded minors is Wagner’s modification [56] of Kuratowski’s famous char-
acterization of planar graphs [27]. The graphs K5 and K3,3 are shown in
Figure 10. A minor of a graph G is a graph H that can be obtained from
G by deleting or contracting edges, or deleting isolated vertices.

(a) (b)

Figure 10. (a) K5. (b) K3,3.

5.10. Theorem. A graph is planar if and only if it has no minor isomorphic
to K5 or K3,3.
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Tutte [51] generalized this theorem to give an excluded-minor character-
ization of graphic matroids. The fact that neither K5 nor K3,3 is planar
means that the bond matroids of these two graphs are not graphic although
this is not immediate (see, for example, [34, Theorem 5.2.2]). These two
bond matroids are among the five excluded minors for the class of graphic
matroids. Of the other three, one, namely U2,4, has been shown in Propo-
sition 2.8 to be non-binary and so, by Theorem 2.16, is non-graphic. The
other two excluded minors are F7 and F ∗

7 . To see that F7 is non-graphic,
recall from Figure 8 that every single-element deletion of F7 is isomorphic
to the cycle matroid of the complete graph K4. As F7 is simple having the
same rank as M(K4), we deduce that F7 is non-graphic. If F ∗

7 is graphic,
then it is isomorphic to M(G) for some connected 5-vertex graph G. Clearly
G has 7 edges and so has average degree less than 3. Thus G has a vertex of
degree at most 2, so F ∗

7 has a cocircuit of size at most 2. This implies that
F7 has a circuit of size at most 2, and this contradiction establishes that F ∗

7

is non-graphic.

5.11. Theorem. A matroid is graphic if and only if it has no minor iso-
morphic to U2,4, F7, F

∗
7 ,M

∗(K5), or M∗(K3,3).

5.12. Corollary. A matroid is cographic if and only if it has no minor
isomorphic to U2,4, F7, F

∗
7 ,M(K5), or M(K3,3).

Finding a list of candidates for the excluded minors for the class of ternary
matroids is not difficult. We know that F7 is non-ternary. Moreover, all its
proper minors are ternary, so F7 is an excluded minor. Since the dual
of every ternary matroid is ternary, F ∗

7 is also an excluded minor. From
Exercise 2.9, two other excluded minors are U2,5 and its dual U3,5. Indeed,
as the reader will easily show:

5.13. Lemma. The matroid U2,n is representable over a field F if and only
if F has at least n− 1 elements.

Although this lemma completely settles the question of when a rank-
2 uniform matroid is representable over a field, it is an open problem to
determine all the fields over which an arbitrary Ur,n is representable. This
problem has received considerable attention in projective geometry where
uniform matroids are called n-arcs. The history of the problem and progress
towards its solution are described in [18, 19]

The last lemma means that we have now identified four excluded minors
for the class of ternary matroids and these four were conjectured to be the
only such matroids. In 1971, at a National Science Foundation Advanced
Science Seminar held at Bowdoin College, Maine, Ralph Reid gave a lecture
in which he announced a proof of this conjecture that was based on tech-
niques introduced by Tutte [50]. However, Reid never published his proof.
In 1975, Bob Bixby and Paul Seymour, working independently, obtained
two different proofs of the conjecture. Indeed, Bixby called his paper “On
Reid’s characterization of the ternary matroids”. Both proofs appeared in
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the same issue of the Journal of Combinatorial Theory Series B in 1979, and
several more proofs of this result have appeared since. None is elementary
enough for inclusion here. However, following the theorem statement, we
prove the excluded-minor characterization of binary matroids, using a proof
that gives some flavour of the ternary-matroid result.

5.14. Theorem. A matroid is ternary if and only if it has no minor iso-
morphic to U2,5, U3,5, F7, or F ∗

7 .

5.15. Theorem. A matroid is binary if and only if it has no minor isomor-
phic to U2,4.

Proof. We showed following Question 3.25 that U2,4 is an excluded minor for
the class of binary matroids. Now let M be an arbitrary excluded minor for
the class of binary matroids. Then M has no 1- or 2-element circuits and,
since M∗ is also an excluded minor, M has no 1- or 2-element cocircuits.
Thus if x and y are distinct elements of M , then M\{x, y} has the same
rank as M . Let [Ir|D] be a matrix representing M\{x, y} over GF (2). As
M\x and M\y are binary, there are column vectors vx and vy such that
[Ir|D|vx] and [Ir|D|vy] represent M\y and M\x, respectively, over GF (2).
Now let M ′ be the matroid that is represented over GF (2) by [Ir|D|vx|vy].
Then M\x = M ′\x and M\y = M ′\y. Since M 6= M ′, there is a set that is
independent in one of M and M ′ and dependent in the other. Take Z to be
a minimal such set. Then Z is an independent set in one of M and M ′, say
MI , and a circuit in the other, MC . As MI\x = MC\x and MI\y = MC\y,
we have that {x, y} ⊆ Z.

We shall show that

5.15.1. Z = {x, y}; and

5.15.2. r(MI) = 2.

Both of these assertions are consequences of the following:

5.15.3. Let J be an independent set of MI containing Z. Then J = {x, y}

To show this, suppose that J−{x, y} is non-empty. This set is independent
in MI\{x, y} and so in MC\{x, y}. Hence if we contract J −{x, y} from MI

and MC , we get matroids NI and NC of the same rank. Since one of MI

and MC is binary and the other is an excluded minor for the class of binary
matroids, both NI and NC are binary. Clearly,

NI 6= NC

since {x, y} is independent in NI and dependent in NC . But NI\x = NC\x
and NI\y = NC\y. Consider NI\{x, y}, which equals NC\{x, y}. Take a
basis B of this matroid. Because NI and NC have the same rank, either B is
a basis of both these matroids, or it is a basis of neither. In the latter case,
by Theorem 3.9, {x, y} contains a cocircuit of both NI and NC . Thus, by
(3.19) and Proposition 3.18(ii), {x, y} contains a cocircuit of both MI and
MC . This contradicts the fact that M has no cocircuit of size at most 2.
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We now know that B is a basis of both NI and NC . Since NI\x = NC\x
and NI\y = NC\y, it follows that if e ∈ E(NI) − B, then CNI

(e,B) =
CNC

(e,B). Hence, by Lemma 5.2, NI = NC . This contradiction implies
that (5.15.3) holds.

Clearly (5.15.1) follows immediately from (5.15.3). To get (5.15.2), note
that, as Z is independent in MI , it is contained in a basis J of MI . By
(5.15.3), J = {x, y} so r(MI) = 2.

We now know that all of MI ,MC ,MI\{x, y}, and MC\{x, y} have rank
2. Thus M , which is MI or MC , has rank 2, at least four elements, and no
1- or 2-element circuits. Hence U2,4 is a deletion of M and we conclude that
M ∼= U2,4. �

The matroid in Example 2.1 is representable over every field. We recall
that such matroids are called regular. Several attractive characterizations
of regular matroids were proved by Tutte [50].

5.16. Theorem. The following statements are equivalent for a matroid M .

(i) M is regular.
(ii) M is both binary and ternary.
(iii) M is representable over GF (2) and some field of characteristic other

than 2.
(iv) M is representable over R by a matrix all of whose square submatri-

ces have determinants in {0, 1,−1}.
(v) M has no minor isomorphic to U2,4, F7, or F ∗

7 .

A matrix A that obeys the condition in (iv) is called totally unimodular.
Such a matrix simultaneously represents M over all fields where, of course,
−1 = 1 over fields of characteristic 2.

5.17. Exercise. Let A be a totally unimodular matrix.

(i) Let aij be a non-zero entry of A. Show that if we convert the jth
column of A to the ith standard basis vector by potentially multi-
plying row i by −1 and then adding or subtracting row i from the
other rows, another totally unimodular matrix is obtained.

(ii) Show that a totally unimodular matrix represents the same matroid
over all fields thereby verifying that (iv) implies (i) in the last theo-
rem.

It follows from Exercise 2.17 that every graphic matroid is regular. Al-
though we shall not prove in general that (i) implies (iv) in the last theorem,
it does follow for graphic matroids using the same construction as in Exer-
cise 2.17 together with the following result of Poincaré [39], whose proof is
left as an exercise.

5.18. Lemma. Let A be a real matrix with every entry in {0, 1,−1} such that
every column has at most one 1 and one −1. Then A is totally unimodular.

In the next section, we shall note a deep structural theorem of Sey-
mour [46] for the class of regular matroids which, because of the link between
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regular matroids and totally unimodular matrices, has important implica-
tions for combinatorial optimization.

The proof given above of the excluded-minor characterization of binary
matroids relied crucially on Lemma 5.2. All the known proofs of Theo-
rem 5.14 rely on a similar result, namely that a ternary matroid arises from
an essentially unique matrix.

5.19. Theorem. Let A1 and A2 be matrices over GF (3) such that the
columns of these matrices are labelled by the same set E. If M [A1] = M [A2]
and A1 has no more rows than A2, then A1 can be obtained from A2 by a
sequence of operations (3.14)(i)–(vi).

This theorem fails, for example, if we replace GF (3) by GF (4). We
noted earlier that the latter does not have the same structure as the ring
of integers modulo 4. Recall that we are taking the elements of GF (4) to
be 0, 1, ω, ω + 1 where, in this field, ω2 = ω + 1 and 2 = 0. This field
has an automorphism that maps each element to its square. If we replace
every entry in a GF (4)-representation of a matroid M by its image under
this automorphism, we obtain another GF (4)-representation for M . Two F-
representations A1 and A2 of a matroid are equivalent if one can be obtained
from the other by a sequence of operations each consisting of one of (3.14)(i)–
(vi) or the following:

(vii) Replace each entry of the matrix by its image under an automor-
phism of F.

The reader unfamiliar with field automorphisms should note that, when p
is prime, GF (p) has the identity map as its only automorphism. In general,
for all positive integers k, the field GF (pk) has exactly k automorphisms,

namely the maps that take each element x to xp
i

for all i in {0, 1, . . . , k−1}.
The following two matrices A1 and A2 are both GF (4)-representations of
the same matroid M but they are not equivalent:

A1 =





1 2 3 4 5 6

1 1 1 0 0 0
0 1 ω 1 1 0
0 0 0 1 ω 1



 and

A2 =





1 2 3 4 5 6

1 1 1 0 0 0
0 1 ω 1 1 0
0 0 0 1 ω + 1 1



.

The matroid M can be broken apart in a simple way. In fact, M can be
represented geometrically as in Figure 11. Thus M can be obtained by
sticking together two 4-point lines at a common point and then deleting
that point. To formalize this idea, let M1 and M2 be matroids on sets E1

and E2, each having at least three elements, and let E1∩E2 = {p}. Assume
that, for each i, the set {p} is neither a circuit nor a cocircuit of Mi. Then
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the 2-sum M1 ⊕2 M2 of M1 and M2 is the matroid whose ground set is
(E1 ∪ E2) − {p} and whose set of circuits consists of all circuits of M1\p
together with all circuits of M2\p and all sets of the form (C1 ∪ C2) − {p}
where each Ci is a circuit of Mi containing p.

5.20. Exercise. Show that

(i) M1 ⊕2 M2 is actually a matroid;
(ii) each of M1 and M2 is isomorphic to a minor of M1 ⊕2 M2;
(iii) (M1 ⊕2 M2)

∗ = M∗
1 ⊕2 M

∗
2 .

Note that the 6-element matroid M above is isomorphic to U2,4 ⊕2 U2,4

where the two copies of U2,4 have ground sets {1, 2, 3, p} and {p, 4, 5, 6}.

1

2

3

456

Figure 11. A geometric representation for U2,4 ⊕2 U2,4.

A matroid M is connected if it cannot be written as the direct sum of two
non-empty matroids. If M is connected and cannot be written as the 2-sum
of two matroids, then M is 3-connected. If G is a connected graph with
at least 4 vertices, then M(G) is a 3-connected matroid if and only if the
graph G is 3-connected and G is simple, that is, G cannot be disconnected by
removing 2 vertices, and G has no cycles with fewer than 3 edges. Extending
Theorem 5.19, Kahn [21] proved the following:

5.21. Theorem. If M is a 3-connected GF (4)-representable matroid, then
all GF (4)-representations of M are equivalent.

This theorem was a crucial tool in the proof of the excluded-minor charac-
terization of quaternary, that is, GF (4)-representable, matroids, which was
obtained very recently by Geelen, Gerards, and Kapoor [15]. Although we
have already met some of the excluded minors, there are three others that
have yet to be introduced here. The first of these, P8, is the matroid that is
represented over GF (3) by the matrix









1 2 3 4 5 6 7 8

1 0 0 0 0 1 1 −1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 −1 1 1 0









.
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In P8, the complementary sets {1, 4, 5, 8} and {2, 3, 6, 7} are both circuits
and are both cocircuits. If we relax both of these circuits, then we get the
matroid P ′′

8 . The matroid P6 is represented geometrically as in Figure 12.

Figure 12. A geometric representation for P6.

5.22. Theorem. A matroid is quaternary if and only if it has no minor
isomorphic to U2,6, U4,6, F

−
7 , (F−

7 )∗, P6, P8, or P ′′
8 .

The last theorem means that Rota’s conjecture (3.29) has now been
proved for q = 2, 3, and 4. Comparing Theorems 3.26, 5.14, and 5.22, we
see that, for q ≤ 4, the number of excluded minors for the class of GF (q)-
representable matroids increases with q. Oxley, Semple, and Vertigan [36]
showed that, in general, this number is at least exponential in q.

5.23. Theorem. For all prime powers q, there are at least 2q−4 excluded
minors for the class of GF (q)-representable matroids.

Rota’s conjecture remains open for values of q larger than 4. Consider
the case when q = 5. The matrix





1 0 0 1 1
0 1 0 1 a
0 0 1 1 b





represents U3,5 over GF (5) for all a and b in GF (5) − {0, 1} such that
a 6= b. There are 6 such matrices and they are all inequivalent. Since
U3,5 is 3-connected, the analogue of Theorem 5.21 does not hold for GF (5)-
representable matroids. Kahn [21] conjectured that, for all q, there is a fixed
number n(q) such that every 3-connected GF (q)-representable matroid has
at most n(q) inequivalent representations. Oxley, Vertigan, and Whittle [37]
proved this conjecture when q = 5 but showed that it fails for all larger values
of q.

5.24. Theorem. Every 3-connected GF (5)-representable matroid has at
most 6 inequivalent GF (5)-representations. For all integers N and all prime
powers q > 5, there is a 3-connected GF (q)-representable matroid that has
at least N inequivalent GF (q)-representations.

This theorem means that if further progress is to be made on Rota’s
conjecture, then techniques will need to be developed that go beyond 3-
connected matroids. One direction in which Geelen, Gerards, and Whit-
tle [17] have had some recent success is in proving a weakened form of
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Kahn’s conjecture in which the connectivity condition is strengthened. This
is an important result for it enables one to regain control of the number
of inequivalent representations. Another direction that has been explored
involves using the parameter branch-width, which was introduced for graphs
by Robertson and Seymour [42] as a relative of their better-known tree-
width. Loosely speaking, for each of these parameters, the smaller the value
of the parameter the more tree-like is the structure. Geelen and Whittle [14]
have proved that, for all finite fields GF (q) and all positive integers k, there
are only finitely many excluded minors for GF (q)-representability that have
branch width at most k. This work is part of an effort that is being made
to extend Robertson and Seymour’s graph minors project (see, for example,
[41]) to matroids. Among the many important contributions of this project
is the following very deep result, which appears in the twentieth paper [43]
of the series!

5.25. Theorem. In every infinite set of finite graphs, there is always one
that is isomorphic to a minor of another.

(a) (b) (c)

Figure 13. Geometric representations for (a) M3, (b) M4,
and (c) M5.

This theorem fails if we replace “graphs” by “matroids”. For example, the
matroids Lp in Theorem 5.9 are all excluded minors for R-representability
and so none is a minor of another. As another example, let M3,M4,M5, . . .
be the sequence of rank-3 matroids for which geometric representations are
shown in Figure 13. None of these matroids is isomorphic to a minor of
another. To see this, observe that, since these matroids all have the same
rank and contraction drops rank, if Mi is a minor of Mj , then Mi must be
a deletion of Mj. But once we delete an element from Mj , we destroy the
ring of 3-point lines common to all the Mk’s and this cannot be recovered
by further deletions. Thus Theorem 5.25 does not extend to the class of all
matroids.

5.26. Exercise. For r ≥ 2, let Nr be the binary matroid that is represented
by the 2r × 4r matrix [I2r|J

′
2r] where J ′

2r is the matrix with zeros on the
main diagonal and ones elsewhere. Let the columns of this matrix be labelled
1, 2, . . . , 4r in order.
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(i) Show that each of {2, 3, . . . , 2r+1} and {1, 2r +2, 2r+3, . . . , 4r} is
a circuit of Nr whose complement is a cocircuit.

(ii) Let N ′′
r be obtained from Nr by relaxing both of these circuits. Show

that N ′′
2 , N

′′
3 , N

′′
4 . . . is a sequence of matroids none of which is iso-

morphic to a minor of another.

Among the biggest unsolved problems in matroid theory and one that has
been the focus of much recent research attention is the following:

5.27. Question. Is there an infinite set of binary matroids none of which is
isomorphic to a minor of another?

For all prime powers q, the corresponding question for the class of GF (q)-
representable matroids is also open. Indeed, it is generally believed that the
answer to this question will be the same irrespective of which finite field is
considered. Geelen, Gerards, and Whittle [16] have answered this question
negatively for all prime powers q provided that the branch-width of all the
matroids in the set is bounded above.

6. Decomposition of regular matroids

Probably the most important theorem ever proved in matroid theory is
a deep and important structure theorem for regular matroids due to Sey-
mour [46]. Not only does this theorem provide a beautiful decomposition
of regular matroids, but it also has profound implications for combinatorial
optimization in that it leads to a polynomial-time algorithm to determine
whether a real matrix is totally unimodular. We begin the discussion of this
theorem with some background from linear programming.

6.1. Example. Suppose that we seek to maximize cx + dy subject to the
constraints:

x+ y ≤ 4

−x+ y ≤ 3

x ≥ 0

y ≥ 0.

These four inequalities determine a feasible region P of the plane where all
four are satisfied. This region is shaded in Figure 14. Irrespective of the
choice of c and d, the maximum value of cx+ dy will always be attained at
some vertex of P . So, for instance, the maximum value of −x + 2y is 6.5
and it occurs at the point (0.5, 3.5).

We can rewrite our problem as: maximize (c, d)T ( xy ) subject to the con-
straints

[

1 1
−1 1

]

( xy ) ≤ ( 43 ) and ( xy ) ≥ ( 00 ). This is an example of a lin-
ear programming problem where, in general, such a problem seeks to find
max{cTx : x ≥ 0, Ax ≤ b} where c,x,b, and 0 are real 1×n column vectors
and A is a real m×n matrix. For a constant δ, the equation cTx = δ defines
a hyperplane in Rn. Possibly the feasible region P is unbounded, but if it is
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x

y

4

4

3

x+y=4
−x

+y
=3

(0.5,3.5)

Figure 14. The feasible region P .

bounded, then by moving this hyperplane in the direction orthogonal to the
vector c, we will find a point of P at which cTx is maximized. Intuitively,
the maximum will always occur at a vertex of P .

In integer linear programming problems, one imposes the additional re-
quirement that the optimal solution x must be integral, that is, have all its
coordinates integers. Whereas ordinary linear programming problems can
be solved in poynomial time [23], results of Cook [7] (see Schrijver [44, Theo-
rem 18.1]) imply that the integer linear programming problem is of the same
level of difficulty computationally as, say, determining whether a graph is
Hamiltonian. For an introduction to computational complexity, we refer the
reader to the book of Cook, Cunningham, Pulleyblank, and Schrijver [8].

6.2. Theorem. The problem:
Given an integral matrix A and an integral vector b, does the polyhedron
{cTx : x ≥ 0, Ax ≤ b} contain an integral vector x?
is NP -complete.

By contrast, for an integral polyedron, that is, one all of whose vertices
have only integer coordinates, we have (see Schrijver [44, Theorem 16.2]):

6.3. Theorem. There is a polynomial-time algorithm which, given a rational
system Ax ≤ b defining a bounded integral polyhedron and given a rational
vector c, finds an optimum solution for the integer linear program max{cTx :
x ≥ 0, Ax ≤ b;x is integral}
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Obviously, then, there is considerable interest in knowing when integral
polyhedra arise. Hoffman and Kruskal [20] proved the following characteri-
zation.

6.4. Theorem. Let A be an integral matrix. The polyhedron {x : x ≥
0, Ax ≤ b} is integral for every integral vector b if and only if the matrix A
is totally unimodular.

In Example 6.1, the polyhedron is not integral and the matrix A, which
is

[

1 1
−1 1

]

, has determinant 2. The last theorem provides the link between
integer programming and regular matroids for we recall, from Theorem 5.16,
that a matroid is regular if and only if it can be represented by a totally
unimodular matrix.

To describe Seymour’s regular-matroids decomposition theorem, we need
to describe the building blocks together with the operations used for joining
them. We begin with the former. We have already noted that the class of
graphic matroids is contained in the class of regular matroids. Since the
latter class is closed under duality, it also contains the class of cographic
matroids. One sporadic regular matroid, which was found by Bixby [1], is
the vector matroid R10 of the following totally unimodular matrix:













−1 1 0 0 1
1 −1 1 0 0

I5 0 1 −1 1 0
0 0 1 −1 1
1 0 0 1 −1













.

Among the special properties of this matroid are that it is isomorphic to its
dual, every single-element deletion is isomorphic to M(K3,3), every single-
element contraction is isomorphic to M∗(K3,3), and R10 can also be repre-
sented over GF (2) by the ten 5-tuples that have exactly three ones.

Two of the three operations used to join the building blocks for regular
matroids are direct sum and 2-sum. The third operation corresponds to
sticking two disjoint graphs together across a 3-edge cycle and then deleting
the edges of the cycle. Let M1 and M2 be binary matroids with ground sets
E1 and E2, respectively, each having at least seven elements. Suppose that
E1 ∩ E2 = T , where T is a 3-element circuit in both M1 and M2, and T
does not contain a cocircuit in either matroid. The 3-sum M1 ⊕3 M2 of M1

and M2 is the matroid on (E1 ∪E2)− T whose set of circuits consists of all
circuits of M1\T , all circuits of M2\T , and all minimal non-empty sets of the
form (C1∪C2)−T where Ci is a circuit of Mi such that C1∩T = C2∩T 6= ∅.
We omit the proof that this operation does actually produce a matroid.

6.5. Exercise. Let M1,M2, and T be as above.

(i) Show that if T = {t1, t2, t3}, then there are matrices A1 and A2

that represent M1 and M2 over GF (2) such that A1 and A2 are,
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respectively,













t1 t2 t3
|

D1 | 0
|

v1 | 1 0 1
w1 | 0 1 1













and













t1 t2 t3
1 0 0 | v2
0 1 0 | w2

|
0 | D2

|













.

(ii) Show that M1 ⊕3 M2 is represented over GF (2) by the matrix

























|
D1 | 0

|
v1 | v2
w1 | w2

|
0 | D2

|

























.

(iii) Show that the 3-sum of two cographic matroids need not be co-
graphic.

Seymour [46] showed that every regular matroid can be built by piecing
together graphic matroids, cographic matroids, and copies of R10. Com-
bining his theorem with earlier work of Brylawski [6] gives the following
result.

6.6. Theorem. The class of regular matroids coincides with the class of
matroids that can be constructed using direct sums, 2-sums, and 3-sums
beginning with graphic matroids, cographic matroids, and copies of R10.

6.7. Exercise. Show that R10 has no 3-element circuits and so is not in-
volved in any 3-sums in the last theorem.

As an important consequence of this theorem, we have the following result
which, as we have noted above, has significant implications for combinatorial
optimization.

6.8. Corollary. There is a polynomial-time algorithm to determine whether
a given real matrix is totally unimodular.

Proof. We shall only sketch the main ideas of the proof here. The reader
interested in a detailed proof can find one in Schrijver [44, Theorem 20.3] or
Truemper [49, Section 11.4]. A k-separation of a matroid M is a partition
(X,Y ) of E(M) into sets with at least k elements such that r(X) + r(Y ) <
r(M)+ k. When M is the direct sum, 2-sum, or 3-sum of M1 and M2, then
(E(M1)−E(M2), E(M2)−E(M1)) is, respectively, a 1-, 2-, or 3-separation
of M . The main parts of the algorithm testing total unimodularity are
polynomial subroutines that will
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(i) test whether a vector matroid M is (a) graphic; (b) cographic; and
(c) isomorphic to R10; and

(ii) find 1-, 2- and 3-separations in a vector matroid.

Evidently one can easily check if M ∼= R10. Several authors including
Tutte [52], and Bixby and Cunningham [3] have given algorithms to test
whether a given vector matroid M is graphic. Applying such an algorithm
toM∗ will determine whetherM is cographic. Finally, Cunningham and Ed-
monds [10] have given a polynomial-time algorithm for finding k-separations
for fixed k. The reader interested in optimizing this test for total unimod-
ularity will find a very efficient version of the test in the work of Truem-
per [48]. �

7. Conclusion

In terms of the research results highlighted, this paper has focussed mainly
on representable matroids. Another important and active research direction
in matroid theory involves the numerous links between matroids and graphs.
So deep are these links that Tutte [55] wrote: “If a theorem about graphs
can be expressed in terms of edges and circuits only it probably exemplifies a
more general theorem about matroids.” A recent survey of this area, which
concentrates particularly on connectivity results, appears in [35]. Yet an-
other very active and rich part of matroid theory centres on the Tutte poly-
nomial, its properties, and its numerous interesting evaluations throughout
combinatorics. A recent survey of work in this area appears in Welsh [59].
For the history of matroid theory and a reprinting of some of the most in-
fluential papers in the subject, the reader is referred to Kung [26]. Many
mathematicians in the 1930s and before were led to formulate abstract ax-
iom systems for dependence. As Kung [26, p. 15] notes, “it was an early
testimony to the naturalness and inevitability of the concept of a matroid
that all these axiomatizations, discovered independently by very different
mathematicians, are all equivalent.” The fact that the concept of a matroid
has endured is a present-day testimony to its versatility and utility.

Acknowledgements. The author thanks Bogdan Oporowski and Charles
Semple for helpful discussions during the preparation of this paper. The
author’s work was partially supported by a grant from the National Security
Agency.

References

[1] Bixby, R. E., Kuratowski’s and Wagner’s theorems for matroids, J. Combin. Theory
Ser. B 22 (1977), 31–53.

[2] Bixby, R. E., On Reid’s characterization of the ternary matroids, J. Combin. Theory
Ser. B 26 (1979), 174–204.

[3] Bixby, R. E. and Cunningham, W. H., Converting linear programs to network prob-
lems, Math. Oper. Res. 5 (1980), 321–357.



WHAT IS A MATROID? 43

[4] Bixby, R. E. and Cunningham, W. H., Matroid optimization and algorithms, in
Handbook of Combinatorics (eds. R. Graham, M. Grötschel, and L. Lovász), Elsevier,
Amsterdam; MIT Press, Cambridge, 1995, pp. 551–609.
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(Acta Societ. Scient. Natur. Moravicae) 3 (1926), 37–58.

[6] Brylawski, T. H., Modular constructions for combinatorial geometries, Trans. Amer.
Math. Soc. 203 (1975), 1–44.

[7] Cook, S. A., The complexity of theorem-proving procedures, Proc. Third Annual
ACM Symposium on Theory of Computing (Shaker Heights, Ohio, 1971), ACM, New
York, 1971, pp. 151–158.

[8] Cook, W. J., Cunningham, W. H., Pulleyblank, W. R., and Schrijver, A., Combina-
torial Optimization, Wiley, New York, 1998.

[9] Crapo, H. H. and Rota, G.-C., On the Foundations of Combinatorial Theory: Com-
binatorial Geometries, Preliminary edition, MIT Press, Cambridge, 1970.

[10] Cunningham, W. H. and Edmonds, J., A combinatorial decomposition theory, Canad.
J. Math. 32 (1980), 734–765.

[11] Edmonds, J., Lehman’s switching game and a theorem of Tutte and Nash-Williams,
J. Res. Nat. Bur. Standards Sect. B 69B (1965), 67–72.

[12] Edmonds, J. and Fulkerson, D. R., Transversals and matroid partition, J. Res. Nat.
Bur. Standards Sect. B 69B (1965), 147–153.

[13] Fournier, J.-C., Représentation sur un corps des matröıdes d‘ordre ≤ 8, in Théorie des
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