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Abstract 

Oxley, J.G., Ternary paving matroids, Discrete Mathematics 91 (1991) 77-86. 

Acketa has determined all binary paving matroids. This paper specifies all ternary paving 

matroids. There are precisely four minor-maximal 3-connected such matroids: S(5,6,12), 
PG(2,3), the real affine cube, and one other 8-element self-dual matroid. 

1. Introduction 

A paving matroid is a matroid in which no circuit has size less than the rank of 

the matroid. Acketa [l] has determined precisely which binary matroids are 

paving. The purpose of this paper is to solve the corresponding problem for 

ternary matroids. The solution presented to this problem is in two parts. First, in 

Section 2, all paving matroids that are not 3-connected are determined and this 

information is used to specify all such ternary matroids. Then, in Section 3, all 

3-connected ternary paving matroids are characterized. The technique used there 

is the same as was used to prove the main result of [6]. The preliminaries needed 

to justify this technique were presented in the introduction of [6] and will not be 

repeated here. 

Most of the matroid terminology used here will follow Welsh [9]. We remark, 

however, that our definition of a paving matroid follows Acketa [l] and differs 

slightly from that of Welsh in that he also requires such matroids to have rank at 

least two. The ground set and rank of the matroid M will be denoted by E(M) 

and r(M), respectively. If T c E(M), we shall denote the deletion of T from M 

by M\T or M 1 (E(M) - T), and the contraction of T from M by M/T. Flats of M 
of ranks one, two, and three will be called points, lines, and planes. An n-circuit of 

M is a circuit having n elements. If e E E(M), we call M an extension of M\e and 

a coextension of MJe. For matroids Ml and M2 whose ground sets have exactly 

one common element, P(M,, M,) will denote their parallel connection and p will 
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denote the basepoint of the connection. We shall assume familiarity with the 

basic properties of this operation as discussed in [3]. 

Next we introduce some particular matroids that will play an important role in 

this paper. The well-known Steiner system S(5, 6, 12) gives rise to a matroid on 

the twelve elements of the system, the hyperplanes of which are the blocks of the 

system. This matroid, which we shall also denote by S(5, 6, 12), is discussed in 

some detail in [6]. As noted there, the matroid S(5, 6, 12) is ternary, identically 

self-dual, and has a 5transitive automorphism group. 

We shall denote by Ts and R, the matroids that are represented by the 

following matrices over GF(3): 

Evidently both these matroids are isomorphic to their duals. Moreover, R8 has 

the real affine cube as its Euclidean representation, the labelling being as in Fig. 1 

with the planes in R8 being the six faces of the cube together with the six diagonal 

planes such as { 1,2,7, S}. It is not difficult to check that R, is representable over 

a field F if and only if the characteristic of F is not two. On the other hand, TX is 
representable over a field F if and only if F has characteristic three. Indeed, one 

can show that T, is a minor-minimal matroid not representable over F for all 

fields F whose characteristic is not two or three. R8 has a transitive automorphism 

group, every single-element contraction being isomorphic to the non-Fan0 

matroid, F;. In contrast, the automorphism group of T, has the two obvious 

orbits. 

The next result, which will be proved in Section 3, contains the most difficult 

part of the characterization of ternary paving matroids. From it and Corollary 2.3 

at the end of the next section, one can easily determine all such matroids. 

Theorem 1.1. The 3-connected ternary paving matroids are precisely the 3- 
connected minors of PG(2,3), S(5, 6, 12), R8, and T8. 

8 

6 

Fig. 1 
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We close this section with an elementary characterization of paving matroids 

which will be useful in the proofs of the main results. The straightforward proof 

of the next lemma is omitted. 

Lemma 1.2. Every minor of a paving matroid is a paving matroid. 

Proposition 1.3. A matroid is paving if and only if it has no minor isomorphic to 

U,,, @ UO.1. 

Proof. As U,,, @ I!&, 1 has a dependent subset of size less than its rank, it is not 

paving. Thus, by Lemma 1.2, if a matroid is paving, it has no minor isomorphic to 

U,,, @ UO,I. For the converse, suppose that M is a rank-r matroid that is not a 

paving matroid. Then M has a circuit C of size less than r. Thus r(M/C) 2 2. Let 

{a, b} be independent in M/C and c be an element of C. Then it is 

straightforward to check that [M 1 (C U {a, b})]/(C - c) = U,,, @ U,,,,. Cl 

2. Paving matroids that are not 3-connected 

In this section we determine all paving matroids that are not 3-connected and 

then use this to specify which such matroids are ternary. 

We begin by listing all disconnected paving matroids. The elementary proof of 

this result is omitted. 

Proposition 2.1. The following is a complete list of all disconnected paving 
matrqids. 

(9 U,,, and UC,,, for n * 2; 

(ii) uO,n @ U1,, and U,,,@U,,,forn~=landm~2; 
(iii) U,,, $ U,,, for n 2 r + 1 > 3. 

Determining the paving matroids that are connected but not 3-connected is not 

quite as straightforward. 

Proposition 2.2. The following is a complete list of all connected paving matroids 
that are not 3-connected. 

(9 UI,, and U_,,n for n 3 4; 

(ii) P(Q,,, b,,,) and P(%,,, U&b for m, n = 3; 
(iii) all loopless lines having at least three points, at least one of which contains 

more than one element; 
(iv) all matroids of the form P(M,, U,,,)\p where, for some k 3 3 and some 

n 2 k + 1, M,\p = U,_, and, in M,, p is a noncoloop that is in no circuits of size 
less than k. 
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Proof. It is straightforward to check that each of the matroids listed under 
(i)-(iv) is a connected paving matroid that is not 3-connected. To show that the 
list is complete, suppose that M is such a matroid. Then, as M is connected but 
not 3-connected, IE(M)/ Z= 4. By [S, (2.6)], M = P(M,, M,)\p for some connected 
matroids M, and M2 each having at least three elements and nonzero rank. 
Assume that r(M,) 3 r(M,). 

Suppose that r(M2) = 1. Then Mz = U1,, for some m 2 3. Thus M has a 2-circuit 
so r(M) G 2. Hence r(M,) is 1 or 2. It is not difficult to check that, in the first 
case, M satisfies (i), while, in the second case, it satisfies (iii). 

We may now assume that r(M,) 2 r(M,) 2 2. Suppose also that r(M,) > 3 and 
Mz is not a circuit. Then contracting all but one element of E(M,\p) from M 
leaves a matroid having a (U,,, @ &,)-minor. Thus we may assume that 
r(M,) = 2 or M, is a circuit. In the first case, r(M*) = 2 and r(M) = 3. Thus M has 
no 2-circuits and so M = P(U,,,, U2,J or P( U,,,, Uz,,)\p for some m, n Z= 3. Now 
suppose that r(M,) 2 3 and M2 is a circuit. Then 

r(M) = r(M,) + (E(M,)I - 2. (1) 

If MI has no circuits avoiding p, then MI is a circuit and M = IY,,__~,~ for some 
IZ 2 4; that is, (i) holds. Thus we may suppose that MI has a circuit C avoiding p. 
As M is paving and C is a circuit of MI. 

r(M) s ICI d r(M,) + 1. 

On combining this with (l), we deduce that 

IWWI = 3, ICI = r(W) + 1, and r(M) = r(M,) + 1. 

As C was an arbitrarily chosen circuit of M,\p, it follows that M,\p = U,,, for 
somek>3andsomen>k+l. 

Now consider the circuits of M, containing p, letting C’ be such a circuit. Then 

(C’ -P) u (E(Mz) -P) is a circuit of M having IC’I + 1 elements. Thus IC’I + 12 
r(M). But r(M) = r(M,) + 1, so IC’I ?=r(M,). Therefore every circuit of MI 
containing p has at least k elements and, since p is not a coloop of MI, we 
conclude that M satisfies (iv). 0 

The next result is easily obtained by combining the last two propositions with 
the excluded-minor characterization of ternary matroids [2,7]. 

Corollary 2.3. The following is a complete list of all the ternary paving matroids 
that are not 3-connected. 

(9 U,,,, U,,, for n 2 2; 

(ii) UO,, @ UI,,, UI,, @ U,,, for n 2 1 and m 2 2; 

(iii) UI,I @ U2.4, &,I @ U, r+~ for r 2 2; 
(iv) Ul,“, Un--l,n for n 2 4f 

(v) P(U,,,, UZ,), P(U,,,, U&b for 3 s m,n s 4; 
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L, L* 
Fig. 2. 

(vi) all loopless lines having three or four points, at least one of which contains 
more than one element; and 

(vii) all matroids M such that M* is a loopless line having three or four points, 
at least one of which contains two elements and none of which contains more than 
two elements. 

An alternative description of the matroids in (vii) above can be given in terms 
of the matroids L, and L2 in Fig. 2: M* is a minor of L, that has L2 as a minor. 

3. The 3-connected case 

In this section, we shall prove Theorem 1.1 by using Seymour’s Splitter 
Theorem [8, (7.3)]. In particular, we shall construct all 3-connected ternary 
paving matroids by building up, an element at a time, from a wheel or a whirl 
through a sequence of 3-connected ternary paving matroids. Much of the 
potential work here is eliminated by invoking the main theorem of [6], which was 
proved using the same technique. A key result that underlies this work is 
Brylawski and Lucas’s theorem [4, Corollary 3.31 that ternary matroids are 
uniquely GF(3)-representable. This means that, when we are dealing with a 
ternary matroid, we lose no generality in identifying that matroid with the 
dependence matroid of some particular matrix representation for it. 

Proof of Theorem 1.1. It is easy to see, using Proposition 1.3, that all the 
matroids listed are 3-connected ternary paving matroids. To show that the list is 
complete, we now let M be an arbitrary such matroid. Suppose first that M has no 
M(K,)-minor. Then, by Theorem 2.1 of [6], one of the following holds: 

(a) M is isomorphic to the rank-r whirl W [9, pp. 80-811 for some r 2 2; 
(b) M is isomorphic to a 3-connected minor of S(5, 6, 12); or 
(c) M is isomorphic to a certain S-element rank-4 matroid J. 
Now, for r a 4, Wr is not a paving matroid because it has a circuit of size less 

than its rank. For the same reason, J, which has a 3-circuit, is not a paving 
matroid. On the other hand, both Wz and W3 are isomorphic to minors of 
S(5, 6, 12). We conclude that if M has no M(K,)-minor, then it is isomorphic to a 
3-connected minor of S(5, 6, 12). 
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We may now suppose that M does have an M(K,)-minor. As M(‘IVJ, the 

rank-4 wheel, has a minor isomorphic to U,,, C3 UO,r, M has no minor isomorphic 

to M(‘IKJ. Thus, by the Splitter Theorem [8, (7.3)], there is a sequence 

M,, M,, Mz, . . . > M,, of 3-connected matroids such that MO = M(K,), M,, = M, 
and, for all i in (1, 2, . . . , n}, Mi-1 is a single-element deletion or a single- 

element contraction of Mi. Since M is a ternary paving matroid, so too are all of 

M,-I, Mn-2, . . . > MO. 
As Brylawski and Lucas [4, p. 941 have noted, a consequence of their result 

that ternary matroids are uniquely representable over GF(3) is that the 

complement of a simple ternary matroid in a ternary projective geometry is 

well-defined. One easily checks that the complement of M(K,) in PG(2,3) is 

isomorphic to F;. Thus M(K,) has precisely two non-isomorphic 3-connected 

ternary extensions: F; and the matroid N7 for which a Euclidean representation 

is shown in Fig. 3. Hence if Ml is an extension of MO, it is isomorphic to F; or 

N7. Moreover, as M(K,) is isomorphic to its dual, it follows from this that if M is 

a coextension of MO, it is isomorphic to (F;)* or Nq. As NT has a minor 

isomorphic to U,,, CD UO,l, it is not a paving matroid. We conclude that Ml is 

isomorphic to one of F;, N7, and (F;)*. 
The next lemma enables us to severely restrict the number of possibilities for 

the matroids M2, M3, . . . , M,,. 

Lemma 3.1. Let N be a 3-connected ternary paving matroid that is a coextension 
of a rank-3 matroid N’. Then no line of N’ has more than three points. 

Proof. Let N’ = N/e. Suppose that N’ has a line that contains four distinct 

points, a, b, c, and d. As N has no 3-circuits, it follows that N 1 {a, b, c, d, e} = 
U,,,. But this contradicts the fact that N is ternary. 0 

By this lemma, if Ml = N7, then r(M) = 3 and M is a restriction of PG(2,3). 

Fig. 3 
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Now assume that Mi = (F;)*. Then M, is represented 

over GF(3): 

1234 567 

83 

by the following matrix 

Suppose that MZ is an extension of Mi. To determine the different possibilities for 

M2, we consider the columns that can be adjoined to A to give a matrix 

representing a ternary paving matroid. Since adjoining the negative of a column 

gives an isomorphic matroid to that obtained by adjoining the column itself, we 

shall not distinguish a column from its negative here. 

Lemma 3.2. Suppose that (x1, x2, x3, x~)~ is a column that is adjoined to A to give 
a matrix representing a ternary paving matroid. Then (x,, x2, x3, x~)~ is one of 

e, = (-1, -1, -1, l)T, e2 = (1, 1, 1, O)T, e3 = (1, 1, -1, O)‘, 

e4= (1, -1, 1, O)T, and e5 = (-1, 1, 1, 0)‘. 

Proof. M2 is represented by the matrix 

1234 5678 

r 10 1 1 x11 

X= L 1, 

11 

0 1 

11 10 x3’ 

11 11 x2 1 x4 

where each of x1, x2, x3, and x4 is in (0, 1, -l}. As M2 has no circuits of size less 

than four, at least three of x1, x2, x3, and x4 are nonzero. Suppose first that all 

four of them are nonzero. Then, by column scaling, we may assume that x4 = 1. 

We may also suppose, by symmetry, that (xi, x2, x3) is one of (1, 1, l), (-1, 1, l), 
(-1, -1, l), and (-1, -1, -1). In the first and second cases, {1,5, S} is a circuit 

of M,; a contradiction. In the third case, one easily checks that M2/1 has a 4-point 

line; a contradiction to Lemma 3.1. Hence if x4#0, then (xi, x2, xg, x~)~ = 

(-1, -1, -1, l)T = e,. 

Now suppose that one of x1, x2, x3, and x4 is zero. In the first three cases, it is 

easy to see that Mz has a circuit of size at most three. Thus we may assume that 

x4 = 0. Then (xi, x2, x3, x4)T is one of e2, e3, e4, and e5. 0 
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For i in {1,2,3,4,5}, let (F;)* + ei be the matroid that is represented by 

letting 8 equal ei in the matrix X. Evidently 

(F;)* + ez = T8 and (F;)* + e3 = (F;)* + e4 = (F;)* + e5. 

Moreover, we have the following. 

Lemma 3.3. (F;)* + e2 = (F;)* + e3 and (F;)* + e, = R,. 

Proof. Let A + e, denote the matrix obtained from A by adjoining column ei. On 

pivoting on the last entry of column 7 of A + e2 and then swapping columns 4 and 

7, we get the matrix 

1237 5 6 4e, 

I -l 0 -1 1 

14 1 

0 -1 -1 1 

I1 1 l 01’ 11 10 

Multiplying rows 1 and 2 by -1, and then multiplying columns 1, 2, and 8 by -1 

and swapping columns 5 and 6 gives the matrix A + e3 with its columns relabelled. 

Hence (F;)* + e3 = (F;)* + e2 = &. 

Now take A + e, and pivot on the entry in the bottom right corner and then 

interchange columns 4 and 8 to get the matrix 

123e, 5 6 74 

1 1 -1 -1 1 

-l 1 -1 1 

14 I I -l 11 -l l 11 l 1 . 

On multiplying row 2 by -1 and then columns 2 and 6 by -1, we get the matrix 

[ 

I l l-l 1 

I‘l 
11 1 l-l 

1-l l l l l-l 11 1 
and this clearly represents a matroid isomorphic to R,. •i 

Lemma 3.4. Neither (F;)* + e, nor (F;)* + e2 has an extension that is a ternary 
paving matroid. 

Proof. By Lemma 3.2, an extension of (F;)* + e, that is a ternary paving matroid 

must be represented by A + e, + e2 or A + e, + e, for some i in {3,4,5}. In the 

first case, we get a 3-circuit and so there is no such paving matroid. In the second 
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case, on contracting the element 4 from the resulting matroid N, we get a rank-3 
matroid with a 4-point line and so, by Lemma 3.1, N is not a paving matroid. 
Hence (F;)* + e1 has no extension that is a ternary paving matroid. A similar 
argument establishes the same result for (F;)* -t e2. 0 

In follows immediately from the next lemma that neither (F;)* + e, nor 
(F;)* + e2 has a coextension that is a ternary paving matroid. 

Lemma 3.5. (F;)* has no coextension that is a ternary paving matroid. 

Proof. Assume that Ni is such a coextension of (F;)*. Then N1 can be 
represented by the matrix 

where each of y,, yz, and y3 is in (0, 1, -l}. As Ni has no 4-circuits, none of y,, 
y2, and y3 is 0. Thus two of y,, y2, and y3 are equal. Two columns containing such 
an equal pair have three pairs of equal coordinates and so these two columns are 
contained in a 4-circuit; a contradiction. 0 

On combining the last three lemmas, we deduce that if Mi = (F;)*, then M is 
isomorphic to one of (F;)*, T,, or R,. It now remains only to check the case 
when MI = F;. In that case, if M2 is an extension of M,, then, as M(K,) is the 
complement in PG(2,3) of F;, M2 is the complement in PG(2,3) of the 
ternary affine matroid P(U,,,, II,,,) and therefore M2 contains a 4-point line. 
Thus, by Lemma 3.1, r(M) = 3 and M is a restriction of PG(2,3). Hence we may 
assume that if M, = F;, then M2 is a coextension of Ml. The next lemma 
completes the proof of Theorem 1.1. 

Lemma 3.6. If N is a coextension of F; that is a ternary paving matroid, then N is 
isomorphic to TR or R,. 

Proof. We may assume that N is represented by the matrix 

IO 1 1 1 

1 

14 1 

1 0 1 

I110 

ZI 22 ,753 z4 1 1’ 

where z,, z2, z,, and 2, are in (0, 1, -l}. As N has no 3-circuits, none of zl, z2, 
and z3 is 0. If z4 = 0, then N = ((F;)* + ei)* for some i in {2,3,4,5}. But, for 
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each such i, (F;)* + ei is isomorphic to the self-dual matroid TR. Hence if z, = 0, 

then N = T8. If z, # 0, then, by row scaling, we may assume that z, = 1. To avoid 

having a 3-circuit in N, we must have z1 = 2, = z3 = - 1. Hence N = ((F;)* + 

er)* = RR* = R8. 0 

We close this paper with two remarks. Firstly, we note that the same technique 

that was used to prove Theorem 1.1 can also be used to determine all 3-connected 

binary paving matroids. In the binary case, however, the argument is con- 

siderably shorter. Using this and the results of Section 2, we get an alternative 

proof of Acketa’s characterization [l] of binary paving matroids. Secondly, we 

have not explicitly listed all 3-connected ternary paving matroids here. Such a list 

is not difficult to obtain by amalgamating various results already in the literature: 

each of the six 3-connected matroids with fewer than four elements, 110,0, U,,r, 

u ui.2, ul$ and u2,3, is a ternary paving matroid; the 3-connected minors of 

Stjt’6, 12) with more than three elements are all the matroids in Table II of [6] 

except J and “ur’ for r 2 4; the 3-connected minors of PG(2,3) not already listed 

above can be deduced from looking at their complements (see Table 1 of [5]); 

and finally, the 3-connected minors of T8 and R, that are not minors of PG(2,3) 

are (F;)*, Z& and R,. 
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