
WEAK MAPS AND THE TUTTE POLYNOMIAL

CHRISTINE CHO AND JAMES OXLEY

Abstract. Let M and N be matroids such that N is the image
of M under a rank-preserving weak map. Generalizing results of
Lucas, we prove that, for x and y positive, T (M ;x, y) ≥ T (N ;x, y)
if and only if x + y ≥ xy or M ∼= N . We give a number of
consequences of this result.

1. Introduction

Terminology and notation used here will follow [7] unless otherwise
stated. Given two rank-r matroids M and N , a bijective map from
E(M) to E(N) is a rank-preserving weak map if every basis of N is the

image of a basis of M . We write M
rp−→ N if N is a rank-preserving

weak-map image of M .
The following theorem of Lucas [6] shows that the numbers of bases,

independent sets, and spanning sets of M are greater than the corre-

sponding numbers for N if M
rp−→ N . Note that T (M ; 1, 1), T (M ; 2, 1),

and T (M ; 1, 2) count the numbers of bases, independent sets, and span-
ning sets of M , respectively, where T (M ;x, y) is the Tutte polynomial
of M .

Theorem 1. If M 6∼= N and M
rp−→ N , then

(i) T (M ; 1, 1) > T (N ; 1, 1);
(ii) T (M ; 2, 1) > T (N ; 2, 1);
(iii) T (M ; 1, 2) > T (N ; 1, 2);
(iv) T (M ;x, 0) ≥ T (N ;x, 0) for all x > 0 unless M has a loop;
(v) T (M ; 0, y) ≥ T (N ; 0, y) for all y > 0 unless M has a coloop.

The main result of the paper is the following generalization of the
last theorem.

Theorem 2. Let x and y be positive real numbers. Let M and N be
matroids such that there is a rank-preserving weak map from M to N .
Then T (M ;x, y) ≥ T (N ;x, y) if and only if x + y ≥ xy or M ∼= N .
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Moreover, if M 6∼= N , then T (M ;x, y) > T (N ;x, y) if and only if
x+ y > xy.

Jaeger, Vertigan, and Welsh [5] proved that the problem of evalu-
ating the Tutte polynomial of a graphic matroid at a point (x, y) in
the first quadrant of the real plane is #P-hard unless x + y = xy or
(x, y) = (1, 1). Evidently x + y = xy if and only if (x, y) is a point
on the hyperbola H1 defined by the equation (x − 1)(y − 1) = 1. It
is straightforward to prove that T (M ;x, y) = (x − 1)r(M)y|E| for all
(x, y) ∈ H1. Therefore, for any two matroids M and N that have the
same rank and the same ground set, T (M ;x, y) = T (N ;x, y) for all
(x, y) ∈ H1, that is, for all (x, y) for which x + y = xy. Theorem 2 is
summarized in the following figure.

2
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x+ y = xy

x

y

T (M ;x, y) > T (N ;x, y)

T (M ;x, y) = T (N ;x, y)

T (M ;x, y) < T (N ;x, y)

Figure 1. A summary of Theorem 2.

Let f and g be distinct elements in a matroid M . The element f
is freer than the element g if g is contained in the closure of every
circuit containing f . For example, in the rank-3 matroid M for which

x1
x2

x4

x3

x′3

x5

x6

Figure 2. A rank-3 matroid M .
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a geometric representation is shown in Figure 2, the element x6 is free,
that is, every circuit containing x6 is spanning. Hence x6 is freer than
every element in E(M) − {x6}. The element x1 is freer than both x3
and x′3. Since {x3, x′3} is a parallel class, it is straightforward to see
that x3 is freer than x′3, and x′3 is freer than x3. Similarly, x1 is freer
than x2, and x2 is freer than x1. By contrast, although x1 and x5 are
symmetric in M , neither is freer than the other.

As a consequence of Theorem 2, we deduce that if f is freer than g in
a matroidM , then the numbers of bases, circuits, and hyperplanes ofM
containing f are at least as large as the corresponding numbers of sets
containing g. The next section presents some preliminaries. The main
result is proved in Section 3. The last section contains consequences of
the main theorem.

2. Preliminaries

The nullity of a matroid M is equal to |E(M)| − r(M). For ma-
troids M and N , a bijection ϕ : E(M) → E(N) is a weak map if
ϕ−1(I) ∈ I(M) whenever I ∈ I(N). If r(M) = r(N), then ϕ is a rank-
preserving weak map from M to N . Although it is not required that
a weak map be bijective, we will only consider bijective weak maps.
Such maps have the following attractive property (see, for example, [7,
Corollary 7.3.13]).

Lemma 3. If ϕ : M → N is a rank-preserving weak map from M to
N , then ϕ is a rank-preserving weak map from M∗ to N∗.

For a matroid M with ground set E, the Tutte polynomial T (M ;x, y)
of M is defined by

T (M ;x, y) =
∑
A⊆E

(x− 1)r(M)−r(A)(y − 1)|A|−r(A).

It is well known that T (M∗;x, y) = T (M ; y, x) for a matroid M and
its dual M∗. In-depth accounts of the Tutte polynomial and its ap-
plications can be found in [1] and [3]. In [1, Exercise 6.10(b)], it is
noted that T (M ;x, y) = T (N ;x, y)− xy+ x+ y if M is obtained from
N by relaxing a circuit-hyperplane. Since relaxation is an example of
a rank-preserving weak map, this adds to the plausibility of the main
result.

Before proving the main result in general, we prove it in the specific
case when N is comprised solely of loops and coloops. Observe that if
there is a rank-preserving weak map from a matroid M to a matroid
N , then every coloop of M is a coloop of N , while every loop of M is
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a loop of N . The proof of the following lemma uses the sign function
sgn : R→ {−1, 0, 1} where

sgn(x) =


−1 if x < 0,

0 if x = 0,

1 if x > 0.

Lemma 4. Let x > 0 and y > 0. Let M be a matroid with rank
k, nullity m, and |E| ≥ 2. Then T (M ;x, y) ≥ xkym if and only if
x + y ≥ xy or M ∼= Uk,k ⊕ U0,m. Moreover, if M 6∼= Uk,k ⊕ U0,m, then
T (M ;x, y) > xkym if and only if x+ y > xy.

Proof. Suppose M 6∼= Uk,k ⊕ U0,m. We argue by induction on |E| that
sgn(T (M) − xkym) = sgn(x + y − xy), where we have abbreviated
T (M ;x, y) as T (M).

If |E| = 2, then M ∼= U1,2 and T (M ;x, y) = x + y. Therefore
sgn(T (M)− xy) = sgn(x+ y− xy), and the result holds. Assume that
the result holds for |E| < n and let |E| = n ≥ 3. Since M 6∼= Uk,k⊕U0,m,
there is an element e of M that is neither a loop nor a coloop. Thus
T (M) = T (M\e) + T (M/e).

Suppose M\e ∼= Uk,k⊕U0,m−1. Then M ∼= Us,s+1⊕Uk−s,k−s⊕U0,m−1
for some s with 1 ≤ s ≤ k. If s = 1, then M/e ∼= Uk−1,k−1⊕U0,m. Thus
T (M\e) = xkym−1 and T (M/e) = xk−1ym. Since x > 0 and y > 0,

sgn(T (M)− xkym) = sgn(xkym−1 + xk−1ym − xkym)

= sgn(xk−1ym−1(x+ y − xy)) = sgn(x+ y − xy),

as desired.
Suppose s ≥ 2. Then M/e 6∼= Uk−1,k−1 ⊕ U0,m and, by the induction

assumption,

sgn(T (M/e)− xk−1ym) = sgn(x+ y − xy).

Now, by the deletion-contraction formula for T (M),

sgn(T (M)− xkym) = sgn(T (M/e) + xkym−1 − xkym)

= sgn(T (M/e)− xk−1ym−1(xy − x)).

If sgn(x + y − xy) = 1, then y > xy − x and T (M/e) > xk−1ym−1(y).
Hence sgn(T (M/e) − xk−1ym−1(xy − x)) = 1 = sgn(T (M) − xkym).
Applying analogous arguments to the remaining two cases, it follows
that sgn(T (M)− xkym) = sgn(x+ y − xy), as desired.

We may now assume that M\e 6∼= Uk,k⊕U0,m−1. By duality, we may
also assume that M/e 6∼= Uk−1,k−1⊕U0,m. By the induction assumption,

sgn(T (M\e)− xkym−1) = sgn(T (M/e)− xk−1ym) = sgn(x+ y − xy),
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so sgn(T (M\e) − xkym−1 + T (M/e) − xk−1ym) = sgn(x + y − xy). It
follows that

sgn(x+ y − xy) = sgn(T (M\e) + T (M/e)− xkym−1 − xk−1ym)

= sgn(T (M)− xk−1ym−1(x+ y))

= sgn(T (M)− xk−1ym−1(xy))

= sgn(T (M)− xkym),

where the third equality follows by checking each of the three possibil-
ities for sgn(x+ y − xy). We conclude that the lemma holds. �

3. Proof of the Main Theorem

The following argument follows the same general structure as the
proof of Lemma 4. We again use the abbreviation T (M) in place of
T (M ;x, y).

Proof of Theorem 2. It suffices to prove the result when M and N have
a common ground set E and the rank-preserving weak map from M
to N is the identity map. We will argue by induction on |E| that
sgn(T (M)− T (N)) = sgn(x+ y − xy) whenever M 6= N .

Let |E| = 2. Since U1,2 and U1,1⊕U0,1 are the only 2-element matroids
of equal rank, we must have that M ∼= U1,2 and N ∼= U1,1 ⊕ U0,1. As
T (U1,2;x, y) = x+ y and T (U1,1⊕U0,1;x, y) = xy, we see that the result
holds for |E| = 2.

Assume the result holds for |E| < n and let |E| = n ≥ 3. Take e ∈ E.
If e is a coloop of M , then e is a coloop of N , so T (M) = xT (M\e)
and T (N) = xT (N\e). Therefore, as x > 0,

sgn(T (M)− T (N)) = sgn(T (M\e)− T (N\e)) = sgn(x+ y − xy).

Applying a similar argument to the dual, we see that the assertion
holds if M has a loop.

Suppose e is not a loop or a coloop of N . Then

sgn(T (M)− T (N)) = sgn(T (M\e) + T (M/e)− T (N\e)− T (N/e))

= sgn(T (M\e)− T (N\e)
+ T (M/e)− T (N/e)). (3.1)

Since M 6= N , we have that M\e 6= N\e or M/e 6= N/e.
Suppose that M\e 6= N\e and M/e 6= N/e. Then, by the induction

assumption,

sgn(T (M\e)− T (N\e)) = sgn(x+ y − xy) = sgn(T (M/e)− T (N/e)).
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Thus sgn(T (M\e)− T (N\e) + T (M/e)− T (N/e)) = sgn(x+ y − xy),
that is, sgn(T (M)− T (N)) = sgn(x+ y − xy).

Now suppose that M\e = N\e or M/e = N/e. Then, by (3.1),

sgn(T (M)− T (N)) =

{
sgn(T (M\e)− T (N\e)) if M/e = N/e,

sgn(T (M/e)− T (N/e)) if M\e = N\e,
= sgn(x+ y − xy)

where the last step follows by the induction assumption.
Finally, if every element of N is a loop or a coloop, then N ∼= Uk,k⊕

U0,m, so T (N ;x, y) = xkym. Since M
rp−→ N , the matroid M has rank

k and nullity m. The result follows immediately from Lemma 4. �

4. Consequences

A flat F of a matroid M is cyclic if F is a union of circuits. Given
distinct elements f and g of a matroid M , it is well known that f is
freer than g if g is contained in every cyclic flat containing f . It is
worth noting that, if f is a coloop of M , then f is vacuously freer than
g for all g ∈ E(M) − {f}. Likewise, if g is a loop of M , then f is
freer than g for all f ∈ E(M) − {g}. Consequently, our discussion of
relative freedom is primarily concerned with elements of M that are
neither loops nor coloops.

Duke showed that relative freedom extends nicely to both duals and
minors. If f is freer than g in M , then g is freer than f in M∗. More-
over, f is freer than g in M\X/Y for all disjoint subsets X and Y of
E(M).

This section explores the notion of relative freedom of elements of a
matroid and its connection to weak maps and the Tutte polynomial.
The following result provides our first direct link between relative free-
dom and rank-preserving weak maps.

Define the map ϕgf : E(M/f)→ E(M/g) by taking ϕgf (g) = f and
ϕgf (e) = e for all e 6= g.

Lemma 5. If f is freer than g in a matroid M and g is not a loop of
M , then ϕgf is a rank-preserving weak map from M/f to M/g.

Proof. Let I be independent in M/g. Then I ∪ g is independent in M .
Suppose f 6∈ I. Then ϕ−1gf (I) = I. If I is dependent in M/f , then
M has a circuit C such that C ⊆ I ∪ f . Moreover, f ∈ C since I is
independent in M . As f is freer than g in M , we see that g ∈ clM(C).
Then I ∪ g contains a circuit of M , a contradiction. Therefore I is
independent in M/f .
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Suppose f ∈ I. Then f ∈ I ∪ g and I ∪ g is independent in M .
Therefore ϕ−1gf (I), which equals (I ∪g)−f , is independent in M/f . �

The next result follows immediately from Theorem 2 and Lemma 5.
The straightforward proof is omitted.

Corollary 6. Let x > 0 and y > 0. If f is freer than g in M and g
is not a loop of M , then T (M/f ;x, y) ≥ T (M/g;x, y) if and only if
x+ y ≥ xy or M/f ∼= M/g.

Corollary 7. Let x > 0 and y > 0. If f is freer than g in M and g
is not a coloop of M , then T (M\f ;x, y) ≤ T (M\g;x, y) if and only if
x+ y ≥ xy or M\f ∼= M\g.

Proof. Since g is freer than f in M∗, it follows by Corollary 6 that
T (M∗/f ; y, x) ≤ T (M∗/g; y, x) if and only if x + y ≥ xy or M∗/f ∼=
M∗/g. Thus, by duality, we have T (M\f ;x, y) ≤ T (M\g;x, y) if and
only if x+ y ≥ xy or M\f ∼= M\g. �

The following result lists several consequences of Corollary 6. We
use b(M), Wk(M), h(M), and γ(M) to represent the numbers of bases,
rank-k flats, hyperplanes, and circuits of M , respectively. To specify
the numbers of such sets containing some element e of M , we write,
for example, b(e;M) and Wk(e;M).

Corollary 8. If f is freer than g in M , then

(i) b(f ;M) ≥ b(g;M);
(ii) Wk(f ;M) ≥ Wk(g;M) for all k ≥ 0, provided g is not a loop of

M ;
(iii) h(f ;M) ≥ h(g;M), provided g is not a loop of M ;
(iv) γ(f ;M) ≥ γ(g;M), provided f is not a coloop of M .

Proof. For (i), note that b(e;M) = b(M/e) for e ∈ E(M) as long as
e is not a loop. If g is a loop of M , then b(g;M) = 0, so (i) holds.
Assume g is not a loop of M . As f is freer than g and g is not a
loop, f is not a loop. Thus the map ϕgf is a rank-preserving weak map
from M/g to M/f . By Theorem 2, we have b(M/f) = T (M/f ; 1, 1) ≥
T (M/g; 1, 1) = b(M/g). Thus (i) holds.

To prove (ii), observe that, when e is not a loop of M , a set X is
a rank-k flat of M if and only if X − e is a rank-(k − 1) flat of M/e.
Suppose g is not a loop of M . Then, since ϕgf is a rank-preserving
weak map from M/f to M/g, it follows by [8, Proposition 9.3.3], that
Wk−1(M/f) ≥ Wk−1(M/g) for all k ≥ 1. Thus Wk(f ;M) ≥ Wk(g;M)
for all k ≥ 1. Also W0(f ;M) = 0 = W0(g;M) since neither f nor g is
a loop of M . Thus (ii) holds. Hence so does (iii).
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For (iv), observe that γ(e;M) = h(M∗)−h(e;M∗). Assume f is not
a coloop of M . Since g is freer than f in M∗, we have, by (iii), that
h(f ;M∗) ≤ h(g;M∗). Therefore

h(M∗)− h(f ;M∗) ≥ h(M∗)− h(g;M∗)

and (iv) holds. �

To illustrate (ii) of the last corollary, consider the matroid M in
Figure 2, where x1 is freer than x3. Evidently, W2(x1;M) = 4 and
W2(x3;M) = 3, so W2(x1;M) > W2(x3;M). By contrast, since ev-
ery cyclic flat containing x1 also contains x3, the number of rank-2
cyclic flats containing x3 is at least the number of rank-2 cyclic flats
containing x1. Indeed, the former is 2 and the latter 1.

Let γ′(e;M) be the number of spanning circuits of M containing an
element e of M .

Corollary 9. If f is freer than g in M and f is not a coloop of M ,
then γ′(f ;M) ≥ γ′(g;M).

Proof. Take a spanning circuit D of M containing g but not f . Then
D = B ∪ g for some basis B of M . Suppose B ∪ f is not a circuit of
M . Then B ∪ f properly contains a circuit C of M and f ∈ C. Hence
cl(C) contains g. The set C − f spans C, so g ∈ cl(C − f). Thus
(C − f)∪ g is a dependent set that is a proper subset of the circuit D,
a contradiction. �

Lemma 10. The following are equivalent for elements f and g in a
matroid M .

(i) f is freer than g in M ;
(ii) b(f ;N) ≥ b(g;N) for all restrictions N of M containing {f, g}.

Proof. Suppose (i) holds. Then f is freer than g in all restrictions N
of M containing {f, g}, so (ii) holds by Corollary 8(i).

Suppose (ii) holds and suppose f is not freer than g. Then M has
a cyclic flat F containing f and avoiding g. Let N ′ = M |(F ∪ g).
Note that g is a coloop of N ′. Then b(g;N ′) = b(N ′). As b(f ;N ′) ≥
b(g;N ′), it follows that b(f ;N ′) = b(N ′). Thus f is a coloop of N ′, a
contradiction. �

In the remaining results of this paper, we investigate several instances
of equality holding between the number of distinguished sets of M
containing f and the number of such sets containing g. Let x and y be
elements of M . Then x and y are clones in M if and only if the bijection
from E(M) to E(M) that interchanges x and y and fixes every other
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element is an isomorphism. It was shown in [4, Proposition 4.9] that
x and y are clones if and only if the set of cyclic flats containing x is
equal to the set of cyclic flats containing y. Thus x and y are clones if
and only if x is freer than y, and y is freer than x in M . As an example,
in Figure 2, the elements x3 and x′3 are clones, as are x1 and x2, and
x4 and x5, but there are no other pairs of clones in M . Two elements
that are parallel are clones as are two elements that are in series.

Theorem 11. Let f be freer than g in M . Then b(f ;M) = b(g;M) if
and only if f and g are clones in M .

Proof. If f and g are clones in M , then clearly b(f ;M) = b(g;M). To
prove the converse, suppose b(f ;M) = b(g;M). First assume that g is
a loop of M . Then b(g;M) = 0 = b(f ;M). Thus f is a loop of M .
Therefore f and g are clones in M . Similarly, if g is a coloop of M ,
then f and g are clones in M . We may assume that f and g are neither
loops nor coloops. Thus b(f ;M) = b(M/f) and b(g;M) = b(M/g).

Let |E(M)| ∈ {2, 3}. Since f and g are not loops or coloops in
M , we have that M ∈ {U1,2, U2,3, U1,3, U1,2 ⊕ U0,1, U1,2 ⊕ U1,1}. It is
straightforward to check that, in these cases, f and g are clones.

Assume the result holds for |E(M)| < n and let |E(M)| = n ≥ 4.
Suppose f and g are not clones in M . Take an element e ∈ E(M) −
{f, g}. If e is a loop or a coloop in M , then b(f ;M\e) = b(f ;M) and
b(g;M\e) = b(g;M). Thus b(f ;M\e) = b(g;M\e). By the induction
assumption, f and g are clones in M\e. Hence f and g are clones in
M , a contradiction. Thus e is neither a loop nor a coloop of M .

Suppose {e, f} is a circuit of M . Then {e, f, g} is contained in a
parallel class since f is freer than g and g is not a loop in M , so f
and g are clones of M . Thus we may assume that e is not a loop of
M/f . If {e, g} is a circuit of M , then e is a loop in M/g, so b(M/g) =
b(M/g\e). Therefore b(M/f\e) + b(M/f/e) = b(M/g\e). By Lemma
10, b(M/f\e) ≥ b(M/g\e), so b(M/f) > b(M/g), a contradiction.

Now e is not a loop or a coloop of M , M/f , or M/g and it follows that
b(M/f) = b(M/f\e)+b(M/f/e) and b(M/g) = b(M/g\e)+b(M/g/e).
By assumption,

b(M/f\e) + b(M/f/e) = b(M/g\e) + b(M/g/e).

By Lemma 10, b(M/f\e) ≥ b(M/g\e). Thus b(M/f/e) ≤ b(M/g/e).
Since f is freer than g in M/e, it follows, by Corollary 8(i), that
b(M/f/e) = b(M/g/e). Consequently, b(M/f\e) = b(M/g\e). There-
fore, by the induction assumption, f and g are clones in M\e.

Since f and g are not clones inM , there is a circuit C ofM containing
g such that f 6∈ clM(C). Assume there is an element e ∈ E(M)− (C ∪
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f). Then C is a circuit of M\e containing g such that f 6∈ clM\e(C).
Hence f and g are not clones in M\e, a contradiction. It follows that
C = E(M)− {f}. Thus rM(C) = r(M\f) = r(M)− 1. Therefore f is
a coloop of M , a contradiction. �

Proposition 12. Let f be freer than g in M . Let L be obtained from
M by deleting every element of E(M) − {f, g} that is parallel to g.
Then h(f ;M) = h(g;M) if and only if f and g are clones in L.

Proof. Suppose f and g are clones in L. As h(f ;M) = h(f ;L) and
h(g;M) = h(g;L), we have h(f ;M) = h(g;M). To prove the converse,
suppose that h(f ;M) = h(g;M). Let H(M ; f ; g) be the set of hyper-
planes of M containing f but not g. Then |H(M ; f ; g)| = |H(M ; g; f)|.
Hence |H(L; f ; g)| = |H(L; g; f)|. Clearly, if {f, g} is a 2-circuit of L,
then f and g are clones in L. Thus, we may assume that no 2-circuit
of L contains g.

For J ∈ H(L; g; f), let BJ be an arbitrarily chosen basis of J contain-
ing g. Then clL(BJ−g) is a rank-(r−2) flat of L. Let clL(BJ−g)∪f =
F . Then r(F ) = r − 1 otherwise f ∈ clL(BJ − g), so g ∈ clL(BJ − g),
a contradiction. Consider clL(F ). Assume f is not a coloop of clL(F ).
Then clL(F ) contains a circuit C containing f . Since f is freer than
g, we see that g ∈ clL(F ). Then clL(F ) ⊇ BJ . Thus clL(F ) ⊇ J . As
r(clL(F )) = r(J), we deduce that clL(F ) = J . But f 6∈ J , a contradic-
tion. Thus f is a coloop of clL(F ), so clL(BJ − g)∪ f ∈ H(L; f ; g). Let
ψ(J) = clL(BJ − g) ∪ f . Note that ψ depends upon the choices made
for the bases BJ . Moreover, ψ maps H(L; g; f) to H(L; f ; g).

12.1. ψ is bijective.

To see that ψ is injective, suppose that, for distinct members J1 and
J2 of H(L; g; f), the hyperplanes ψ(J1) and ψ(J2) are equal. Then
clL(BJ1 − g) = clL(BJ2 − g). Now the rank-(r− 2) flat J1 ∩ J2 contains
g and so contains the rank-(r − 1) set BJ1 , a contradiction. Since
|H(L; g; f)| = |H(L; f ; g)| and ψ is injective, we conclude that (12.1)
holds.

12.2. g is a coloop of L|J for every J ∈ H(L; g; f).

Suppose g is not a coloop of L|J . Then clL(BJ − g) is a subset
of J avoiding g. As g is not a coloop, there is an element h of J −
clL(BJ − g) − g. Since no 2-circuit of L contains g, the elements g
and h are not parallel. Thus {g, h} is independent. Extend {g, h}
to a basis B′J of L|J . Then clL(B′J − g) 6= clL(BJ − g) because h ∈
clL(B′J−g)−clL(BJ−g). Thus clL(B′J−g)∪f is a member ofH(L; f ; g)
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that is not in the set ψ(H(L; g; f)). As |H(L; g; f)| = |H(L; f ; g)| and
ψ is a bijection, this is a contradiction. Thus (12.2) holds.

Suppose g is not freer than f in L. Then L has a cyclic flat K
containing g and avoiding f . Take a basis B for K and consider B∪ f .
Extend B∪f to get a basis BL for L. Then clL(BL−f) is a hyperplane
of L containing g and avoiding f . Moreover, since K ⊆ clL(BL − f),
the hyperplane clL(BL − f) has a circuit containing g; that is, g is not
a coloop of clL(BL − f), a contradiction to (12.2). �

The next corollary is obtained by applying Proposition 12 to M∗.

Corollary 13. Let f be freer than g in M . Let N be obtained from M
by contracting every element of E(M)−{f, g} that is in series with f .
Then γ(f ;M) = γ(g;M) if and only if f and g are clones in N .

Proof. Clearly γ(f ;N) = γ(g;N) if f and g are clones in N . Hence
γ(f ;M) = γ(g;M). To prove the converse, suppose that γ(f ;M) =
γ(g;M). Then γ(f ;N) = γ(g;N). If f and g are in series in N , then
f and g are clones in N . Thus, we will assume that f and g are not a
series pair in N .

Let C(M ; f, g) be the set of circuits of M containing f and avoid-
ing g. Then |C(N ; f ; g)| = |C(N ; g; f)|. By duality, |C(N ; f, g)| =
|H(N∗; g; f)|. Therefore |H(N∗; g; f)| = |H(N∗; f ; g)|, and, conse-
quently, h(g;M∗) = h(f ;M∗). Since g is freer than f in M∗, by
Proposition 12, we see that f and g are clones in M∗\X where X
is the set of elements of E(M)−{f, g} that are parallel to f in M∗. It
follows that f and g are clones in N . �

Based on Theorem 11, Proposition 12, and Corollary 13, one may
guess that, when f is freer than g in M and γ′(f ;M) = γ′(g;M), the
elements f and g must be clones in M when f is not in any 2-cocircuit
of M . To see that this is not so, let M be the rank-5 matroid that
is obtained by taking the 2-sum across a common basepoint p of two
4-point lines M2 and M3 and of a 6-element rank-3 matroid M1 that
has {g, a, b} as its only non-spanning circuit and has f , p, and c as free
elements. Then f is freer than g in M and γ′(f ;M) = 0 = γ′(g;M).
But f and g are not clones in the cosimple matroid M .

The truncation of M , which we will denote τ(M), is the matroid
obtained from M by taking the free extension M +E(M) e of M by e
and then contracting the free element e. In particular, when r(M) > 0,
the independent sets of τ(M) are the independent sets of M with at
most r(M)− 1 elements. Note that we use τ(M) rather than the more
standard T (M) to denote truncation in order to avoid confusion with
the Tutte polynomial of M .
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Corollary 14. Let r(M) = r ≥ 2. If f is freer than g in M , then
Wr−2(f ;M) = Wr−2(g;M) if and only if f and g are clones in the
matroid obtained from τ(M) by deleting every element of E(M)−{f, g}
that is parallel to g.

Proof. Let F be a rank-(r− 2) flat of M . Then F is a rank-(r− 2) flat
of M +E(M) e avoiding e. Hence F is a hyperplane of τ(M). Therefore,
the rank-(r − 2) flats of M containing an element x are precisely the
hyperplanes of τ(M) containing x, that is, Wr−2(f ;M) = Wr−2(g;M)
if and only if h(f ; τ(M)) = h(g; τ(M)). As f is freer than g in τ(M),
the result follows immediately from Proposition 12. �

The following result generalizes Corollary 14 to the i-th trunca-
tion τ i(M) of M , defined recursively by τ i(M) = τ(τ i−1(M)) where
τ 0(M) = M .

Corollary 15. Suppose f is freer than g in M and r(M) = r ≥ 2.
Then Wk(f ;M) = Wk(g;M) for some k with 1 ≤ k ≤ r − 1 if and
only if f and g are clones in the matroid obtained from τ r−k−1(M) by
deleting every element of E(M)− {f, g} that is parallel to g.

Proof. This follows immediately from Corollary 14. �
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