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Abstract. We give several results about the asymptotic behaviour of ma-
troids. Specifically, almost all matroids are simple and cosimple and, indeed,
are 3-connected. This verifies a strengthening of a conjecture of Mayhew,
Newman, Welsh, and Whittle. We prove several quantitative results including
giving bounds on the rank, a bound on the number of bases, the number of

circuits, and the maximum circuit size of almost all matroids.

1. Introduction

The structure of the random labelled graph is a much-studied and very well-
understood area of probabilistic combinatorics. However, the corresponding ques-
tion about matroids is largely unexplored although Kelly and Oxley [2, 3, 4, 13] and
Kordecki and Łuczak [7, 8, 9, 10] established some properties of random GF (q)-
representable matroids. This is partly due to the lack of a simple model of a random
matroid, combined with the fact that the large number of matroids on n elements
makes simple sampling virtually impossible. Mayhew, Newman, Welsh, and Whit-
tle [11] initiated a study of the asymptotic properties of matroids, and this paper
is a continuation of that study.

The matroid terminology used here will follow Oxley [14]. Throughout this
paper, we will be dealing with n-element labelled matroids. For a positive integer
n, letm(n) be the number of matroids on the ground set {e1, e2, . . . , en}. A matroid
property π is a class of matroids that is closed under isomorphism. Let πn consist of
those matroids in π that have exactly n elements. We say that almost all matroids

have property π or, equivalently, that π is large, if the limit limn→∞
|πn|
m(n) exists

and is equal to 1. Similarly, we say that the class π is small if limn→∞
|πn|
m(n) exists

and is equal to 0. Clearly, asymptotically almost all matroids have the property π
if and only if the class of matroids without π is small.

In [11], it is shown that almost all matroids have no loop or coloop. It is also
shown that the proportion of n-element matroids that are connected is asymptot-
ically at least 1/2 and it is conjectured that almost all matroids are connected
and, indeed, are k-connected for all fixed k exceeding one. In what follows, we will
prove that asymptotically almost all matroids are simple and cosimple, and, more
strongly, that they are 3-connected. We also give quantitative results about the
rank, the number of bases, and the number and size of circuits.
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2. A Theorem about Rank

Before proving our first result about the rank of a typical matroid, we state some
preliminary results which we make use of several times later. We begin with three
inequalities for binomial coefficients that follow from Stirling’s formula. The first
is Lemma 1 of [15]. Mayhew and Welsh [12, Lemma 2.1] sketch a proof of the third
but observe that they view the result as known. A straightforward modification of
their proof yields the second inequality. For positive integers k and n with k ≤ n,

(

n

k

)

≤
(en

k

)k

(1)

and
2n−1

n1/2
≤
(

n

⌊n2 ⌋

)

≤ 2n

n1/2

√

2

π
. (2)

By combining the bounds of Knuth [6] and Piff [15], one gets the following bounds
on m(n), the number of n-element labelled matroids. Here, and throughout the
paper, all logarithms will be taken to the base 2.

n− (3/2) logn+O(log logn) ≤ log logm(n) ≤ n− logn+O(log logn). (3)

Consider the equation x21/x − e = 0. Let µ be the smallest positive root of
this equation. Then 0.3275 < µ < 0.3276. Moreover, x21/x − e > 0 for all x in
(0, µ). The constant µ will appear in several results in this paper beginning with
the next theorem, which will enable us to show that almost every matroid has rank
in a specific range. This provides leverage when proving properties of almost all
matroids since we only need to consider matroids having rank in the given range.
We shall use the following elementary result.

Lemma 2.1. Let n be a positive integer and suppose that 0 < d < 1. For k = ⌊dn⌋,
(

n

k

)

≤
(e

d

)dn

e.

Proof. By (1),
(

n

k

)

≤
(

en

⌊dn⌋

)⌊dn⌋

=
( en

dn

)⌊dn⌋ ( dn

⌊dn⌋

)⌊dn⌋

≤
( en

dn

)dn
(

1 +
1

⌊dn⌋

)⌊dn⌋
≤
( e

d

)dn

e.

�

Theorem 2.2. Let C(d) denote the class of n-element matroids with maximum

circuit size ⌊dn⌋, where 0 < d < 1. Then C(d) is small for d < µ.

Proof. Since there are exactly 2n matroids on a labelled n-element set in which
every element is a loop or a coloop, the class of such matroids is small. Hence we
may assume that all the matroids we are considering have a component with at
least two elements. Let Ck denote the class of n-element matroids with maximum
circuit size k where k ≥ 2. Each M ∈ Ck is defined by its list of circuits all of
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which come from F = {A ⊆ E(M) : |A| ≤ k}. Also circuits form a clutter. Thus,
by Kleitman, Edelberg, and Lubell’s [5] extension of Sperner’s Theorem [16], the

maximum number of circuits is
(

n
k

)

provided k ≤ ⌊n/2⌋. Clearly |F| = ∑k
j=1

(

n
j

)

≤
k
(

n
k

)

. Hence

|Ck| ≤
(nk)
∑

j=1

(|F|
j

)

≤
(

n

k

)(

k
(

n
k

)

(

n
k

)

)

as k ≥ 2.

Therefore, using these gross overcounts, it follows by (1) that

|Ck| ≤
(

n

k

)

(

ek
(

n
k

)

(

n
k

)

)(nk)

=

(

n

k

)

(ek)(
n
k).

Suppose k = ⌊dn⌋, where 0 < d ≤ 1/2. Then, by Lemma 2.1,
(

n
k

)

≤
(

e
d

)dn
e. Thus

|Ck| ≤
( e

d

)dn

e (edn)(
e
d)
dn
e
.

Hence

log |Ck| ≤ dn log
( e

d

)

+ log e+
( e

d

)dn

e log(edn)

≤
( e

d

)dn

2e logn for n sufficiently large;

= 2n log( ed )d+O(log logn).

But
logm(n) ≥ 2n−

3
2 logn+O(log logn).

Now Ck is small if limn→∞
|Ck|
m(n) = 0 and this holds whenever log

(

e
d

)d
< 1 or,

equivalently, whenever
(

e
d

)d
< 2. Solving this for d gives d < µ. �

The following consequence of the last theorem adds support to the conjecture
of Mayhew, Newman, Welsh, and Whittle [11, Conjecture 1.10] that almost all
n-element matroids have rank in {⌊n/2⌋, ⌈n/2⌉}.
Corollary 2.3. For all ε > 0, asymptotically almost all n-element matroids have

rank r in the range (µ− ε)n < r < (1 − µ+ ε)n. Hence 0.3275n < r < 0.6725n.

Proof. By duality, it is enough to show that almost all matroids have rank greater
than (µ − ε)n. Partition the n-element rank-r matroids into those for which (µ −
ε)n < r and those for which (µ − ε)n ≥ r. For a matroid M in the latter class,
since the maximum circuit size is at most r + 1, we have r + 1 ≤ (µ − ε)n + 1 =
(µ − ε2 )n − ε2n + 1. Hence, for n sufficiently large, M has maximum circuit size
less than dn for some d < µ. Thus, by Theorem 2.2, the class of such matroids
M is small. We conclude that asymptotically almost all n-element rank-r matroids
satisfy (µ− ε)n < r. �

Corollary 2.4. For all ε > 0, asymptotically almost all matroids on n elements

have all circuits of size at most (1 − µ+ ε)n.

Proof. By the last corollary, almost all n-element matroids have rank at most (1−
µ + ε

2 )n and so have all circuits of size at most (1 − µ + ε
2 )n + 1. For sufficiently

large n, this is at most (1− µ+ ε)n. �
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3. Most Matroids are Simple and Cosimple

In this section, we show that almost all matroids are simple thereby extending
a result of Mayhew, Newman, Welsh, and Whittle [11, Theorem 2.3] that the class
of matroids with a loop is small. Both these results are special cases of the next
theorem for which we shall need some preliminaries. An element e of a matroid M
is free on a flat F of M provided that, for all flats X of M , the element e is in
cl(X − e) if and only if X − e ⊇ F − e. When e is free on the flat E(M), we say
that e is free in M . Observe that e is a loop of M if and only if e is free on cl(∅),
while e is in a non-trivial parallel class if and only if e is free on some flat of rank
one. Clearly if e is free on the flat F , then r(F − e) = r(F ). Our theorem will
use the constant ν, the smallest positive root of the equation x21/2x − e = 0. One
easily checks that 0.1071 < ν < 0.1072. Our proof of the next theorem will use the
following result [11, Proposition 2.2].

Lemma 3.1. For all n ≥ 2,

m(n− 1)

m(n)
≤ 2−(n−3)/2.

Theorem 3.2. The class of n-element matroids having an element that is free on

some flat of rank at most dn is small for all d in [0, ν).

Proof. Since the class of matroids with a loop is small [11, Theorem 2.3], it suf-
fices to consider loopless matroids. Let M be such a matroid having ground set
{e1, e2, . . . , en}. Suppose that M has an element that is free on some flat of rank
at most k, and let et be the lowest-indexed such element. Delete et from M and
replace it as a loop to give the matroid N . As M is loopless, k > 0 and the matroid
N has a unique loop.

Given N , we now consider the number of choices for the matroid M that could
have produced N . We delete et from N and add it freely to some flat of N\et of

rank at most k. The number of such flats is at most
∑k
j=0

(

n−1
j

)

. Since there are

m(n) labelled matroids on an n-element set, there are at most nm(n− 1) choices
for N . Letting f(n) be the number of choices for M , we have

f(n) ≤ n
k
∑

j=0

(

n− 1

j

)

m(n− 1)

≤ nk
(

n

k

)

m(n− 1)

provided k < ⌊n/2⌋. We shall make this assumption from now on.
By Lemma 3.1, we get

f(n)

m(n)
≤ nk

(

n

k

)

2−(n−3)/2.

Now let k = ⌊dn⌋. Then, by Lemma 2.1,

f(n)

m(n)
≤ dn2

( e

d

)dn

e2−(n−3)/2 = dn2e23/2

(

1√
2

( e

d

)d
)n

.
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As d < ν and the function x21/2x − e is strictly decreasing on the interval (0, ν]
taking the value 0 at x = ν, it is not difficult to check that

1√
2

(e

d

)d

< 1− ε

for some fixed positive ε. Hence

lim
n→∞

f(n)

m(n)
= 0.

�

The following is an immediate consequence of the last theorem and duality.

Corollary 3.3. Almost all matroids are simple and cosimple.

4. Most Matroids are 3-connected

By Theorem 2.2, almost all n-element matroids have a connected component
of size at least 0.32n. Next we give a lower bound on the size of all components
in almost all matroids. This is rather a weak bound in view of Mayhew, New-
man, Welsh, and Whittle’s conjecture [11] that almost all matroids have a single
component. Nevertheless, we can use this bound to prove a strengthening of that
conjecture.

Lemma 4.1. For almost all n-element matroids M , if (X,Y ) is a j-separation of

M for some j in {1, 2}, then min{|X |, |Y |} ≥ logn.

Proof. By Corollary 3.3, it suffices to consider n-element matroidsM that are both
simple and cosimple. Fix j in {1, 2} and suppose that M has an exact j-separation
(X,Y ). If j = 1, then M = M1 ⊕M2 where M1 =M |X and M2 = M |Y ; if j = 2,
let M1 and M2 be single-element extensions of M |X and M |Y , respectively, such
that M = M1 ⊕2 M2. Let k = |X | where |X | ≤ |Y |. Then k ≥ 3. Assume that
k ≤ logn. There are

(

n
k

)

choices for X . Hence the number of choices for M is at
most

⌊logn⌋
∑

k=3

(

n

k

)

m(k + 1)m(n− k + 1).

The class of such matroids M is small if

lim
n→∞

(logn)
(

n
⌊logn⌋

)

m(⌊logn⌋+ 1)m(n− 3)

m(n)
= 0

and

lim
n→∞

(

n
3

)

m(4)m(n− 2)

m(n)
= 0.

By iterating Lemma 3.1, we get that the second of these equations holds and that

m(n− 3)

m(n)
≤ 2−(3n−12)/2.

Hence the theorem holds provided that

lim
n→∞

(logn)
(

n
⌊logn⌋

)

m(⌊logn⌋+ 1)26

23n/2
= 0.
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Now (logn)
(

n
⌊logn⌋

)

≤ nlogn for n sufficiently large. Thus, by (3),

(logn)

(

n

⌊logn⌋

)

m(⌊logn⌋+ 1) ≤ nlogn22logn−log logn+O(log log logn)

≤ 2(logn)2+n for n sufficiently large.

The result follows immediately. �

Oliver Riordan (private communication) showed us how to use the case when
j = 1 in the last result to prove that almost all matroids are connected. This
prompted us to extend that lemma to the case j = 2 so that we could use his
argument to prove the following stronger result.

Theorem 4.2. Almost all n-element matroids are 3-connected.

Proof. Let M be an n-element matroid. We may assume that M is simple and
cosimple. Assume that M is not 3-connected. Then M has an exact j-separation
(X,Y ) for some j in {1, 2}. Let k = |X | ≤ |Y |. By Lemma 4.1, we may assume
that k ≥ logn. The number D(n) of choices for M is at most

⌊n/2⌋
∑

k=⌈logn⌉

(

n

k

)

(m(k)m(n− k) +m(k + 1)m(n− k + 1)) .

Thus

D(n) ≤ (n2 )2n+1 (m(n− ⌈logn⌉+ 1))2 .

Hence

logD(n) ≤ logn+ n+ 2n−⌈logn⌉+2−log(n−⌈logn⌉+1)+O(log log(n−⌈logn⌉+1)).

Now log(n− ⌈logn⌉+ 1) ≥ logn− log 2. Thus, for sufficiently large n,

logD(n) ≤ 2n−2 logn+3+O(log logn).

Hence

logD(n)− logm(n) ≤ 2n−2 logn+3+O(log logn) − 2n−
3
2 logn+O(log logn).

Thus limn→∞
D(n)
m(n) = 0, that is, the theorem holds. �

The last result verifies Mayhew, Newman, Welsh, and Whittle’s [11] conjecture
that almost all matroids are connected. But it stops short of proving their stronger
conjecture that almost all matroids are k-connected for all fixed k exceeding one.
When a matroidM has a 1- or 2-separation, it breaks up as a direct sum or 2-sum.
For j ≥ 3, there is no corresponding result for j-separations in general matroids,
and we cannot even see how to prove that almost all matroids are 4-connected.

The fact that almost all matroids are simple and cosimple follows immediately
from the last theorem. We did use this fact in our proof of the theorem but it is
not difficult to modify our argument to avoid using this fact thereby giving us an
alternative proof of simplicity.
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5. On Bases, Circuits, and Free Elements

Clearly, the maximum number of bases which an n-element matroid can have is
(

n
⌊n2 ⌋
)

and we know, by (2), that 2n−1

n1/2 ≤
(

n
⌊n2 ⌋
)

≤ 2n

n1/2

√

2
π ≤ 2n

n1/2 . Cloteaux [1]

has recently proved that, for all γ > 5
2 , the number of bases of almost all rank-r

matroids on n elements is at least
(nr)
nγ .

We now show that most n-element matroids have at least 2n

n3/2 bases. More
precisely, we prove the following result.

Theorem 5.1. For all ε > 0, the class of matroids with n elements and fewer than
2n

nα bases is small for all α ≥ 3
2 + ε.

Proof. By Corollary 2.3, it is enough to consider only the case where the rank r
is in the range cn < r < n − cn, where c ≈ 0.32. Clearly, the number of rank-r

matroids with at most b bases is at most
∑b
k=1

((nr)
k

)

. As ⌈cn⌉ ≤ r ≤ n− ⌈cn⌉, the
number of matroids with at most b bases is at most

n−⌈cn⌉
∑

r=⌈cn⌉

b
∑

k=1

(
(

n
r

)

k

)

=

b
∑

k=1

n−⌈cn⌉
∑

r=⌈cn⌉

(
(

n
r

)

k

)

≤
b
∑

k=1

(

(

n
⌊n/2⌋

)

k

)

(n− 2⌈cn⌉+ 1)

≤ nb
(

(

n
⌊n/2⌋

)

b

)

since b ≤
(

n

⌊n/2⌋

)

;

≤ nb
(

e
(

n
⌊n/2⌋

)

b

)b

by (1).

Therefore, letting Q(b) be the total number of matroids with at most b bases such

that r ∈ [cn, n − cn], we have Q(b) ≤ nbeb
(

2n

b
√
n

)b

by (2). So if b = ⌈ 2n

nα ⌉, this

yields Q(b) ≤ nbeb
(

2n√
n
nα

2n

)b

= nbeb(nα−1/2)b. As n grows, Q is dominated by

the term (nα−1/2)b. In other words, log logQ is dominated by the behaviour of

log((α − 1/2)b logn) = log((α − 1/2)⌈ 2n

nα ⌉ logn) = n − α logn + log logn + O(1).

Comparing this with n − 3
2 logn + O(log logn), our lower bound for log logm(n),

we obtain the result. �

The following is a result showing that almost all matroids have many circuits.

Theorem 5.2. For all ε > 0, the class of matroids with n elements and fewer than

2n−β logn circuits is small for all β ≥ 3
2 + ε.

Proof. The number of matroids with k circuits and n elements is clearly at most
(

2n

k

)

. Let T (n, β) be the number of n-element matroids with fewer than 2n−β logn
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circuits. Thus

T (n, β) ≤
⌊2n−β logn⌋
∑

k=0

(

2n

k

)

≤ 2n−β logn

(

2n

⌈2n−β logn⌉

)

for β > 0 and n sufficiently large;

≤ 2n−β logn

(

e2n

⌈2n−β logn⌉

)⌈2n−β logn⌉
by (1);

≤ 2n−β logn

(

e2n

2n−β logn

)2n−β logn+1

= 2n−β logn
(

enβ
)2n−β logn+1

.

Hence, as β ≥ 3
2 + ε,

logT (n, β) ≤ n− β logn+ (2n−β logn + 1)(log e+ β logn)

≤ n+ log e+

(

log e+ β logn

nε

)

2n

n3/2
.

Using (3), Knuth’s lower bound for m(n), we see that

logm(n) ≥ 2n−
3
2 logn+O(log logn)

=
2n

n3/2
2O(log logn).

Thus, for n sufficiently large,

logm(n) ≥ 2n

n3/2

(

1

(log n)δ

)

for some positive constant δ.

Therefore

log
T (n, β)

m(n)
≤ n+ log e+

2n

n3/2

(

log e+ β logn

nε
− 1

(logn)δ

)

= n+ log e+
2n

n3/2

(

(log e+ β logn)(log n)δ − nε
nε(logn)δ

)

.

Hence log T (n,β)
m(n) → −∞ as n→∞, so limn→∞

T (n,β)
m(n) = 0 as required. �

The following result about the absence of free elements in most matroids is more
surprising than those presented above. The argument follows easily from the result
that asymptotically almost all matroids have no loops. Recall that an element e in
a matroid is free if e is not a coloop and the only circuits containing e are spanning.

Theorem 5.3. The class of matroids having at least one free element is small.

Proof. Since the class of matroids with a loop is small, it suffices to show that the
class of loopless matroids with a free element is small. Let M be such a matroid
on {e1, e2, . . . , en} and let ej be the lowest-indexed element that is free in M . Let
N be the matroid that is obtained from M by deleting ej and then adding ej back
as a loop. Since N has a loop and M is uniquely recoverable from N , the theorem
follows. �
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6. Conclusion

By simple duality arguments, our results also yield corresponding results for
hyperplanes and cocircuits.

We close by mentioning that the above results give a little support to the con-
jecture made in [11, Conjecture 1.6] that asymptotically almost all matroids are
paving. Since Knuth’s bound, n − (3/2) logn + O(log logn) ≤ log logm(n), which
we use repeatedly, also holds for paving matroids, it is easy to check that all the
theorems proved above remain true for the class of paving matroids.
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