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In this talk, we consider closed manifolds M" and discuss the
question of whether they admit riemannian metrics of nonpositive
or negative sectional curvature, whenever they have a chance to do
so.

When the dimension is 2 and M is orientable, Gauss-Bonnet
theorem indicates that all closed surfaces other than the 2-sphere
have a chance to admit nonpositively curved metrics and classical
uniformization theorem for surfaces confirms this.

That is, if M is either the torus or a surface of higher genus then
X (M) < 0. Hence, by Gauss-Bonnet, M has a chance to admit
metrics of nonpositive curvature. The uniformization theorem then
implies that one can, indeed, prescribe metrics of constant
curvature of appropriate signature.
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In dimensions bigger than or equal to 3, we have the following two
general consequences of nonpositive curvature condition that help
in our study.

Fact 1: The universal cover M of M is diffeomorphic to R".
Fact 2. Each element of 71(M) has infinite order.

In particular, if M = S" or if m1(M) has elements of finite order
then M cannot admit metrics of nonpositive curvature.
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We shall now try to see:

1. How much more control does w1(M) have on the geometry or
the topology of M7 and

2. Whenever M has a chance to admit metrics of nonpositive

curvature does it really do so?

Answer(s) to Question 1:
If M has nonpositive curvature, Fact 1 implies that 7,(M) = 0 for
all n > 2.

Therefore, if M" and N" are two closed manifolds and
m1(M) = m1(N), then mp(M) = 7,(N) for all n > 1.

Moreover, standard arguments from topology show that M and N
are homotopically equivalent.
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Going further, one has the following two celebrated theorems:

Mostow’s strong rigidity theorem: /f n > 3 and if M and N are
locally symmetric spaces (of non-compact type) with

m1(M) = mw1(N), then M and N are isometric to each other, up to
scaling by a constant.

Farrell-Jones’ topological rigidity theorem: /f n > 5 and if M
and N are nonpositively curved with w1 (M) = w1(N), then M and

N are homeomorphic.

Farrell and Jones also showed that ‘smooth rigidity’ (i.e., that M
and N are diffeomorphic) fails in general.
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In dimension 3, one has the following answer:

If f : M — N is a homotopy equivalence between closed
3-manifolds such that N supports a Riemannian metric of
nonpositive curvature, then f is homotopic to a homeomorphism.

When N is nonpositively curved, the geometrization conjecture
implies that either N supports a hyperbolic metric or N is
sufficiently large in the sense of Waldhausen.

D. Gabai proved the above result when N is hyperbolic, provided
the Poincaré Conjecture is true.

And, Waldhausen proved this for sufficiently large aspherical
3-manifolds provided the Poincaré Conjecture is true.

Now that the solutions to both the Poincaré conjecture as well as
the geometrization conjecture are widely accepted to be correct,
the dimension 3 case of topological rigidity follows.

The case of dimension 4 is still wide open!
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Let us now consider the following more precise form of Question 2:

If M has nonpositive curvature and if N is homemorphic to M,
then does N admit metrics of nonpositive curvature?

We have the following two cases:

Case i: M has negative curvature, and

Case ii: M has nonpositive curvature.
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While the more subtle Case i is still open, the answer in Case ii is
NO, in general.

The negative answer follows from the following three different
constructions:

1. B. Okun’s construction of exotic differential structures on
certain higher rank locally symmetric spaces.

2. Construction of exotic smooth structures on certain ‘doubles’ of
finite volume real hyperbolic manifolds (A-Farrell).

3. Construction of exotic PL-structures on certain ‘doubles’ of
finite volume real hyperbolic manifolds by P. Ontaneda.
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