
Homework on Out(Fn)

Mladen Bestvina

Goa 2010

Problems labeled with an asterisk are more difficult/technical and con-
stitute the take-home final.

1 Folding and applications

H is a finitely generated subgroup of Fn.

1. Find a basis of the subgroup

H = 〈babaaba, abababa, abababab〉 < 〈a, b〉

2. Prove that type 1 folds are π1-isomorphisms, type 2 folds are π1-epimorphisms
(and induce the obvious map Fk → Fk−1 in suitable bases), and immer-
sions are π1-injective. Hint: For the first two claims choose suitable
standard markings. For the last, show that immersions can be completed
to covering maps by adding edges.

3. Given w ∈ Fn give an algorithm to decide whether w ∈ H. E.g. show
a 6∈ H of #1.

4. Given w ∈ Fn give an algorithm to decide whether w is conjugate into
H.

5. Can you tell if H is normal in Fn?

6. Can you tell if H has finite index in Fn?

7. Suppose H is a finitely generated normal subgroup of Fn. Show that
either H has finite index in Fn or H = {1}.
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8. Given a homomorphism h : Fn → Fm, can you tell if h is injective,
surjective, bijective? Answer: Injective iff there are no folds of the second
kind. Surjective iff the last map is a homeomorphism. In particular, show
that Fn is hopfian, i.e. every epimorphism Fn → Fn is an automorphism.

9. Let h : 〈a, b〉 → 〈a, b〉 be given by h(a) = abbab, h(b) = bababbab. Show
that h is an automorphism and compute h−1. (You can do this by messing
about. But try to do it algorithmically, that is, decompose h into a
product of Nielsen generators and then compose the inverses in opposite
order. The point is that this can be programmed on a computer.)

10. Show that for every homomorphism h : Fn → Fm there is a free factor-
ization Fn = A ∗ B such that h kills A and is injective on B.

11. Show that for every finitely generated H ⊂ Fn there is a subgroup
H ′ ⊂ Fn such that H ⊂ H ′, H is a free factor in H ′, and H ′ has fi-
nite index in Fn. This is called Marshall Hall’s theorem. You can find H ′

algorithmically. Do it for H in the example from #1. Hint: Add some
edges to G to turn an immersion G → Y into a covering map.

12. Can you always compute the normalizer

N(H) = {γ ∈ Fn | γHγ−1 = H}?

What can you say about the index [N(H) : H]? (Answer: it is always
finite and bounded by the number of vertices in the graph representing
H. Recall that N(H)/H is the deck group.) E.g. show that N(H) = H
for H as in #1.

13. If T and T ′ are two maximal trees, show that there is a sequence T =
T0, T1, · · · , Tk = T ′ of maximal trees such that any two consecutive trees
differ in only one edge, as in the lecture.

14.∗ This is a bit more ambitious. Consider the simplicial complex whose
vertices are non-closed edges of G, and a collection of edges spans a
simplex if their union is a forest. Draw some examples. Can you make a
conjecture about the homotopy type of the complex?

15.∗ Read the wonderful paper Topology of finite graphs by John Stallings
(Inventiones 71 (1983) 551-565.)
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2 Outer space

16. Consider a graph with two vertices and four edges, all joining the two
vertices. Once a marking is provided, this graph defines a simplex with
missing faces in Outer space X3. How many faces are missing? How
many simplices-with-missing-faces in X3 contain this simplex?

17. Construct a simplicial complex X̂n by “putting the missing faces back
in”. Thus X̂n \Xn is a subcomplex of X̂n. Show that simplices in X̂n \Xn

have infinitely many “superfaces” (i.e. simplices containing them) while
simplices not contained in X̂n \ Xn have only finitely many superfaces.
Draw the picture in rank 2. In particular, Xn is locally compact.

18. Show that Xn has finitely many Out(Fn)-orbits of simplices with missing
faces. In particular, the action on the spine Kn is cocompact.

19. Prove that the stabilizer in Out(Fn) of a graph Γ with marking g is
isomorphic to the isometry group of Γ.

20. In X2, sketch an orbit of the automorphism a 7→ a, b 7→ ab, and also of
a 7→ b, b 7→ ab.

21. Here are some basic facts from simplicial topology. Let f : X → Y be a
simplicial map between simplicial complexes.

(a) If y, y′ ∈ Y belong to the same open simplex
◦

σ, then f−1(y) is home-

omorphic to f−1(y′). In fact, f−1(
◦

σ) is homeomorphic to
◦

σ×f−1(y).

(b) Let U be a standard neighborhood of a closed simplex σ ⊂ Y (i.e. U
intersects a simplex τ if and only if τ ⊃ σ and the intersection U ∩ τ
is convex in that case). Show that f−1(U) deformation retracts to
f−1(σ). Hint: Induction on skeleta. It’s easier if X, Y are finite
dimensional, and that’s all that’s needed for our applications.

(c) Suppose each f−1(y) is contractible (y ∈ Y ). Show that f−1(σ) is
contractible for every closed simplex σ ⊂ Y . Then show that f is a
homotopy equivalence. Hint: For the first statement we may as well
assume Y = σ. Using (b) find an open cover of f−1(σ) consisting
of contractible sets with all nonempty intersections contractible and
with the nerve contractible. For the second statement induct on the
number of simplices when Y is finite. Alternatively, construct directy
a homotopy inverse by induction on skeleta.
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(d) Suppose each f−1(y) is acyclic. Show that f is a homology isomor-
phism.

(e) Now suppose we have simplicial maps X
f
→ Y

π
→ Z. Also suppose

that for every z ∈ Z the map

f |(πf)−1(z) : (πf)−1(z) → π−1(z)

is a homology isomorphism. Then f is a homology isomorphism.
Moreover, this also holds “in a range” i.e. if f |(πf)−1(z) are isomor-
phisms in Hi for i ≤ n then so is f .

(f) All of the above continues to hold in the category of simplicial-with-
missing faces complexes.

22. This is a more detailed outline of contractibility of Xn, essentially follow-
ing ideas of Steiner.

(a) Let π : X ′

n → Xn be the forget-the-basepoint map from Autre espace
to Outer space. Show that π is simplicial and that the preimage
π−1(Γ) of any point Γ is a tree homeomorphic to the universal cover
of Γ; in particular it is contractible. Deduce that π is a homotopy
equivalence. Thus it suffices to prove that X ′

n is contractible.

(b) Show that for every Γ ∈ X ′

n there is a unique metric RΓ on the
rose with identity marking and a unique (basepoint preserving) map
fΓ : RΓ → Γ such that

• fΓ is (the inverse of) the marking of Γ,

• fΓ is a local isometry when restricted to each open edge of RΓ.

(c) Show that Γ 7→ [RΓ] defines a retraction of X ′

n onto a simplex with
missing faces. Here [RΓ] denotes RΓ with metric rescaled so the
volume is 1. (In particular, prove continuity.)

(d)∗ For every t ≥ 0 define Γt as follows (this clean description is due
to Skora). View RΓ as embedded in the product RΓ × Γ as the
graph of fΓ. Let Nt be the horizontal t-neighborhood i.e. the set
of points (x, y) such that d(fΓ(x), y) ≤ t. This space is naturally
decomposed into components of its intersection with horizontal slices
y = const. Let Γt be the decomposition space obtained by crushing
these subsets to points. Show that Γt is naturally a metric graph
and after rescaling determines a point [Γt] in X ′

n. (You may want
to ponder this construction for the function | · | : [−1, 1] → [0, 1], a
prototypical fold.)

4



(e)∗ Show that t 7→ [Γt] is a path in X ′

n from RΓ to Γ (for large t it is
constant). This is the folding path associated with Γ.

(f)∗ The folding path varies continuously with Γ.

(g) Reparametrizing the folding paths in reverse on [0, 1] gives a strong
deformation retraction from X ′

n to a simplex with missing faces. Con-
clude that X ′

n is contractible.

23. Consider a graph Γ with two vertices and three edges, all joining the
two vertices (a Θ-graph). Say all three lengths are 1

3 , the basepoint is in
the middle of one edge, the marking to the rose 〈a, b〉 sends this edge to
the vertex and the other two edges to ab and bab (parallel orientations).
Draw the folding path to the simplex of roses associated with this graph
(by this I mean draw all simplices this graph passes through and indicate
the intersections with each simplex).

24. Prove that every folding path can be subdivided into finitely many sub-
paths each of which is a straight line segment in a simplex with missing
faces (but the parametrization may not be linear).

25. Prove that Z
m cannot act freely and properly discontinuously on a con-

tractible complex of dimension < m. Deduce that no subgroup of Out(Fn)
is isomorphic to Z

2n−2 (n ≥ 2) (recall that the dimension of the spine is
2n − 3). Find a subgroup isomorphic to Z

2n−3.

26.∗ This exercise can be used to deduce integral homological stability of
Aut(Fn) from [Hatcher-Vogtmann]. Let G be a group and H < G a
subgroup. Suppose G acts simplicially on a complex XG. Also suppose
that

• XH is an H-invariant subcomplex of XG

• XG and XH are n-connected,

• if an element of G leaves a simplex invariant, it fixes it pointwise. In
particular, the orbit spaces XG/G and XH/H are decomposed into
“simplices”, i.e. images of simplices in XG and XH .

• inclusion induced map XH/H → XG/G is a homeomorphism.

• for every point x ∈ XH inclusion

StabH(x) →֒ StabG(x)

induces an isomorphism in homology Hi for i ≤ n.
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Then H →֒ G induces an isomorphism in Hi for i ≤ n.

Hint: Apply #18(e) to XH × EH/H → XG × EG/G → XG/G.

3 Lipschitz metric and train tracks

27. By considering the simplex of roses from #22, for ǫ > 0 find examples of
graphs Γ, Γ′ such that d(Γ, Γ′) < ǫ and d(Γ′, Γ) > 1/ǫ.

28. Let R ∈ X2 be the rose with identity marking and edges of length 1/2.
Let f be given by a 7→ a, b 7→ ab. Show that d(R, fk(R)) ∼ log k.

29. For the same R and f given by a 7→ b, b 7→ ab, show that d(R, fk(R))
is bounded above and below by a linear function of k. In fact, if R is
replaced by a suitable graph in the same simplex, k 7→ d(R, fk(R)) is
a linear function on the nose. Hint: use the train track metric. By
connecting consecutive graphs in the orbit with a folding path one gets
an axis of f .

30. For f in #29, show that axes for f and for f−1 are distinct lines.

31. For f in #28 find a sequence Γk with d(Γk, f(Γk)) → 0. Prove that
for any such sequence for large k there is going to be a proper invariant
subgraph (up to homotopy).
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