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Abstract. We construct a CAT(0) group containing a finitely
presented subgroup with infinitely many conjugacy classes of finite-
order elements. Unlike previous examples (which were based on
right-angled Artin groups) our ambient CAT(0) group does not
contain any rank 3 free abelian subgroups.

We also construct examples of groups of type Fn inside mapping
class groups, Aut(Fk), and Out(Fk) which have infinitely many
conjugacy classes of finite-order elements.

Hyperbolic groups contain only finitely many conjugacy classes of
finite subgroups (see [2, 5, 7]). Several other classes of groups share this
property, including CAT(0) groups [7, Corollary II.2.8], mapping class
groups [6], Aut(Fk), Out(Fk) [8], and arithmetic groups [3]. Building on
work of Grunewald and Platonov [11], Bridson [6] showed that for any
n, there is a subgroup of SL(2n + 2,Z) of type Fn that has infinitely
many conjugacy classes of elements of order 4. In [10], Feighn and
Mess constructed finite extensions of (F2)

n containing subgroups of
type Fn−1 with infinitely many conjugacy classes of elements of order
2. Their examples were realized as subgroups of the isometry group of
(H2)n = H

2 × · · · × H
2. Using the techniques of Morse functions on

CAT(0) cubical complexes, Leary and Nucinkis [13], constructed a very
general class of examples related to right-angled Artin groups. Further
examples appeared in [12].

In this note we describe a model situation where the Morse theory
argument of [13] can be applied. It includes the right-angled Artin
group setting from [13], but it can also be used when the ambient group
is not an Artin group. We apply it to the case of a hyperbolic group in
Theorem 2.1 and to the case of a virtual direct product of hyperbolic
groups in Theorem 2.2. In addition, we produce subgroups of mapping
class groups, Aut(Fk), and Out(Fk) with infinitely many conjugacy
classes of finite-order elements by finding natural realizations of finite
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extensions of (F2)
n in these groups (Theorems 3.1, 3.2, and 3.3). For

mapping class groups this solves Problem 3.10 in [9].

1. counting conjugacy classes of finite-order elements in

subgroups of Z-extensions

Proposition 1.1 below gives a basic method for producing examples of
groups with infinitely many conjugacy classes of finite-order elements.
The proof is contained in that of Theorem 3 in [13], where results
are stated for right-angled Artin groups. As background for the model
situation and Proposition 1.1, one needs the notion of a Morse function
on an affine cell complex, and the notion of non-positively curved cell
complexes. For details about the first topic the reader can refer to [1].
A good treatment of the latter topic can be found in [7].

Model Situation. Let X be a non-positively curved cell complex and
let f : X → S1 be a circle-valued Morse function which induces an
epimorphism of fundamental groups

f∗ : G = π1(X) → Z = π1(S
1)

Let K denote the kernel of this epimorphism.
Now let σ be a finite order isometry of X which

• fixes a vertex v ∈ X, and
• acts without fixed points on the link Lk(v,X).

Further, assume that the map f is σ-equivariant (for the trivial action
of σ on S1). The isometry σ induces an automorphism of G, which we
also denote by σ. Then f∗ is σ-equivariant, and it follows that σ leaves
K invariant. We form the semi-direct product G � 〈σ〉, and extend
f∗ to this group by mapping σ trivially. Note that G � 〈σ〉 can be
expressed as a semi-direct product with Z

G� 〈σ〉 = (K � 〈σ〉) � Z.

Proposition 1.1. Let σ, f , X, G and K be as described in the model
situation above. Then the group K� 〈σ〉 has infinitely many conjugacy
classes of elements with the same order as σ. In fact, the conjugacy
class of σ in G� 〈σ〉 intersects K� 〈σ〉 to give infinitely many K� 〈σ〉
conjugacy classes.

Proof. Let t ∈ G be such that f∗(t) = 1. Then tnσt−n is an element of
K � 〈σ〉. We show that tnσt−n is not conjugate to tmσt−m in K � 〈σ〉
unless n = m.

Since X is non-positively curved, its universal cover X̃ is a CAT(0)

space, and hence has unique geodesics [7]. Choose a lift σ̃ : X̃ → X̃
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which fixes a vertex x0 ∈ X̃ in the preimage of the vertex v ∈ X fixed

by σ. Thus σ̃ is an isometry of X̃ which fixes the vertex x0.

We argue by contradiction that this is the only point of X̃ which is

fixed by σ̃. If σ̃ fixed another point x1 ∈ X̃, then it would have to fix
the unique geodesic [x0x1] (because σ̃ is an isometry). Hence σ̃ would

fix the point of Lk(x0, X̃) determined by [x0x1]. Since σ̃ is a lift of σ,
this would imply that σ fixes a point of Lk(v,X), contradicting the
hypothesis on σ. Thus x0 is the unique fixed point of σ̃.

Let f̃ : X̃ → R be a lift of f ; it is a Morse function on X̃. Since f is
σ-equivariant where σ is defined to act trivially on S1, the isometry σ̃

acts on X̃ preserving height.

tmx0

tn(x0)

f̃(x0) + m

f̃(x0) + n

0
h

f̃

X̃ R

Figure 1. Picture proof of Proposition 1.1.

Recall that we chose t ∈ G so that f∗(t) = 1. The element t acts as

a deck transformation on X̃, and so tkσ̃t−k is a lift of σ with unique
fixed point tk(x0). Note that

f̃(tk(x0)) = f̃(x0) + k .

However, each h ∈ K � 〈σ〉 acts horizontally on X̃; that is, f̃(h(x)) =

f̃(x) for x ∈ X̃. In particular h cannot move the point tmx0 to the
point tnx0 for m �= n. Therefore tnσt−n �= h(tmσt−m)h−1 for m �= n,
and so the elements tnσt−n each represent distinct conjugacy classes in
K � 〈σ〉. �



4 N. BRADY, M. CLAY, AND P. DANI

The following family of examples provides illustrations of Proposi-
tion 1.1 in all dimensions. In Section 3 we shall see how to embed these
examples into various classical groups.

Example 1.2. This example first appeared in [13], section 9, example
2(a). Let X be the direct product of n copies of the wedge of two
circles, S1 ∨ S1. Then G = π1(X), is isomorphic to (F2)

n. Define
f : X → S1 by mapping each of the 2n circles homeomorphically
around S1 and extending linearly over the higher skeleta. Thus f is a
circle valued Morse function, which lifts to a Morse function f̃ on the

universal cover X̃. The cover X̃ is tiled by cubes. On each cube the
map f̃ attains a maximum value at one vertex, and attains a minimum
at the diametrically opposite vertex.

Define an order 2 automorphism σ of X as follows. In the case n = 1,
σ simply interchanges the two circles. In the case n ≥ 2, extend this to
a diagonal action. Note that σ fixes the unique vertex of X. The link
of this vertex is the n-fold join of a set of four points. Since σ acts on
a single set of four points by interchanging points in pairs, the action
on the whole link has no fixed points. Clearly, f is σ-equivariant.

The complex X is non-positively curved since it is the n-fold di-
rect product (with the product metric) of the non-positively curved
1-complex S1 ∨ S1. If the two circles of S1 ∨ S1 are chosen to be iso-
metric (eg. both are R/Z) then the map σ which interchanges them
can be taken to be an isometry. Similarly, the diagonal map σ act-
ing on X can be taken to be an isometry. Thus all the hypotheses of
Proposition 1.1 are satisfied.

By Proposition 1.1, the kernel of the map G� 〈σ〉 → Z has infinitely
many conjugacy classes of elements of order 2. .

Note that these kernels are of type Fn−1 but not of type Fn [1].
These examples appeared (and were generalized considerably) in [13].
Examples similar to these were given in Feighn-Mess [10]. Indeed,
the Feighn-Mess examples can be considered within the Morse theory
context. One has to work with Morse functions which are constant
on high dimensional cells. We shall investigate this in a forthcoming
article.

2. Conjugacy classes in subgroups of CAT(0) groups

In this section we give two applications of Proposition 1.1. In the
first example, the fundamental group of the complex X is hyperbolic,
and the kernel of the map to Z is finitely generated but not finitely
presented. The group G = π1(X) is extended by a carefully chosen
finite-order automorphsim.
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Theorem 2.1. There exist hyperbolic groups containing finitely gen-
erated subgroups which have infinitely many conjugacy classes of finite
order elements.

For the second example, we take the direct product of two copies of
the complex X of the first example, and take the diagonal action of the
finite-order automorphism. As in the case of the direct product of free
groups (in Example 1.2 above) the finiteness properties of the kernel
improve. In this case the kernel is of type F3 but not F4. The ambient
CAT(0) group has Z

2 subgroups, but not Z
3 subgroups.

Theorem 2.2. There exist CAT(0) groups with no Z
3 subgroups, which

contain finitely presented (in fact type F3) subgroups which have infin-
itely many conjugacy classes of finite order elements.

Remark 2.3. It would be very interesting to find a hyperbolic group
which contains a finitely presented subgroup with infinitely many con-
jugacy classes of finite-order elements. The subgroup in question could
not be a hyperbolic group.

The hyperbolic example. In this subsection we prove Theorem 2.1
by construction. The construction produces one example, but it should
be clear how to vary the construction to obtain other examples.

Start with the group G = π1(X), where X is a 2-complex consisting
of one vertex, eight 1-cells and eight hexagonal 2-cells as shown in
Figure 2.

i + 1

i + 1i

i

i + 2i + 3

Figure 2. A typical 2-cell of X.

Define a circle-valued Morse function f : X → S1 by mapping each
oriented 1-cell homeomorphically around S1, and extending linearly
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over the 2-skeleton. In the universal cover X̃, the Morse function f̃
“projects” a typical 2-cell (as shown in Figure 2) horizontally onto a
segment of length 3 in R.

The ascending link is a circle with 8 vertices labelled i−, 1 ≤ i ≤ 8,
and 1-cells from i− to (i + 1)− (i mod 8). The descending link is
described similarly, with i+ in place of i− above. The full link has
the following additional edges: for each i, there are edges connecting
the vertex i+ to (i ± 1)− and (i ± 3)− (mod 8). Figure 3 shows how
the vertex 1+ of the descending link is connected to 4 vertices of the
ascending link.

The complex X is given a piecewise hyperbolic metric by making
every 2-cell a regular right-angled hyperbolic hexagon. From Figure 3,
we see that there are no cycles of combinatorial length less than 4 (or
metric length less than 2π). By the large link condition, X is a non-

positively curved complex; the universal cover X̃ is a CAT(-1) space,
and so G is hyperbolic. See [7] for details about CAT(-1) spaces and
link conditions.

1+

1−

2−

3−

4−

5−

6−

7−

8−

Figure 3. Part of the link of the vertex of X.

Define the finite-order automorphism σ of X to be the cellular home-
omorphism of the 2-complex which fixes the vertex and cyclically per-
mutes the oriented 1-cells (and hence also cyclically permutes the 2-
cells). Note that f is σ-equivariant, once we define σ to act trivially on
S1. By construction, σ acts without fixed points (as an order 8 rota-
tion) on the ascending and the descending links of the single vertex of
X. The remaining edges of the link connect + vertices to − vertices.
These are freely permuted by σ since σ freely permutes + vertices (and
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freely permutes − vertices). Finally, σ can easily be taken to be an
isometry of X. Thus all the hypotheses of Proposition 1.1 are satisfied.

The fact that the ascending and descending links are each isomorphic
to S1 implies that the kernel K1 of the map G→ Z is finitely generated
but not finitely presented by Theorem 4.7(1) of [4] . Now the finite
extension G � 〈σ〉 is virtually G, and hence is also hyperbolic. The
kernel K1 � 〈σ〉 is virtually K1, and so is also fintely generated but
not finitely presented. By Proposition 1.1 K1 � 〈σ〉 has infinitely many
conjugacy classes of elements of order 8. �

Increasing the finiteness properties of the kernel. In this sub-
section, we give a proof of Theorem 2.2 by construction.

Start with the hyperbolic group G, the 2-complex X, and the Morse
function f : X → S1 of the preceding example.

The group G × G is the fundamental group of the product space
X ×X. Consider the composition of the product map

f × f : X ×X → S1 × S1

with the standard “linear map” S1 × S1 → S1 (covered by the linear
map R

2 → R : (x, y) 	→ x+ y). This is a circle valued Morse function
on X ×X, whose ascending (resp. descending) link is simply a join of
two copies of the ascending (resp. descending) link of f . Topologically,
these ascending and descending links are 3-spheres. Hence the kernel
K2 of the induced map G×G → Z is of type F3 but not of type F4 (or
even FP4) by Theorem 4.7(1) of [4].

Since X is non-positively curved, the product complex X ×X with
the product metric is also non-positively curved. Hence, the universal

cover X̃ × X̃ is a CAT(0) metric space. The group G×G is a CAT(0)
group. Since it is the direct product of two hyperbolic groups, the
maximal rank of its free abelian subgroups is 2.

The order eight isometry σ : X → X defines an isometry X ×X →
X ×X (acting in a diagonal fashion) which we also denote by σ. The
Morse function on X × X is σ-equivariant, once σ is defined to act
trivially on S1.

The isometry σ fixes the unique vertex of X × X. We see that σ
acts without fixed points on the link of this vertex as follows. First
note that the ascending (resp. descending) link of the Morse function
on X × X is a 3-sphere, expressed as the join of two circles, each of
combinatorial size eight. Since σ acts as an order eight rotation on each
circle, it freely permutes all the simplices of these 3-spheres. Finally,
since a general simplex of the link will be a join of a simplex of the
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ascending link and a simplex of the descending link, we see that σ freely
permutes all simplices of the link.

Proposition 1.1 implies that the kernel K2 � 〈σ〉 of the induced map

(G×G) � 〈σ〉 → Z

has infinitely many conjugacy classes of elements of order eight.
Finally, note that the group (G×G)�〈σ〉 is a CAT(0) group, because

σ is a finite order isometry of X × X. Also, the kernel K2 � 〈σ〉 is
virtually K2, and so shares the same finiteness properties (F3 but not
F4). �

3. Mapping class groups, Aut(Fk), and Out(Fk)

In this section we show that the group (F2)
n

� 〈σ〉 from Example 1.2
can be embedded in the mapping class group of a surface of sufficiently
high genus (this solves Problem 3.10 in [9]), in Aut(Fk), and Out(Fk),
where the free group has sufficiently high rank.

Let Σg be a closed orientable surface of genus g ≥ 3 and MCG(Σg)
the mapping class group of Σg.

Theorem 3.1. There exists a subgroup of type Fg−3 in MCG(Σg) that
contains infinitely many conjugacy classes of elements of order 2.

To ensure that the example is finitely presented, we need g ≥ 5.

Proof. Let ai, bi, i = 1, . . . , g−2 be the simple closed curves pictured in
Figure 4 and let Tai

, Tbi
denote the Dehn twists about these curves. The

only intersections between these curves are between ai and bi, which
intersect twice. Hence by [14, Theorem 7], the subgroup of MCG(Σg)
generated by Tai

, Tbi
is isomorphic to (F2)

g−2.
Let σ be the hyperelliptic involution of Σg such that σ(ai) = bi,

σ(bi) = ai for all i. Then σTai
σ = Tbi

, and hence the subgroup H =
〈Tai

, Tbi
, σ〉 <MCG(Σg) is isomorphic to (F2)

g−2
�Z2. The kernel from

Example 1.2 is the desired subgroup. �

· · ·· · ·

ai ai+1

bi bi+1

σ

Figure 4. The curves from Theorem 3.1.
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Letting Σg have punctures that are symmetric with respect to the
hyperelliptic involution σ, we get examples of subgroups with infinitely
many conjugacy classes of finite subgroups in Out(Fk). The smallest
finitely presented example occurs when g = 3 and there are 2 punctures,
this provides an example in Out(F7). We give an alternative example
below.

Theorem 3.2. There exists a subgroup of type F�k/2�−1 in Aut(Fk) that
contains infinitely many conjugacy classes of elements of order 2.

To ensure that the example is finitely presented, we need k ≥ 6.
Note that 
k/2� denotes the greatest integer less than or equal to k/2.

Proof. Fix a basis x1, . . . , xk of Fk. For i = 1, . . . , 
k/2� define the
following automorphisms:

φi : x2i−1 	→ x2
2i−1x2i ψi : x2i−1 	→ x2ix2i−1

x2i 	→ x2i−1x2i x2i 	→ x2
2ix2i−1

xj 	→ xj if j �= 2i− 1, 2i xj 	→ xj if j �= 2i− 1, 2i

For k = 2, the image of φ1, ψ1 in GL(2,Z) are the matrices
[
2 1
1 1

]
and[

1 1
1 2

]
. There exist integers m,n ≥ 1 such that the group 〈[2 1

1 1

]m
,
[
1 1
1 2

]n〉
is free. Letting N denote the larger of m,n we see that 〈[2 1

1 1

]N
,
[
1 1
1 2

]N 〉
is free. Hence, as free groups are Hopfian, the subgroup 〈φN

1 , ψ
N
1 〉 <

Aut(F2) is isomorphic to F2. As φi commutes with φj, ψj when j �=
i, we see that the group generated by the automorphisms φN

i , ψ
N
i is

isomorphic to (F2)
�k/2�.

As in the case for the mapping class group, we have an involution σ ∈
Aut(Fk) defined by σ(x2i−1) = x2i, σ(x2i) = x2i−1 for i = 1, . . . , 
k/2�
and σ(xk) = xk if k is odd. It can easily be checked that σφiσ = ψi

and hence the subgroup H = 〈φN
i , ψ

N
i , σ〉 < Aut(Fk) is isomorphic to

(F2)
�k/2�

�Z2. The kernel from Example 1.2 is the desired subgroup. �
Theorem 3.3. There exists a subgroup of type F�k/2�−1 in Out(Fk) that
contains infinitely many conjugacy classes of elements of order 2.

To ensure that the example is finitely presented, we need k ≥ 6.

Proof. We claim that the subgroup H from Theorem 3.2 does not con-
tain any nontrivial inner automorphisms. This implies that the sub-
group of Out(Fk) generated by the images of φN , ψN , σ is isomorphic
to H and hence the kernel from Example 1.2 is the desired subgroup.

Suppose some composition ρ of the φN
i , ψ

N
i , σ is an inner automor-

phism. Since the image of x1 by any automorphism in H is a word in
x1, x2, if ρ(x1) = xx1x

−1, then x is a word in x1, x2. Also, since the
image of x3 by any automorphism is a word in x3, x4, we see that if
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ρ(x3) = xx3x
−1 then x is a word in x3, x4. Therefore x is the identity

and ρ is trivial. �
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