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1. Introduction

Let Γ be a finitely generated group and let S be a finite set of generators for Γ.
This determines a word metric on Γ, given by d(g, h) = the length of the shortest
word in S representing g−1h, which makes Γ into a discrete, proper metric space.
For r ≥ 1, let BS(r) be the ball of radius r centred at the identity, with respect to
the word metric. We say that the generic element of Γ has a particular property
P if

lim
r→∞

|{elements in BS(r) with property P}|

|BS(r)|
= 1

In this note we prove that the generic element of a finitely generated, non-
elementary word-hyperbolic group has infinite order (see Section 2.1 below for def-
initions). Let ES(r) denote the set of finite-order elements in BS(r). We will
actually prove the following, somewhat stronger, result.

Theorem 1.1. Let Γ be a finitely generated, non-elementary, word-hyperbolic group,

and let S be any finite generating set for Γ. Then there exist positive constants

D = D(Γ) and M = M(Γ) such that

|ES(r)| ≤ M |BS( r
2 + D)|

In particular,

(1) lim
r→∞

|ES(r)|

|BS(r)|
= 0

The limit in (1) measures the density of finite-order elements in the group Γ.
Theorem 1.1 lies in sharp contrast to the case of virtually nilpotent groups, for which
this density is often positive. For example, for the square and triangle reflection
groups in the Euclidean plane, the densities in (1) are 1/4 and 2/3 respectively.
(See [D] for details). In general this limit is not a quasi-isometry invariant, and
in fact, even positivity may not be preserved under a quasi-isometry: for example,
every virtually nilpotent group has a torsion-free finite-index subgroup (for which
the density in (1) is 0).

Theorem 1.1 is not merely a consequence of the fact that non-elementary word-
hyperbolic groups have exponential growth. In fact, there exist examples (see [L])
of finitely generated infinite torsion groups with exponential growth (for which the
density in (1) is 1). The proof of Theorem 1.1 relies on the existence of a generalized
notion of centre for bounded sets in δ-hyperbolic spaces.

In Section 2 we review definitions and establish some results for later use. In par-
ticular, we introduce the concept of quasi-centres of bounded subsets of δ-hyperbolic

1



2 PALLAVI DANI

spaces. In section 3, we obtain a length bound for quasi-centres of orbits of finite-
order elements and use that to finish the proof of Theorem 1.1.

I would like to thank my advisor, Benson Farb, for his guidance and time. I
would also like to thank Lee Mosher for his suggestions.

2. Hyperbolic spaces and groups

2.1. Definitions. We first recall some basic facts about word-hyperbolic groups
given, for example in [GH]or [BH]. Let δ > 0. A geodesic triangle in a metric space
is said to be δ-slim if each of its sides is contained in the δ-neighbourhood of the
other two sides. A geodesic space X is said to be δ-hyperbolic if every triangle in
X is δ-slim.

Let Γ be a finitely generated group. Its Cayley graph with respect to a finite
generating set S is the graph whose vertices are elements of Γ and whose edges
connect vertices representing group elements that differ by a generator on the left.
G is said to be word-hyperbolic (or just hyperbolic) if its Cayley graph with respect
to some generating set, endowed with the word metric, is a δ-hyperbolic metric
space. The property of being a hyperbolic group is independent of the choice of
finite generating set. A hyperbolic group is said to be elementary if it contains a
cyclic subgroup of finite index.

2.2. Growth. Non-elementary hyperbolic groups have exponential growth. In fact,
more is true:

Theorem 2.1. [FN] Let Γ be a non-elementary hyperbolic group with generating

set S. Then there exist λ1, λ2 > 0 and λ > 1 such that for sufficiently high r,

λ1 · λ
r < |BS(r)| < λ2 · λ

r

2.3. Quasi-centres. Let X be a δ-hyperbolic, proper geodesic space and Y ⊂ X
be a non-empty subset of bounded diameter. Y may not have a centre, i.e. a point
in X that is equidistant from every point of Y . However, it does have a quasi-
centre, a set of uniformly bounded diameter, which can often fulfil the same role as
a centre.

For any x ∈ X , let B(x, r) denote the ball of radius r in X , centered at x. Define
ρx = inf{r > 0|Y ⊆ B(x, r)} and ρ = infx∈X{ρx}.

Definition 2.2. The quasi-centre of Y is the set C(Y ) = {x ∈ X |ρx = ρ}.

Note that if x0 minimizes ρx, then x0 must lie in a compact ball centered at
a point in Y , so that the quasi-centre is non-empty. The diameter of C(Y ) is
uniformly bounded by 2δ (See [B]).

The quasi-centre can be thought of as a generalization of a global fixed point of
a finite group acting on a negatively curved Riemannian manifold. Now suppose
that X is the Cayley graph of a hyperbolic group and Y is a finite subgroup. C(Y )
may not contain any vertices of the Cayley graph, but C1(Y ), the 1-neighbourhood
of C(Y ), certainly does. Vertices in C1(Y ) conjugate Y into a finite ball.

Theorem 2.3. [B, BH] Let Γ be a word-hyperbolic group with finite generating set

S. Let Y be a finite subgroup of Γ. If x is a vertex in C1(Y ), then for every g ∈ Y ,

the element x−1gx belongs to BS(4δ + 2).

Theorem 2.3 has the following consequence.
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Theorem 2.4. [B, BH] A hyperbolic group has finitely many conjugacy classes of

finite subgroups.

2.4. Polygons in δ-hyperbolic spaces. Let X be a δ-hyperbolic space. A k-gon

in X is a set of points A1, . . . , Ak together with geodesic segments γ1, . . . .γk, such
that γi has endpoints Ai and Ai+1 for 1 ≤ i ≤ k − 1 and γk has endpoints Ak

and A1. The Ai’s and the γi’s are called the vertices and the sides of the k-gon
respectively. We will be lax and denote such a k-gon by A1 . . . Ak, even though this
doesn’t completely specify the k-gon. We will denote the side joining Ai and Ai+1

by Ai and Ai+1. A regular k-gon is one whose sides have equal lengths.
A k-gon in X consists of k-geodesic segments, called its sides γ1, . . . , γk such

that γi and γi+1 share an endpoint for 1 ≤ i ≤ k − 1, and γk and γ1 share an
enpoint.

Note: The first one definitely seems better, since in the second, there is the ad-
ditional fact that any point is the endpoint of at most two of the geodesic segments
and secondly, polygons are later refered to by their vertices.

The slim-triangles condition can be used to prove the following “slim-polygons”
property.

Lemma 2.5. [BH] Let X be a δ-hyperbolic space. For any k, there is an εk = εk(δ)
such that given any k-gon in X, each of its sides is contained in the union of the

εk-neighbourhoods of the other k − 1 sides.

In fact, we can take εk = (k − 2)δ. (A better bound is obtained in [BH]). In
particular, εk increases as k increases. We use the slim-polygons property to show
that polygons have short diagonals.

Lemma 2.6. Let P be a k-gon, k > 3, in a δ-hyperbolic space, with side-lengths

bounded by some constant l. Then there exists a diagonal of P whose length is no

more than l + 2εk, where εk is as in Lemma 2.5.

Proof. Let P = A1A2 · · ·Ak . Let mi be the midpoint of the side AiAi+1, for i < k,
and let mk be the midpoint of AkA1.

From Lemma 2.5 we know that corresponding to the point m1 on A1A2, there is
a point p on another side of P such that d(m1, p) ≤ εk. There are two possibilities
for the position of p. (shown in the figure for k = 5):
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Case 1: Assume, without loss of generality, that p lies on A2m2. Then we have:

d(A1, A3) ≤ d(A1, m1) + d(m1, p) + d(p, m2) + d(m2, A3)

≤ d(A2, m1) + εk + d(p, m2) +
l

2

≤ (d(A2, p) + εk) + εk + d(p, m2) +
l

2

≤ d(A2, m2) +
l

2
+ 2εk

≤ l + 2εk

Case 2: Let V be the vertex closest to p, i.e. d(V, p) ≤ l
2 . (V = A3 in the figure).

At least one of A1V and A2V is a diagonal of P . Further, for j = 1 or 2, we have:

d(Aj , V ) ≤ d(Aj , m1) + d(m1, p) + d(p, V ) ≤ l + εk

In either case we have found a diagonal whose side-length is bounded by l +
2εk. �

We will use the following consequence of Lemma 2.6:

Lemma 2.7. Let P = A1 · · ·Ak be a regular polygon in a δ-hyperbolic space, with

side-length s. Then there exits ηk = ηk(δ), such that d(Aj , Aj+2) < s+ηk for some

1 ≤ j ≤ k.

Proof. By applying Lemma 2.6 at most k− 2 times, P can be cut up into triangles
using diagonals of P . At least one of these diagonals is a geodesic joining Aj and
Aj+2 for some j. Since εk is the largest of ε1, . . . , εk, the length of this diagonal is
at most s + (k − 2)(2εk). Now set ηk = (k − 2)(2εk). �

3. Finishing the proof

3.1. A length bound for the quasi-centre. Let g be a finite-order element in
Γ. Then vertices in C1(〈g〉), the 1-neighbourhood of the quasi-centre of 〈g〉, are
approximately half as far from the identity as g:

Proposition 3.1. Let Γ be a non-elementary word-hyperbolic group, with gener-

ating set S. Let g be a finite-order element of Γ and let x ∈ C1(〈g〉). Then there

exists D = D(Γ, S) such that

d(x, e) ≤
d(g, e)

2
+ D

Proof. Let g be of order k. Pick a geodesic γ in the Cayley graph of Γ, joining g
to the identity, e. Let Pg denote the regular k-gon with vertices e, g, . . . , gk−1 and
sides γ1 = γ, γ2 = g(γ), . . . , γk = gk−1(γ). Let mi denote the midpoint of γi. Note
that for all i,

d(gi, gi+1) = d(g, e) and d(gi, mi) = d(gi+1, mi) = d(g, e)/2

We first prove that the set {mi|1 ≤ i ≤ k} is bounded, with diameter less than a
constant which depends only on k and δ. Since the set is finite, it will be enough
to show that d(mi, mi+1) is bounded by such a constant for every i.

By Lemma 2.7, there exists some j such that d(gj , gj+2) < d(g, e)+ηk. Hence, for
every i, we have d(gi, gi+2) = d(gj , gj+2) < d(g, e) + ηk. For each i, pick a geodesic
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joining gi and gi+2, and consider the triangle gigi+1gi+2. Since this triangle is δ-
slim, each of the points mi and mi+1 is δ-close to a side not containing it. Without
loss of generality we may assume that one of the following three cases occurs:

PSfrag replacements
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gi+1

gi+1gi+1

gi+2gi+2

gi+2

mi
mi

mi

mi+1
mi+1

mi+1

p

p

p1 p2

Case 1: d(mi, p) < δ
Case 2: d(mi, p) < δ

Case 3: d(mi, p1) < δ; d(mi+1, p2) < δ

Case 1: We show that d(p, mi+1) < δ as well. By the triangle inequality we
have:

d(p, mi+1) + d(mi+1, gi+1) ≤ d(gi+1, mi) + d(mi, p)

=⇒ d(p, mi+1) +
d(g, e)

2
<

d(g, e)

2
+ δ =⇒ d(p, mi+1) < δ

So d(mi, mi+1) < 2δ.
Case 2: Once again d(mi, mi+1) < 2δ. The proof is similar to that of Case 1.

Case 3: The triangle inequality implies that d(gi, p1) > d(g,e)
2 −δ and d(gi+2, p2) >

d(g,e)
2 − δ (since d(gi, mi) = d(gi+2, mi+1) = d(g,e)

2 ), so that

d(p1, p2) = d(gi, gi+2) − d(gi, p1) − d(gi+2, p2)

< d(g, e) + ηk −
d(g, e)

2
+ δ −

d(g, e)

2
+ δ

= ηk + 2δ

So d(mi, mi+1) < ηk + 4δ.
Thus the diameter of the set {mi|1 ≤ i ≤ k} is at most k(ηk + 4δ). This means

each of its elements (in particular, m1) is “approximately” equidistant from the
vertices e, g, . . . gk−1. More precisely, for all i, we have

d(gi, m1) ≤ d(gi, mi) + d(mi, m1) ≤
d(g, e)

2
+ k(ηk + 4δ)

This implies ρ ≤ ρm1
≤ d(e, g)/2 + k(ηk + 4δ). Now by Lemma 2.4 there are only

finitely many conjugacy classes of finite-order elements. Let

D = 1 + max{k(ηk + 4δ)|k is the order of an element in Γ}

Note that D depends only on Γ and S. If x ∈ C1(〈g〉), then

d(x, e) ≤ ρ + 1 ≤
d(g, e)

2
+ k(ηk + 4δ) + 1 ≤

d(g, e)

2
+ D

�
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3.2. Proof of Theorem 1.1. For every g ∈ ES(r), pick any xg ∈ C1(〈g〉). Let D

be as in Proposition 3.1, i.e. d(xg , e) ≤ d(g,e)
2 + D. We now have a map

φ : ES(r) → BS(
r

2
+ D)

g 7→ xg

Given x ∈ BS( r
2 + D), φ−1(x) consists of elements h in Γ, such that x ∈ C1(〈h〉).

By Lemma 2.3 above, x−1hx is an element of BS(4δ + 2), a finite ball. Then if
M = |BS(4δ + 2)|, there are at most M choices for x−1hx, and hence for h, so that
|φ−1(x)| ≤ M . It follows that

|ES(r)| ≤ M |BS(
r

2
+ D)|

Note that M depends only on Γ and S.
Now since Γ is non-elementary, Lemma 2.1 guarantees the existence of λ > 1

and λ1, λ2 > 0, such that for sufficiently high r, λ1λ
r < |BS(r)| < λ2λ

r . So

F (Γ, S) = lim
r→∞

|ES(r)|

|BS(r)|
≤ lim

r→∞

M |BS( r
2 + D)|

|BS(r)|
≤ lim

r→∞

λ2λ
r

2
+D

λ1λr
= 0

�
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