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Abstract. Let Γ be a finitely generated group with a given word metric. The

asymptotic density of elements in Γ that have a particular property P is the

limit, as r → ∞, of the proportion of elements in the ball of radius r which

have the property P . We obtain a formula to compute the asymptotic density

of finite-order elements in any virtually nilpotent group. Further, we show

that the spectrum of numbers that occur as such asymptotic densities consists

of exactly the rational numbers in [0, 1).

1. Introduction

Let Γ be a finitely generated infinite group. If P is a property that elements of
Γ may have, such as having finite order, having cyclic centraliser or having a root,
it is natural to ask: What is the density of elements of Γ that have the property P?

To make this more precise, fix a finite set S of generators for Γ. Given two
elements g and h in Γ, set d(g, h) to be the length of the shortest word in S

representing g−1h. This defines the word metric on Γ, which makes Γ into a discrete,
proper metric space. For r ≥ 1, let BS(r) denote the ball of radius r centred at the
identity of Γ with respect to this metric. Let ES(r) denote the set of elements with
property P in the ball of radius r.

General Problem. Compute the asymptotics of |ES(r)|. In particular, find

D(Γ, S) = lim
r→∞

|ES(r)|
|BS(r)|

if this limit exists.

D(Γ, S) is the asymptotic density of elements in Γ which have the property P .
In this paper we study the asymptotic density of finite-order elements in the class
of virtually nilpotent groups (i.e. groups containing a nilpotent subgroup of finite
index). In Theorem 1.1 and Corollary 1.2 we obtain a formula to compute D(Γ, S)
for any virtually nilpotent group Γ.

It is worth pointing out that if Γ is actually a nilpotent group, the finite-order
elements of Γ form a finite subgroup, so that D(Γ, S) = 0 for any generating set
S. However, the situation is very different when one passes to virtually nilpotent
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groups. For example, Theorem 1.1 can be used to show that the densities of finite-
order elements in the square and triangle reflection groups in the Euclidean plane
are 1/4 and 1/3, respectively. In fact, we prove in Theorem 1.3 that every rational
number in [0, 1) occurs as the density of finite-order elements in some virtually
nilpotent group. This is noteworthy in light of the fact that in many results of
this nature in the literature the limit is always either 0 or 1. A number of such
examples are listed in [13]. The authors themselves give an example exhibiting
“intermediate” density; they show that the union of all proper retracts in the free
group on two generators has asymptotic density 6/π2.

The phenomenon of positivity of D(Γ, S) is not restricted to groups of polynomial
growth. In fact there exist infinite torsion groups with intermediate [8] and even
exponential [1, 17] growth. (For these D(Γ, S) = 1).

The quantity D(Γ, S) is not a geometric property; it may change drastically
under quasi-isometry. For example, every virtually nilpotent group contains a
nilpotent subgroup of finite index (for which D = 0). However, the large-scale
geometry of nilpotent Lie groups plays an important role in the methods used to
study |ES(r)|.

The idea of studying groups from a statistical viewpoint was introduced by Gro-
mov, when he indicated that “almost every” group is word-hyperbolic. Since then
the notions of generic group theoretic properties and generic-case behavior have
been extensively studied by Arzhantseva, Champetier, Kapovich, Myasnikov, Ol-
livier, Ol’shanskii, Rivin, Schupp, Schpilrain, Zuk and others (see [13] and the
references therein).

1.1. Virtually nilpotent groups. Our goal is to compute D(Γ, S) for virtually
nilpotent groups Γ. First consider the following geometric case.

Let G be a connected, simply connected nilpotent Lie group endowed with a left-
invariant Riemannian metric. Its group of isometries is given by IsomG = Go C,
where G acts by left multiplication and C is the group of automorphisms of G
which preserve the metric. Let Γ be a discrete, cocompact subgroup of IsomG.
Auslander [4] generalised Bieberbach’s First Theorem to show that Γ has a unique
maximal normal nilpotent subgroup Λ, which is torsion-free, and that the quotient
F = Γ/Λ is finite. (In particular Γ is virtually nilpotent.)

This information determines a representation ρ : F → Aut(g), where g is the
Lie algebra of G. (See Section 3.) If A is an element of F , then the automorphism
ρ(A) has eigenvalues for its action on g. The eigenvalues determined by elements
of F in this way depend only on the isomorphism type of Γ. The following theorem
computes the asymptotics of ES(r) and gives a formula for D(Γ, S) in terms of the
above eigenvalues.

Theorem 1.1. Retaining the above notation, let S be a finite set of generators for
Γ and let ES(r) denote the set of finite-order elements in the ball of radius r in the
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word metric. Let g = g1 ⊃ g2 ⊃ · · · ⊃ gk+1 = 0 be the lower central series of g and
let π : Γ → F denote the projection map.

Then there exists c > 0 such that for any A ∈ F , if h denotes the 1-eigenspace
of ρ(A), then

|π−1(A) ∩ ES(r)| ≤ crd−p (1)

where

d =
k∑
i=1

i · rank(gi/gi+1) and p =
k∑
i=1

i · rank(h ∩ gi/h ∩ gi+1)

Further,
D(Γ, S) =

m

|F |
(2)

where m is the number of elements of ρ(F ) that do not have 1 as an eigenvalue.

In particular, D(Γ, S) is independent of the generating set S, so we may write
D(Γ) instead of D(Γ, S).

Dekimpe and Igodt [6] show that every finitely generated virtually nilpotent
group has a subgroup of finite index that arises as in the geometric case. In partic-
ular, they show (see Section 3) that any virtually nilpotent group Γ has a unique
maximal finite normal subgroup, say Q, and Γ/Q acts geometrically on a connected,
simply connected nilpotent Lie group. So D(Γ/Q) can be computed using Theorem
1.1. Further, we have the following result.

Corollary 1.2. Let Γ be an arbitrary finitely generated virtually nilpotent group
with maximal finite normal subgroup Q. Then D(Γ, S) = D(Γ/Q) for any generat-
ing set S of Γ.

The formula in Theorem 1.1 makes it very easy to compute D(Γ) using algebraic
data associated with Γ. A large class of examples is provided by crystallographic
groups, i.e. groups acting properly discontinuously and cocompactly on Euclidean
space. These groups are virtually abelian (by Bieberbach’s First Theorem), and
hence virtually nilpotent. There are 17, 230, and 4783 crystallographic groups in
dimensions 2, 3, and 4, respectively. These are available as libraries designed for
use with the computer algebra software GAP [21]. The results of the computation
of D(Γ) for these groups (obtained using GAP) are summarised in the Appendix.

Theorem 1.1 shows that D(Γ) is always a rational number. In the following
theorem we address the question of which rational numbers in [0, 1] can occur.

Theorem 1.3. Given any rational number p/q with 0 ≤ p/q < 1, there exists a
crystallographic group Γ such that D(Γ) = p/q.

This is proved in Section 11 by explicitly constructing finite subgroups ofGl(n,Z)
in which exactly (q − p)/q of the elements have eigenvalue 1.

The paper is organised as follows. Sections 2-6 contain definitions and back-
ground on nilpotent Lie groups. In particular, Section 4 describes certain useful
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“polynomial” coordinate systems for nilpotent Lie groups. Section 6 contains some
technical lemmas about polynomial coordinates.

The proof of Theorem 1.1 is contained in Sections 7-9. In Section 7 we show
that a finite-order element of length r in Γ fixes a point in a certain ball centered
at the identity in G. The key is to now use the geometry of G to estimate the
number of fixed sets of torsion elements that intersect this ball. In Section 8, an
argument about volumes of balls in G yields the upper bound (1) in Theorem 1.1
for the number of torsion elements in any coset π−1(A) of Λ. From this bound it
follows that if 1 is an eigenvalue of ρ(A), the torsion in π−1(A) does not contribute
to D(Γ, S). In Section 9 an inductive argument shows that if 1 is not an eigenvalue
of ρ(A), then the coset π−1(A) consists entirely of torsion elements. Theorem 1.1
then follows from the fact that the asymptotic density of a coset of Λ in Γ is 1/|F |.

The proof of Corollary 1.2 appears in in Section 10. Finally, in Section 11
we construct examples to prove Theorem 1.3 and also investigate D(Γ) for some
virtually nilpotent groups which are not virtually abelian.

This paper consists of a portion of my PhD thesis. I would like to thank my
advisor, Benson Farb for his endless support, guidance, and inspiration. I would
like to thank Angela Barnhill for her suggestions on the manuscript, and the referee
for his/her comments.

2. Definitions and basic facts

2.1. Nilpotent Lie groups and Lie algebras. In this section we recall some
background material, which can be found, for example, in [5] or [7]. Recall that the
lower central series for a Lie algebra g is defined by

g1 = g, gi+1 = [g, gi] = R-span{[X,Y ] : X ∈ g, Y ∈ gi} for i ≥ 1.

Then g is said to be nilpotent if gk+1 = {0} for some k. If, in addition, gk is
non-trivial, then g is called a k-step nilpotent Lie algebra.

The lower central series for a group G is given by G1 = G, and Gi+1 = [G,Gi]
and G is nilpotent if its lower central series is finite. If Gk+1 = {1}, with Gk non-
trivial, then G is called a k-step nilpotent group. The Lie algebra of a connected
nilpotent Lie group is nilpotent.

A Lie subgroup of G is a subgroup which is a submanifold of the underlying
manifold of G. If G is connected, the subgroups Gi are Lie subgroups and the Lie
algebra of Gi is gi. Thus G is k-step nilpotent if and only if g is. For each i, the
subgroup Gi+1 is normal in Gi and the quotients Gi/Gi+1 are abelian.

If G is a connected, simply connected nilpotent Lie group, the exponential map,
exp : g → G, is an analytic diffeomorphism. Denote its inverse by log. Define a
map ∗ : g× g → g by

X ∗ Y = log(expX expY ). (3)
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The Baker-Campbell-Hausdorff formula expresses X ∗ Y as a universal power
series which involves commutators in X and Y . While the general term cannot be
expressed in closed form, the low order terms in the formula are well known:

X ∗ Y = X + Y +
1
2
[X,Y ] +

1
12

[X, [X,Y ]]− 1
12

[Y, [X,Y ]]

− 1
48

[Y, [X, [X,Y ]]]− 1
48

[X, [Y, [X,Y ]]] + (commutators in ≥ 5 terms). (4)

If G is k-step nilpotent, then commutators in more than k terms are trivial, which
makes this a finite sum.

2.1.1. Automorphisms and isometries. An automorphism A of G leaves invariant
the groups Gi. Further, A satisfies the relation A ◦ exp = exp ◦ dA. The fixed set
of A is the image in G of the 1-eigenspace of dA under the exponential map. It is
a Lie subgroup of G.

Let G be endowed with a left-invariant Riemannian metric. Its group of isome-
tries is given by IsomG = GoC, where G acts by left multiplication and C is the
group of automorphisms of G which preserve the inner product at the identity. We
will write the action of an element (g,A) ∈ IsomG on t ∈ G as (g,A)(t) = gA(t).
Any isometry fixing the identity is also an automorphism of G.

If G is abelian, then G = Rn with the standard inner product, where n is the
dimension of G. In this case IsomG = Rn oO(n).

The identity elements of G and Aut(G) will be denoted by 1 and I, respectively.
We will freely make use of the identifications (g, I) = g and (1, A) = A.

Any finite-order isometry of G has a fixed point. This follows from a more general
result of Auslander in [3]. If (g,A) is a finite-order isometry with fixed point p (so
that gA(p) = p), then

(p−1, I)(g,A)(p, I) = (p−1gA(p), A) = (p−1p,A) = (1, A).

Thus (g,A) is conjugate to (1, A) in IsomG and hence Fix((g,A)) = pFix(A).

Lemma 2.1. Let A = (1, A) be a finite-order isometry of G fixing the identity. Let
K be a normal, A-invariant Lie subgroup of G with projection map π : G→ G/K.
If Ā is the automorphism of G/K induced by A, then Fix(Ā) = π(Fix(A)).

Proof. Clearly π(Fix(A)) ⊆ Fix(Ā). Now if gK is fixed by Ā, then A leaves gK
invariant. Thus (g−1, I)(1, A)(g, I) is a finite-order isometry (equal to (g−1A(g), A))
leaving K invariant, which means it has a fixed point in K, say b. We now have

(g−1A(g), A)(b) = b =⇒ g−1A(g)A(b) = b =⇒ A(gb) = gb.

So gb is fixed by A and gK = π(gb). Thus Fix(Ā) ⊆ π(Fix(A)). �
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2.2. Quasi-isometries. A map φ : X → X ′ between two metric spaces (X, d) and
(X ′, d′) is a quasi-isometry if there exist constants λ ≥ 1, and C,D ≥ 0, such that

1
λ
d(x, y)− C ≤ d′(φ(x), φ(y)) ≤ λd(x, y) + C

for all x, y ∈ X and every point of X ′ is in a D-neighbourhood of φ(X).
The following classical result can be found, for example, in [11].

Theorem 2.2 (Milnor, Efremovich, Švarc). If Γ is a group acting properly discon-
tinuously and cocompactly by isometries on a proper geodesic metric space X, then
Γ is quasi-isometric to X. More precisely, for any x0 ∈ X, the mapping Γ → X

given by γ 7→ γ(x0) is a quasi-isometry.

3. Virtually nilpotent groups

A finitely generated group is said to be virtually nilpotent if it has a nilpotent
subgroup of finite index. Almost crystallographic groups, i.e. groups acting properly
discontinuously and cocompactly by isometries on a connected, simply connected
nilpotent Lie group, are examples of virtually nilpotent groups. This follows from
the following theorem of Auslander.

Theorem 3.1. [4] If Γ is a discrete, cocompact subgroup of IsomG = G o C,
where G is a connected, simply connected nilpotent Lie group, then Λ = Γ ∩ G is
cocompact in G and F = Γ/Λ is a finite group. Further, Λ is the unique maximal
normal nilpotent subgroup of Γ and it is torsion-free.

Using the work of Lee, Raymond, and Kamishima, Dekimpe and Igodt gave an
algebraic condition for a virtually nilpotent group to be almost crystallographic.
It is proved in [6] that every virtually nilpotent group has a unique maximal finite
normal subgroup. Further, they prove the following:

Theorem 3.2. If Γ′ is a virtually nilpotent group with maximal finite normal sub-
group Q, then Γ = Γ′/Q is almost crystallographic.

This is a generalisation of Malcev’s result [18] that any finitely generated, torsion-
free nilpotent group can be embedded as a discrete subgroup of a nilpotent Lie
group, which is unique up to isomorphism. Theorem 3.2 allows us to focus on
almost crystallographic groups.

3.1. Eigenvalues. Let Γ be an almost crystallographic group acting on G, i.e.
there is an injection ψ : Γ → G n Aut(G). By Theorem 3.1, Γ has a unique
maximal normal nilpotent subgroup Λ with ψ(Λ) = G ∩ ψ(Γ), such that F = Γ/Λ
is finite.

Let π : Γ → F be the projection map. There is a unique homomorphism
ξ : F → Aut(G) which makes the following diagram commute.
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1 // G // Gn Aut(G) // Aut(G) // 1

1 // Λ //

ψ

OO

Γ
π //

ψ

OO

F //

ξ

OO

1
A diagram-chase shows that ξ is injective. In other words, F can be realised as
a group of automorphisms of G. We obtain an injective homomorphism ρ : F →
Aut(g) by composing ξ with the map that assigns to each automorphism in Aut(G),
its derivative. If A ∈ F , the eigenvalues of A are the eigenvalues of the automor-
phism ρ(A) for its action on g.

The fact that these eigenvalues are well-defined follows from a theorem of Lee
and Raymond in [16] which says that any two isomorphic almost crystallographic
groups acting on G are conjugate by an element of Gn Aut(G). Indeed if ψ′ : Γ →
Gn AutG is another injection, giving rise to the homomorphism ξ′ : F → Aut(G),
and the element (g,B) ∈ Gn Aut(G) conjugates ψ(Γ) to ψ′(Γ), then we also have
Bξ(F )B−1 = ξ′(F ), which implies that the eigenvalues assigned to elements of F
via ξ are the same as those assigned via ξ′.

4. Polynomial coordinates on G

For the rest of the paper, G will denote a connected, simply connected nilpotent
Lie group. In this section we describe how G can be naturally identified with Rn,
where n is the dimension of G, so that the group structure is “polynomial” relative
to the linear coordinates on Rn. Such polynomial coordinate systems are treated,
for example, in [5], [10] or [22].

A map f : V → W between two vector spaces is polynomial if it is described
by polynomials in the coordinates for some (and hence any) pair of bases. A
polynomial coordinate map for G is a diffeomorphism φ : Rn → G, such that log ◦φ
and φ−1 ◦ exp are polynomial maps. We start by defining a useful polynomial
coordinate map on G.

Let g be a nilpotent Lie algebra and let g = g1 ⊃ g2 ⊃ · · · ⊃ gk+1 = 0 be its
lower central series. We define a basis which respects this filtration of g.

Definition 4.1. (Triangular basis) Let {X1, . . . , Xn} be an ordered basis for g

with [Xi, Xj ] =
∑n
l=1 αijlXl. The basis is triangular if αijl = 0 when l ≤ max{i, j}.

Example. For the three-dimensional Heisenberg Lie algebra (generated by X,Y

and Z, where [X,Y ] = Z and all other brackets are trivial), the ordered sets
{X,Y, Z} and {X + Z, Y, Z} are triangular bases, while the sets {Y, Z,X} and
{X,Y,X + Z} are not.

A triangular basis can be constructed by starting with an ordered basis for gk

and then successively pulling back ordered bases for the factors gi/gi+1, for i < k. If
g has an inner product, then the triangular basis can be chosen to be orthonormal.
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Definition 4.2. (Coordinate map on G) Let {X1, . . . , Xn} be a triangular basis
for g. Define a map φ : Rn → G by

φ(s1, . . . , sn) = (exp snXn) · · · (exp s1X1) = exp(snXn ∗ · · · ∗ s1X1).

See [5, Proposition 1.2.7] for a proof of the fact that φ defines a polynomial
coordinate map on G.

Each vector V in g is assigned a weight W, which specifies the smallest group in
the lower central series which contains V :

W(V ) = max{i | V ∈ gi}.

Example. In the Heisenberg Lie algebra, with triangular basis {X,Y, Z}, we have
W(X) = W(Y ) = 1 and W(Z) = 2.

In a triangular basis for g, there are exactly rank( gi/gi+1) vectors which have
weight i. With this in mind we fix the following notation.

Notation. Let g be k-step nilpotent and let ρi = rank( gi/gi+1). A triangular basis
for g will be written as {Xij} = {Xij | 1 ≤ i ≤ k; 1 ≤ j ≤ ρi}, where W(Xij) = i.
We will assume that {Xij} has the “dictionary order”. Sometimes we will write
the basis as {X1, . . . , Xk}, where Xi will mean Xi1, . . . , Xiρi

.
We will identify G with its preimage under the polynomial coordinate map φ

from Definition 4.2. Thus the element s = exp(skρk
Xkρk

∗ · · · ∗ s11X11) of G will
be written either as (sij), where it is assumed that 1 ≤ i ≤ k and 1 ≤ j ≤ ρi, or as
(s1, . . . , sk), where si = si1, . . . , siρi

for all i.
Finally, we will use si ·Xi to denote siρi

Xiρi
∗ · · · ∗ si1Xi1.

5. Geometry of nilpotent Lie groups

Let G be endowed with a left-invariant Riemannian metric. The Ball-Box The-
orem of Gromov and Karidi (Theorem 5.2) says that in certain polynomial coordi-
nates, the ball of radius r about the identity in G is bounded by certain boxes with
sides parallel to the coordinate axes.

Let {Xij | 1 ≤ i ≤ k, 1 ≤ j ≤ ρi} be an orthonormal triangular basis for the
Lie algebra g of G, where ρi = rank(gi/gi+1). Identify G with its preimage under
the corresponding polynomial coordinate map, and let BG(1, r) denote the ball of
radius r about the identity in G.

Definition 5.1. In the above coordinates, for any l > 0, define Box(l) ⊂ G by

Box(l) = {(sij) | |sij | ≤ (l)i for 1 ≤ i ≤ k; 1 ≤ j ≤ ρi}.

This is a box in G with sides parallel to the coordinate axes. For each i, it has
ρi sides of length 2li. Note that the Lebesgue measure of this box is 2nld, where
n =

∑
1≤i≤k ρi is the dimension of G, and d =

∑
1≤i≤k iρi.
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Theorem 5.2 (Ball-Box Comparison Theorem [9, 14]). There exists a > 1,
which depends only on G, such that for every r > 1,

Box(r/a) ⊂ BG(1, r) ⊂ Box(ra).

The Ball-Box Theorem can be used to estimate the volume of BG(1, r) and the
distances of elements of G from the identity. First we make the following definition.

Definition 5.3. Two functions f1 and f2, from a set S to R are said to be compa-
rable, denoted by f1(x) ∼ f2(x), if there exists M > 1 such that for all x ∈ S,

1
M
f2(x) < f1(x) < Mf2(x).

There is a unique left-invariant volume form on G, up to a scalar multiple. Also,
the left-invariant measure on G pulls back to Lebesgue measure on Rn under the
polynomial coordinate map. (See [5].) This yields the following corollary.

Corollary 5.4 (Polynomial growth [9, 14]). Retaining the above notation, if
volG denotes the left-invariant volume on G, we have

volG[BG(1, r)] ∼ rd.

Let ‖s‖G denote the distance of s ∈ G from the identity, in the left-invariant
metric on G. The following corollary is proved in [2].

Corollary 5.5 (Distances in nilpotent groups [2]). Let s ∈ G, with s = (sij)
in polynomial coordinates. Then

‖s‖G ∼ max
i,j

{|sij |1/i}.

If Gl is a group in the lower central series of G, the metric on G induces a
left-invariant metric on G/Gl. (The inner product at the identity is obtained by
identifying g/gl with g⊥). The corresponding distances are related as follows:

Corollary 5.6. (Distances in quotients) Let πl : G → G/Gl be the projection
map. Then there exists a constant δ = δ(G, l), such that for any s ∈ G,

‖πl(s)‖G/Gl ≤ δ‖s‖G.

Proof. If {Xij | 1 ≤ i ≤ k; 1 ≤ j ≤ ρi} is an orthonormal triangular basis for g

then {dπl(Xij) | 1 ≤ i ≤ l − 1; 1 ≤ j ≤ ρi} is an orthonormal triangular basis for
g/gl, in the induced left-invariant metric on G/Gl. In the corresponding polynomial
coordinates, πl is given by (s1, . . . , sk) 7→ (s1, . . . , sl−1), and the result follows from
Corollary 5.5. �
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6. More on polynomial coordinates

In this section we show that various functions associated with G, in particular,
the group operations and automorphisms, are polynomial maps which preserve
certain suitably defined weights. (See Proposition 6.3.) These results are well
known (cf. [5], [10] or [22]) but proofs are provided here for completeness. In Lemma
6.4 we obtain a bound on the amount that such weight preserving polynomial maps
can stretch distances. These results are used in the proof of Proposition 7.2.

We start with an example:

Example. Consider the Heisenberg group with polynomial coordinates associated
to the triangular basis {X,Y, Z}. Group multiplication and inversion expressed in
these coordinates are given by:

(x, y, z)(x1, y1, z1) = (x+ x1, y + y1, z + z1 + xy1) (5)

(x, y, z)−1 = (−x,−y,−z + xy) (6)

Recall that W(X) = W(Y ) = 1 and W(Z) = 2. If we assign the weight 1 to the
variables x, y, x1, and y1 and the weight 2 to z and z1, then on the right hand side
of both (5) and (6), the X- and Y -coordinates are sums of terms of weight 1, and
the Z-coordinates are sums of terms such that the total weight of each term is 2.

Motivated by this example, we make the following definition. Let y = {yi} be
a set of variables and let W be a function assigning a weight to each yi. Then
polynomials in {yi} can be assigned weights as follows:

W(α yi1 · · · yis) = W(yi1) + · · ·+W(yis), where α is any constant.

W(P (y)) = max{W(α yi1 · · · yis) | α yi1 · · · yis is a term of P (y)}.

Observe that W(P +Q) ≤ max{W(P ),W(Q)} and W(PQ) ≤ W(P ) +W(Q).

Definition 6.1. (Weight-preserving map) Let V and V ′ be vector spaces with
bases B = {X1, . . . , Xs} and B′ = {X ′

1, . . . , X
′
s′} respectively. A polynomial map f :

V → V ′ can be written, with respect to these bases, as f(v) = (P1(v), . . . , Ps′(v)),
where v = (v1, . . . , vs) =

∑s
i=1 viXi ∈ V , and the Pi’s are polynomials. Let W

(resp. W ′) be a function assigning weights to the Xi’s (resp. X ′
i’s) and define

W(vi) = W(Xi). As described above, this induces a weight function W on the
polynomials Pi. Then f is weight-preserving if W(Pl) ≤ W ′(X ′

l) for all l.

Observation 6.2. Finite sums and composites of weight-preserving polynomial maps
are weight-preserving polynomial maps.

Proposition 6.3. Let G be endowed with a polynomial coordinate system corre-
sponding to the triangular basis {Xij | 1 ≤ i ≤ k, 1 ≤ j ≤ ρi} of its Lie algebra g,
where W(Xij) = i. Then the bracket, ∗, exp, multiplication and inversion in G, and
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all automorphisms of G, when expressed in these coordinates, are weight-preserving
polynomial maps.

Proof. It is easy to see that the bracket is a polynomial map. To prove that it is
weight-preserving, it is enough to show that for given i, j, l, and m, if α and β are
polynomials with W(α) ≤ i and W(β) ≤ l, then [αXij , βXlm] is weight-preserving.
Observe that [Xij , Xlm] ∈ gi+l, so that

[αXij , βXlm] =
∑
s≥i+l

αβastXst.

where the ast are structure constants which depend on Xij and Xlm. This is
weight-preserving, since W(αβast) ≤ i+ l ≤ s for all s and t.

Now, the Baker-Campbell-Hausdorff Formula (4) expresses ∗ as a finite sum
involving brackets. So ∗ is a weight-preserving polynomial map as well, by Obser-
vation 6.2.

To prove that exp is a weight-preserving polynomial map, we produce polyno-
mials Qij , with W(Qij) ≤ i, such that when expressed in coordinates,

exp(v) = (Q11(v), · · · , Qkρk
(v)) (7)

for all v ∈ g. Recall that Ql(v) ·Xl denotes Qlρl
(v)Xlρl

∗ · · · ∗Ql1(v)Xl1. Define

ψl(v) = Ql(v) ·Xl ∗ · · · ∗Q1(v) ·X1

for all l. We prove that v = ψk(v) (where gk+1 is trivial), i.e. exp v = expψk(v). By
Definition 4.2, this is equivalent to equation (7). The Ql’s are chosen inductively
so that W(Qlj) ≤ l and ψl(v)− v ∈ gl+1, for all v.

Let v =
∑
vijXij be an element of g. Set Q1j(v) = v1j , for 1 ≤ j ≤ ρ1. Clearly,

W(Q1j) = 1 and ψ1(v)− v =
∑
i>1 vijXij ∈ g2.

Now assume the Qij ’s for i < l have been chosen, with ψl−1(v)− v ∈ gl, say

ψl−1(v)− v = ql1(v)Xl1 + · · ·+ qlρl
(v)Xlρl

+ an element of gl+1. (8)

Equivalently, ψl−1(v)− v = (0, . . . , 0, ql1, . . . , qlρl
, . . . ) (this follows from the Baker-

Campbell-Hausdorff formula). Observe that ψl−1(v) − v is a weight-preserving
polynomial map, as it is defined in terms of ∗. Thus W(qlj) ≤ l. Choose Qlj = −qlj
for 1 ≤ j ≤ ρl. Then W(Qlj) ≤ l. Moreover, using the Baker-Campbell-Hausdorff
formula again, we have

ψl(v) = Qlρl
(v)Xlρl

∗ · · · · ∗Ql1(v)Xl1 ∗ ψl−1(v)

= Ql1(v)Xl1 + · · · ·+Qlρl
(v)Xlρl

+ ψl−1(v) + an element of gl+1

= −ql1(v)Xl1 + · · · · −qlρl
(v)Xlρl

+ ψl−1(v) + an element of gl+1.

(9)

Equations (8) and (9) imply that ψl(v)− v ∈ gl+1, completing the induction. Since
gk+1 is trivial, we have v = ψk(v) as required.
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Now let s = (sij) and t = (tij) ∈ G. Using Definition 4.2, multiplication and
inversion can be written in terms of ∗ and exp as follows:

st = exp(sk ·Xk ∗ · · · ∗ s1 ·X1 ∗ tk ·Xk ∗ · · · ∗ t1 ·X1)

s−1 = exp[−(sk ·Xk ∗ · · · ∗ s1 ·X1)]

If A is an automorphism, dA preserves the bracket, and hence ∗. Thus

A(s) = A(exp(skρk
Xkρk

∗ · · ∗sk1Xk1 ∗ · · · ∗ s1ρ1X1ρ1 ∗ · · ∗s11X11))

= exp dA(skρk
Xkρk

∗ · · ∗sk1Xk1 ∗ · · · ∗ s1ρ1X1ρ1 ∗ · · ∗s11X11)

= exp(skρk
dAXkρk

∗ · · ∗sk1dAXk1 ∗ · · · ∗ s1ρ1dAX1ρ1 ∗ · · ∗s11dAX11).

Now for each i and j, we have dA(Xij) ∈ gi, so that

sijdAXij =
∑
l≥i

1≤m≤ρl

sijαlmXlm.

where the αlm’s are constants depending on A. Thus s 7→ sijdAXij is a weight-
preserving polynomial map.

It follows from Observation 6.2 that multiplication inversion and all automor-
phisms are weight-preserving polynomial maps. �

We now obtain a bound on the amount that a weight-preserving polynomial map
can stretch distances.

Lemma 6.4. If P : G → G is a weight-preserving polynomial map, then there
exists a constant λ = λ(P ) > 0 such that for all y ∈ G,

‖P (y)‖G ≤ λ‖y‖G.

Proof. By Corollary 5.5 we know that there exists µ > 1 such that
1
µ
‖y‖G ≤ max

i,j
{|yij |1/i} ≤ µ ‖y‖G and

1
µ
‖P (y)‖G ≤ max

i,j
{|Pij(y)|1/i} ≤ µ ‖P (y)‖G.

Let αyi1j1 · · · yiljl be a term occurring in Pij for some i and j. We omit the second
subscript for convenience. The weight-preserving condition, W(Pij) ≤ i, implies
that i1 + · · · + il ≤ i. Let s be such that |yis |1/is = max{|yi1 |1/i1 , · · · , |yil |1/il}.
Then

|αyi1 · · · yil |1/i = |α|1/i
[(
|yi1 |1/i1

)i1
· · ·

(
|yil |1/il

)il]1/i

≤ |α|1/i
[
|yis |i1/is · · · |yis |il/is

]1/i

= |α|1/i
[
|yis |(i1+···+il)/is

]1/i

≤ |α|1/i|yis |1/is ≤ |α|1/iµ‖y‖G.

This, combined with the fact that |Pij(y)|1/i ≤
∑

terms of Pij(y)
|αyi1 · · · yil |1/i, en-

ables us to choose a constant ν such that |Pij(y)|1/i ≤ νµ ‖y‖G for all i and j. Thus
‖P‖G ≤ µ2ν‖y‖G, and we can take λ = µ2ν. �
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7. The relation between Γ and G

We now return to the set-up in Theorem 1.1. Let Γ be a discrete, cocompact
subgroup of IsomG = GoC, with maximal normal nilpotent subgroup Λ and finite
quotient F = Γ/Λ, which we identify with its image in Aut(G) under the map ξ

defined in Section 3.
Let S be a finite generating set for Γ and let ES(r) be the set of finite-order

elements of length less than or equal to r in the word metric.
Every finite-order isometry of G has a fixed point (see Section 2.1.1). The fol-

lowing lemma will allow us to estimate the cardinality of ES(r) by counting fixed
sets of elements in ES(r) that intersect a certain ball in G.

Lemma 7.1. Let G, Γ, S and ES(r) be as above. Then there exists a positive
constant κ such that if (g,A) ∈ ES(r), then the fixed set of (g,A) in G intersects
BG(1, κr).

The proof relies on the following proposition, which establishes a relation between
the displacement of a point under the action of a finite-order isometry fixing the
identity of G, and the distance of that point from the fixed set of the isometry.

Proposition 7.2. Let A be a finite-order isometry of G fixing the identity, with
fixed subgroup H. Then there exists K = K(A,G), such that for all r > 0, if t ∈ G
satisfies ‖tA(t−1)‖G < r, then there exists h ∈ H such that ‖th‖G < Kr.

Proof of Lemma 7.1. Let `S denote the distance from the identity in Γ. Since the
map Γ → G given by γ 7→ γ(1) is a quasi-isometry (Theorem 2.2), there exist
positive constants λ and C, such that for all (g,A) ∈ Γ,

1
λ
`S((g,A))− C ≤ ‖g‖G ≤ λ`S((g,A)) + C.

So if (g,A) is an element of ES(r), then ‖g‖G ≤ λr + C ≤ (λ+ C)r (since r ≥ 1).
Let H be the fixed subgroup of A. As discussed in Section 2.1.1, if (g,A) fixes

tg, then its fixed set is tgH, and g = tgA(t−1
g ). Thus ‖tgA(t−1

g )‖G < (λ + C)r. So
by Proposition 7.2 there exists K = K(A,G), and an element h ∈ H such that

‖tgh‖G < K(λ+ C)r.

In other words, the fixed set of (g,A) intersects BG(1, κr), where κ = K(λ + C).
Since F is finite, K can be chosen to work simultaneously for all A ∈ F . �

Proof of Proposition 7.2. The proof is by induction on the lower central series of
G. Firstly, if G is abelian, we may write the condition on t as ‖t − A(t)‖G < r,
where A ∈ O(n). In this case, let H⊥ be the orthogonal complement of H in G.
There exists h ∈ H such that t+ h ∈ H⊥. Since h is a fixed point of A, we have

‖(t+ h)−A(t+ h)‖G = ‖t−A(t)‖G < r. (10)
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The map A leaves H⊥ invariant and has no fixed points on the compact set
{x ∈ H⊥| ‖x‖G = 1}. Thus the function ‖x− A(x)‖G attains a positive minimum,
say m, on this set. Now,

‖(t+ h)−A(t+ h)‖G = ‖t+ h‖G

∥∥∥∥ t+ h

‖t+ h‖G

−A

(
t+ h

‖t+ h‖G

)∥∥∥∥
G

≥ m‖t+ h‖G.

Inequality (10) now implies that ‖t+ h‖G ≤
(

1
m

)
r.

Now letG be k-step nilpotent with an orthonormal polynomial coordinate system
as in Section 5.2. Let π : G→ G/Gk be the canonical projection, i.e. π(x1, . . . xk) =
(x1, . . . , xk−1), and let Ā be the automorphism of G/Gk induced by A.

Let t ∈ G with ‖tA(t−1)‖G < r. For the rest of the proof, we use ≺ to mean less
than, up to a constant factor that depends only on G and A. We produce h ∈ H

such that ‖th‖G ≺ r.
Corollary 5.6 on distances in quotients, implies that

‖π(t)Ā
(
π(t)−1

)
‖G/Gk = ‖π(tA(t−1))‖G/Gk ≺ ‖tA(t−1)‖G < r.

By Lemma 2.1 the fixed set of Ā is π(H). So by the induction hypothesis, there
exists h1 ∈ H such that ‖π(t)π(h1)‖G/Gk ≺ r.

We may write th1 = yz, where y = (y1, . . . , yk−1, 0) and z = (0, . . . , 0, z) ∈ Gk.
Note that π(y) = π(th1) = π(t)π(h1), so that ‖π(y)‖G/Gk ≺ r. Further, Corollary
5.5 implies that

‖y‖G ∼ ‖π(y)‖G/Gk ≺ r.

However, ‖z‖G, and hence ‖th1‖G, may be arbitrarily large. This will be fixed by
correcting th1 by an element of H ∩Gk.

We first show that ‖zA(z−1)‖G ≺ r. Note that z is in the centre of G, which is
preserved by A, so that

yzA
(
[yz]−1

)
= yzA(z−1y−1) = yA(y−1)zA(z−1). (11)

Proposition 6.3 and Observation 6.2 imply that x 7→ xA(x−1) is a weight-
preserving polynomial map. Lemma 6.4 now implies that ‖yA(y−1)‖G ≺ ‖y‖G ≺ r.
Further, yzA

(
[yz]−1

)
= th1A

(
[th1]−1

)
= tA(t−1), so that ‖yzA

(
[yz]−1

)
‖G ≺ r.

Equation (11) now implies that ‖zA(z−1)‖G ≺ r.
Corollary 5.5 implies that ‖x‖Gk ∼ ‖x‖kG for all x ∈ Gk. Thus ‖zA(z−1)‖Gk ≺ rk.

By the first step of the induction, (since Gk is abelian) there exists h2 ∈ H ∩ Gk,
such that ‖zh2‖Gk ≺ rk, which means ‖zh2‖G ≺ r. Setting h = h1h2 completes the
inductive step:

‖th‖G = ‖th1h2‖G = ‖yzh2‖G ≤ ‖y‖G + ‖zh2‖G ≺ r.

�
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8. Volume estimates in G

In this section we fix an element A in the finite quotient F , and obtain an upper
bound for |π−1(A) ∩ ES(r)|. Let H be the collection of fixed sets in G of finite-
order elements in π−1(A). Then Lemma 7.1 says that every element of H intersects
BG(1, R), where R = κr.

If H is the fixed subgroup of A, then H consists of cosets of H in G. We will use a
volume argument to count the number of elements of H intersecting BG(1, R). We
first obtain disjoint neighbourhoods of the submanifolds in H and intersect them
with BG(1, R). Then we use the fact that the volume of BG(1, R) is greater than
the sum of the volumes of these disjoint pieces contained in it.

Lemma 8.1. Let H and H be as above. Then there exists ε > 0 such that the
ε-neighbourhoods of cosets in H are pairwise disjoint.

Proof. We first show that if t /∈ H, then H and tH have disjoint δ-neighbourhoods
for some δ > 0. If there is no such δ, we can find sequences {hi} and {tki}, with
hi, ki ∈ H, such that d(hi, tki) → 0, which means {h−1

i tki} is a sequence converging
to 1. We now have

A(h−1
i tki) → A(1) =⇒ h−1

i A(t)ki → 1

=⇒ k−1
i A(t−1)hi → 1

=⇒ (h−1
i tki)(k−1

i A(t−1)hi) → 1

=⇒ h−1
i tA(t−1)hi → 1.

Set g = tA(t−1). Suppose g ∈ Gj . Then {h−1
i ghi} = {g(g−1h−1

i ghi)} is a sequence
in gGj+1 converging to 1. Since gGj+1 is closed set, the limit, 1, is in gGj+1. Thus
g ∈ Gj+1. This inductive argument shows that g = 1. This means that t is a fixed
point of A, contradicting the fact that t /∈ H.

Since H is a discrete collection of cosets of H, the above implies the existence of
ε > 0 such that for any tH ∈ H, the ε-neighbourhoods of H and tH are disjoint.
It follows that the ε-neighbourhoods of any two cosets in H are disjoint. �

We denote the ε-neighbourhood of a set Y by Nbdε(Y ). We will need to estimate
the volumes of intersections of ε-neighbourhoods of elements of H with BG(1, R).
Since Nbdε(tH) = tNbdε(H), we will focus on estimating the volume of Nbdε(H)∩
BG(1, R).

The following lemma relates the volume of Nbdε(H) ∩ BG(1, R) to the volume
of H ∩BG(1, R) with respect to the left-invariant measure on H.

Lemma 8.2. Let volG and volH denote the left-invariant volumes in G and H,
respectively. Let ε be the constant obtained in Lemma 8.1. There exists a constant
Vε > 0, which is independent of R, such that

volG [Nbdε(H) ∩BG(1, R)] > Vε volH [H ∩BG(1, R)] .
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Proof. For any R, there exists a finite set AR of points in H ∩BG(1, R− ε) which
satisfies the following two conditions:

(1) Balls of radius ε in G, centred at points in AR are disjoint.
(2) Balls of radius 3ε in G, centred at points in AR cover H ∩BG(1, R).

Note that each ε-ball as in (1) is contained in Nbdε(H) ∩ BG(1, R) and has
volume equal to V ε1 = volG[BG(1, ε)]. Thus we have

volG[Nbdε(H) ∩BG(1, R)] > V ε1 |AR|. (12)

If h ∈ H, then BG(h, 3ε) ∩H = h (BG(1, 3ε) ∩H). Thus, the volume in H of the
intersection of H with a 3ε-ball as in (2) is a constant, V ε2 = volH[BG(1, 3ε) ∩H].
Since the collection of balls in (2) cover H ∩BG(1, R), we have

V ε2 |AR| > volH[H ∩BG(1, R)]. (13)

Set Vε = V ε
1
V ε

2
. Combining inequalities (12) and (13) yields the result. �

The next step is to estimate volH[H ∩BG(1, R)]. Note that the distance between
two points in H measured in the metric on G may be less then their distance in
the induced metric on H. If BH(1, R) denotes the ball of radius R in the induced
metric on H, then BH(1, R) is, in general, a subset of H ∩BG(1, R).

8.1. Polynomial coordinates compatible with H. We will define a new poly-
nomial coordinate system on G, such that the preimage of H under the polynomial
coordinate map is a subspace of Rn parallel to the coordinate axes. We will then
be able to use the ball-box technique from Theorem 5.2 to estimate volumes in H

and G simultaneously.
Let h be the Lie algebra of H. We choose a triangular basis for g, such that a

subset of the basis is a triangular basis for h. This can be done as follows.
Let g = g1 ⊃ g2 ⊃ · · · ⊃ gk+1 = 0 be the lower central series of g. Let

ρi = rank(gi/gi+1) and ηi = rank(h ∩ gi/h ∩ gi+1).

For each i, pick Xi1, . . . , Xiρi
to be a pullback of a basis for gi/gi+1, such that

Xi1, . . . , Xiηi projects to a basis for h ∩ gi/h ∩ gi+1. Give {Xij | 1 ≤ i ≤ k; 1 ≤ j ≤
ρi} the dictionary order.

It is easy to see that this gives a triangular basis for g. Since H is a Lie subgroup,
h is a subalgebra. In particular, it is closed under the bracket, so that {Xij | 1 ≤
i ≤ k; 1 ≤ j ≤ ηi} is a triangular basis for h.

Now define a polynomial coordinate map φ : Rn → G as in Definition 4.2.
Observe that φ−1(H) is the set of points {(sij) ∈ Rn | sij = 0 if ηi < j ≤ ρi},
which is a plane spanned by a subset of the coordinate axes for G.

We now endow G with a new left-invariant metric that makes the above basis
orthonormal. Note that, up to a constant factor, there is only one left-invariant
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volume form on a Lie group. Since we are only interested in the degree of growth,
we may use this new metric to estimate volume.

Recall that the symbol ∼ denotes comparable functions. (See Definition 5.3.)

Lemma 8.3. Retaining the above notation, let p =
k∑
i=1

i ηi. Then

volH[H ∩BG(1, R)] ∼ Rp.

Proof. Theorem 5.2 tells us that in the coordinate system defined above, BG(1, R)
can be bounded by two boxes (one contained in it and one containing it) which
have sides parallel to the coordinate axes. In particular, there exists a > 1 such
that for R > 1,

{(sij) | |sij | ≤ (R/a)i for all i} ⊂ BG(1, R) ⊂ {(sij) | |sij | ≤ (aR)i for all i}.

For each i, the outer box has ρi sides of length 2(aR)i. The intersection of this
box with H is a box parallel to the coordinate axes in H, with ηi sides of length
2(aR)i, for each i. The Lebesgue measure of this intersection is therefore a constant
multiple of Rp, where p =

∑k
i=1 i ηi. A similar statement holds for the inner box.

Moreover, H ∩BG(1, R) is contained in the outer box and contains the inner box.
This proves the lemma, since the Lebesgue measure on φ−1(H) is comparable to
the left-invariant measure on H. �

We can now prove inequality (1) in Theorem 1.1.

Lemma 8.4. There exists c > 0 such that |π−1(A) ∩ ES(r)| ≤ crd−p, where d =∑k
i=1 i ρi and p =

∑k
i=1 i ηi.

Proof. In Lemma 8.1 we obtained disjoint ε-neighbourhoods of the cosets in H. For
every tH ∈ H which intersects BG(1, R), choose an element pt in the intersection.
Observe that Nbdε(tH) = pt(Nbdε(H)), so that the sets pt(Nbdε(H) ∩ BG(1, R))
corresponding to distinct cosets in H are disjoint. Since ‖pt‖G ≤ R, we have

pt(Nbdε(H) ∩BG(1, R)) ⊆ BG(1, 2R).

Let M be the number of elements of H intersecting BG(1, R). Then

volG[BG(1, 2R)] > volG

 ⋃
tH∩BG(1,R) 6=∅

pt(Nbdε(H) ∩BG(1, R))


= M volG[Nbdε(H) ∩BG(1, R)]

> MVε volH[H ∩BG(1, R)], (Lemma 8.2)

so that

M <

(
1
Vε

)
volG[BG(1, 2R)]

volH[H ∩BG(1, R)]
.
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Corollary 5.4 and Lemma 8.3 now imply the existence of a constant c′ > 0 such
that M < c′Rd−p. Now by Lemma 7.1, M is an upper bound for |π−1(A)∩ES(r)|,
so that |π−1(A) ∩ ES(r)| ≤ crd−p, where c = κc′. �

9. Finishing the proof

To complete the proof we will need the following theorem of Pansu on the growth
of balls in virtually nilpotent groups.

Theorem 9.1. [20] Let Γ be a finitely generated, virtually nilpotent group with
finite generating set S. Let d =

∑∞
i=1 i rank(Γi/Γi+1). Then limr→∞

|BS(r)|
rd exists.

In particular, |BS(r)| ∼ rd. Together with Lemma 8.4, this implies that if 1 is
an eigenvalue of dA, then

lim
r→∞

|π−1(A) ∩ ES(r)|
|BS(r)|

= 0. (14)

This is because in this case, the fixed set H of A has dimension at least 1, which
implies that p ≥ 1 and hence d− p < d.

On the other hand if 1 is not an eigenvalue of dA, we have the following.

Lemma 9.2. Let A be a finite-order isometry fixing the identity, such that 1 is not
an eigenvalue of dA. Then (g,A) has finite order for every g ∈ G.

Proof. We prove in Lemma 9.3 below, that for every g ∈ G, there exists t ∈ G

with g = tA(t−1). Now (t, I)(1, A)(t−1, I) = (tA(t−1), A) = (g,A). In other words,
(g,A) is conjugate in IsomG to (1, A), and hence has finite order. �

Lemma 9.3. Let A be a finite-order isometry fixing the identity, such that 1 is not
an eigenvalue of dA. The map ψ : G→ G defined by ψ(t) = tA(t−1) is surjective.

Proof. The proof is by induction on the lower central series. If G is abelian, we
can write ψ(t) = t − A(t) = (I − A)t, where A = dA is linear. Since 1 is not an
eigenvalue of A, there is no non-zero v with (I −A)v = 0. Thus I −A is invertible
and the equation ψ(t) = b has a solution for every b.

Now let G = G1 ⊃ G2 ⊃ · · · ⊃ Gk+1 = 1G be the lower central series for G.
Then ψ leaves Gi invariant for all i, since A does. Assume ψ|Gi : Gi → Gi is
surjective.

The automorphism A induces an automorphism Ai on Gi−1/Gi. It follows from
Lemma 2.1 that dAi does not have 1 as an eigenvalue. The map ψi, induced by ψ
on Gi−1/Gi, is given by ψi(tGi) = tA(t−1)Gi = (tGi)Ai([tGi]−1). Since Gi−1/Gi

is abelian, ψi is surjective.
To prove the surjectivity of ψ|Gi−1 , let b ∈ Gi−1. Then there exists w ∈ Gi−1

with bGi = ψi(wGi) = wA(w−1)Gi. This means A(w)w−1b, and hence w−1bA(w)



THE ASYMPTOTIC DENSITY OF FINITE-ORDER ELEMENTS 19

is an element of Gi. Now the surjectivity of ψ|Gi implies that there exists y ∈ Gi

such that ψ(y) = yA(y−1) = w−1bA(w). Then we have

ψ(wy) = wyA(y−1)A(w−1) = ww−1bA(w)A(w−1) = b.

�

Thus every element of the coset π−1(A) has finite order if 1 is not an eigenvalue
of dA. The asymptotic density of a coset is computed in the following corollary.

Corollary 9.4. If π−1(A) is any coset of Λ in Γ, then

lim
r→∞

|π−1(A) ∩BS(r)|
|BS(r)|

=
1
|F |

.

Proof. Pick a set of coset representatives {γB | B ∈ F ; γB ∈ π−1(B)} and let
L = max{`S(γB) | B ∈ F}. For any A ∈ F , there is a bijective map π−1(A) → Λ
given by x 7→ xγ−1

A . Then for any r > 0, we have

|Λ ∩BS(r − L)| ≤ |π−1(A) ∩BS(r)| ≤ |Λ ∩BS(r + L)|. (15)

Since |BS(r)| =
∑
A∈F |π−1(A) ∩BS(r)|, it follows that

|BS(r − L)| ≤ |F ||Λ ∩BS(r)| ≤ |BS(r + L)|. (16)

A simple consequence of Theorem 9.1 is that lim
r→∞

|BS(r+N)|/|BS(r)| = 1, for any

N ∈ Z. Now equation (16) implies that lim
r→∞

|Λ ∩ BS(r)|/|BS(r)| = 1/|F | and the

result follows from equation (15). �

Putting together the different pieces yields the formula for D(Γ, S):

End of proof of Theorem 1.1. The inequality (1) was proved in Lemma 8.4. Now
let m be the number of elements of ρ(F ) which do not have 1 as an eigenvalue.
Combining equation (14), Lemma 9.2, and Corollary 9.4 we have

D(Γ, S) = lim
r→∞

∑
1 not an

eigenvalue
of A

|π−1(A) ∩ ES(r)|
|BS(r)|

= m lim
r→∞

|π−1(A) ∩BS(r)|
|BS(r)|

=
m

|F |
.

�

10. Arbitrary virtually nilpotent groups

In this section we prove Corollary 1.2. Let Γ be any finitely generated virtually
nilpotent group. As discussed in Section 3, Γ has a unique maximal finite nor-
mal subgroup, say Q, and Γ/Q is almost crystallographic. We wish to show that
D(Γ, S) = D(Γ/Q) for any generating set S of Γ.
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Proof of Corollary 1.2. Let S = {γ1, . . . γl} be a generating set for Γ. Then S̄ =
{γ1Q, . . . γlQ} generates Γ/Q. Let `S and `S̄ denote the corresponding length
functions on Γ and Γ/Q respectively.

Let g ∈ Γ. Clearly, `S̄(gQ) ≤ `S(g). Moreover, if γi1Q · · · γinQ is a geodesic word
representing gQ, then g = γi1 · · · γinq′ for some q′ ∈ Q. If M = max{`S(q) | q ∈ Q},
then `S(g) ≤ `S̄(gQ) +M .

Let BΓ(r) and BΓ/Q(r) denote the balls of radius r in Γ and Γ/Q respectively.
Let EΓ(r) and EΓ/Q(r) represent the corresponding sets of finite-order elements.
The above inequalities yield:

|BΓ(r)|
|Q|

≤ |BΓ/Q(r)| and |BΓ/Q(r)| ≤ |BΓ(r +M)|
|Q|

.

Since Q is finite, an element of Γ has finite order if and only if its projection in Γ/Q
has finite order. Thus we have

|EΓ(r)|
|Q|

≤ |EΓ/Q(r)| and |EΓ/Q(r)| ≤ |EΓ(r +M)|
|Q|

.

Putting together the above information, we have

|EΓ/Q(r −M)|
|BΓ/Q(r)|

≤ |EΓ(r)|
|BΓ(r)|

≤
|EΓ/Q(r)|

|BΓ/Q(r −M)|
.

Theorems 1.1 and 9.1 can now be used to conclude that

D(Γ, S) = lim
r→∞

|EΓ(r)|
|BΓ(r)|

= D(Γ/Q).

�

11. Examples

Crystallographic groups are groups which act properly discontinuously and co-
compactly on Euclidean space. They are virtually abelian, and hence virtually
nilpotent. The results of the computation of D(Γ) for the crystallographic groups
in dimensions 2, 3, and 4, computed using GAP, are summarised in the Appendix.

The study of D(Γ) for crystallographic groups leads to a number of questions:

• Given a rational number r ∈ [0, 1), is there a crystallographic group Γ with
D(Γ) = r?

• More generally, for every k, is there a k-step nilpotent group Γ with D(Γ) =
r?

• What is the highest density that can occur in crystallographic groups of a
given dimension?

• What is the smallest dimension that a given density occurs in?
• Is there an interesting explanation for the spectrum of densities in a given

dimension?
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In this section we answer the first of these by constructing examples to show
that in fact, every rational number in [0, 1) occurs as D(Γ) for some crystallo-
graphic group Γ. We also give a partial answer to the third question, and finally we
investigate D(Γ) for some virtually nilpotent groups which are not virtually abelian.

11.1. Constructing examples. The finite quotient F = Γ/Λ is called the ho-
lonomy group of Γ. The holonomy group of a crystallographic group can be
realised as a finite subgroup of Gl(n,Z). On the other hand, if F is a finite
subgroup of Gl(n,Z), an averaging argument can be used to show that F pre-
serves an inner product on Rn. Equivalently, there exists M ∈ Gl(n,R) such
that F ′ = MFM−1 ⊂ O(n). Then the lattice Λ = MZn is preserved by F ′ and
Γ = Λ o F ′ defines a crystallographic group.

The following Lemma is useful for constructing many examples.

Lemma 11.1. Let Γ1 and Γ2 be virtually nilpotent groups. Then

D(Γ1 × Γ2) = D(Γ1)D(Γ2).

Proof. In light of Corollary 1.2, we may assume Γi acts geometrically on a nilpotent
Lie group Gi, for i = 1, 2. In this case Γ1 × Γ2 acts geometrically on G1 × G2. If
Γi fits into

0 → Λi → Γi → Fi → 1,

where Λi is maximal normal nilpotent, then we have

0 → Λ1 × Λ2 → Γ1 × Γ2 → F1 × F2 → 1,

and Λ1 × Λ2 is the maximal normal nilpotent subgroup of Γ1 × Γ2.
If A = (A1, A2) ∈ F1 × F2, then the set of eigenvalues of dA is the union of the

eigenvalues of dA1 and dA2. In particular, 1 is not an eigenvalue for dA if and only
if neither dA1 nor dA2 has 1 as an eigenvalue. Thus D(Γ1×Γ2) = D(Γ1)D(Γ2). �

Proof of Theorem 1.3. We start by constructing, for any m ∈ Z, a crystallographic
group Γm such that D(Γm) = m−1

m . Let ζ be a primitive mth root of unity. If Φ
denotes the Euler function, then {1, ζ, ζ2 . . . ζΦ(m)−1} is a basis for Z[ζ], and we have
ζΦ(m) =

∑Φ(m)−1
i=0 aiζ

i, where ai ∈ Z. The matrix T , representing multiplication
by ζ on Z[ζ] is given below.

T =



0 a0

1 0 a2

1 0 a3

1
. . .

...
. . . 0 aΦ(m)−2

1 aΦ(m)−1


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The characteristic polynomial of T is xΦ(m) −
∑Φ(m)−1
i=0 aix

i, which is also the
minimal polynomial of ζ. The eigenvalues of T are exactly the Φ(m) primitive
mth roots of unity. Thus T has order m and the matrices T i do not have 1 as an
eigenvalue, for i < m.

Let F ∈ O(n) be conjugate to 〈T 〉 and let Λ ' Zn be the lattice preserved by F .
Then Γm = Λ o F is the desired group.

Now let p
q ∈ [0, 1) and note that p

q = p
p+1

p+1
p+2 · · ·

q−1
q . Appealing to Lemma 11.1

we can construct an example of a group Γ with D(Γ) = p
q . �

The above construction gives a very high dimensional crystallographic group if
p is much smaller than q. It would be nice to obtain a more efficient example.

11.2. Highest densities. As seen in the tables in the appendix, the highest values
of D(Γ) in two-, three- and four-dimensional crystallographic groups are 5/6, 1/2,
and 23/24 respectively. The fact that the highest density in three dimensions is
1/2 is part of a more general phenomenon:

Proposition 11.2. If Γ is an odd-dimensional crystallographic group, D(Γ) ≤ 1/2.

Proof. The holonomy group F of Γ can be realised as a finite subgroup of Gl(n,Z).
Since elements of F have finite order, all their eigenvalues are roots of unity. Thus
if n is odd and A ∈ F ⊂ Gl(n,Z) is orientation preserving (i.e. A has determinant
1), then 1 is necessarily an eigenvalue of A. Thus at least half the elements of F
have 1 as an eigenvalue, proving the result. �

The upper bound is attained, for example by Zn o Z2, where the non-trivial
element of Z2 is the automorphism T of Zn defined by T (v) = −v for all v.

11.3. Almost crystallographic groups. We now investigate D(Γ) for some vir-
tually nilpotent (but not virtually abelian) groups which act geometrically on nilpo-
tent Lie groups. For these, the holonomy group can be realised as a finite group of
automorphisms of the associated Lie algebra. We first show that in three and four
dimensions, this turns out to be too restrictive, and D(Γ) is always 0.

Recall that the complexification of g, denoted by gC, is g ⊗R C. Any inner
product on g extends to a positive definite hermitian form on gC. Any inner-
product-preserving automorphism T of g extends to a unitary operator with the
same eigenvalues. Further, if λ is an eigenvalue of T , then there is an eigenvector
(or a generalised eigenspace of the appropriate dimension) corresponding to λ in
gC.

Lemma 11.3. Let T be an automorphism of a 3- or 4-dimensional nilpotent, non-
abelian Lie algebra g. If all eigenvalues of T have absolute value 1, then 1 is an
eigenvalue of T .
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Proof. In each case below, we pass to the complexification of g to ensure the exis-
tence of eigenvectors or generalised eigenspaces.

If g is 3-dimensional, it is isomorphic to the Heisenberg Lie algebra. If Z gen-
erates g2, then T (Z) = ±Z. Thus we may assume that T (Z) = −Z and that
the eigenvalues of T are −1, λ1 and λ2, where λ1 and λ2 are either both real, or
complex conjugates of each other.

If λ1 and λ2 are distinct, there exist linearly independant eigenvectors v1 and
v2 in gC. Then [v1, v2] = cZ for some c ∈ C. Since T preserves the bracket,
[Tv1, T v2] = T (cZ) = −cZ. On the other hand, [Tv1, T v2] = [λ1v1, λ2v2] =
λ1λ2[v1, v2] = λ1λ2cZ. We conclude that λ1λ2 = −1. This cannot happen if
λ1 and λ2 are complex conjugates, so the two eigenvalues have to be 1 and −1.

If λ1 = λ2 = λ, then there exist vectors v1 and v2 in gC such that T (v1) = λv1

and Tv2 = λv2 + αv1, for some α. Let [v1, v2] = cZ for some c ∈ C. Then
−cZ = [Tv1, T v2] = [λv1, λv2 +αv1] = λ2[v1, v2] = λ2cZ, which is impossible, since
λ is real.

If g is 4-dimensional and 2-step nilpotent, then g2 is necessarily 1-dimensional.
If Z generates g1, then T (Z) = ±Z. Assuming T (Z) = −Z, so that −1 is an
eigenvalue, at least one of the other eigenvalues must be real. Thus we may assume
the set of eigenvalues is {−1,−1, λ1, λ2} and proceed as above.

If g is 3-step nilpotent, g3 and g2/g3 are 1-dimensional. Let g3 = 〈Z〉 and
g2 = 〈W,Z〉. Then T (Z) = ±Z and T (W ) = ±W + aZ, for some a ∈ R. We may
assume the set of eigenvalues is {−1,−1, λ1, λ2}. An argument similar to the above
completes the proof. �

Remark 11.4. If T is an inner-product-preserving automorphism of g, then every
eigenvalue of T has absolute value 1.

Theorem 1.1, Lemma 11.3, and Remark 11.4 imply the following corollary.

Corollary 11.5. If Γ is a group acting geometrically on a 3- or 4-dimensional
nilpotent (non-abelian) Lie group, then D(Γ) = 0. �

We now construct a class of almost crystallographic groups Γ, such that D(Γ) is
non-zero.

Definition 11.6. (Generalised Heisenberg Lie algebras) Define hn to be the
Lie algebra generated by {X1, . . . , Xn, Y1, . . . , Yn, Z} such that [Xi, Yi] = Z for
1 ≤ i ≤ n, and all other brackets are 0.

The following construction can be done for any generalised Heisenberg Lie alge-
bra h2n, of dimension 4n+ 1. We give the construction for h2:

Define an automorphism T on h2 by

X1 7→ X2 Y1 7→ −Y2 Z 7→ −Z
X2 7→ −X1 Y2 7→ Y1
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It is easy to check that T preserves the bracket. The matrix of T with respect to
the basis {X1, X2, Y1, Y2, Z} is given by:

0 −1
1 0

0 1
−1 0

−1


Thus T is an automorphism of order 4 whose eigenvalues are ±i, and −1.

Let H2 be the connected, simply connected nilpotent Lie group corresponding to
h2. Let T̃ be the automorphism of H2 with dT̃ = T and N = exp(Z5) be the lattice
in H2 preserved by T̃ . Then Γ = N o 〈T̃ 〉 is an almost-crystallographic group with
D(Γ) = 1

2 .
Note that for any group acting on a Lie group with 1-dimensional centre, the

maximum value of D is 1
2 , since the square of any automorphism fixes the central

direction. The groups Γ defined above attain this maximum value.

Appendix

The computations summarised below were done using the computer algebra soft-
ware GAP [21] and the software package “Cryst”, which contains libraries of 2-, 3-
and 4-dimensional crystallographic groups.

The first table gives the values of D(Γ) for all the 2-dimensional crystallographic
groups. See [19] for a description of the notation. In the tables summarising the
results in dimensions 3 and 4, N (q) denotes the number of groups Γ for which
D(Γ) = q.

Dimension two
Γ D(Γ)
W1 0
W1

1 0
W2

1 0
W3

1 0

W6 5/6
W1

6 5/12

W3 2/3
W1

3 2/3
W2

3 1/3

Γ D(Γ)
W4 3/4
W1

4 3/8
W2

4 3/8

W2 1/2
W1

2 1/4
W2

2 1/4
W3

2 1/4
W4

2 1/4

Dimension three
q N (q)
0 113

1/8 28
1/6 4
3/16 20
5/24 4
1/4 30
5/16 10
1/3 1
3/8 13
5/12 2
1/2 5
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Dimension four
q N (q)
0 1875

1/16 605
1/12 64
3/32 426
5/48 48
1/9 25
1/8 558
5/36 5
9/64 50
5/32 193
1/6 38

25/144 2
13/72 7
3/16 229
1/5 10

13/64 23
5/24 31
2/9 31
9/40 2
15/64 11
1/4 125

q N (q)
37/144 3
33/128 16
35/128 8
5/18 9
9/32 34
23/80 2
85/288 1
5/16 91
21/64 20
1/3 20

385/1152 1
49/144 2
25/72 2

205/576 2
13/36 6
3/8 27
2/5 6

13/32 9
5/12 4
7/16 2
4/9 12

q N (q)
9/20 1
11/24 1
15/32 4
1/2 6

37/72 2
33/64 10
25/48 1
17/32 7
35/64 5
5/9 7
9/16 17
23/40 2
85/144 1
43/72 1
5/8 14

91/144 1
21/32 13
2/3 4

385/576 1
65/96 2
49/72 1

q N (q)
11/16 4
25/36 3
17/24 1

205/288 1
137/192 2
13/18 2
35/48 3
3/4 3

55/72 2
19/24 1
4/5 1

77/96 4
13/16 4
5/6 1

41/48 3
31/36 1
7/8 4
9/10 1
11/12 2
23/24 4

References

[1] S. I. Adyan, The Burnside problem and identities in groups, Izdat. “Nauka”, Moscow,

1975.

[2] A. Ahlin, The large scale geometry of nilpotent-by-cyclic groups, Ph.D. Thesis, Uni-

versity of Chicago, 2001.

[3] L. Auslander, A fixed point theorem for nilpotent Lie groups, Proc. Amer. Math. Soc.

9 (1958) 822–823.

[4] L. Auslander, Bieberbach’s theorems on space groups and discrete uniform subgroups

of Lie groups, Ann. of Math. (2) 71 (1960) 579–590.

[5] L. Corwin, F. Greenleaf, Representations of nilpotent Lie groups and their applications.

Part I., Cambridge Studies in Advanced Mathematics, 18, Cambridge University Press,

Cambridge, 1990.

[6] K. Dekimpe, P. Igodt, The structure and topological meaning of almost-torsion free

groups, Comm. Algebra 22 (1994) 2547–2558.

[7] V. V. Gorbatsevich, A. L. Onishchik, E. B. Vinberg, Foundations of Lie theory and Lie

transformation groups, Translated from the Russian by A. Kozlowski, Reprint of the

1993 translation Lie groups and Lie algebras. I, Encyclopaedia Math. Sci. 20, Springer,

Berlin, 1993, Springer-Verlag, Berlin, 1997.



26 PALLAVI DANI

[8] R. I. Grigorchuk, On Burnside’s problem on periodic groups, (Russian) Funktsional.

Anal. i Prilozhen 14 (1980) 53–54.

[9] M. Gromov, Carnot-Carathodory spaces seen from within, Sub-Riemannian geometry,

79–323, Progr. Math. 144, Birkhuser, Basel, 1996.

[10] P. Hall, The Edmonton notes on nilpotent groups, Queen Mary College Mathematics

Notes, Mathematics Department, Queen Mary College, London, 1969.

[11] P. de la Harpe, Topics in geometric group theory, Chicago Lectures in Mathematics,

University of Chicago Press, Chicago, IL, 2000.

[12] Y. Kamishima, K. B. Lee, F. Raymond, The Seifert construction and its applications

to infranilmanifolds, Quart. J. Math. Oxford Ser. (2) 34 (1983) no. 136 433–452.

[13] I. Kapovich, I. Rivin, P. Schupp, V. Schpilrain, Asymptotic density in free groups and

Zk, visible points and test elements, math.GR/0507573.

[14] R. Karidi, Geometry of balls in nilpotent Lie groups, Duke Math. J. 74 (1994) 301–317.

[15] K. B. Lee, There are only finitely many infra-nilmanifolds under each nilmanifold,

Quart. J. Math. Oxford Ser. (2) 39 (1988) no. 153 61–66.

[16] K. B. Lee, F. Raymond, Rigidity of almost-crystallographic groups, Combinatorial

methods in topology and algebraic geometry (Rochester, N.Y., 1982), 73–78, Contemp.

Math. 44, Amer. Math. Soc., Providence, RI, 1985.

[17] I. G. Lysionok, Infinite Burnside groups of even period, (Russian) Izv. Ross. Akad.

Nauk Ser. Mat. 60 (1996) 3–224, translation in Izv. Math. 60 (1996) 453–654.

[18] A. I. Malcev, On a class of homogeneous spaces, Amer. Math. Soc. Translation, (1951)

no. 39.

[19] G. Martin, Transformation Geometry, Undergraduate Texts in Mathematics, Springer-

Verlag, New York-Berlin, 1982.
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