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Abstract. An important result of Arkhipov–Bezrukavnikov–Ginzburg relates
constructible sheaves on the affine Grassmannian to coherent sheaves on the

dual Springer resolution. In this paper, we prove a positive-characteristic

analogue of this statement, using the framework of “mixed modular sheaves”
recently developed by the first author and Riche. As an application, we de-

duce a relationship between parity sheaves on the affine Grassmannian and

Bezrukavnikov’s “exotic t-structure” on the Springer resolution.

1. Introduction

1.1. Main result. Let G be a connected reductive complex algebraic group, and
let G∨ be the Langlands dual group over an algebraically closed field k. Recall that
the geometric Satake equivalence is an equivalence of tensor abelian categories

(1.1) S : Rep(G∨)
∼−→ PervGO

(Gr,k),

where Rep(G∨) is the category of finite-dimensional rational representations of
G∨, and PervGO

(Gr,k) is the category of spherical perverse k-sheaves on the affine
Grassmannian Gr. When k = C, there is an extensive body of work (see [AB, ABG,
B3, BF], among others) exhibiting various ways of extending S to an equivalence
of derived or triangulated categories. In particular, an important theorem due to
Arkhipov–Bezrukavnikov–Ginzburg [ABG] relates Iwahori-constructible sheaves on

Gr to coherent sheaves on the Springer resolution Ñ for G∨.
In this paper, we begin the project of studying derived versions of (1.1) in positive

characteristic. We work in the framework of “mixed modular derived categories”
recently developed by the first author and S. Riche [ARc2, ARc3]. The main result
of the paper is the following modular analogue of the result of [ABG].

Theorem 1.1. Assume that the characteristic of k is a JMW prime for G∨, and
that G∨ satisfies (1.2) below. Then there is an equivalence of triangulated categories

P : Dmix
(I) (Gr,k)

∼−→ DbCohG
∨×Gm(Ñ )

satisfying P (F〈1〉) ∼= P (F)〈−1〉[1]. Moreover, this equivalence is compatible with
the geometric Satake equivalence: for any F ∈ Dmix

(I) (Gr) and V ∈ Rep(G∨), there

is a natural isomorphism P (F ? S(V )) ∼= P (F)⊗ V .
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Recall that a JMW prime for G∨ is a good prime such that the main result
of [JMW2] holds in that characteristic: that is, S sends tilting G∨-modules to
spherical parity sheaves. A list of known JMW primes appears in [JMW2, Def-
inition 1.7] (but see §1.4 below). Under this assumption, the Mirković–Vilonen
conjecture holds [AR]. The additional condition we impose on G∨ is this:

(1.2)
The derived group of G∨ is simply connected, and its Lie
algebra admits a nondegenerate G∨-invariant bilinear form.

Finally, Dmix
(I) (Gr,k) is the mixed modular derived category of complexes that are

constructible with respect to the stratification of Gr by orbits of an Iwahori sub-
group I ⊂ GO. (For full details on notation and terminology, see Section 2.)

1.2. Comparison with the Arkhipov–Bezrukavnikov–Ginzburg theorem.
The broad structure of the proof of the main theorem is very similar to that
in [ABG]. Readers who are familiar with [ABG] will recognize a number of familiar
ingredients in this paper, including Wakimoto sheaves; the ind-perverse sheaf cor-
responding to the regular representation; and realizations of the coordinate rings
of N and Ñ as Ext-algebras on Gr.

One salient difference, however, is in the role of perverse sheaves on Gr. Re-
call that there is an equivalence of categories Dmix

(I) (Gr,k) ∼= DbPervmix
(I) (Gr,k)

(see [ARc2] or [BGS]). In [ABG], this equivalence plays a significant role; in partic-
ular, that paper gives a dg-model for Dmix

(I) (Gr) in terms of projective pro-perverse

sheaves. In contrast, perverse sheaves are almost absent from the present paper.
Instead, we use a dg-model for Dmix

(I) (Gr) based on parity sheaves.

This change leads to an additional simplification. A key step of [ABG] is to
show that a certain dg-algebra (defined in terms of projective pro-perverse sheaves)
is formal. In the present paper, we are able to skip that step: by using parity
sheaves in place of projective perverse sheaves, we end up describing Dmix

(I) (Gr) by

an ordinary graded ring, not a dg-ring.
The price we pay for that is that, unlike in [ABG], we are unable to describe the

ordinary (i.e., non-mixed) derived category Db
(I)(Gr,k). In characteristic 0, [ABG]

tells us that Db
(I)(Gr,k) is equivalent to the category of dg-coherent sheaves on Ñ .

Whether that holds in the modular setting is closely related whether there is a
well-behaved “degrading” functor Dmix

(I) (Gr,k)→ Db
(I)(Gr,k).

1.3. Koszul-type duality and the exotic t-structure. One of the main results
of [ARc2] gives an equivalence of categories between parity sheaves on a flag variety
and mixed tilting sheaves on the Langlands dual flag variety. Separately, according
to [AR, Proposition 5.7], there is an equivalence of categories

Parity(GO)(Gr,k)
∼→ Tilt(PCoh(N )),

where PCoh(N ) is the category of perverse-coherent sheaves on the nilpotent cone
for G∨ (see §2.6). These results raise the question of whether Parity(I)(Gr,k)
participates in a “parity–tilting” equivalence.

When k = C, this question has a positive answer [B2]. The other side of the

equivalence involves the exotic t-structure on DbCohG
∨×Gm(Ñ ), and the equivalence

itself is understood as an instance of Koszul duality. (See [B2, §1.2] for the Koszul
duality perspective, and [B2, BM] for applications of the exotic t-structure.)

In this paper, we prove that this holds in positive characteristic as well.
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Theorem 1.2. Under the assumptions of Theorem 1.1, there is an equivalence of
additive categories P : Parity(I)(Gr,k)

∼→ Tilt(ExCoh(Ñ )).

This result ends up being quite an easy corollary of Theorem 1.1, because the
entire proof of Theorem 1.1 is structured in a way that anticipates this application.
As noted earlier, the perverse t-structure on Dmix

(I) (Gr,k) does not play much of a

role in this paper—but a different t-structure, the adverse t-structure, appears quite
prominently. Ultimately, the adverse t-structure turns out to be the transport of
the exotic t-structure across the equivalence of Theorem 1.1.

1.4. Relationship to the work of Mautner–Riche. While this work was un-
derway, the authors learned that C. Mautner and S. Riche [MR] were independently
pursuing a rather different approach to Theorem 1.2, not relying on the geometric
Satake equivalence or the Mirković–Vilonen conjecture. Their proof requires the
characteristic of k to be very good for G∨, but a priori not necessarily a JMW
prime. In fact, their work implies that every good prime is a JMW prime, improv-
ing on [JMW2, Theorem 1.8], and thereby also improving the main result of [AR]
as well as Theorem 1.1 of the present paper.

Nevertheless, we maintain the distinction between good primes and JMW primes
in the body of this paper, so as to preserve its logical independence from [MR].

1.5. Contents of the paper. Section 2 introduces notation and recalls basic facts
about the various varieties and categories we will work with. In Section 3, we
revisit the main results of [AR] and translate them to the mixed modular setting.
In Section 4, we carry out some computations related to the regular representation
of G∨ and the corresponding ind-perverse sheaf. Section 5 develops the theory of
mixed modular Wakimoto sheaves, which serve as constructible counterparts to line
bundles on Ñ . They are a key tool in Section 6, which realizes the coordinate ring
of Ñ as an Ext-algebra on Gr. Theorem 1.1 is proved in Section 7. Finally, in
Section 8, we discuss the exotic t-structure and prove Theorem 1.2.

The language of mixed modular derived categories is ubiquitous in this paper.
For general background on these categories, see [ARc2, ARc3]. Appendix A, written
jointly with S. Riche, is a companion to those papers. It contains general results
on mixed modular derived categories that were not included in [ARc2, ARc3], and
it can be read independently of the main body of the paper.

1.6. Acknowledgments. We are grateful to Carl Mautner and Simon Riche for
discussing their work-in-progress with us.

2. Notation and preliminaries

2.1. Graded vector spaces and graded Hom-groups. For a graded k-vector
space V =

⊕
Vn, or, more generally, a graded module over a graded k-algebra, we

define the shift-of-grading functor V 7→ V 〈m〉 by

(V 〈m〉)n = Vm+n.

If V and W are two graded vector spaces, we define Hom(V,W ) to be the graded
vector space given by

Hom(V,W )n = Hom(V,W 〈n〉).
More generally, if A is any additive category equipped with an automorphism
〈1〉 : A → A , we define Hom(A,B) for A,B ∈ A as above. We clearly have
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Hom(V 〈n〉,W 〈m〉) = Hom(V,W )〈m− n〉. Note that these conventions are consis-
tent with those of [AR], but opposite to those of [A].

In the setting of mixed modular derived categories, it is often convenient to work
with the automorphism {1} = 〈−1〉[1]. As in §A.1, if F and G are two objects in a
mixed modular derived category, we define a graded vector space Hom(F ,G) by

Hom(F ,G)n = Hom(F ,G{n}).

This satisfies Hom(F{n},G{m}) = Hom(F ,G)〈m− n〉.
Finally, if A and B are objects in some triangulated category, we may write

Homi(A,B) for Hom(A,B[i]), and likewise for Homi(−,−) and Homi(−,−).

2.2. Reductive groups and representations. As in §1.1, G will always denote
a fixed connected complex reductive group, and G∨ will denote the Langlands
dual group to G over an algebraically closed field k. In addition, the following
assumptions will be in effect throughout the paper, except in Section 5:

• The characteristic of k is a JMW prime for G.
• The group G∨ satisfies (1.2).

The latter can be weakened slightly. For instance, if G∨ satisfies (1.2) and there is
a separable central isogeny G∨ � H∨, then the main results hold for H∨ as well.
However, to simplify the exposition, we assume (1.2) throughout.

Fix a Borel subgroup B ⊂ G and a maximal torus T ⊂ B, along with corre-
sponding subgroups T∨ ⊂ B̄∨ ⊂ G∨. Let B∨ ⊂ G∨ be the opposite Borel subgroup
to B̄∨. We regard B as a “positive” Borel subgroup and B∨ as a “negative” one.
That is, we call a character of T∨ dominant if its pairing with any root of B is
nonnegative, or equivalently, if its pairing with any coroot of B∨ is nonpositive.
Let X denote the character lattice of T∨, identified with the cocharacter lattice of
T , and let X+ ⊂ X be the set of dominant weights. The set X carries two natural
partial orders, which we denote as follows:

λ � µ if µ− λ is a sum of positive roots;

λ ≤ µ if I·λ ⊂ I·µ (see §2.3 below).

These two orders coincide on X+.
For λ ∈ X+, let L(λ), M(λ), N(λ), and T(λ) denote the irreducible, Weyl, dual

Weyl, and indecomposable tilting G∨-modules, respectively, of highest weight λ.
Let W denote the Weyl group of G or G∨, and let w0 denote the longest element

of W . For any λ ∈ X, we put

δλ = length of the shortest w ∈W such that wλ is dominant.

This is consistent with [B2, §1.4.1]. The notation “δλ” also appears in [A, AR, Mi]
with a slightly different meaning: in those papers, only dominant weights occur,
and the integer they call “δλ” is called δw0λ in the present paper.

2.3. The affine Grassmannian. Let Gr = GK/GO, where K = C((t)) is the
field of Laurent series in an indeterminate t, and O = C[[t]] is its subring of power
series. Let I ⊂ GO be the Iwahori subgroup corresponding to B ⊂ G. Recall that
the I-orbits on Gr are naturally parametrized by X. For λ ∈ X, the corresponding
I-orbit is denoted simply by I·λ, and the inclusion map by

iλ : I·λ ↪→ Gr.
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The GO-orbits are parametrized instead by X+. Recall that these are sometimes
called spherical orbits, and that sheaves on Gr smooth along the GO-orbits are
sometimes called spherical sheaves. For λ ∈ X+, the corresponding GO-orbit is
denoted by Grλ, and the inclusion map by

isph
λ : Grλ ↪→ Gr.

2.4. Constructible sheaves. All constructible sheaves will be assumed to have
coefficients in k. From now on, we will omit the coefficients from the notation for
categories of constructible complexes.

Let PervGO
(Gr) be the category of GO-equivariant perverse k-sheaves on Gr.

For λ ∈ X+, the objects in PervGO
(Gr) arising from various G∨-representations of

highest weight λ via the geometric Satake equivalence (1.1) are denoted as follows:

IC(λ) = S(L(λ)), I!(λ) = S(M(λ)), I∗(λ) = S(N(λ)), T (λ) = S(T(λ)).

Let Parity(I)(Gr) denote the additive category of parity complexes on Gr that

are constructible with respect to the stratification by I-orbits, and let Dmix
(I) (Gr)

denote the corresponding mixed derived category. More generally, if X ⊂ Gr is
any locally closed I-stable subset, then Dmix

(I) (X) and related notations are defined

similarly. If X is smooth, we denote by kX , or simply k, the constant sheaf on X
with value k, regarded as an object of Parity(I)(X) or Dmix

(I) (X).

Let Pervmix
(I) (Gr) ⊂ Dmix

(I) (Gr) denote the abelian category of mixed perverse

sheaves. This is a graded quasihereditary category. Given λ ∈ X, the corresponding
standard and costandard objects will be denoted by

i!(λ) = iλ!kI·λ{dim I·λ} and i∗(λ) = iλ∗kI·λ{dim I·λ},

respectively. The image of the canonical morphism i!(λ)→ i∗(λ) is denoted IC(λ).
(Lemma 2.1 below will resolve the apparent conflict with the notation for S(L(λ)).)
Lastly, let E(λ) denote the unique indecomposable parity sheaf supported on I·λ
and whose restriction to I·λ is k{dim I·λ}. When λ ∈ X+, [JMW2] tells us that
E(λ) = T (λ).

We will also work with the spherical categories Parity(GO)(Gr), Dmix
(GO)(Gr), and

Pervmix
(GO)(Gr), and occasionally with the equivariant versions Dmix

I (Gr), Dmix
GO

(Gr),
etc. The spherical case is not explicitly covered by the papers [ARc2, ARc3], which
required the variety to be stratified by affine spaces. See §A.3 for a discussion of
this case. For λ ∈ X+, we put

J!(λ) = (isph
λ )!kGrλ{dimGrλ} and J∗(λ) = (isph

λ )∗kGrλ{dimGrλ}.

The following lemma lets us identify PervGO
(Gr) with a full subcategory of

Pervmix
GO

(Gr). Via this identification, we will henceforth regard S as taking values

in Pervmix
GO

(Gr). In particular, the objects I!(λ), T (λ), etc., defined above will

henceforth be regarded as objects of Pervmix
GO

(Gr).

Lemma 2.1. There is a t-exact fully faithful functor DbPervGO
(Gr) → Dmix

GO
(Gr)

which, for each λ ∈ X+, sends IC(λ) ∈ PervGO
(Gr) to IC(λ) ∈ Pervmix

GO
(Gr), and

sends T (λ) to E(λ).

Note that the domain of this functor is not Db
GO

(Gr); rather, it is the derived

category of the heart. It is equivalent DbRep(G∨).
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Proof. Note that DbPervGO
(Gr) ∼= KbTilt(PervGO

(Gr)), as usual for a quasihered-
itary category. Since chark is a JMW prime for G, we have

Tilt(PervGO
(Gr)) = ParityGO

(Gr) ∩ PervGO
(Gr).

The desired functor is induced by the fully faithful embedding Tilt(PervGO
(Gr)) ↪→

ParityGO
(Gr). �

Via Lemma 2.1, we will henceforth identify PervGO
(Gr) with a full subcategory

of Dmix
GO

(Gr). In particular, for any F ∈ Dmix
(I) (Gr) and any V ∈ Rep(G∨), it makes

sense to form the convolution product

F ? S(V ).

2.5. The Springer resolution and the nilpotent cone. Let B∨ = G∨/B∨ be
the flag variety for G∨. Let u∨ be the Lie algebra of the unipotent radical of B∨,
and let Ñ = G∨×B∨ u∨ be the Springer resolution. Finally, let N be the nilpotent
cone in the Lie algebra of G∨; and let π : Ñ → N be the obvious map.

We equipN with an action of the multiplicative group Gm by setting z·x = z−2x,
where z ∈ Gm and x ∈ N . We likewise make Gm act on Ñ by having z ∈ Gm scale
the fibers of Ñ → G∨/B∨ by z−2. In both cases, this Gm-action commutes with the
natural G∨-action. Moreover, the map π is (G∨ × Gm)-equivariant. The induced
action of Gm on the coordinate ring k[N ] has even nonnegative weights. In other
words, k[N ] becomes a graded ring concentrated in even nonnegative degrees.

In this paper, coherent sheaves on N or Ñ will always be (G∨×Gm)-equivariant.

For brevity, we write Coh(N ) instead of CohG
∨×Gm(N ) for the category of (G∨ ×

Gm)-equivariant coherent sheaves on N , and likewise for Coh(Ñ ). The notation π∗
should always be understood as a derived functor DbCoh(Ñ )→ DbCoh(N ).

Let ON and OÑ denote the structure sheaves of N and Ñ , respectively. Given
m ∈ Z, let ON 〈m〉 denote the coherent sheaf that corresponds to the graded k[N ]-
module k[N ]〈m〉, where the latter is defined as in §2.1. We also put OÑ 〈m〉 =

π∗ON 〈m〉. More generally, for any F ∈ DbCoh(N ), we let F〈m〉 = F ⊗ ON 〈m〉,
and likewise in DbCoh(Ñ ).

Any weight λ ∈ X determines a line bundle OÑ (λ) on Ñ . The push-forwards
π∗OÑ (λ) will be discussed in §2.6 below. In the special case where λ = 0, it is
known (see [BrKu, Theorem 5.3.2]) that

(2.1) π∗OÑ ∼= ON .

Separately, by [BrKu, Lemmas 3.4.2 and 5.1.1], one has

(2.2) π!ON ∼= OÑ .

It will sometimes be more convenient to work in the language of “G∨-equivariant
graded finitely generated k[N ]-modules” rather than in that of “(G∨×Gm)-equivar-
iant coherent sheaves on N ,” and we will pass freely between the two. We identify
the space of global sections Γ(Ñ ,OÑ ) with the ring k[N ] via (2.1), and given

F ∈ Coh(Ñ ), we think of Γ(Ñ ,F) as a G∨-equivariant graded finitely generated
k[N ]-module. For instance, the cohomology-vanishing result of [KLT, Theorem 2]
says that for λ ∈ X+, π∗(OÑ (λ)) is a coherent sheaf, so

(2.3) π∗OÑ (λ) = Γ(Ñ ,OÑ (λ)) for λ ∈ X+.
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2.6. Perverse-coherent sheaves. The category DbCoh(N ) admits a t-structure
whose heart is known as the category of perverse-coherent sheaves, and is denoted
by PCoh(N ). For general background on this category, see [B1, A]. Some key
features of this category are as follows:

• It is stable under F 7→ F〈1〉.
• Every object has finite length. Up to grading shift, the isomorphism classes

of simple objects are in bijection with X+.
• It is a properly stratified category.

For background on properly stratified categories, see [AR, §2]. In a properly strat-
ified category—a notion that generalizes that of a quasihereditary category—there
are four important classes of indecomposable objects, called standard, proper stan-
dard, costandard, and proper costandard objects. In PCoh(N ), we denote these
objects by

∆(λ), ∆̄(λ), ∇(λ), ∇̄(λ),

respectively, where λ ∈ X+. The proper ones are given by

∆̄(λ) = π∗OÑ (−w0λ)〈δw0λ〉, ∇̄(λ) = π∗OÑ (λ)〈−δw0λ〉.
Revisiting (2.3), we find that the proper costandard objects satisfy

(2.4) ∇̄(λ) ∈ Coh(N ) for all λ ∈ X+.

More generally, any object of PCoh(N ) with a proper costandard filtration is ac-
tually a coherent sheaf. (Proper standard objects, in constrast, are generally not
coherent sheaves.) For descriptions of ∆(λ) and ∇(λ), see [Mi, Definition 4.2].

Lastly, let D = RHom(−,ON ) be the Serre–Grothendieck duality functor on
DbCoh(N ). The category PCoh(N ) is stable under D, and we have

D(∇̄(λ)) ∼= ∆̄(−w0λ) and D(∇(λ)) ∼= ∆(−w0λ).

3. The Mirković–Vilonen conjecture for mixed sheaves

In this section, we recast the main results of [AR] in the setting of mixed modular
derived categories, obtaining a mixed version of the Mirković–Vilonen conjecture.
The main idea is to compare spherical parity sheaves on Gr with perverse-coherent
sheaves on N . Along the way, we carry out various auxiliary computations in
PCoh(N ) that will be useful in the sequel.

3.1. Derived equivalences for spherical sheaves. Let Γ ⊂ X+ be a finite
order ideal, i.e., a finite subset such that if γ ∈ Γ and µ < γ, then µ ∈ Γ. Let
GrΓ =

⋃
γ∈Γ Grγ be the corresponding closed subset of Gr, and let

UΓ = Gr r GrΓ.

This is an open GO-stable subset of Gr. Let jΓ : UΓ ↪→ Gr be the inclusion map.
Recall that PCoh(N ) is equipped with a recollement structure (see [AR, Propo-

sition 2.2]). Let PCoh(N )Γ ⊂ PCoh(N ) denote the Serre subcategory generated
by ∇̄(γ)〈m〉 with γ ∈ Γ, and let ΠΓ : PCoh(N ) → PCoh(N )/PCoh(N )Γ be the
Serre quotient functor. We will denote its derived version by the same symbol:

ΠΓ : DbCoh(N )→ Db(PCoh(N )/PCoh(N )Γ).

Here, we are using the main result of [A] to identify

(3.1) DbPCoh(N ) ∼= DbCoh(N ).
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Next, let

Db
ft(PCoh(N )/PCoh(N )Γ) ⊂ Db(PCoh(N )/PCoh(N )Γ)

be the full triangulated subcategory generated by tilting objects. (The subscript
“ft” refers to the fact that this category consists of “finite tilting complexes.”) Note
that the natural functor

(3.2) KbTilt(PCoh(N )/PCoh(N )Γ)
∼→ Db

ft(PCoh(N )/PCoh(N )Γ)

is an equivalence of categories: both sides are generated by tilting objects, so it suf-
fices to compare Homi(F ,G) on each sides for F ,G ∈ Tilt(PCoh(N )/PCoh(N )Γ).
When i = 0, these groups agree, and when i 6= 0, Homi(F ,G) vanishes on both
sides. (See [BBM, Proposition 1.5] or [Mi, Theorem 3.17].)

In the special case where Γ = ∅, the equivalence (3.1) restricts to an equivalence

Db
ftPCoh(N ) ∼= Db

perfCoh(N ),

where the right-hand side is the category of perfect complexes on N , i.e., those with
a finite resolution whose terms are direct sums of objects of the form ON ⊗ V 〈n〉
with V ∈ Rep(G∨).

Proposition 3.1. There is an equivalence of triangulated categories

Psph : Dmix
(GO)(Gr)

∼→ Db
perfCoh(N )

satisfying Psph(F{1}) ∼= Psph(F)〈1〉. Moreover, this equivalence is compatible with
the geometric Satake equivalence: for any F ∈ Dmix

(GO)(Gr) and V ∈ Rep(G∨), there

is a natural isomorphism Psph(F ? S(V )) ∼= Psph(F)⊗ V .

Proof. The existence of the equivalence is just a restatement of [AR, Proposi-
tion 5.7]. That result also gives us compatibility with geometric Satake when V is a
tilting G∨-module. One can then extend that to, say, any V with a Weyl filtration,
by induction on the “tilting dimension” (see [AR, Definition 2.10]) of V . Finally,
every G∨-module admits a finite resolution by modules with a Weyl filtration. By
induction on the length of such a resolution, one obtains the full result. �

Proposition 3.2. Let Γ ⊂ X+ be a finite order ideal. There is an equivalence of
triangulated categories

Psph,Γ : Dmix
(GO)(UΓ)

∼→ Db
ft(PCoh(N )/PCoh(N )Γ)

such that the following diagram commutes up to isomorphism:

Dmix
(GO)(Gr)

j∗Γ

��

Psph

∼
// Db

perfCoh(N )

ΠΓ

��
Dmix

(GO)(UΓ)
Psph,Γ

∼
// Db

ft(PCoh(N )/PCoh(N )Γ)

Proof. This is an immediate consequence of [AR, Corollary 5.8], using the equiva-
lence (3.2). �

The functor j∗Γ has left and right adjoints jΓ!, jΓ∗ : Dmix
(GO)(UΓ)→ Dmix

(GO)(Gr). On

the other hand, ΠΓ has left and right adjoints ΠL
Γ,Π

R
Γ that are a priori defined as

functors Db(PCoh(N )/PCoh(N )Γ) → DbCoh(N ), but according to [Mi, Proposi-
tion 5.4], they actually take objects in Db

ft(PCoh(N )/PCoh(N )Γ) to Db
perfCoh(N ).
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From these observations, we obtain the following consequence of the preceding
proposition.

Corollary 3.3. Let Γ ⊂ X+ be a finite order ideal. The following diagrams com-
mute up to isomorphism:

Dmix
(GO)(Gr)

Psph

∼
// Db

perfCoh(N )

Dmix
(GO)(UΓ)

Psph,Γ

∼
//

jΓ!

OO

Db
ft(PCoh(N )/PCoh(N )Γ)

ΠL
Γ

OO
Dmix

(GO)(Gr)
Psph

∼
// Db

perfCoh(N )

Dmix
(GO)(UΓ)

Psph,Γ

∼
//

jΓ∗

OO

Db
ft(PCoh(N )/PCoh(N )Γ)

ΠR
Γ

OO

Corollary 3.4. We have

Psph(J∗(λ)) ∼= ∇(λ)〈−δw0λ〉 and Psph(J!(λ)) ∼= ∆(λ)〈δw0λ〉.

Proof. Let Γ = {µ ∈ X+ | µ < λ}. Note that Psph(I!(λ)) ∼= ON ⊗ M(λ). The
corollary follows from the observations that ∆(λ) = ΠL

ΓΠΓ(ON ⊗ M(λ))〈−δw0λ〉
[Mi, Definition 4.2] and J!(λ) ∼= jΓ!j

∗
ΓI!(λ). �

3.2. Further study of perverse-coherent sheaves. In this subsection, we col-
lect a number of results about Hom-groups, quotients, and subobjects in PCoh(N ).

Lemma 3.5. Let λ ∈ X+. There are isomorphisms of graded rings End(∇(λ)) ∼=
End(∆(λ)) ∼= H•(Grλ).

Proof. This is a consequence of [AR, Theorem 5.9]. Specifically, let Γ = {µ ∈ X+ |
µ < λ}. Consider the tilting module T(λ), which corresponds under the geometric
Satake equivalence to the parity sheaf E(λ). Note that E(λ)|UΓ

is just the shifted
constant sheaf k{dimGrλ} on Grλ. Thus, [AR, Theorem 5.9] gives us the first
isomorphism below:

H•(Grλ) ∼= End(ΠΓ(ON ⊗ T(λ))) ∼= End(ΠR
Γ ΠΓ(ON ⊗ T(λ))).

The second isomorphism holds because ΠR
Γ is fully faithful. Finally, from [Mi,

Definition 4.2], we see that ΠR
Γ ΠΓ(ON ⊗ T(λ)) ∼= ∇(λ)〈−δw0λ〉. �

The preceding lemma lets us regard the coherent sheaf∇(λ) as a graded H•(Grλ)-
module. We can of course also regard k (thought of as a graded vector space
concentrated in degree 0) as a H•(Grλ)-module in the obvious way.

Proposition 3.6. There is an isomorphism of G∨-equivariant graded k[N ]-modules

k⊗H•(Grλ) ∇(λ) ∼= ∇̄(λ)〈2δw0λ〉.

Proof. Let End(∇(λ))+ ⊂ End(∇(λ)) denote the subspace spanned by homoge-
neous elements of strictly positive degree. Let {f1, . . . , fn} be a basis of homoge-
neous elements for End(∇(λ))+, and let di denote the degree of fi. In other words,
we may regard each fi as a map ∇(λ)〈−di〉 → ∇(λ). Form their sum

n⊕
i=1

∇(λ)〈−di〉
f=

∑
fi−−−−−→ ∇(λ).

This is a morphism in both Coh(N ) and PCoh(N ). We will study its kernel and
cokernel in both categories. First, via the isomorphism of Lemma 3.5, we have

(3.3) k⊗H•(Grλ) ∇(λ) ∼= End(∇(λ))/End(∇(λ))+ ⊗End(∇(λ)) ∇(λ) ∼= cokCoh(N ) f.
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We now turn our attention to PCoh(N ). Let Γ = {µ ∈ X+ | µ ≤ λ}, and let
Υ = Γ r {λ}. Consider the quotient functor

ΠΓ,Υ : PCoh(N )Γ → PCoh(N )Γ/PCoh(N )Υ,

and let ΠR
Γ,Υ be its right adjoint. Then PCoh(N )Γ/PCoh(N )Υ is a properly strat-

ified category with a unique simple object up to Tate twist: namely, the object
S = ΠΓ,Υ(∇̄(λ)). This object has an injective envelope I = ΠΓ,Υ(∇(λ)). We
have ∇̄(λ) ∼= ΠR

Γ,Υ(S) and ∇(λ) ∼= ΠR
Γ,Υ(I). Moreover, as in Lemma 3.5, we have

End(I) ∼= H•(Grλ). On the other hand, by [AR, Lemma 2.7(1) and Theorem 2.15],
the object I is also isomorphic to ΠΓ,Υ(∆(λ)〈2δw0λ〉). Thus, I is the projective
cover of S〈2δw0λ〉.

Let f̃i : I〈−di〉 → I be the map corresponding to fi under the isomorphism

ΠR
Γ,Υ : End(I)

∼→ End(∇(λ)), and define f̃ in the same way as f above. Then

the image of f̃ is the radical of the indecomposable projective object I, and so
cok f̃ ∼= S〈2δw0λ〉. Also, trivially, ker f̃ has a filtration whose subquotients are
various S〈k〉. Applying ΠR

Γ,Υ, we obtain an exact sequence in PCoh(N )

(3.4) 0→ kerPCoh(N ) f →
n⊕
i=1

∇(λ)〈−di〉
f→ ∇(λ)→ ∇̄(λ)〈2δw0λ〉 → 0,

where kerPCoh(N ) f has a filtration whose subquotients are various ∇̄(λ)〈k〉.
Let K be the cone of f in DbCoh(N ). Then, considering both the natural and

perverse-coherent t-structures on this category, we have two distinguished triangles

(kerCoh(N ) f)[1]→ K → cokCoh(N ) f →,
(kerPCoh(N ) f)[1]→ K → cokPCoh(N ) f → .

But we saw in (3.4) that both kerPCoh(N ) f and cokPCoh(N ) f have proper co-
standard filtrations, and hence happen to lie in Coh(N ). So by [BBD, Proposi-
tion 1.3.3(ii)], the two distinguished triangles above must be canonically isomor-
phic. In particular, we have cokCoh(N ) f ∼= cokPCoh(N ) f . The result then follows
by comparing (3.3) and (3.4). �

The next lemma is a related fact involving standard objects rather than costan-
dard ones.

Lemma 3.7. There is an isomorphism End(∆(λ))-modules

Hom(∆̄(λ)〈−2δw0λ〉,∆(λ))
∼→ k.

Proof. Let S, I ∈ PCoh(N )Γ/PCoh(N )Υ be as in the preceding proof, and let ΠL
Γ,Υ

be the left adjoint to ΠΓ,Υ. Since I is the injective envelope of S, we certainly have
Hom(S〈−2δw0λ〉, I〈−2δw0λ〉) ∼= k. Applying the fully faithful functor ΠL

Γ,Υ yields
the result. �

Lemma 3.8. Let M ∈ PCoh(N ) be an object with a costandard filtration. Then
Hom(∆(λ),M) is a free End(∆(λ))-module. Moreover, there is a natural isomor-
phism

k⊗End(∆(λ)) Hom(∆(λ),M) ∼= Hom(∆̄(λ)〈−2δw0λ〉,M).
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Proof. The assertion that Hom(∆(λ),M) is a free End(∆(λ))-module is just a
restatement of (the dual of) [AR, Lemma 2.12]. Next, let us identify k with
Hom(∆̄(λ)〈−2δw0λ〉,∆(λ)) by Lemma 3.7. We wish to show that the natural map
(3.5)

Hom(∆̄(λ)〈−2δw0λ〉,∆(λ)) ⊗
End(∆(λ))

Hom(∆(λ),M)→ Hom(∆̄(λ)〈−2δw0λ〉,M)

is an isomorphism. We proceed by induction on the number of steps in a costandard
filtration of M .

Suppose first that M = ∇(µ)〈n〉 for some µ ∈ X+ and some n ∈ Z. If µ 6= λ,
then both sides of (3.5) vanish, and there is nothing to prove. If µ = λ, then an
argument like that in [AR, Lemma 2.7(3)] shows that we can replace M on both
sides of (3.5) by the standard object ∆(λ)〈n + 2δw0λ〉. After this change, (3.5) is
obviously an isomorphism.

For general M , choose a short exact sequence 0 → M ′ → M → M ′′ → 0 where
both M ′ and M ′′ have costandard filtrations with fewer steps than that of M .
We claim that both sides of (3.5) take this sequence to a short exact sequence.
For the right-hand side, this holds simply because Ext1(∆̄(λ)〈−2δw0λ〉,M ′) = 0.
For the left-hand side, we first note that Ext1(∆(λ),M ′) = 0; then, the functor
Hom(∆(λ),−) takes our sequence to a short exact sequence of free End(∆(λ))-
modules. The desired exactness follows. As a consequence, if (3.5) is already
known to be an isomorphism for M ′ and M ′′, then it is for M as well. �

Lemma 3.9. Let λ ∈ X+. The degree-0 component of Γ(Ñ ,OÑ (λ)), regarded just
as a graded G∨-representation, can be identified with N(λ).

Proof. It follows from the definition of the grading that the 2i-th graded component

of Γ(Ñ ,OÑ (λ)) is isomorphic to the G∨-representation indG
∨

B∨(kλ ⊗ Symi(u∨)∗),

where Symi(u∨)∗ is the i-th symmetric power of the dual vector space to u∨. In

particular, when i = 0, this reduces to indG
∨

B∨kλ ∼= N(λ). �

The preceding lemma and the following one together tell us that Γ(Ñ ,OÑ (λ))
is generated as a k[N ]-module by its graded component of degree 0.

Lemma 3.10. For any λ ∈ X+, the obvious map ON ⊗ N(λ) → Γ(Ñ ,OÑ (λ)) is
surjective.

Proof. There is a surjective map of B∨-representations N(λ) → kλ, where kλ de-
notes the 1-dimensional B∨-representation with weight λ. From this, we obtain a
surjective map of vector bundles OÑ ⊗ N(λ) → OÑ (λ) on Ñ . Applying π∗ and
using (2.1), we obtain a map h : ON ⊗ N(λ)→ π∗OÑ (λ) ∼= ∇̄(λ)〈δw0λ〉. Let K be
the cocone of h, so that we have a distinguished triangle

K → ON ⊗N(λ)
h→ ∇̄(λ)〈δw0λ〉 → .

To prove that h is surjective, we must show that K lies in Coh(N ). The proof
of [A, Lemma 5.4] yields a slightly different fact: that h is surjective as a morphism
in PCoh(N ), and hence that K ∈ PCoh(N ). (The statement of [A, Lemma 5.4]
involves M(λ) instead of N(λ), but its proof goes through for any G∨-representation
with highest weight λ.) On the other hand, by [AR, Theorem 2.15(3)], ON ⊗N(λ)
has a costandard filtration, and hence a proper costandard filtration. It follows that
K, which is the kernel of h in PCoh(N ), also has a proper costandard filtration, so
it lies in Coh(N ), as desired. �
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3.3. The Mirković–Vilonen conjecture for mixed sheaves. We are now ready
adapt the arguments in [AR, §6] to the mixed modular setting.

Lemma 3.11. Let λ ∈ X+. The following conditions on an object F ∈ Dmix
(GO)(Grλ)

are equivalent:

(1) F is pure of weight 0.
(2) Hom(F ,k) is a free graded H•(Grλ)-module, and Hom(k,F [k]) = 0 if k 6= 0.

Proof. Essentially identical to [AR, Lemma 6.1]. �

Theorem 3.12. Let λ ∈ X+. Then I!(λ) is ∗-pure, and I∗(λ) is !-pure.

One can also show that the stalks of I!(λ) and the costalks of I∗(λ) obey certain
parity-vanishing conditions, by using the decomposition of Dmix

(I) (Gr) into “even”

and “odd” objects as explained in [ARc2, §2.1],

Proof. Let µ be a dominant weight such that µ � λ. Using adjunction and the
equivalence Psph, we obtain:

Hom((isph
µ )∗I!(λ),k[k]) ∼= Hom(I!(λ),J∗(µ){− dimGrµ}[k])

∼= Hom(ON ⊗M(λ),∇(µ)〈−δw0µ − dimGrµ〉[k]).

Recall that ON⊗M(λ) has a standard filtration as an object of PCoh(N ). It follows
that the last Hom-group above vanishes for k 6= 0. On the other hand, for k = 0,
it is a free module over End(∇(µ)), by [AR, Lemma 2.12].

Using Lemma 3.5, we see that Hom((isph
µ )∗I!(λ),k[k]) obeys the second condition

in Lemma 3.11. By that lemma, (isph
µ )∗I!(λ) is pure of weight 0, as desired. �

4. The regular representation and the regular perverse sheaf

In this section, we review a number of basic facts about the regular representation
k[G∨] of G∨, and then we translate them into geometric statements about Gr.

4.1. The regular representation. Regard k[G∨] as a (G∨ ×G∨)-module in the
usual way: given f ∈ k[G∨] and g, h ∈ G∨, we put ((g, h) · f)(x) = f(g−1xh). The
results below are elementary and very close to those in, say, [Ja, §I.3.7]. We include
proofs because we will require slightly finer information about the right G∨-action
than is given in loc. cit.

If V and V ′ are two G∨-representations, we write V �V ′ for their tensor product
regarded as a (G∨×G∨)-representation. In an abuse of notation, we sometimes iden-
tify V with V �k; i.e., we regard a G∨-representation as a (G∨×G∨)-representation
by making the second copy of G∨ act trivially. (To make the first copy act trivially
instead, we explicity write k� V .)

Lemma 4.1. For any G∨-module V , there is a natural isomorphism of (G∨×G∨)-
modules V ⊗ k[G∨] ∼= (k� V )⊗ k[G∨].

Proof. Identify the underlying vector space of both sides with the space Mor(G∨, V )
of morphisms G∨ → V . The two (G∨ × G∨)-actions above correspond to the
following two actions on Mor(G∨, V ):

((g, h) ·1 f)(x) = gf(g−1xh) and ((g, h) ·2 f)(x) = hf(g−1xh).

Let φ : Mor(G∨, V ) → Mor(G∨, V ) be the bijective map given by φ(f)(x) =
x−1f(x). Then φ intertwines the two actions: φ((g, h) ·1 f) = (g, h) ·2 φ(f). �
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In the next few statements, given a (G∨ ×G∨)-module M , we let

MG∨×1 = {m ∈M | (g, 1) ·m = m for all g ∈ G∨}.

Of course, the second copy of G∨ still acts on MG∨×1. That is, we can regard
MG∨×1 in a natural way as a G∨-module.

Lemma 4.2. For any G∨-module V , there is a natural isomorphism of G∨-modules
θ : V

∼→ (V ⊗ k[G∨])G
∨×1.

Proof. Given v ∈ V , let θ(v) ∈ Mor(G∨, V ) be given by θ(v)(x) = xv. Then, in the
notation from the proof of Lemma 4.1, we have

((g, 1) ·1 θ(v))(x) = gθ(v)(g−1x) = gg−1xv = xv = θ(v)(x).

That is, θ(v) ∈ Mor(G∨, V )G
∨×1. To see that θ is an isomorphism, we observe that

the map sending f ∈ Mor(G∨, V )G
∨×1 to f(1) ∈ V is its inverse. �

Lemma 4.3. Let M be a G∨-equivariant graded k[N ]-module. Let a : M⊗k[N ]→
M be the action map, and let m : (M ⊗k[G∨])G

∨×1⊗ (k[N ]⊗k[G∨])G
∨×1 → (M ⊗

k[G∨])G
∨×1 be the map induced by a and by the multiplication map k[G∨]⊗k[G∨]→

k[G∨]. Then the following diagram commutes:

M ⊗ k[N ]

a

��

θ⊗θ
∼
// (M ⊗ k[G∨])G

∨×1 ⊗ (k[N ]⊗ k[G∨])G
∨×1

m

��
M

θ
∼

// (M ⊗ k[G∨])G
∨×1

Proof. This is easily seen by tracing through the definition of θ. �

In the special case where M = k[N ], the map m on the right-hand side of

the diagram above makes (k[N ] ⊗ k[G∨])G
∨×1 into a commutative ring, equipped

with a grading inherited from that on k[N ]. Then, for any G∨-equivariant graded

k[N ]-module N , the space (N ⊗ k[G∨])G
∨×1 is naturally a G∨-equivariant graded

(k[N ] ⊗ k[G∨])G
∨×1-module. The following proposition is immediate consequence

of Lemma 4.3.

Proposition 4.4. There is an isomorphism of G∨-equivariant graded rings k[N ] ∼=
(k[N ]⊗k[G∨])G

∨×1. If we identify these rings, then for any G∨-equivariant graded

k[N ]-module M , there is a natural isomorphism M ∼= (M ⊗ k[G∨])G
∨×1.

Proposition 4.5. For any finitely generated G∨-equivariant graded k[N ]-module
M , there is a natural isomorphism of G∨-equivariant graded k[N ]-modules

M ∼= HomG∨,k[N ](D(M),k[N ]⊗ k[G∨]).

Proof. Recall that the functor D(−) is defined as RHomk[N ](−,k[N ]). That is, we

compute RHom in the category of graded k[N ]-modules, ignoring the G∨-action;
the resulting complex of k[N ]-modules is still acted on by G∨. Since M ∼= D(D(M)),
the complex RHomk[N ](D(M),k[N ]) is concentrated in degree zero. In other words,

we have a natural isomorphism M ∼= Homk[N ](D(M),k[N ]). Using Lemma 4.2, we
obtain

M ∼= Homk[N ](D(M),k[N ]) ∼=
(
Homk[N ](D(M),k[N ])⊗ k[G∨]

)G∨×1

∼= Homk[N ](D(M),k[N ]⊗ k[G∨])G
∨×1 ∼= HomG∨,k[N ](D(M),k[N ]⊗ k[G∨]),
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Hom(1Gr,F ?R)⊗Hom(1Gr,R)

p

��

oo ∼ // HomG∨(k,M ⊗ k[G∨])
⊗HomG∨(k, k[N ]⊗ k[G∨])

p′

��

Hom(R,F ?R ?R)⊗Hom(1Gr,R)

q

��

oo ∼ // HomG∨(k[G
∨],M ⊗ k[G∨]⊗ k[G∨])
⊗HomG∨(k, k[N ]⊗ k[G∨])

q′

��
Hom(1Gr,F ?R ?R)

r

��

oo ∼ // HomG∨(k,M ⊗ k[G∨]⊗ k[G∨])

r′

��
Hom(1Gr,F ?R) oo ∼ // HomG∨(k,M ⊗ k[G∨])

Figure 1. Modules for Hom(1Gr,R)

as desired. �

4.2. The regular perverse sheaf. Let R denote the ind-object of PervGO
(Gr)

corresponding to the (left) regular representation k[G∨]. The right action of G∨ on
k[G∨] gives rise to a G∨-action on R. The multiplication map m : k[G∨]⊗k[G∨]→
k[G∨] is equivariant for the right G∨-action, so it corresponds to a G∨-equivariant
morphism S(m) : R ?R → R. Consider the graded vector space

Hom(1Gr,R).

We make this into a ring in the following way: given g ∈ Hom(1Gr,R{n}) and
f ∈ Hom(1Gr,R{m}), we define gf ∈ Hom(1Gr,R{n+m}) to be the composition

1Gr
f−→ R{m} ∼→ 1Gr ?R{m}

g?id−−−→ R{n} ?R{m} S(m){n+m}−−−−−−−−→ R{n+m}
Because S(m) is G∨-equivariant, G∨ acts on the ring Hom(1Gr,R).

Given F ∈ Dmix
(I) (Gr), a similar construction makes the graded vector space

Hom(1Gr,F ?R)

into a G∨-equivariant graded right Hom(1Gr,R)-module. Specifically, given m ∈
Hom(1Gr, (F ?R){n}) and f ∈ Hom(1Gr,R{m}), we define mf ∈ Hom(1Gr, (F ?
R){n+m}) to be the composition

1Gr
f−→ R{m} ∼→ 1Gr ?R{m}

m?id−−−→ (F ?R){n} ?R{m}
∼→ (F ?R ?R){n+m} (id?S(m)){n+m}−−−−−−−−−−−→ (F ?R){n+m}.

Theorem 4.6. There is an isomorphism of G∨-equivariant graded rings

Hom(1Gr,R) ∼= k[N ].

If we identify these rings, then for any F ∈ Dmix
(GO)(Gr) such that Psph(F) ∈ Coh(N ),

there is a natural isomorphism

Hom(1Gr,F ?R) ∼= Psph(F)

of (G∨ ×Gm)-equivariant coherent sheaves on N .
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Proof. We have the following sequence of isomorphisms of graded vector spaces,
where the first step is implied by Proposition 3.1, and the last by Proposition 4.4:

Hom(1Gr,R) ∼= HomCoh(N )(ON ,ON ⊗ k[G∨])

∼= HomG∨(k,k[N ]⊗ k[G∨]) ∼= (k[N ]⊗ k[G∨])G
∨×1 ∼= k[N ].

In fact, this is an isomorphism ofG∨-modules, since the G∨-action onR is defined in
terms of the right G∨-action on k[G∨]. Next, for F ∈ Dmix

(GO)(Gr), let M = Psph(F),

and assume that M ∈ Coh(N ). The same reasoning as above gives us isomorphisms
of graded G∨-representations

Hom(1Gr,F ?R) ∼= HomG∨(k,M ⊗ k[G∨]) ∼= M.

To study the ring structure on Hom(1Gr,R) as well as the module structure
on Hom(1Gr,F ? R), we refer to Figure 1. The horizontal arrows all arise from
natural isomorphisms of the kind described above. The arrow labeled p is induced
by convolution with the morphism of (ind-)perverse sheaves S(η) : 1Gr → R,
where η : k → k[G∨] is the unit. The map p′ is induced by η itself. Thus, the
commutativity of the uppermost square in Figure 1 follows from the compatibility
with S in Proposition 3.1.

Similar reasoning applies to the bottommost square. There, r′ is induced by the
multiplication map m : k[G∨] ⊗ k[G∨] → k[G∨], and r by S(m) : R ? R → R.
Finally, the arrows labeled q and q′ are both given by composition of maps, so
the commutativity of the middle square is obvious. We conclude that the entire
diagram in Figure 1 commutes.

The composition rqp defines the Hom(1Gr,R)-module structure on Hom(1Gr,F ?
R). On the other hand, we can identify the space HomG∨(k,M ⊗ k[G∨]) with

(M⊗k[G∨])G
∨×1, and likewise for the other Hom-groups in the right-hand column of

Figure 1. Under these identifications, the composition r′q′p′ coincides with the map
that was denoted m in Lemma 4.3. Thus, by combining Figure 1 with Lemma 4.3,
we obtain the following commutative diagram:

Hom(1Gr,F ?R)⊗Hom(1Gr,R)

��

oo ∼ // M ⊗ k[N ]

��
Hom(1Gr,F ?R) oo

∼ // M

In the special case where F = 1Gr and M = k[N ], this diagram shows that the
isomorphism of graded G∨-modules Hom(1Gr,R) ∼= k[N ] is actually a ring iso-
morphism. Then, for general F , it identifies the Hom(1Gr,R)- and k[N ]-module
structures on Hom(1Gr,F ?R) ∼= M , as desired. �

4.3. Standard sheaves and the regular perverse sheaf. We conclude this
section with a study of certain Hom-groups involving standard sheaves.

Lemma 4.7. Suppose F ∈ Dmix
(GO)(Gr) has the property that (isph

λ )!F is pure of

weight 0. Then Hom(J!(λ),F) is a free H•(Grλ)-module. Moreover, there is a
natural isomorphism

k⊗H•(Grλ) Hom(J!(λ),F) ∼= Hom(i!(w0λ){−δw0λ},F).
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Proof. By adjunction, we see that Hom(J!(λ),F) ∼= Hom(J!(λ), (isph
λ )∗(i

sph
λ )!F),

and that Hom(i!(λ),F) ∼= Hom(i!(λ), (isph
λ )∗(i

sph
λ )!F). Thus, we may as well assume

that F ∼= (isph
λ )∗(i

sph
λ )!F . Since (isph

λ )!F is assumed to be pure, it is a direct sum of
objects of the form k{n}. It suffices, then, to prove the lemma in the special case

where (isph
λ )!F ∼= k{dimGrλ}, and F ∼= J∗(λ).

In that case, we have Hom(J!(λ),F) ∼= Hom(kGrλ ,kGrλ) ∼= H•(Grλ). On the
other hand, by adjunction, we have

Hom(i!(w0λ){−δw0λ},F) ∼= Hom(kI·w0λ
{dimGrλ − 2δw0λ}, i!w0λF)

∼= Hom(kI·w0λ
{dimGrλ − 2δw0λ},kI·w0λ

{dimGrλ − 2δw0λ}) ∼= k.

The adjunction map i!(w0λ){−δw0λ} → J!(λ) induces a natural map

Hom(J!(λ),F)→ Hom(i!(w0λ){−δw0λ},F)

that can clearly be identified with the natural quotient map H•(Grλ) → k of
H•(Grλ)-modules. The result follows. �

Corollary 4.8. Suppose F ∈ Pervmix
(GO)(Gr) has the property that (isph

λ )!F is pure

of weight 0. Then the natural map Hom(J!(λ),F) → Hom(i!(w0λ){−δw0λ},F)
induced by the adjunction i!(w0λ){−δw0λ} → J!(λ) is an isomorphism.

Proof. Note that the Hom-groups in this statement are the degree-0 components of
the graded Hom-groups in the preceding lemma. Since J!(λ) lies in pDmix

(GO)(Gr)
≤0,

the assumption that F is perverse implies that Hom(J!(λ),F{n}) = 0 for n < 0,
or in other words, that Hom(J!(λ),F) is concentrated in nonnegative degrees. The
result then follows from Lemma 4.7. �

Proposition 4.9. We have the following isomorphisms in Coh(N ):

Hom(J!(−w0λ),R) ∼= ∇(λ)〈−δw0λ〉 and Hom(i!(−λ),R) ∼= ∇̄(λ).

Proof. Via Psph and Corollary 3.4, we have

Hom(J!(−w0λ),R) ∼= Hom(∆(−w0λ)〈δw0λ〉,ON ⊗ k[G∨]).

By Proposition 4.5, the latter is naturally isomorphic to ∇(λ)〈−δw0λ〉.
Next, by Theorem 3.12, the ind-perverse sheaf R is !-pure of weight 0, so

Lemma 4.7 tells us that Hom(i!(−λ){−δw0λ},R) ∼= k⊗H•(Grλ) Hom(J!(−w0λ),R).

Proposition 3.6 then implies that Hom(i!(−λ){−δw0λ},R) ∼= ∇̄(λ)〈δw0λ〉, as de-
sired. �

5. Mixed modular Wakimoto sheaves

Wakimoto sheaves, introduced by Mirković, are certain sheaves on the affine
flag variety or the affine Grassmannian that have favorable convolution and Ext-
vanishing properties. In this section, we study the basic properties of Wakimoto
sheaves in the mixed modular setting. The results are closely modeled on those
of [AB, §3.2] and [ABG, §8].
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5.1. Preliminaries on the affine flag variety. Let F` = GK/I denote the affine
flag variety for G. Recall that I-orbits on F` are labeled by the extended affine
Weyl group Waff . Given w ∈ Waff , let F`w denote the corresponding orbit, and
let jw : F`w ↪→ F` be the inclusion map. We denote the standard and costandard
perverse sheaves in Pervmix

I (F`) by

sw := jw!k{dimF`w} and cw := jw∗k{dimF`w}.

The category Dmix
I (F`) is equipped with a convolution product, and there is a

convolution action of Dmix
I (F`) on Dmix

I (Gr). For basic results on convolution in the
mixed modular setting, see [ARc2, §4]. We will need the following slight refinement
of [ARc2, Proposition 4.4].

Lemma 5.1. For w1, w2 ∈ Waff such that `(w1w2) = `(w1) + `(w2), there is a
canonical isomorphism

(5.1) cw1w2
∼= cw1

? cw2
.

Moreover, for w1, w2, w3 ∈ Waff with `(w1w2w3) = `(w1) + `(w2) + `(w3), the two
isomorphisms cw1w2w3

∼= cw1
? cw2

? cw3
induced by (5.1) coincide.

In addition, each cw is invertible: we have cw ? sw−1
∼= sw−1 ? cw ∼= ce.

For Q̄`-sheaves (see [AB, Lemma 8]), a shorter proof is possible: one can prove a
property like (5.2) below for standard sheaves directly. The definition of convolution
in the mixed modular setting always involves parity sheaves as an intermediary; for
this reason, the argument below must consider parity sheaves first.

Proof. We begin with the observation that if `(w1w2) = `(w1) + `(w2), then there
is a canonical isomorphism

(5.2) (Ew1 ? Ew2)|F`w1w2

∼= k{`(w1w2)}.

Indeed, this follows from a study of the convolution diagram (see [JMW1, §4.1]).
Now, Ew1w2

is a direct summand of the parity complex Ew1
? Ew2

. Choose maps

Ew1w2

i−→ Ew1
? Ew2

p−→ Ew1w2

such that p ◦ i = idEw1w2
, i ◦ p is an idempotent, and both i and p are compatible

with (5.2). That is, the restriction to F`w1w2
of each of i and p should coincide

with the isomorphism (5.2). The fact that the last condition can be satisfied follows
from [JMW1, Corollary 2.9].

Next, consider the canonical maps Ewi → cwi and Ew1w2
→ cw1w2

. It is easy to
see that there are unique maps i0, p0 making the following diagram commute:

Ew1w2

��

i // Ew1
? Ew2

��

p // Ew1w2

��
cw1w2

i0 // cw1
? cw2

p0 // cw1w2

In fact, the maps i0 and p0 are determined by the restrictions i|F`w1w2
and p|F`w1w2

.

In other words, they are determined by the canonical isomorphism (5.2), and are
independent of the choice of i and p.

We already know by [ARc2, Proposition 4.6] that cw1
? cw2

is abstractly iso-
morphic to cw1w2

. Since End(cw1w2
) ∼= k, the maps i0 and p0 must both be
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isomorphisms, inverse to one another. These maps constitute the canonical isomor-
phism (5.1).

The associativity assertion follows from the fact that the two isomorphisms

(Ew1 ? Ew2 ? Ew3)|F`w1w2w3

∼= k{`(w1w2w3)}

induced by (5.2) coincide. Finally, the invertibility assertion is just a restatement
of [ARc2, Proposition 4.4(2)]. �

Lemma 5.2 (cf. [ABG, Proposition 8.2.4]). For any y, w ∈Waff , the object cy ? sw
is a perverse sheaf. It is supported on F`yw, and (cy ? sw)|F`yw ∼= k{dimF`yw}.
The same results hold for sy ? cw.

Proof. The fact that cy ? sw is perverse is contained in [ARc2, Proposition 4.6].
Let H be the Grothendieck group of Dmix

I (F`). For an object F ∈ Dmix
I (F`),

we denote its class in H by [F ]. Of course, the convolution product on Dmix
I (F`)

makes H into a ring. We also make it into a Z[q1/2, q−1/2]-algebra (where q1/2 is
an indeterminate) by setting q1/2[F ] = [F〈1〉]. It is well known that H is none
other than the extended affine Hecke algebra associated to Waff . Indeed, one can
use [ARc2, Proposition 4.4] to check that the elements Tw := [sw{−`(w)}] satisfy
the defining relations for the Hecke algebra.

Now, consider the ring H̄ := H/(q1/2 − 1), which can be identified with the
group ring Z[Waff ]. Let {T̄w | w ∈ Waff} be the standard basis for Z[Waff ]. For

F ∈ Dmix
I (F`), let [F ] denote its image in H̄. We then have [sw] = (−1)`(w)T̄w. On

the other hand, we have [cw] = [sw−1 ]−1 = (−1)`(w)q`(w)/2T−1
w−1 . It follows that

[sw] = [cw] = (−1)`(w)T̄w for all w ∈Waff .

Since `(y) + `(w) ≡ `(yw) (mod 2), we have

(5.3) [cy ? sw] = (−1)`(y)+`(w)T̄yT̄w = (−1)`(yw)T̄yw = [cyw].

Recall that for two objects F ,G ∈ Pervmix
I (F`), we have [F ] = [G] in H if and

only if F and G have the same composition factors (with multiplicities). Similarly,

we have [F ] = [G] if and only if F and G have the same composition factors up to
Tate twist. Thus, (5.3) lets us compare the composition factors of cy ?sw with those
of cyw. Specifically, cy?sw must contain some ICyw〈n〉 as a composition factor with

multiplicity 1, and all other composition factors must be supported on F`ywrF`yw.

In particular, cy ? sw is supported on F`yw, and (cy ? sw)|F`yw ∼= k{dimF`yw}〈n〉
for some n.

It remains to show that n = 0. For this, we proceed by induction on the length
of w. If `(w) = 0, then sw = cw, so we have cy ? sw ∼= cy ? cw ∼= cyw, and the
statement is clear. Otherwise, write w = w′s where s is a simple reflection, and
`(w′) = `(w)− 1. By induction, we have (cy ? sw′)|F`yw′ ∼= k{dimF`yw′}.

Suppose first that yw′ < yw. This implies that syw′ ? ss ∼= syw. There is a
natural (nonzero) map syw′ → cy ? sw′ . Since ss is an invertible object, applying
(−) ? ss gives a nonzero map syw → cy ? sw. By adjunction, we obtain a nonzero
map k{dimF`yw} → (cy ? sw)|F`yw . Therefore, n = 0.

Similarly, if yw′ > yw, we consider the natural (nonzero) map cy ? sw′ → cyw′ .
This time, we have cyw′ ? ss ∼= cyw, so applying (−) ? ss gives a nonzero map
cy ? sw → cyw. Again, by adjunction, we obtain a nonzero map (cy ? sw)|F`yw →
k{dimF`yw}, and the result follows. �
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5.2. Projection to the affine Grassmannian. Let $ : F`→ Gr be the obvious
projection map. This is a smooth, proper, stratified morphism. The following
elementary lemmas relating convolution and $ are well known (at least in the
non-mixed case), but we give their proofs for completeness.

Lemma 5.3. Let F ∈ Dmix
(I) (F`).

(1) For G ∈ Dmix
I (F`), there is a natural isomorphism F ? $∗G ∼= $∗(F ? G).

(2) For G ∈ Dmix
I (Gr), there is a natural isomorphism F ? $∗G ∼= $∗(F ? G).

Proof. For both statements, it suffices to consider the case where F and G are
both parity sheaves. In this case, we can compute the convolution product in the
ordinary (non-mixed) derived category instead. Note that in the following diagram,
every square is cartesian:

F`×F`

id×$
��

GK ×F`oo //

id×$
��

GK ×I F`

��

// F`

$

��
F`× Gr GK × Groo // GK ×I Gr // Gr

The results follow by tracing through the definition of convolution. �

Lemma 5.4. Let F ∈ Dmix
(I) (F`) and G ∈ PervGO

(Gr). There is a natural isomor-

phism F ? G ∼= $∗F ? G.

Proof. As above, assume that F and G are both parity sheaves. We will give
an alternative description of the object F �̃ G on GK ×I Gr, using the following
commutative diagram.

GK × Gr
p

vv

q

((
i
��

F`× Gr (GK ×I GO)× Gr
p̃oo q̃ // GK ×I Gr

The maps are defined as follows:

p(g, xGO) = (gI, xGO) q(g, xGO) = (g, xGO) i(g, xGO) = (g, 1, xGO)

p̃(g, h, xGO) = (gI, xGO) q̃(g, h, xGO) = (g, hxGO)

Recall that F �̃ G is defined to be the unique object on GK ×I Gr such that
q∗(F �̃ G) ∼= p∗(F � G). We claim that it is also the unique object satisfying

q̃∗(F �̃ G) ∼= p̃∗(F � G).

To see this, observe first that because G is GO-equivariant, the object p̃∗(F � G)
is GO-equivariant for the “diagonal” GO-action on (GK ×I GO) × Gr, in which
m ∈ GO acts by m · (g, h, xGO) = (g, hm−1,mxGO). This action is free, and q̃ is

the quotient by this action, so there exists a unique object on GK×I Gr, say F �̃′G,
such that q̃∗(F �̃′G) ∼= p̃∗(F�G). Applying i∗, we find that q∗(F �̃′G) ∼= p∗(F�G),

so we must have F �̃′ G = F �̃ G.



20 PRAMOD N. ACHAR AND LAURA RIDER

Now form the following commutative diagram, where r(g, h, xGO) = (gh, xGO).

F`× Gr

��

(GK ×I GO)× Gr

r

��

p̃oo q̃ // GK ×I Gr

s

�� %%
Gr × Gr GK × Groo // GK ×GO Gr // Gr

It is easy to check that both squares are cartesian. Then, the base change theorem
implies that s∗(F �̃ G) ∼= $∗F �̃ G, and the result follows. �

5.3. Wakimoto sheaves. Identify X with a subset of Waff as usual. Also, for
λ ∈ X, let kλ denote the T∨-representation of weight λ.

Lemma 5.5 (cf. [AB, Corollary 1(a)]). The assignment kλ 7→ cλ for λ ∈ X+

extends to a monoidal functor W : Rep(T∨)→ Dmix
I (F`).

Proof. Recall [ARc2, Proposition 4.4(2)] that each cw is an invertible object of
Dmix
I (F`). With this observation in hand, the proof of [AB, Corollary 1(a)] can be

repeated verbatim. �

As in [ABG], we will writeWλ instead ofW(kλ). Objects of this form are called
Wakimoto sheaves. The construction implies that for any λ ∈ X, we have

(5.4) Wλ
∼= cµ ? s−ν if λ = µ− ν and µ, ν ∈ X+.

In particular, for λ ∈ X+, we have Wλ = cλ and W−λ ∼= s−λ. By [ARc2, Proposi-
tion 4.6] and Proposition A.16, Wλ is both perverse and adverse. We also put

Wλ :=Wλ ? 1Gr ∼= $∗Wλ.

By Lemma A.5, theWλ are again adverse. (They are not perverse in general.) The
following fact about these objects is a consequence of Lemma 5.2.

Lemma 5.6. For any λ ∈ X, Wλ is supported on I·λ, and there is a canonical
isomorphism Wλ|I·λ ∼= k{dim I·λ−δλ}. In the special case where λ ∈ X+, we have

(5.5) Wλ
∼= i∗(λ) and W−λ ∼= i!(−λ){−δ−λ}.

Proof. Identical to [ABG, Corollary 8.3.2]. �

The next lemma is a variation on Proposition A.17.

Lemma 5.7. Let λ ∈ X, and let F ,G ∈ Dmix
I (Gr). The natural map

Hom(F ,G)→ Hom(Wλ ? F ,Wλ ? G)

is an isomorphism of H•I(pt)-modules.

Proof Sketch. This map is, of course, at least an isomorphism of graded vector
spaces, since Wλ ? (−) is an equivalence of categories. If we prove the statement
for dominant weights, then it follows for antidominant weights (since s−λ ? (−) is
the inverse functor to cλ ? (−)), and then for all weights by (5.4).

For dominant weights, the proof is very close that of Proposition A.17. We will
review the main points. Recall that Waff acts naturally on the maximal torus T ,
and that this action factors through Waff � W (see [K, §13.2.2]). This induces
an action of Waff on H•T (pt) ∼= H•I(pt). Now, the equivariant cohomology H•I(F`w)
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is equipped with two actions of H•I(pt). These actions do not coincide in general;
rather, they differ by the action of w of H•I(pt). As a consequence, the natural map

Hom(F ,G)→ Hom(cw ? F , cw ? G)

is a w-twisted homomorphism of H•I(pt)-modules. When w is a dominant weight,
it acts trivially on T and on H•I(pt), so the map above is indeed a homomorphism
of H•I(pt)-modules, as desired. �

5.4. Convolution with monodromic objects. For Q̄`-sheaves, it is explained
in [ABG, §8.9] that by considering lifts of the cw and sw to the “thick affine flag

variety” F̃`, one can define a functor

(5.6) Wλ ? (−) : Dmix
(I) (Gr, Q̄`)→ Dmix

(I) (Gr, Q̄`).

That is, one can drop the I-equivariance condition for objects on Gr. Unfortunately,
we cannot imitate this in the mixed modular setting, because there is currently no

suitable theory of “mixed modular sheaves” on F̃`.
We will not attempt to define convolution in the generality of (5.6). Instead,

we will see in the next few statements that for certain special classes of morphisms
and objects in Dmix

(I) (Gr), we can recover a “shadow” of the undefined functor (5.6),

by lifting to Dmix
I (Gr).

Proposition 5.8. Let F ,G ∈ Dmix
I (Gr) be objects such that Homi(F ,G) is a free

H•I(pt)-module for all i ∈ Z. Then there is a unique isomorphism ωλ making the
following diagram commute:

HomDmix
I (Gr)(F ,G)

∼
Wλ?−

//

��

HomDmix
I (Gr)(Wλ ? F ,Wλ ? G)

��
HomDmix

(I)
(Gr)(For(F),For(G))

∼
ωλ
// HomDmix

(I)
(Gr)(For(Wλ ? F),For(Wλ ? G))

This proposition applies, for instance, when F is ∗-pure and G is !-pure. In
particular, when µ ∈ X+ and G is !-pure, this proposition gives us a map

ωλ : Hom(W−µ,For(G))
∼→ Hom(Wλ−µ,For(Wλ ? G)).

This is the most common circumstance in which Proposition 5.8 will be invoked.

Proof. Proposition A.13 gives rise to a spectral sequence

Tor
H•I (pt)
−p (Homq(F ,G),k) =⇒ Homp+q(For(F),For(G)).

But the assumption that all the Homq(F ,G) are free means that the Tor-groups
vanish except when p = 0. Setting q = 0, we obtain an isomorphism

(5.7) Hom(F ,G)⊗H•I (pt) k ∼= Hom(For(F),For(G)).

In particular, the map Hom(F ,G) → Hom(For(F),For(G)) is surjective. It follows
immediately that if ωλ exists, it is unique.

Next, Lemma 5.7 implies that all Homi(Wλ ? F ,Wλ ? G) are also free H•I(pt)-
modules, so the considerations above apply here as well. In particular, we have

(5.8) Hom(Wλ ? F ,Wλ ? G)⊗H•I (pt) k ∼= Hom(For(Wλ ? F),For(λ ? G)).

Via (5.7) and (5.8), we define ωλ to be the map (Wλ ? (−))⊗H•I (pt) k. �
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Next, we show that the maps ωλ enjoy a kind of compatibility with composition.

Lemma 5.9. Let V ∈ Rep(G∨) be a representation with a good filtration. Let
F ∈ Dmix

(I) (Gr) be an object such that both F and F ? S(V ) are !-pure of weight 0.

Let σ ∈ X, and let λ, µ ∈ X+. Given f : W−λ → S(V ){n} and g : W−µ → F ,
consider the composition

W−λ−µ
ω−µ(f)−−−−−→W−µ ? S(V ){n} g?id−−−→ F ? S(V ){n}.

The following diagram commutes:

Wσ−λ−µ
ωσ−µ(f) //

ωσ((g?id)◦ω−µ(f)) **

Wσ−µ ? S(V ){n}

ωσ(g)?id

��
Wσ ? F ? S(V ){n}

Proof. As we observed in the proof of Proposition 5.8, the maps

HomDmix
I (Gr)(W−λ,S(V ){n})→ HomDmix

(I)
(Gr)(W−λ,S(V ){n}),

HomDmix
I (Gr)(W−µ,F)→ HomDmix

(I)
(Gr)(W−µ,F)

are surjective. Choose maps f̃ : W−λ → S(V ){n} and g̃ : W−µ → F in Dmix
I (Gr)

that lift f and g, respectively. The commutative diagram in Proposition 5.8 says
that

ωσ−µ(f) = For(Wσ−µ ? f̃) and ωσ(g) = For(Wσ ? g̃).

The following calculation completes the proof:

(ωσ(g) ? id) ◦ ωσ−µ(f) = For((Wσ ? g̃ ? id) ◦ (Wσ−µ ? f̃))

= For(Wσ ? ((g̃ ? id) ◦ (W−µ ? f̃))) = ωσ(For(g̃ ? id) ◦ For(W−µ ? f̃))

= ωσ((g ? id) ◦ ω−µ(f)). �

At the moment, the closest we can get to (5.6) is the following statement.

Proposition 5.10. For any λ ∈ X, there is a functor

Wλ “?” (−) : Parity(I)(Gr)→ Dmix
(I) (Gr)

such that the following diagram commutes:

ParityI(Gr)
Wλ?(−) //

For

��

Dmix
I (Gr)

For

��
Parity(I)(Gr)

Wλ“?”(−) // Dmix
(I) (Gr)

Proof. It is known that For : ParityI(Gr) → Parity(I)(Gr) is essentially surjective.

Given F ∈ Parity(I)(Gr), choose an object F̃ ∈ ParityI(Gr) together with an

isomorphism u : For(F̃)
∼→ F . We define Wλ “?” F to be For(Wλ ? F̃). Suppose

now that G is another object, for which we have chosen v : For(G̃)
∼→ G. Given a

morphism f : F → G, we define Wλ “?” f to be the map ωλ(v−1 ◦ f ◦ u). It is easy
to see that different choices would lead to a canonically isomorphic functor. The
fact that the diagram in the proposition commutes is obvious by construction. �
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5.5. Subcategories generated by Wakimoto sheaves. We end this section
with a few results about subcategories of Dmix

(I) (Gr) that can be generated by various

collections of Wakimoto and spherical sheaves. These facts will be used in Section 7.

Lemma 5.11. Let Z ⊂ Gr be a closed union of I-orbits. Then Dmix
(I) (Z) is generated

as a triangulated category by {Wµ{n} | I·µ ⊂ Z, n ∈ Z}.

Proof. This is an immediate consequence of Lemma 5.6. �

Lemma 5.12. Let λ, µ ∈ X.

(1) If λ 6� µ, then Hom•(Wµ,Wλ) = 0.

(2) We have End(Wλ) ∼= k, and Homi(Wλ,Wλ) = 0 for i 6= 0.

Proof. For part (1), the statement involves Dmix
(I) (Gr), but by Proposition A.13, it

suffices to prove the corresponding vanishing in Dmix
I (Gr). For the remainder of

the proof, we work in the latter category. For any ν ∈ X, applying Wν ? (−) gives
us an isomorphism Hom•(Wµ,Wλ) ∼= Hom•(Wµ+ν ,Wλ+ν). Now choose ν to be
dominant and large enough so that µ + ν and λ + ν are both dominant. By (5.5)
and adjunction, we have

Hom•(Wµ,Wλ) ∼= Hom•(i∗λ+νi∗(µ+ ν),k{dim I·(λ+ ν)}.
This is nonzero if and only if i∗λ+νi∗(µ+ν) 6= 0. The latter implies that I·(λ+ν) ⊂
I·(µ+ ν). Since µ+ ν and λ+ ν are both dominant, this holds only when λ � µ.

Next, Proposition 5.8 implies that it is enough to prove part (2) in the case
where λ = 0, and in this case, the result is clear. �

Let λ ∈ X+, and recall thatWw0λ
∼= i!(w0λ){−δw0λ}. Suppose now that F is an

object of Dmix
(GO)(Gr) such that (isph

λ )!F ∼= k{dimGrλ}. (This applies, for instance,

to I!(λ) and I∗(λ).) Then

i!w0λF ∼= k{dimGrλ − 2(dimGrλ − dim I·(w0λ))} = k{dim I·(w0λ)− δw0λ}.

By adjunction, we obtain a mapWw0λ → F . In particular, we have canonical maps

(5.9) Ww0λ → I!(λ) and Ww0λ → I∗(λ).

Lemma 5.13. Let λ ∈ X+. Extend the natural adjunction maps Ww0λ → I!(λ)
and Ww0λ → I∗(λ) to distinguished triangles

Ww0λ → I!(λ)→ K →, Ww0λ → I∗(λ)→ K′ → .

Then both K and K′ lie in the full triangulated subcategory of Dmix
(I) (Gr) generated

by the set of objects

{Wµ{n} | n ∈ Z, µ � w0λ and µ ≤ λ}.

Proof. Let D′ ⊂ Dmix
(I) (Gr) be the category generated by the objects above. On the

other hand, let

D′′ = {F ∈ Dmix
(I) (Gr) | the support of F is contained in Grλ, and i!w0λF = 0}.

We will show that D′ = D′′.
We first claim that if µ ≤ λ and µ � w0λ, then i!w0λ

Wµ = 0. Indeed, by adjunc-

tion and (5.5), this claim is equivalent to the assertion that Hom•(Ww0λ,Wµ) = 0.
The latter holds by Lemma 5.12. We have shown that D′ ⊂ D′′.



24 PRAMOD N. ACHAR AND LAURA RIDER

Next, note that among the weights ≤ λ, the weight w0λ is the unique minimal
weight with respect to �. Thus, if I·µ ⊂ GrλrGrλ, thenWµ ∈ D′. More generally,

for any F ∈ Dmix
(I) (Gr) supported on Grλ r Grλ, Lemma 5.11 implies that F ∈ D′.

We will now show that every object F ∈ D′′ lies in D′ by induction on the
number of I-orbits in (suppF) ∩ Grλ. If that intersection is empty, the previous
paragraph tells us that F ∈ D′. Otherwise, choose a µ ∈ W · λ such that I·µ is
open in the support of F . Then there is a distinguished triangle

F ′ → F → iµ∗i
∗
µF → .

Note that µ 6= w0λ, because i∗µF ∼= i!µF is nonzero. Since i!w0λ
F ∼= i!w0λ

iµ∗i
∗
µF = 0,

we find that i!w0λ
F ′ = 0 as well. Thus, F ′ lies in D′′, and its support meets fewer

I-orbits in Grλ than that of F , so F ′ ∈ D′. On the other hand, iµ∗i
∗
µF is a direct

sum of various i∗(µ){n}[k]. By Lemma 5.6, there is a distinguished triangle

G → Wµ → i∗(µ){−δµ} → .

The same reasoning as above shows that G lies in D′′ and hence, by induction, in
D′. Therefore, iµ∗i

∗
µF lies in D′, and hence F lies in D′ as well. We have now

shown that D′ = D′′.
Finally, because Ww0λ → I!(λ) and Ww0λ → I∗(λ) were defined by adjunction,

the maps i!w0λ
Ww0λ → i!w0λ

I!(λ) and i!w0λ
Ww0λ → i!w0λ

I∗(λ) are isomorphisms. It

follows that i!w0λ
K = i!w0λ

K′ = 0. In other words, K and K′ lie in D′′, and hence in
D′, as desired. �

Lemma 5.14. Let λ ∈ X+. The category Dmix
(I) (Grλ) is generated as a triangulated

category by the set of objects

{Wµ{n} | n ∈ Z, µ � w0λ and µ ≤ λ} ∪ {I∗(λ){n} | n ∈ Z}.

Proof. Let D ⊂ Dmix
(I) (Grλ) be the triangulated subcategory generated by the ob-

jects indicated above. The second distinguished triangle in Lemma 5.13 shows that
D contains Ww0λ. Of course, every weight µ ≤ λ satisfies µ � w0λ, so we see that
D contains all Wµ with µ ≤ λ. The lemma follows by Lemma 5.11. �

Proposition 5.15. The category Dmix
(I) (Gr) is generated as a triangulated category

by the set

{Wλ{n} | n ∈ Z, λ 6� 0} ∪ {Wλ ? I∗(µ){n} | n ∈ Z, λ, µ ∈ X+}.

Proof. Let D ⊂ Dmix
(I) (Gr) be the triangulated category generated by the set of

objects indicated above. We will show that all Wλ{n} belong to D. Of course, we
need only consider the case where λ � 0. We proceed by downward induction with
respect to �: given λ � 0, let us assume that for all µ � λ, Wµ is already known
to lie in D. (Note that only finitely many such µ also satisfy µ � 0, so it does
make sense to argue by induction here.) Write λ = σ + w0ν, where σ and ν are
both dominant. Lemma 5.14 tells us that Ww0ν lies in the triangulated category
generated by

{Wµ{n} | n ∈ Z, µ � w0ν} ∪ {I∗(ν){n} | n ∈ Z}.

It follows that Wλ
∼=Wσ ?Ww0ν lies in the triangulated subcategory generated by

(5.10) {Wσ ?Wµ{n} | n ∈ Z, µ � w0ν} ∪ {Wσ ? I∗(ν){n} | n ∈ Z}.
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The objects Wσ ?Wµ
∼=Wσ+µ lie in D by assumption, since σ + µ � λ. Thus, all

objects in (5.10) lie in D, so Wλ lies in D as well, as desired. �

We end with a result relating the adjunction map ε : Ww0λ → I!(λ) of (5.9) to
convolution of spherical sheaves.

Lemma 5.16. For λ, µ ∈ X+, there is a unique map of G∨-representations

(5.11) pλ,µ : M(λ+ µ)→ M(λ)⊗M(µ)

such that the following diagram commutes:

Ww0(λ+µ)

o
��

ε // I!(λ+ µ)

S(pλ,µ)

��
Ww0λ ?Ww0µ

id?ε // Ww0λ ? I!(µ)
∼ // Ww0λ ? I!(µ)

ε?id // I!(λ) ? I!(µ)

Each map pλ,µ is nonzero. Moreover, for λ, µ, ν ∈ X+, the two morphisms M(λ+
µ+ ν)→ M(λ)⊗M(µ)⊗M(ν) coincide.

Proof. It is easy to see that Hom(M(λ+µ),M(λ)⊗M(µ)) and Hom(Ww0(λ+µ), I!(λ)?
I!(µ)) are both 1-dimensional, so the existence and uniqueness of pλ,µ are clear.
The associativity property can be deduced from the analogous property for Waki-
moto sheaves. It remains only to show that pλ,µ is nonzero.

To rephrase this problem, form distinguished triangles Ww0λ → I!(λ) → Kλ →
and Ww0µ → I!(µ) → Kµ → as in Lemma 5.13. From these, we can build the
octahedral diagram shown in Figure 2. In that figure, G is a new object; it occurs
in a distinguished triangle

(5.12) Ww0(λ+µ) → I!(λ) ? I!(µ)→ G → .

We want to show that the first morphism in this triangle is not zero.
For any weight ν, let D�ν be the full triangulated subcategory of Dmix

(I) (Gr)
generated by {Wσ{n} | σ � ν, n ∈ Z}. We define D�ν similarly. Lemma 5.13 tells
us that Kµ ∈ D�w0µ, and likewise for Kλ. Since I!(µ) ∈ D�w0µ, we see that both
Ww0λ ?Kµ and Kλ ? I!(µ) lie in D�w0(λ+µ). Therefore, G lies in D�w0(λ+µ).

Lemma 5.12 implies that Ww0(λ+µ) does not lie in D�w0(λ+µ), so it cannot be a
direct summand of G[−1]. We deduce that the first morphism in (5.12) is nonzero,
as desired. �

6. Multihomogeneous coordinate rings and Ext-algebras

6.1. The multihomogeneous coordinate ring of the flag variety. Consider
the duals of the maps introduced in Lemma 5.16:

(6.1) p∗λ,µ : N(λ)⊗N(µ)→ N(λ+ µ).

That lemma implies that these maps satisfy a certain associativity property, so we
can use them make

⊕
λ∈X+ N(λ) into a ring. We introduce the notation

Γ[B∨] :=
⊕
λ∈X+

N(λ),

and we regard it as a G∨-equivariant X-graded ring. Let Γ[B∨]-mod denote the
category of finitely generated G∨-equivariant X-graded Γ[B∨]-modules. A module
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Ww0λ ?Kµ

##

::

Ww0λ ? I!(µ)

77

++
G

��

44

I!(λ) ? I!(µ)

55

**
Ww0(λ+µ)

::

22

Kλ ? I!(µ)

""

))

Figure 2. Octahedral diagram for Lemma 5.16

M =
⊕

λ∈XMλ in Γ[B∨]-mod is said to be thin if there is some λ ∈ X such that
Mµ = 0 for all µ ∈ λ+ X+.

This notation reflects the fact that this ring can be thought of as a multiho-
mogeneous coordinate ring for B∨. To make this precise, consider the line bundle
OB∨(λ) on B∨. We have a canonical identification Γ(B∨,OB∨(λ)) ∼= N(λ). By
adjunction and the projection formula, one sees that there is a canonical bijection
Hom(OB∨(λ)⊗OB∨(µ),OB∨(λ+ µ)) ∼= Hom(N(λ)⊗N(µ),N(λ+ µ)). Let

(6.2) tλ,µ : OB∨(λ)⊗OB∨(µ)
∼→ OB∨(λ+ µ)

be the map corresponding to p∗λ,µ under this bijection. Again, these maps enjoy an
associativity property like that in Lemma 5.16.

Let us assume temporarily that G∨ is semisimple and simply connected, and
let $1, . . . , $r be the fundamental weights of G∨. From (6.2), we obtain for each
λ ∈ X+ a canonical isomorphism

OB∨(λ) ∼= OB∨($1)⊗a1 ⊗ · · · ⊗ OB∨($r)
⊗ar if λ = a1$1 + · · ·+ ar$r,

and hence a canonical isomorphism of rings

Γ[B∨] ∼=
⊕

(a1,...,ar)∈Nr
Γ(B∨,OB∨($1)⊗a1 ⊗ · · · ⊗ OB∨($r)

⊗ar ).

The right-hand side agrees with the multihomogeneous coordinate ring of B∨ as
discussed in, say, [GLS, §10] or [LG, p. 123]. A straightforward generalization of the
Proj-construction (see, e.g., the discussion following [Mu, Proposition 4.8]) recovers
the variety B∨ from this ring, and provides an exact functor

F0 : Γ[B∨]-mod→ Coh(B∨),

where Coh(B∨) is the category of G∨-equivariant coherent sheaves on B∨. (In a
slight abuse of notation, we will also write F0 for the operation that takes possibly
infinitely-generated Γ[B∨]-modules to quasicoherent sheaves on B∨.) Moreover,
this functor induces an equivalence of categories

Γ[B∨]-mod/(Serre subcategory of thin modules)
∼→ Coh(B∨).
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In fact, the functor F0 and the above equivalence are available for arbitrary
reductive G∨ satisfying (1.2). The flag variety of G∨ can be identified with that
of its derived subgroup (G∨)′, and routine reduction arguments let us build F0 for
G∨ in terms of that for (G∨)′.

We now describe another way to construct the ring Γ[B∨] in terms of the geo-
metric Satake equivalence. Consider the X-graded G∨-representation

(6.3)
⊕
λ∈X+

HomDmix
(I)

(Gr)(I!(−w0λ),R).

We make this into a ring as follows: given g ∈ Hom(I!(−w0λ),R) and f ∈
Hom(I!(−w0µ),R), let gf ∈ Hom(I!(−w0(λ+ µ)),R) be the composition

I!(−w0(λ+ µ))
S(p−w0λ,−w0µ

)
−−−−−−−−−−→ I!(−w0λ) ? I!(−w0µ)

g?f−−→ R ?R S(m)−−−→ R.

Here, we have used the fact that f is a morphism in Perv(GO)(Gr) = PervGO
(Gr),

so that it makes sense to form the convolution product g ? f . For later reference,
we rewrite this product in a slightly different form:

(6.4) I!(−w0(λ+ µ))
S(p−w0λ,−w0µ

)
−−−−−−−−−−→ I!(−w0λ) ? I!(−w0µ)

id?f−−−→ I!(−w0λ) ?R
g?id−−−→ R ?R S(m)−−−→ R.

Proposition 6.1. There is an isomorphism of G∨-equivariant X-graded rings

Γ[B∨] ∼=
⊕
λ∈X+

Hom(I!(−w0λ),R).

Proof. The maps below give an an isomorphism of X-graded G∨-representations.
It is easily checked that they also constitute a ring isomorphism, as desired.

Hom(I!(−w0λ),R)
S−→
∼

Hom(M(−w0λ),k[G∨]) ∼= Hom(k,N(λ)⊗ k[G∨])

∼= (N(λ)⊗ k[G∨])G
∨×1 Lemma 4.2−−−−−−−→

∼
N(λ). �

6.2. The multihomogeneous coordinate ring of the Springer resolution.
We will now upgrade these considerations from B∨ to Ñ . The isomorphisms in (6.2)
determine a corresponding collection of isomorphisms

t̃λ,µ : OÑ (λ)⊗OÑ (µ)→ OÑ (λ+ µ).

These, in turn, give rise to a collection of maps

(6.5) p̃∗λ,µ : Γ(Ñ ,OÑ (λ))⊗ Γ(Ñ ,OÑ (µ))→ Γ(Ñ ,OÑ (λ+ µ))

that we then use to make the following space into a ring:

Γ[Ñ ] :=
⊕
λ∈X+

Γ(Ñ ,OÑ (λ)).

This ring carries a (Z×X)-grading. Its degree-(Z× {0}) subring (i.e., the subring
spanned by homogeneous elements whose degrees lie in Z×{0} ⊂ Z×X) is the Z-

graded ring Γ(Ñ ,OÑ ) ∼= k[N ]. On the other hand, Lemma 3.9 gives us an injective
homomorphism

(6.6) Γ[B∨] ↪→ Γ[Ñ ]
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that identifies the former with the degree-({0} ×X) subring of the latter. (To be
precise, Lemma 3.9 just gives us an injective map of G∨-representations. Because
both (6.2) and (6.5) are induced by (6.1), this map is actually a ring homomor-
phism.)

Regard Γ[Ñ ] as a Γ[B∨]-algebra via (6.6). Applying F0, we obtain a Z-graded
sheaf of algebras S on B∨. This sheaf of algebras can be identified with p∗OÑ ,

where p : Ñ → B∨ is the projection map. In other words, we have Ñ = Spec S ,
where Spec is the relative version of the Spec construction.

Let Γ[Ñ ]-mod denote the category of finitely generated G∨-equivariant (Z×X)-

graded Γ[Ñ ]-modules. Given a module M ∈ Γ[Ñ ]-mod, we can regard it as a
Γ[B∨]-module via (6.6), and then form the sheaf F0(M). This is a quasicoherent
sheaf on B∨ that is also a Z-graded sheaf of S -modules. The Spec construction
then associates to F0(M) a (G∨ × Gm)-equivariant coherent sheaf on Ñ . In this
way, we obtain a functor

F : Γ[Ñ ]-mod→ Coh(Ñ ).

As above, a module M =
⊕

λ∈XMλ is called thin if there is some λ ∈ X such that
Mµ = 0 for all µ ∈ λ + X+. (The Z-grading is irrelevant to this condition.) The
functor F induces an equivalence of categories

Γ[Ñ ]-mod/(Serre subcategory of thin modules)
∼→ Coh(Ñ ).

6.3. An Ext-algebra of Wakimoto sheaves. Building on the construction of
Section 4.2, we now make ⊕

λ∈X+

Hom(W−λ,R)

into a G∨-equivariant (Z ×X)-graded Hom(1Gr,R)-algebra, as follows: given f ∈
Hom(W−λ,R{n}) and g ∈ Hom(W−µ,R{m}), we define gf ∈ Hom(W−λ−µ,R{n+
m}) to be the composition

(6.7) W−λ−µ
ω−µ(f)−−−−−→W−µ ?R{n}

∼→W−µ ?R{n}
g?id−−−→ R{m} ?R{n} S(m){m+n}−−−−−−−−→ R{m+ n}.

A short calculation with Lemma 5.9 shows that this operation is associative, so we
do indeed get a ring. The main result of this section is the following.

Theorem 6.2. There is an isomorphism of G∨-equivariant Z×X-graded rings

Γ[Ñ ] ∼=
⊕
λ∈X+

Hom(W−λ,R).

Proof. Using (5.5), Proposition 4.9, and (2.3), we have the following chain of iso-
morphisms in Coh(N ):

Hom(W−λ,R) ∼= Hom(i!(−λ){−δλ},R) ∼= ∇̄(λ)〈δλ〉 ∼= Γ(Ñ ,OÑ (λ)).

Thus, our two rings are at least isomorphic as (Z × X)-graded G∨-equivariant

k[N ]-modules. Recall from Lemmas 3.9 and 3.10 that Γ(Ñ ,OÑ (λ)) is generated
as a k[N ]-module by its degree-0 graded component. Therefore, the same holds
for Hom(W−λ,R). To prove that the two rings in the statement of the theorem
are isomorphic, then, it suffices to show that their degree-({0} ×X) subrings are
isomorphic.
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We first study the right-hand side. Recall that we have an adjunction map
ε :W−λ ∼= i!(−λ){−δ−λ} → I!(−w0λ). This gives rise to a map

(6.8) Hom(I!(−w0λ),R)→ Hom(W−λ,R).

We claim that this map is an isomorphism. Note first that the truncation map
J!(−w0λ)→ pH0(J!(−w0λ)) = I!(−w0λ) induces an isomorphism

Hom(I!(−w0λ),R)
∼→ Hom(J!(−w0λ),R),

since R is perverse. The claim then follows from Corollary 4.8.
From the preceding paragraph, we obtain an injective map of G∨-modules

(6.9)
⊕
λ∈X+

Hom(I!(−w0λ),R) ↪→
⊕
λ∈X+

Hom(W−λ,R)

that identifies the former with the degree-({0} ×X) subspace of the latter.
We will show that this is also a ring homomorphism. Let g ∈ Hom(I!(−w0λ),R)

and f ∈ Hom(I!(−w0µ),R). Let g̃ ∈ Hom(W−λ,R) and f̃ ∈ Hom(W−µ,R) be the

maps corresponding to g and f via (6.8). (Thus, g̃ = g ◦ ε and f̃ = f ◦ ε.)
Recall that f can be regarded as a morphism in PervGO

(Gr) ⊂ Dmix
GO

(Gr). (In-
deed, this observation is essential to the definition of the ring structure in (6.3).)
We can then forget from the GO-equivariant derived category to the I-equivariant
derived category. Of course, the adjunction map ε : W−µ → I!(−w0µ) can also

naturally be lifted to Dmix
I (Gr), so we may regard f̃ as a morphism in Dmix

I (Gr). In

particular, it makes sense to form the convolution product id ? f̃ : W−λ ?W−µ →
W−λ ?R.

That observation is needed for a portion of the large diagram in Figure 3, which
compares the products on either side of (6.9). The large square labeled (∗) is
the commutative diagram from Lemma 5.16. Each of the remaining small squares
obviously commutes.

Thus, the whole of Figure 3 commutes, and hence (6.9) is a ring homomorphism.
From (6.9), (6.6), and Proposition 6.1, we obtain an isomorphism of the degree-

({0} ×X) subrings of Γ[Ñ ] and
⊕

λ∈X+ Hom(W−λ,R), as desired. �

7. The main result

We are now ready to prove the following theorem, which is the main result of
the paper. Its proof will occupy the entire section.

Theorem 7.1. There is an equivalence of triangulated categories

P : Dmix
(I) (Gr) ∼→ DbCohG

∨×Gm(Ñ )

satisfying P (F{1}) ∼= P (F)〈1〉 and P (Wλ) ∼= OÑ (λ). Moreover, this equivalence
is compatible with the geometric Satake equivalence: for F ∈ Dmix

(I) (Gr) and V ∈
Rep(G∨), there is a natural isomorphism P (F ? S(V )) ∼= P (F)⊗ V .

We begin by constructing the functor P . As a first step, given F ∈ Dmix
(I) (Gr),

form the (Z×X)-graded vector space

Qnaive(F) :=
⊕
λ∈X+

Hom(W−λ,F ?R).
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W−λ−µ

ε

��

ω−λ(id)
//

(∗)

ω−λ(f̃)

,,
W−λ ?W−µ

id?ε

��

id?f̃

// W−λ ?R

W−λ ? I!(−w0µ)

��

id?f // W−λ ?R

��
W−λ ? I!(−w0µ)

ε?id

��

id?f // W−λ ?R

ε?id

��
g̃?id

yy

I!(−w0(λ+ µ))
S(p−w0λ,−w0µ

)
// I!(−w0λ) ? I!(−w0µ)

id?f //

g?f //

I!(−w0λ) ?R

g?id

��
R ?R

Figure 3. Comparing ring structures in Theorem 6.2

We make this into a right module over
⊕

λ∈X+ Hom(W−λ,R) by a formula similar

to (6.7): given f ∈ Hom(W−λ,R{n}) and m ∈ Hom(W−µ,F ?R{m}), we define

mf ∈ Hom(W−λ−µ,F ?R{n+m}) to be the composition

W−λ−µ
ω−µ(f)−−−−−→W−µ ?R{n}

∼→W−µ ?R{n}
m?id−−−→ F ?R{m} ?R{n} id?S(m){m+n}−−−−−−−−−−→ F ?R{m+ n}.

Using the isomorphism of Theorem 6.2, we henceforth regard Qnaive as a functor
Qnaive : Dmix

(I) (Gr) → Γ[Ñ ]-mod. We also let Pnaive := F ◦ Qnaive : Dmix
(I) (Gr) →

Coh(Ñ ), and then we put

P 0 = Pnaive|Parity(I)(Gr) : Parity(I)(Gr)→ Coh(Ñ ).

Finally, we define P to be the composition

Dmix
(I) (Gr) = KbParity(I)(Gr)

Kb(P 0)−−−−−→ KbCoh(Ñ )→ DbCoh(Ñ ).

We begin with the last assertion in the theorem.

Proposition 7.2. For F ∈ Dmix
(I) (Gr) and V ∈ Rep(G∨), there is a natural iso-

morphism P (F ? S(V )) ∼= P (F)⊗ V .

Proof. Observe first that by applying S to the isomorphism of Lemma 4.1, we
obtain a natural isomorphism of G∨-equivariant ind-perverse sheaves

(7.1) S(V ) ?R ∼= R⊗ V.

(Here, R⊗ V is isomorphic as an ind-perverse sheaf—but not as a G∨-equivariant

ind-perverse sheaf—to
⊕dimV R.) From the definitions of the convolution product

and the functor P , one sees that it is enough to prove the following statement:
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For F ∈ Parity(I)(Gr) and V a tilting G∨-module, there is a natural isomorphism

P 0(F ? S(V )) ∼= P 0(F)⊗ V . For the latter claim, using (7.1), we find that

P 0(F ? S(V )) = F
(⊕

Hom(W−λ,F ? S(V ) ?R)
)

= F
(⊕

Hom(W−λ,F ?R)⊗ V
)
∼= P 0(F)⊗ V,

as desired. �

The next several statements are somewhat technical lemmas aimed at making it
possible to compute some values of P .

Lemma 7.3. Let F ∈ Parity(I)(Gr), and let V ∈ Rep(G∨) have a good filtration.

Then F ? S(V ) is !-pure of weight 0.

Proof. Every indecomposable parity sheaf on Gr occurs as a direct summand of
the direct image along $ : F` → Gr of some parity sheaf on F`. Thus, without
loss of generality, we may assume that F = $∗F̃ for some F̃ ∈ Parity(I)(F`). By

Lemma 5.4, we have $∗F̃ ? S(V ) ∼= F̃ ? S(V ). Via Lemma A.4, it is enough to
show that F ? S(V ) is an adverse sheaf with a costandard filtration.

Let us first show that $∗(F ? S(V )) ∼= F̃ ? $∗S(V ) is adverse. (Here, we have
used Lemma 5.3.) By Lemmas A.4 and A.6, $∗S(V ) is an adverse sheaf with a

costandard filtration. On the other hand, the parity sheaf F̃ is a tilting object
in Adv(I)(F`); in particular, it has a standard filtration. Proposition A.16 then

implies that F̃ ? $∗S(V ) is adverse.
Since $∗ is adverse-exact and kills no nonzero adverse sheaf (see Lemma A.5),

it follows that F ? S(V ) is adverse. To show that it has a costandard filtration, we
must check that

Ext1(i!(µ){n},F ? S(V )) = 0

for all µ ∈ X and all n ∈ Z. Since S(V ) has weights ≥ 0 (see [ARc3, Lemma 3.5])
and F is parity, the object (F ? S(V ))[1] has weights ≥ 1. On the other hand,
i!(µ){n} has weights ≤ 0, so the Ext1-group above vanishes by (A.1). �

Lemma 7.4. Let λ, µ ∈ X be such that λ + µ ∈ X+. Let F ∈ Parity(I)(Gr), and

let V ∈ Rep(G∨) have a good filtration. Then

Homi(W−µ,Wλ ? F ? S(V )) = 0 for all i 6= 0.

Proof. Lemma 7.3 tells us F ? S(V ) is !-pure of weight 0, so we can invoke Propo-
sition 5.8 to obtain an isomorphism

Homi(W−µ,Wλ ? F ? S(V )) ∼= Homi(W−λ−µ,F ? S(V )).

By Lemma 7.3 and Lemma A.4, F ? S(V ) is an adverse sheaf with a costandard
filtration. Since W−λ−σ ∼= i!(−λ − σ){−δ−λ−σ} is a standard adverse sheaf, we
have Exti(W−λ−σ,F ?S(V ){n}) = 0 for all n ∈ Z and all i 6= 0. By the equivalence
at the end of Proposition A.1, these Ext-groups can be identified with Hom-groups
in Dmix

(I) (Gr), and the lemma follows. �

The next statement involves the functor introduced in Proposition 5.10.

Lemma 7.5. Let λ ∈ X, and let F ∈ Parity(I)(Gr). For all i 6= 0, we have

Pnaive(Wλ “?” F [i]) = 0.
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Proof. In view of Proposition 5.10, we may as well instead take F ∈ ParityI(Gr),
and work with For(Wλ ? F). Choose a weight ν ∈ X+ such that λ + ν ∈ X+.
Since k[G∨] is an inductive limit of finite-dimensional G∨-representations with good
filtrations, Lemma 7.4 implies that Hom(W−σ,Wλ?F [i]?R) = 0 for all i 6= 0 and all
σ ∈ ν+X+. This means that Qnaive(Wλ?F [i]) is thin, so Pnaive(Wλ?F [i]) = 0. �

Lemma 7.6. For any F ∈ Dmix
(I) (Gr) and any i ∈ Z, there is a natural isomorphism

Hi(P (F)) ∼= Pnaive(F [i]).

Proof. It certainly suffices to prove this for i = 0. Let Dmix
(I) (Gr)≥0 and Dmix

(I) (Gr)≤0

denote the full subcategories of objects with weights ≥ 0 and ≤ 0, respectively. We
proceed in several steps.

Step 1. For F ∈ Dmix
(I) (Gr)≥0, there is a natural transformation H0(P (F)) →

Pnaive(F). Since F has weights ≥ 0, it can be written as a chain complex E• in
KbParity(I)(Gr) with E i = 0 for i > 0. Consider the obvious map E0 → F in

Dmix
(I) (Gr). The composition E−1 → E0 → F vanishes. Applying Pnaive, we obtain

a sequence of maps

P 0(E−1)→ P 0(E0)→ Pnaive(F)

whose composition vanishes. Therefore, the map P 0(E0)→ Pnaive(F) determines a

map P (F)→ Pnaive(F) in DbCoh(Ñ ). Taking cohomology, we obtained the desired
natural transformation H0(P (F))→ Pnaive(F).

Step 2. For F ∈ Dmix
(I) (Gr)≤0, there is a natural transformation Pnaive(F) →

H0(P (F)). Similar to Step 1.
Step 3. Let F1 ∈ Dmix

(I) (Gr)≥0 and F2 ∈ Dmix
(I) (Gr)≤0. For any morphism f :

F1 → F2, the following diagram commutes:

(7.2)
H0(P (F1))

H0(P (f)) //

**

H0(P (F2))

Pnaive(F1)
Pnaive(f)// Pnaive(F2)

55

Write the objects as complexes F1 = E•1 and F2 = E•2 with E i1 = 0 for i > 0 and
E i2 = 0 for i < 0. The morphism f : F1 → F2 corresponds to some map of chain
complexes f• : E•1 → E•2 where, of course, only f0 can be nonzero. Because the dia-
gram below commutes, we see from the construction of the natural transformations
in Steps 1 and 2 that (7.2) commutes.

E−1
1

// E0
1

%%

f0

// E0
2

// E1
2

F1
f // F2

99

Step 4. The natural transformations of Steps 1 and 2 are isomorphisms. We will
prove this for Step 1; the other case is similar. Suppose F has weights ≥ 0 and ≤ n.
We proceed by induction on n. When n = 0, F is pure of weight of 0, and it is
clear from the definitions that P (F) → Pnaive(F) is an isomorphism. Otherwise,
write F as a complex E• with E i = 0 for i > 0, and let F ′ be the cone of E0 → F .
Then F ′ has weights ≥ 1 and ≤ n. The distinguished triangle E0 → F → F ′ →
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gives rise to a commutative diagram

H0(P (F ′[−1])) //

o
��

H0(P (E0)) //

o
��

H0(P (F)) //

��

H0(P (F ′))

��
Pnaive(F ′[−1]) // Pnaive(E0) // Pnaive(F) // Pnaive(F ′)

The first two vertical arrows are isomorphisms by induction. In the last column,
we clearly have H0(P (F ′)) = 0, while Lemma 7.5 implies that Pnaive(F ′) = 0. We
conclude that the third vertical arrow is an isomorphism, as desired.

Step 5. The general case. Given F ∈ Dmix
(I) (Gr), say F = E• ∈ KbParity(I)(Gr),

let F1 be the complex obtained by omitting the E i with i > 0, and let F2[−1] be
the complex obtained by omitting the E i with i ≤ 0. Thus, there is a distinguished
triangle F2[−1]→ F → F1 →. Note that F1 has weights ≥ 0 and F2 has weights ≤
0. Consider the following diagram, in which the rows are long exact sequences:

H−1(P (F2)) // H0(P (F)) // H0(P (F1)) //

o
��

H0(P (F2))

Pnaive(F2[−1]) // Pnaive(F) // Pnaive(F1) //// Pnaive(F2)

o

OO

We clearly haveH−1(P (F2)) = 0, while Lemma 7.5 implies that Pnaive(F2[−1]) = 0.

It follows that there is a unique isomorphism H0(P (F))
∼→ Pnaive(F) that would

make the diagram commute. It is a routine exercise in homological algebra that
this morphism is independent of the choice of F1 and F2 and natural in F . �

Corollary 7.7. For F ∈ Dmix
(I) (Gr), we have that P (F) ∈ Coh(Ñ ) if and only

if Pnaive(F [i]) = 0 for all i 6= 0. When these conditions hold, there is a natural
isomorphism P (F) ∼= Pnaive(F).

Proposition 7.8. Let λ ∈ X. For F ∈ Parity(I)(Gr), there is a natural isomor-

phism P (Wλ “?” F) ∼= OÑ (λ)⊗ P (F). In particular, we have P (Wλ) ∼= OÑ (λ).

Proof. By Lemma 7.5 and Corollary 7.7, we have P (Wλ “?” F) ∼= Pnaive(Wλ “?”
F) and P (F) ∼= Pnaive(F). We will prove that there is a natural isomorphism
Pnaive(Wλ “?” F) ∼= OÑ (λ) ⊗ Pnaive(F). As in the proof of Lemma 7.5, we will
replace F by an object of ParityI(Gr), and work with Wλ ? F throughout.

For a module M ∈ Γ[Ñ ]-mod and a weight χ ∈ X, let M〈〈χ〉〉 denote the module
obtained by shifting the X-grading by χ. That is,

(M〈〈χ〉〉)σ = Mχ+σ.

From the definitions, we have a natural isomorphism

(7.3) F (M〈〈χ〉〉) ∼= OÑ (χ)⊗F (M).

Now, choose a dominant weight ν such that λ+ν is dominant. There is an obvious
surjective map of Γ[Ñ ]-modules

Qnaive(Wλ ? F [i])�
⊕

σ∈ν+X+

Hom(W−σ,Wλ[i] ? F ?R).
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On the other hand, Proposition 5.8 gives us an isomorphism Hom(W−λ−σ,F ?
R[i])→ Hom(W−σ,Wλ ?F [i]?R) for σ ∈ ν+X+. Using this, we form a surjective
map

Qnaive(F [i])〈〈λ〉〉 =
⊕

σ∈−λ+X+

Hom(W−σ−λ,F [i] ?R)

�
⊕

σ∈ν+X+

Hom(W−σ,Wλ[i] ? F ?R).

Both of these maps have thin kernels, and hence become isomorphisms after apply-
ing F . Using (7.3), we conclude that Pnaive(Wλ ? F [i]) ∼= OÑ (λ) ⊗ Pnaive(F), as
desired. �

Lemma 7.9. For any λ, µ ∈ X+ and i ∈ Z, the functor P induces an isomorphism

(7.4) Homi(1Gr,Wλ ? I∗(µ))
∼→ Homi(P (1Gr), P (Wλ ? I∗(µ))).

Moreover, both sides vanish for i 6= 0.

Proof. Suppose first that i 6= 0. Lemma 7.4 tells us that the left-hand side vanishes.
For the right-hand side, by Propositions 7.2 and 7.8, we have P (1Gr) = OÑ and

P (Wλ ? I∗(µ)) = OÑ (λ)⊗N(µ). Using (2.1) and adjunction, we have

Homi(OÑ ,OÑ ⊗N(µ)) ∼= Homi(ON , π∗(OÑ ⊗N(µ))) ∼= Homi(ON ,ON ⊗N(µ)).

This vanishes when i 6= 0 because ON is a standard object of PCoh(N ), while
ON ⊗N(µ) has a costandard filtration.

For later reference, we record the details of the adjunction isomorphism used
above: it is the composition of the following sequence of maps, where the last one
is induced by the unit η : ON → π∗π

∗ON :

(7.5) Hom(OÑ ,OÑ (λ)⊗N(µ))
π∗−→ Hom(π∗OÑ , π∗(OÑ (λ)⊗N(µ)))

∼= Hom(π∗π
∗ON , π∗(OÑ (λ)⊗N(µ)))

η−→ Hom(ON , π∗(OÑ (λ)⊗N(µ))).

But since η : ON → π∗π
∗ON is itself an isomorphism (see (2.1)), the map induced

by π∗ must also be an isomorphism.
We now study (7.4) for i = 0. Corollary 7.7 tells us that we may replace it by

(7.6) Hom(1Gr,Wλ ? I∗(µ))→ Hom(Pnaive(1Gr), Pnaive(Wλ ? I∗(µ))).

We begin by showing that this map is injective. Recall that for any M ∈ Γ[Ñ ]-mod,
there is a natural map

M →
⊕
σ∈X+

Γ(Ñ ,OÑ (σ)⊗F (M)).

Write M =
⊕

σ∈XMσ, and let U : M 7→ M0 be the functor that picks out the
degree-(Z× {0}) subspace of M . The map above gives rise to a natural map

(7.7) U(M)→ Γ(Ñ ,F (M)).

Of course, this is not an isomorphism in general, but it may be for specific classes
of objects. In particular, for M = Qnaive(1Gr) or Qnaive(Wλ ? I∗(µ)), it is easy to
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check that (7.7) is an isomorphism. Replacing Γ(Ñ ,F (Qnaive(−))) by π∗Pnaive(−),
we construct the following commutative diagram:

Hom(1Gr,Wλ ? I∗(µ))

��
Hom(Qnaive(1Gr), Qnaive(Wλ ? I∗(µ))) //

��

Hom(U(Qnaive(1Gr)), U(Qnaive(Wλ ? I∗(µ))))

o (7.7)

��
Hom(Pnaive(1Gr), Pnaive(Wλ ? I∗(µ)))

π∗
∼
// Hom(π∗Pnaive(1Gr), π∗Pnaive(Wλ ? I∗(µ)))

As noted above, the rightmost vertical arrow is an isomorphism. We saw in (7.5)
that the bottommost horizontal arrow (which is induced by π∗) is an isomorphism.
So to prove that (7.6) is injective, it suffices to prove that

(7.8) Hom(1Gr,Wλ ? I∗(µ))→ Hom(U(Qnaive(1Gr)), U(Qnaive(Wλ ? I∗(µ))))

is injective. Let f : 1Gr → Wλ ? I∗(µ){n} be a nonzero map. Unwinding the
definitions, one finds that

U(Qnaive(f)) : Hom(1Gr,R)→ Hom(1Gr,Wλ ? I∗(µ){n} ?R)

is just given by U(Qnaive(f))(g) = f ? g. Let η : 1Gr → R be the unit morphism.
Then f ? η is nonzero, because (f ? ε) ◦ (f ? η) = f , where ε : R → 1Gr is the counit
coming from the Hopf algebra structure on k[G∨]. Thus, U(Qnaive(f)) is nonzero,
and so (7.8) and (7.6) are both injective.

To finish the proof, we must show that (7.6) is actually an isomorphism. It
suffices to check that both sides have the same dimension in each degree of the
grading. This is achieved by the following calculation.

Hom(1Gr,Wλ ? I∗(µ))

∼= Hom(i!(−λ){−δ−λ}, I∗(µ)) by Prop. 5.8

∼= k⊗H•(Gr−w0λ
) Hom(J!(−w0λ), I∗(µ)) by Lemma 4.7

∼= k⊗H•(Gr−w0λ
) Hom(∆(−w0λ)〈δw0λ〉,ON ⊗N(µ)) by Prop. 3.1 & Cor. 3.4

∼= Hom(∆̄(−w0λ)〈−δw0λ〉,ON ⊗N(µ)) by Lemma 3.8

∼= Hom(OÑ (−λ),OÑ ⊗N(µ)) by (2.2)

∼= Hom(OÑ ,OÑ (λ)⊗N(µ))

∼= Hom(Pnaive(1Gr), Pnaive(Wλ ? I∗(µ))). �

Lemma 7.10 (cf. [B2, Lemma 5]). Let λ, µ ∈ X.

(1) If λ 6� µ, then Hom•(OÑ (µ),OÑ (λ)) = 0.

(2) We have End(OÑ (λ)) ∼= k, and Homi(OÑ (λ),OÑ (λ)) = 0 for i 6= 0.

Proof. By applying the equivalence of categories OÑ (−λ) ⊗ (−), we may assume
without loss of generality that λ = 0. Using (2.2), we find that

Hom•(OÑ (µ),OÑ ) ∼= Hom•(OÑ (µ), π!ON ) ∼= Hom•DbCoh(N )(π∗OÑ (µ),ON ).

By [A, Proposition 5.6], the latter vanishes unless µ � 0. In the special case where
µ = 0, we use (2.1) and [A, Lemma 5.5(2)] to see that Hom(π∗OÑ ,ON ) ∼= k, and

that Homi(π∗OÑ ,ON ) = 0 for i 6= 0. �
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Conclusion of the proof of Theorem 7.1. We begin by showing that for all F ∈
Dmix

(I) (Gr), the map

(7.9) Homi(1Gr,F)→ Homi(P (1Gr), P (F))

is an isomorphism. By Proposition 5.15, it suffices to consider the cases where
F = Wλ with λ 6� 0, or else F = Wλ ? I∗(µ) with λ, µ ∈ X+. In the former case,
both sides of (7.9) vanish, by Lemmas 5.12 and 7.10. The latter case is covered by
Lemma 7.9. Thus, (7.9) is an isomorphism in all cases.

Next, let F ∈ Parity(I)(Gr), and let λ ∈ X+. Consider the following diagram of
natural maps:

(7.10)

Homi(1Gr,F)
∼ //

oωλ

��

Homi(P (1Gr), P (F))

o
��

Homi(OÑ (λ)⊗ P (1Gr),OÑ (λ)⊗ P (F))

Homi(Wλ,Wλ “?” F) // Homi(P (Wλ), P (Wλ “?” F))

o

OO

All the vertical maps are isomorphisms, and the top horizontal map is an isomor-
phism by (7.9).

When i = 0, the natural isomorphism of Proposition 7.8 tells us that this diagram
commutes, and so the bottom horizontal map is an isomorphism as well. When
i 6= 0, that naturality is not a priori available—but both Hom-groups in the top
row vanish, and so every Hom-group in the diagram vanishes.

Thus, the bottom arrow in (7.10) is an isomorphism in all cases. Note that the
equivariant derived category Dmix

I (Gr) is generated by objects of the form Wλ ? F
with F ∈ ParityI(Gr), because Wλ ? (−) is an autoequivalence of that category.
Since the image of For : Dmix

I (Gr)→ Dmix
(I) (Gr) generates Dmix

(I) (Gr), we deduce that

objects of the formWλ“?”F with F ∈ Parity(I)(Gr) generate Dmix
(I) (Gr). Therefore,

the bottom isomorphism in (7.10) implies that

Homi(Wλ,G)→ Homi(P (Wλ), P (G))

is an isomorphism for all G ∈ Dmix
(I) (Gr). Finally, theWλ also generate Dmix

(I) (Gr), so

P is fully faithful. The line bundles OÑ (λ) generate DbCoh(Ñ ) as a triangulated
category, so P is also essentially surjective, and hence an equivalence. �

8. The exotic t-structure

The exotic t-structure on DbCoh(Ñ ) was defined in [B2, §2.3], at least for k = C.
We will briefly review the steps of the construction, and check that they go through
in positive characteristic as well.

8.1. Exceptional sets and mutation. This subsection contains a very cursory
review of the definitions and facts we will need from [B2, §2.1]. For details, the
reader should consult [B2] and the references indicated therein, especially [BoKa,
BGS].

Let D be a k-linear triangulated category equipped with an autoequivalence
〈1〉 : D → D. Let Ω be a partially ordered set, with partial order �. A collection
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of objects {Xγ | γ ∈ Ω} is called a full graded �-exceptional set if D is generated
by the set {Xγ〈n〉 | γ ∈ Ω, n ∈ Z}, and if the following three additional conditions
hold:

Hom•(Xγ , Xξ) = 0 if ξ 6� γ, Homi(Xγ , Xγ) = 0 if i 6= 0, End(Xγ) ∼= k.

Now, suppose E is another partial order on Ω, and that {Yγ | γ ∈ Ω} is a full graded
E-exceptional set. We say that {Yγ} is a E-mutation of {Xγ} if the following two
conditions hold:

(1) For each γ, the triangulated category generated by {Xξ〈n〉 | ξ E γ, n ∈ Z}
coincides with that generated {Yξ〈n〉 | ξ E γ, n ∈ Z}.

(2) For each γ, there is a distinguished triangle Xγ → Yγ → Uγ → such that Uγ
lies in the triangulated subcategory generated by {Xξ〈n〉 | ξ C γ, n ∈ Z}.

Suppose (Ω,E) is isomorphic as a partially ordered set to a subset of N. Then,
according to [B2, Lemma 1], there exists a unique E-mutation of any full graded
�-exceptional set.

On the other hand, if (Ω,E) is isomorphic to a subset of N, then by [B2, Propo-
sition 2], any full graded E-exceptional set {Yγ} determines a t-structure on D.
Specifically, the categories

(8.1)

D≤0 = {A ∈ D | Hom(A, Yγ [i]) = 0 for all i < 0},

D≥0 =
the smallest strictly full subcategory of D that is stable under
extensions and contains Yγ〈n〉[i] for all γ ∈ Ω, n ∈ Z and i ≤ 0

constitute a t-structure on D.
The heart A = D≤0∩D≥0 is clearly stable under 〈1〉. According to [B2, Propo-

sition 2], every object in A has finite length, and the isomorphism classes of simple
objects, up to 〈1〉, are in bijection with Ω.

In fact, A is very close to being a graded quasihereditary category: it satisfies
the axioms (1)–(5) of [BGS, §3.2], but axiom (6) may fail. The costandard objects
are of the form tH0(Yγ〈n〉), where tH denotes cohomology with respect to our t-
structure. The standard objects are of the form tH0(8Yγ〈n〉), where {8Yγ} is the
dual exceptional set in the sense of [B2, §2.1.2].

8.2. Exotic sheaves. By Lemma 7.10, the collection {OÑ (λ) | λ ∈ X} is a full
graded �-exceptional set. Now consider the partial order ≤ on X. Certainly, ≤
can be refined to a total order ≤′ such that (X,≤′) is isomorphic to N, and then we
can form the ≤′-mutation of {OÑ (λ)}. It will be convenient to name the objects of
the new exceptional set with a built-in shift: let {V(λ)〈−δλ〉} be the ≤′-mutation
of {OÑ (λ)}. Thus, for each λ, there is a distinguished triangle

OÑ (λ)→ V(λ)〈−δλ〉 → G →

in DbCoh(Ñ ), where G lies in the subcategory generated by {OÑ (µ)〈n〉 | µ <′ λ}.
As in (8.1), the objects {V(λ)} determine a t-structure on DbCoh(Ñ ). We call

this the exotic t-structure, and we denote its heart by ExCoh(Ñ ). This definition
appears to depend on the choice of refinement ≤′ of ≤, but we will see below that
it is actually independent of that choice.

8.3. Adverse sheaves and exotic sheaves. We can also apply the notions of §8.1
to Dmix

(I) (Gr) with the autoequivalence {1} : Dmix
(I) (Gr)→ Dmix

(I) (Gr).

Lemma 8.1. (1) The set {Wλ | λ ∈ X} is a full graded �-exceptional set.
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(2) If ≤′ is any total order on X that refines ≤ and such that (X,≤′) is isomor-
phic to N, then the ≤′-mutation of {Wλ} is isomorphic to {i∗(λ){−δλ}}.

Proof. The assertion that {Wλ} is a �-exceptional set is just a restatement of
Lemma 5.12. A routine adjunction argument shows that {i∗(λ){−δλ}} is a ≤-
exceptional set, so it is also ≤′-exceptional for any choice of ≤′.

Lemmas 5.6 and 5.11 imply that for each λ, there is a distinguished triangle

Wλ → i∗(λ){−δλ} → Kλ →
where Kλ lies in the subcategory generated by {Wµ{n} | µ < λ}. Finally, those

same lemmas also tell us that {Wµ{n} | µ ≤′ λ} and {i∗(µ){n} | µ ≤′ λ} generate
the same subcategory of Dmix

(I) (Gr). �

Lemma 8.2. Let ≤′ be a total order on X that refines ≤ and such that (X,≤′)
is isomorphic to N. Then the t-structure on Dmix

(I) (Gr) determined by the ≤′-
exceptional set {i∗(λ){−δλ}} is the adverse t-structure.

In particular, this lemma tells us that the t-structure obtained by mutation of
the exceptional set {Wλ} is independent of the choice of ≤′.

Proof. It is obvious that the category D≥0 as described in (8.1) coincides with
aDmix

(I) (Gr)≥0 as described in (A.3). An easy adjunction argument shows that D≤0

in (8.1) agrees with aDmix
(I) (Gr)≤0 as in (A.2). �

The following statement is the main result of this section.

Theorem 8.3. The equivalence P of Theorem 7.1 induces an equivalence of abelian
categories

P : Adv(I)(Gr)
∼→ ExCoh(Ñ ).

Proof. Recall from Proposition 7.8 that P takes the exceptional set {Wλ} to the
exceptional set {OÑ (λ)}. It must therefore take the ≤′-mutation of the former
to the ≤′-mutation of the latter: P (i∗(λ)) ∼= V(λ). Lastly, P must also take
the t-structure determined by {i∗(λ)} to that determined by {V(λ)}. In view of
Lemma 8.2, we are done. �

Let {

V

(λ) | λ ∈ X} the the dual exceptional set to {V(λ)}. The reasoning above
shows that we must also have P (i!(λ)) ∼=

V

(λ).
Since Theorem 8.3 gives an equivalence of quasihereditary categories, it certainly

restricts to an equivalence between their respective subcategories of tilting objects.
We obtain the following statement, which appeared earlier as Theorem 1.2.

Proposition 8.4. The equivalence P of Theorem 7.1 induces an equivalence of
additive categories

P : Parity(I)(Gr)
∼→ Tilt(ExCoh(Ñ )).

We also obtain a slew of nontrivial facts about ExCoh(Ñ ) just by transfer-
ring facts about Adv(I)(Gr) from §A.2 across this equivalence. Some of these are
recorded in the following proposition.

Proposition 8.5. (1) The objects V(λ) and

V

(λ) and the category ExCoh(Ñ )
are all independent of the choice of ≤′.

(2) ExCoh(Ñ ) is a graded quasihereditary category,
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(3) The V(λ) (resp.

V

(λ)) lie in ExCoh(Ñ ) and are the costandard (resp. stan-
dard) objects therein.

(4) There is a derived equivalence

DbExCoh(Ñ )
∼→ DbCoh(Ñ ).

Proposition 8.6. (1) Every line bundle on Ñ (and, more generally, every

vector bundle) belongs to ExCoh(Ñ ).
(2) For all V ∈ Rep(G∨), the perverse sheaf S(V ) is also an adverse sheaf. As

an object of Adv(I)(Gr), S(V ) admits a filtration whose subquotients are
Wakimoto sheaves.

Part (2) of this proposition should be compared to [AB, Theorem 4].

Proof. Part (1) follows from the fact that Wakimoto sheaves on Gr are adverse
(see §5.3). In particular, part (1) tells us that trivial vector bundles of the form

OÑ ⊗ V , where V ∈ Rep(G∨), lie in ExCoh(Ñ ). Since P−1(OÑ ⊗ V ) ∼= S(V ),
part (2) follows. �

We finish with a fact that may be useful for computations. It should be compared
with the corresponding fact (see (2.4)) for PCoh(N ).

Proposition 8.7. The costandard objects in ExCoh(Ñ ) also belong to Coh(Ñ ).

Proof. Recall that i∗(λ) has weights ≥ 0, and thus can be written as a complex
of parity sheaves E• ∈ KbParity(I)(Gr) with nonzero terms only in nonpositive de-

grees. From the definition of P , we see immediately that Hi(P (i∗(λ))) ∼= Hi(V(λ))
vanishes when i > 0. Now, let k be the smallest integer such that Hk(V(λ)) 6= 0.

It is easy to see that every nonzero coherent sheaf on Ñ admits a nonzero map
from (and indeed, is a quotient of) some vector bundle. Let F be a vector bundle
such there is a nonzero map F → Hk(V(λ)). This gives rise to a nonzero map

F [−k]→ V(λ). Since F and V(λ) both lie in ExCoh(Ñ ), we must have k ≥ 0. But
we already knew that k ≤ 0, so k = 0, and V(λ) is a coherent sheaf. �

Appendix A. Complements on mixed modular derived categories
(joint with Simon Riche1)

A.1. Overview. Let X be a variety or an ind-variety equipped with a stratification
S by affine spaces, and let k be a field or a complete discrete valuation ring. Assume
that X and S satisfy assumptions (A1) and (A2) of [ARc2] with respect to k. Let
ParityS (X) be the additive category of parity complexes on X with coefficients in
k. For each s ∈ S , let is : Xs ↪→ X be the inclusion of the corresponding stratum.
Following [ARc2], we define the category

Dmix
S (X) := KbParityS (X).

Below is a summary of the main features of this category from [ARc2, ARc3]. Later
subsections give a handful of new results that were not needed in those sources.

1Université Blaise Pascal - Clermont-Ferrand II, Laboratoire de Mathématiques, CNRS,
UMR 6620, Campus universitaire des Cézeaux, F-63177 Aubière Cedex, France. E-mail:

simon.riche@math.univ-bpclermont.fr
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Shift and Tate twist. In addition to the usual shift functor [1] : Dmix
S (X) →

Dmix
S (X), there is another automorphism {1} : Dmix

S (X)→ Dmix
S (X), induced by an

automorphism of ParityS (X). We also set 〈1〉 := {−1}[1]. This last automorphism
is called the Tate twist.

Sheaf functors. If h : Y ↪→ X is the inclusion of a locally closed union of strata,
then there are functors h∗, h!, h

∗, and h! between Dmix
S (X) and Dmix

S (Y ) that enjoy
all the usual adjunction properties.

Mixed perverse sheaves. There is a perverse t-structure whose heart is denoted
Pervmix

S (X). This category is stable under 〈1〉, and it contains the objects ∆mix
s :=

is!k{dimXs} and ∇mix
s := is∗k{dimXs}. When k is a field, Pervmix

S (X) is a graded
quasihereditary category.

Weights. There are notions of weights and purity that share some formal properties
with the corresponding notions in [D, BBD]. The functor {1} preserves weights,
while [1] and 〈1〉 increase weights by 1. The definitions imply that

(A.1) Hom(F ,G) = 0 if F has weights < n and G has weights ≥ n.

An object F ∈ Dmix
S (X) is said to be ∗-pure (resp. !-pure) of weight n if i∗sF

(resp. i!sF) is pure of weight n for all s ∈ S . The notion of ∗-purity corresponds
roughly to pointwise purity in the sense of [BBD]. By [ARc3, Lemma 3.5], an object
that is ∗- and !-pure of weight n is pure of weight n.

Hom functors. One can associate to any F ,G ∈ Dmix
S (X) a certain object in the

derived category of k-modules denoted RHom(F ,G). This construction is functorial
in both variables, and it satisfies Hi(RHom(F ,G)) ∼= Homi(F ,G).

The following variation on this construction will be useful: for F ,G ∈ Dmix
S (X),

let Hom(F ,G) to be the graded vector space given by

Hom(F ,G)n := Hom(F ,G{n}).

One can then define a derived version RHom(F ,G) as in [ARc2, §2.7], satisfying

Hi(RHom(F ,G)) ∼= Homi(F ,G).

A.2. The adverse t-structure. In this subsection, we assume for simplicity that
k is a field. Consider the following full subcategories of Dmix

S (X):

(A.2)

aDmix
S (X)≤0 = {F | for all s ∈ S , i∗sF has weights ≥ 0},

aDmix
S (X)≥0 = {F | for all s ∈ S , i!sF has weights ≤ 0}.

It is easy to check that these categories admit the following alternative descriptions:

(A.3)

aDmix
S (X)≤0 =

the smallest strictly full subcategory that is stable under
extensions and contains ∆mix

s {n}[k] for all n ∈ Z and k ≥ 0

aDmix
S (X)≥0 =

the smallest strictly full subcategory that is stable under
extensions and contains ∇mix

s {n}[k] for all n ∈ Z and k ≤ 0

We put

AdvS (X) := aDmix
S (X)≤0 ∩ aDmix

S (X)≥0,

and we call objects of AdvS (X) adverse sheaves.
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Proposition A.1. The pair (aDmix
S (X)≤0, aDmix

S (X)≥0) constitutes a bounded t-
structure on Dmix

S (X). Its heart AdvS (X) is a graded quasihereditary category in
which the standard (resp. costandard) objects are those of the form

∆mix
s {n}, resp. ∇mix

s {n},
and the category Tilt(AdvS (X)) of tilting objects in AdvS (X) is identified with

ParityS (X). Lastly, there is an equivalence of categories DbAdvS (X)
∼→ Dmix

S (X).

Remark A.2. The definitions above also make sense in the setting of an equivariant
mixed derived category Dmix

H,S (X) as in [ARc2, §3.5] or §A.4. However, aDmix
H,S (X)≤0

and aDmix
H,S (X)≥0 do not constitute a t-structure in general. Specifically, truncation

distinguished triangles as in [BBD, Définition 1.3.1(iii)] can fail to exist. This can
be seen already in the case where X is a single stratum.

Remark A.3. When k is not a field, there is a unique t-structure with aDmix
S (X)≤0

as in (A.2) or (A.3), but the descriptions of aDmix
S (X)≥0 must be modified in this

case (cf. [ARc2, Proposition 3.4]). The heart of this t-structure behaves in many
ways like a quasihereditary category. In particular, it has properties like those
discussed in [ARc2, §3.3].

Proof Sketch. This statement is very similar to [ARc1, Lemma 10.8].
Suppose first that X consists of a single stratum. Then Dmix

S (X) is a semisimple
category. The description given in [ARc2, Lemma 3.1] can be used to check that
(aDmix

S (X)≤0, aDmix
S (X)≥0) is indeed a t-structure. For general X, the claim that

this is a t-structure follows by the machinery of recollement.
Next, we claim that all the ∆mix

s {n} lie in the heart of this t-structure. It suffices

to show that Homk(∆mix
s {n},∆mix

t {m}) = 0 for k < 0. By adjunction, we have

Homk(∆mix
s {n},∆mix

t {m}) ∼= Hom(k{dimXs + n}, i!s∆mix
t {m}[k]).

By [ARc3, Lemmas 3.3 and 3.4], i!s∆
mix
t {m}[k] has weights ≤ k, while k{dimXs+n}

is, of course, pure of weight 0. When k < 0, the semisimplicity of Dmix
S (Xs)

(together with, say, the description in [ARc3, Example 3.2]) implies that the Hom-
group above vanishes. A similar argument shows that the ∇mix

s {n} lie in AdvS (X)
as well.

General principles from the theory of quasihereditary categories then imply that
AdvS (X) is quasihereditary, that it has the claimed standard and costandard ob-

jects, and that we have DbAdvS (X)
∼→ Dmix

S (X).
Finally, let us check that Tilt(AdvS (X)) = ParityS (X). By considering weights,

we see that Homk(∆mix
t {m}, Es{n}) = Homk(Es{n},∇mix

t {m}) = 0 for all k > 0.
According to the criterion in [B2, Lemma 4], each Es{n} is an indecomposable tilt-
ing object in AdvS (X). On the other hand, we have produced “enough” tilting
objects: by the classification in, say, [ARc2, Proposition A.4], every indecomposable
tilting object in AdvS (X) must be isomorphic to some Es{n}. �

When X is a (finite-dimensional) flag variety, the adverse t-structure is the trans-
port of the perverse t-structure across the “self-duality” equivalence of [ARc2].

Lemma A.4. Let F ∈ Dmix
S (X). The following conditions are equivalent:

(1) F is ∗-pure of weight 0.
(2) F lies in AdvS (X) and has a standard filtration.

Likewise, the following conditions are equivalent:
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(1) F is !-pure of weight 0.
(2) F lies in AdvS (X) and has a costandard filtration.

Proof. We will just prove the first equivalence. It is clear that every standard object
satisfies condition (1), so (2) implies (1). For the other implication, we proceed by
induction on the number of strata in the support of F . Let Xs be a stratum that is
open in the support of F . Let Z be the union of the closures of all strata other than
Xs in the support of F , and let h : Z ↪→ X be the inclusion map. Then there is
a distinguished triangle is!i

∗
sF → F → h∗h

∗F →. By induction, h∗h
∗F is adverse

and has a standard filtration. (Note that the recollement setup implies that h∗
is t-exact for the adverse t-structure.) On the other hand, i∗sF is a direct sum of
various k{n}, so is!i

∗
sF is a direct sum of various ∆mix

s {n}. The result follows. �

Below, we will study the exactness of various functors related to stratified mor-
phisms in the sense of [ARc2, §2.6]. These statements will sometimes be invoked in
the equivariant setting, but since there is no t-structure in that case, some caution is
required. Let us spell out what “exactness” means. Let Y =

⋃
t∈T Yt be another va-

riety equipped with a stratification by affine spaces and satisfying (A1) and (A2).
Suppose H and K are connected algebraic groups acting on X and Y , respectively,
and that these actions preserve the strata. A functor F : Dmix

H,S (X)→ Dmix
K,T (Y ) is

said to be left adverse-exact, resp. right adverse-exact, if

F (aDmix
H,S (X)≥0) ⊂ aDmix

K,T (Y )≥0, resp. F (aDmix
H,S (X)≤0) ⊂ aDmix

K,T (Y )≤0.

If F is both left and right adverse-exact, we say simply that it is adverse-exact. Of
course, in the nonequivariant case, these notions coincide with the usual (left or
right) t-exactness for the adverse t-structure.

Lemma A.5. Suppose f : X → Y is a proper, smooth stratified morphism. Then
f∗, f

∗, and f ! are all adverse-exact.

Proof. The adverse-exactness of f∗ is immediate from [ARc2, Lemma 3.7]. Next,
let t ∈ T and s ∈ S , and observe that

i∗s(f
∗∆mix

t {n}) ∼=

{
0 if Xs 6⊂ f−1(Xt),

k{dimXt + n} if Xs ⊂ f−1(Xt).

In particular, i∗s(f
∗∆mix

t {n}) has weights ≥ 0, so f∗∆mix
t {n} lies in aDmix

S (X)≤0.
Similar reasoning with∇mix

t {n} shows that f∗ is adverse-exact. Since f ! ∼= f∗{−2d}
where d is the relative dimension of f , the functor f ! is adverse-exact as well. �

Lemma A.6. Suppose f : X → Y is a proper, smooth, surjective stratified mor-
phism. Then f∗ kills no nonzero adverse sheaf. Moreover, if F ∈ AdvT (Y ) has a
standard (resp. costandard) filtration, then f∗F does as well. The same statements
also hold for f !.

(Note that, in contrast with [ARc2, Corollary 3.9], f∗ and f ! do not, in general,
take simple adverse sheaves to simple adverse sheaves.)

Proof. For the first assertion, it suffices to show that f∗ sends any simple adverse
sheaf to a nonzero adverse sheaf. Let F be a simple adverse sheaf on Y . Then F
is supported on the closure of some stratum Yt, and F|Yt ∼= k{n} for some n. The
object f∗F clearly has nonzero restriction to any stratum Xs ⊂ f−1(Yt), so it is
nonzero.
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If all i∗tF are pure of weight 0, it is easy to see that all i∗s(f
∗F) are pure of

weight 0, so by Lemma A.4, f∗ preserves the property of having a standard filtra-
tion. Using the fact that f∗ ∼= f !{2d}, we obtain the corresponding statement for
costandard filtrations, or for f ! in place of f∗. �

A.3. Non-affine stratifications. The general theory developed in [ARc2, ARc3]
involves the assumption throughout that we have a stratification by affine spaces,
but occasionally we will want to weaken this requirement. Let X and S be as
above, but suppose that we also have another, coarser stratification T of X. To
distinguish between the two stratifications, the stratum corresponding to t ∈ T
will be denoted with a superscript: Xt. Let it : Xt ↪→ X be the inclusion map.

By assumption, each Xt is a locally closed smooth subvariety that is a (finite)
union of strata Xs for s ∈ S . We further assume that all the Xt are connected
and simply connected, and we impose a version of condition (A1):

(A1)T For each t ∈ T , there is an indecomposable parity complex Et ∈ Db
T (X)

that is supported on Xt and satisfies it∗Et ∼= kXt{dimXt}.
Note that each T -stratum Xt must contain a unique dense S -stratum Xs, so the
parity complex Et above must coincide with the parity complex Es. Thus, since
(A1) is already assumed to hold, the new condition (A1)T can be rephrased as
follows: for any s ∈ S such that Xs is dense in some T -stratum, the parity sheaf
Es is constructible with respect to T .

In particular, the additive category ParityT (X) of parity complexes constructible
with respect to T is a full subcategory of ParityS (X). We define the category

Dmix
T (X) := KbParityT (X),

and identify it with a full subcategory of Dmix
S (X). Great care must be taken in

working with Dmix
T (X), as the results of [ARc2, ARc3] do not automatically apply.

One basic fact we will need is the following.

Proposition A.7. Let X, S , and T be as above. Let j : U ↪→ X be an open
inclusion of T -strata, and let i : Z ↪→ X be the complementary closed inclusion.

(1) If F ∈ Dmix
T (U), then j!F and j∗F lie in Dmix

T (X).
(2) If F ∈ Dmix

T (X), then i∗F and i!F lie in Dmix
T (Z).

Note that the analogous statements for Db
T (X) follow from (A1)T .

Proof. We will need to make use of sheaf functors in the nonmixed setting, and we
will need to distinguish them from their mixed analogues. Thus, for the body of
this proof only, we adopt the convention of [ARc2, §2.4] that functors in the mixed
setting are decorated with parentheses: i(∗), i(!), j(∗), j(!). An undecorated symbol

such as i∗ denotes a functor Db
S (X) → Db

S (Z) or Db
T (X) → Db

T (Z). (However,
i∗ and j∗ are always undecorated, as in [ARc2, §2.3].)

We proceed by induction on the number of T -strata in Z. Suppose first that
Z = Xt is a single stratum. Recall that for any T -constructible parity sheaf Eu,
the object i∗Eu ∈ Db

T (Z) is a parity complex. Let Eu,+ ∈ KbParityT (X) denote
the complex

· · · → 0→ Et → i∗i
∗Et → 0→ · · · ,

where the nontrivial terms are in degrees 0 and 1, and the morphism is given by
adjunction. Thus, in KbParityT (X), there is a distinguished triangle

(A.4) Et,+ → Et → i∗i
∗Et →,
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while in Db
T (X), there is a distinguished triangle

(A.5) j!j
∗Et → Et → i∗i

∗Et → .

We claim that for any s ∈ S with Xs ⊂ Xt, we have

(A.6) HomDmix
S (X)(Et,+, Es{m}[n]) = 0 for all m,n ∈ Z.

To prove this, it suffices to show that the natural map Hom(i∗i
∗Et, Es{m}[n]) →

Hom(Et, Es{m}[n]) is always an isomorphism. Both Hom-groups clearly vanish un-
less n = 0. When n = 0, these Hom-groups can be computed inside ParityT (X) ⊂
Db

T (X) instead, and then the fact that the map is an isomorphism follows from (A.5)
and the fact that Hom(j!j

∗Et, Es{m}) = 0.
Since objects of the form Es{m}[n] generate Dmix

S (Z), we deduce from (A.6)
that Hom(Et,+, i∗G) = 0 for all G ∈ Dmix

S (Z). On the other hand, we clearly
have i∗Et ∈ Dmix

S (Z). It follows from general principles of recollement that the
distinguished triangle (A.4) must be canonically isomorphic to

j(!)j
∗Et → Et → i∗i

(∗)Et → .

In particular, (A.4) shows us that j(!)j
∗Et lies in Dmix

T (X), and that i(∗)Et lies in

Dmix
T (Z). Now, objects of the form j∗Et〈n〉 generate Dmix

T (U), and those of the
form Et〈n〉 generate Dmix

T (X). We conclude that j(!) takes Dmix
T (U) to Dmix

T (X),

and that i(∗) takes Dmix
T (X) to Dmix

T (Z). The results for j(∗) and i(!) follow by
Verdier duality.

Now suppose that Z contains more than one T -stratum. Choose a T -stratum
Xt that is open in Z. Let V = U ∪Xt and Y = Z rXt, and let k : Y → X be the
inclusion map. Given F ∈ Dmix

T (X), we can form the distinguished triangle

it(!)(i
t)(∗)F → i∗i

(∗)F → k∗k
(∗)F → .

Since Y contains fewer T -strata than Z, k(∗)F lies in Dmix
T (Y ) by induction. Next,

let v : V ↪→ X, a : Xt ↪→ V , and b : Xt ↪→ Z be the inclusion maps. Note that v and
b are open inclusions, and a is a closed inclusion of a single T -stratum. The cases
of the result that we have already established show that it(!)(i

t)(∗) ∼= i∗b(!)a
(∗)v∗

takes F to an object of Dmix
T (X). We conclude that i∗i

(∗)F lies in Dmix
T (X), and

hence that i(∗)F lies in Dmix
T (Z). Finally, from the distinguished triangle

j(!)j
∗F → F → i∗i

(∗)F →,

we see that j(!)j
∗F lies in Dmix

T (X) as well. Since objects of the form j∗F generate

Dmix
T (U), j(!) takes all objects in Dmix

T (U) to Dmix
T (X). Again, the results for j(∗)

and i(!) follow by Verdier duality. �

The following two statements are easy consequences of the previous lemma. The
proofs are left to the reader.

Corollary A.8. For an object F ∈ Dmix
S (X), the following are equivalent:

(1) F lies in Dmix
T (X).

(2) For every T -stratum it : Xt ↪→ X, (it)∗F lies in Dmix
T (Xt).

(3) For every T -stratum it : Xt ↪→ X, (it)!F lies in Dmix
T (Xt).

Corollary A.9. The perverse t-structure on Dmix
S (X) induces a t-structure on

Dmix
T (X).
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A.4. Hom-groups in the equivariant derived category. We now return to the
setting of a space stratified by affine spaces. Let H be a connected algebraic group
or pro-algebraic group acting on X, such that the strata of our stratification are
H-stable. Assume that the H-equivariant cohomology of a point H•H(pt) vanishes
in odd degrees, and is free over k in even degrees.

Let Db
H(X) be the H-equivariant derived category of X with coefficients in

k, in the sense of Bernstein–Lunts [BL]. We also consider the full subcategory
Db
H,S (X) ⊂ Db

H(X) consisting of complexes that are constructible with respect

to the stratification S . The latter also has a “mixed” version Dmix
H,S (X) :=

KbParityH,S (X), as explained in [ARc2, §3.5]. Let For : Db
H,S (X) → Db

S (X)

and For : Dmix
H,S (X)→ Dmix

S (X) denote the forgetful functors.

Our goal in this subsection is to understand RHom on Dmix
H,S (X) in terms of

modules over the equivariant cohomology ring H•H(pt).

Lemma A.10. Let F ∈ Db
H(pt). If Hom•(k,F) is a free H•H(pt)-module, then

there is a natural isomorphism

Hom•Db(pt)(k,For(F)) ∼= Hom•Db
H(pt)(k,F) ⊗

H•H(pt)
k.

Proof. A straightforward adaptation of [AR, Lemma 6.1] shows that if Hom•(k,F)
is a free H•H(pt)-module, then F must be a direct sum of copies of various k{n}.
Thus, it suffices to prove the lemma in the special case where F = k, and in this
case, it is obvious. �

Lemma A.11. Let F ,G ∈ Db
H(X). If F is ∗-parity and G is !-parity, then

Hom•(F ,G) is a free H•H(pt)-module, and there is a natural isomorphism

Hom•Db
S (X)(For(F),For(G)) ∼= Hom•Db

H(X)(F ,G) ⊗
H•H(pt)

k.

Proof. We proceed by induction on the number of strata in X. If X consists of a
single stratum, then F and G are both parity sheaves, i.e., direct sums of objects
of the form k{n}. Thus, it suffices to prove the result when F = G = k. Since X
is isomorphic to an affine space, it is clear that Hom•Db

H(X)(k,k) is isomorphic to

H•H(pt), and that Hom•Db
S (X)(k,k) ∼= Hom•Db

H(X)(k,k)⊗H•H(pt) k.

Now suppose that X has more than one stratum. Let us also assume without
loss of generality that F is ∗-even and that G is !-even. Let is : Xs ↪→ X be the
inclusion of an open stratum, and let h : XrXs ↪→ X be the inclusion of the closed
complement. By a standard recollement argument, we have a natural long exact
sequence

· · · → Homk(h∗F , h!G)→ Homk(F ,G)→ Homk(i∗sF , i∗sG)

→ Homk+1(h∗F , h!G)→ · · · .

Note that h∗F and i∗sF are both ∗-even, and that h!G and i∗sG are both !-even.

By [JMW1, Corollary 2.8], these Homk-groups vanish when k is odd, so this long
exact sequence breaks up into a collection of short exact sequences. Indeed, we
obtain a short exact sequence

0→ Hom•(h∗F , h!G)→ Hom•(F ,G)→ Hom•(i∗sF , i∗sG)→ 0

of graded H•H(pt)-modules. By induction, the first and last terms above are free
H•H(pt)-modules, and hence the middle term is as well.
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Now, let a : X → pt be the constant map, and recall that Hom•(F ,G) ∼=
Hom•(k, a∗RHom(F ,G)). Since the functors a∗ and RHom commute with For,
the last assertion of the lemma follows from Lemma A.10. �

Corollary A.12. For F ,G ∈ ParityH,S (X), the graded k-module Hom(F ,G) nat-
urally has the structure of a free graded H•H(pt)-module.

Since RHom is defined as a complex whose terms are Hom-groups of parity
sheaves, we can regard it as a functor

RHom : Dmix
H,S (X)op ×Dmix

H,S (X)→ Db(H•H(pt)-gmod),

where Db(H•H(pt)-gmod) is the bounded derived category of the category of graded
H•H(pt)-modules. The following result is an immediate consequence of Lemma A.11.

Proposition A.13. For any F ,G ∈ Dmix
H,S (X), there is a natural isomorphism

RHomDmix
S (X)(For(F),For(G)) ∼= RHomDmix

H,S (X)(F ,G)
L

⊗
H•H(pt)

k.

Corollary A.14. On the abelian category of mixed perverse sheaves, the forgetful
functor For : Pervmix

H,S (X)→ Pervmix
S (X) is fully faithful.

Proof. Let us call a graded H•H(pt)-module weakly free if it is of the form P ⊗k
H•H(pt), where P is some graded k-module. (If k is a field, this is the same as a
free H•H(pt)-module, but in general, we do not require P to be free over k.) Weakly
free H•H(pt)-modules are acyclic for the functor (−)⊗H•H(pt) k.

Let M be a graded H•H(pt)-module, and assume that it is concentrated in graded
degrees ≥ n0. It is easy to see that M admits a weakly free resolution · · ·F−1 →
F 0 � M with the property that F−i is concentrated in graded degrees ≥ n0 + 2i.
As a consequence, we see that

(A.7) Tor
H•H(pt)
i (M,k) is concentrated in graded degrees ≥ n0 + 2i.

Now, take F ,G ∈ Pervmix
H,S (X). Note that Homi(F ,G) is concentrated in graded

degrees ≥ −i: indeed, for n < −i, we have

Homi(F ,G)n = Hom(F ,G[i]{n}) = Hom(F ,G〈−n〉[i+ n]) = 0.

There is a convergent spectral sequence of graded k-modules

(A.8) Hp(Homq(F ,G)
L

⊗
H•H(pt)

k) =⇒ Hp+q(RHomDmix
H,S (X)(F ,G)

L

⊗
H•H(pt)

k).

(See, for instance, [W, Proposition 5.7.6].) By Proposition A.13, the right-hand side
can be identified with Homp+q(For(F),For(G)). Picking out the graded components
of degree 0 on both sides of (A.8), we obtain a convergent spectral sequence of
(ungraded) k-modules

Epq2 = Hp(Homq(F ,G)
L

⊗
H•H(pt)

k)0 =⇒ Homp+q(For(F),For(G)).

When p > 0, we obviously have Epq2 = 0. On the other hand, (A.7) tells us that
Hp(Homq(F ,G) ⊗LH•H(pt) k) is concentrated in degrees ≥ −q − 2p, so Epq2 = 0 if

−q − 2p > 0. More generally, we conclude that for all r ≥ 2, we have

(A.9) Epqr = 0 if p > 0 or q < −2p.
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We claim that there are natural isomorphisms

(A.10) Ep,−p∞
∼=

{
E00

2 if p = 0,

0 if p 6= 0.

For p 6= 0, this follows from (A.9). For p = 0, we must show that the differentials

dr : E−r,r−1
r → E00

r , dr : E00
r → Er,−r+1

r

vanish for all r ≥ 2. But this follows from (A.9) as well. Next, (A.10) implies that
we have a natural isomorphism

(Hom(F ,G)⊗H•H(pt) k)0
∼= HomDmix

S (X)(For(F),For(G)).

Let H>0
H (pt) ⊂ H•H(pt) be the kernel of the obvious map H•H(pt)→ k. Then

Hom(F ,G)⊗H•H(pt) k ∼= Hom(F ,G)/H>0
H (pt)Hom(F ,G).

Since Hom(F ,G) is concentrated in degrees ≥ 0 and H>0
H (pt)Hom(F ,G) in degrees >

0, we see that (Hom(F ,G)⊗H•H(pt)k)0
∼= Hom(F ,G)0

∼= Hom(F ,G). We thus obtain

the desired isomorphism HomDmix
H,S (X)(F ,G) ∼= HomDmix

S (X)(For(F),For(G)). �

Remark A.15. It is possible to carry out a common generalization of §A.3 and the
present section. Suppose that T is a stratification of X, not necessarily by affine
spaces, and which is refined by S . Suppose furthermore that H acts on X and
preserves the T -strata, but not necessarily the S -strata. Then one can study the
category Dmix

H,T (X) := KbParityH,T (X).

A.5. Applications to Kac–Moody groups. We conclude with two results about
the flag variety of a Kac–Moody group G. We follow the notation of [ARc2, §4.1].
Specifically, let B ⊂ G be the standard Borel subgroup, W the Weyl group, and
B = G/B the flag variety. Recall that the equivariant derived category Dmix

B (B)
is equipped with a convolution product ? : Dmix

B (B)×Dmix
B (B)→ Dmix

B (B).

Proposition A.16. Let w ∈W .

(1) The functors

(−) ?∇mix
w , ∇mix

w ? (−) : Dmix
B (B)→ Dmix

B (B)

are right adverse-exact.
(2) The functors

(−) ?∆mix
w , ∆mix

w ? (−) : Dmix
B (B)→ Dmix

B (B)

are left adverse-exact.

In particular, for any w, y ∈ W , the objects ∇mix
y ? ∆mix

w and ∆mix
w ? ∇mix

y , when

regarded as objects of the nonequivariant derived category Dmix
(B)(B), are adverse.

Proof Sketch. The proof is essentially identical to that of [ARc2, Proposition 4.6].
A brief outline for (−)?∇mix

w is as follows. Thanks to associativity of the convolution
product, it suffices to prove the right adverse-exactness of (−) ?∇mix

s when s is a
simple reflection. The proof of [ARc2, Proposition 4.6] exhibits, for any y ∈ W , a
distinguished triangle whose middle term is ∆mix

y ?∇mix
s , and whose first and last

terms obviously lie in pDmix
B (B)≤0. Using Lemma A.5, it is easy to see that the first

and last terms of that triangle also lie in aDmix
B (B)≤0. It follows that (−) ?∇mix

s is
right adverse-exact. �
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Recall that there is a natural action of W on the ring H•B(pt). A linear map
f : M1 → M2 of H•B(pt)-modules is called a w-twisted homomorphism if, for all
p ∈ H•B(pt) and m ∈M1, we have f(pm) = (w · p)f(m).

Proposition A.17. Let w ∈W , and let F ,G ∈ Dmix
B (B). The natural maps

Hom(F ,G)→ Hom(∆mix
w ?F ,∆mix

w ?G), Hom(F ,G)→ Hom(∇mix
w ?F ,∇mix

w ?G)

are w-twisted H•B(pt)-homomorphisms.

Proof. Let E1, E2 ∈ ParityB(B). Via the equivalence Db
B(B) ∼= Db

B×B(G), we
can equip Hom(E1, E2) with the structure of a module over H•B×B(pt) ∼= H•B(pt)⊗
H•B(pt). (The general setting of §A.4 gives us an action of only one copy of H•B(pt),
which we identify with the left-hand copy in H•B(pt)⊗ H•B(pt).)

Let E3, E4 ∈ ParityB(B) be two additional parity sheaves. Convolution induces
a homomorphism of (H•B(pt)⊗ H•B(pt))-modules

(A.11) Hom(E1, E2)⊗H•B(pt) Hom(E3, E4)→ Hom(E1 ? E3, E2 ? E4).

Here, the ring H•B(pt) under the tensor product symbol acts as the right-hand copy
on Hom(E1, E2), and as the left-hand copy on Hom(E3, E4). Since the latter is always
a free H•B(pt)-module, maps like (A.11) induce corresponding maps at the derived
level. That is, given F1,F2,F3,F4 ∈ Dmix

B (B), we obtain a natural morphism

(A.12) RHom(F1,F2)
L

⊗
H•B(pt)

RHom(F3,F4)→ RHom(F1 ? F3,F2 ? F4).

Let us now study this map in the special case where F1 = F2 = ∆mix
w . In this

case, by adjunction, we have

RHom(∆mix
w ,∆mix

w ) ∼= H•B(Bw) ∼= H•B×B(BẇB/B),

where ẇ is a representative in G of w ∈W . It is well known that H•B×B(BẇB/B)
is a rank-1 free module for both the left and right copies of H•B(pt), and that the
action of the right copy coincides with the w-twist of the action of the left copy.

In particular, because this module is free for the right copy of H•B(pt), we can
apply H0 to (A.12) and obtain a homomorphism of (H•B(pt)⊗ H•B(pt))-modules

H•B(Bw)⊗H•B(pt) Hom(F3,F4)→ Hom(∆mix
w ? F3,∆

mix
w ? F4).

From this, we deduce that ∆mix
w ? (−) : Hom(F3,F4)→ Hom(∆mix

w ?F3,∆
mix
w ?F4)

is a w-twisted homomorphism, as desired. The proof for ∇mix
w is similar. �
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