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Abstract. We introduce the notion of a baric structure on a triangulated

category, as an abstraction of S. Morel’s weight truncation formalism for mixed
`-adic sheaves. We study these structures on the derived category Db

G(X) of

G-equivariant coherent sheaves on a G-scheme X. Our main result shows how

to endow this derived category with a family of nontrivial baric structures
when G acts on X with finitely many orbits.

We also describe a general construction for producing a new t-structure on

a triangulated category equipped with given t- and baric structures, and we
prove that the staggered t-structures on Db

G(X) introduced by the first author

arise in this way.

1. Introduction

Let Z be a variety over a finite field. The triangulated category of `-adic sheaves
on X has a full subcategory Db

m(Z) of “mixed sheaves,” defined in terms of eigen-
values of the Frobenius morphism. The existence and good formal properties of
this category are among the most important consequences of Deligne’s proof of
the Weil conjectures. It plays a major role in the theory of perverse sheaves and
their applications in representation theory. An important part of the formalism of
mixed sheaves is a certain filtration of Db

m(Z) by full subcategories {Db
m(Z)≤w}w∈Z,

known as the weight filtration.
Let us now turn our attention to the world of equivariant coherent sheaves. Let

X be a scheme (say, of finite type over a field), and let G be an affine group scheme
acting on X with finitely many orbits. In [A], the first author introduced a class of
t-structures, called staggered t-structures, on the bounded derived category Db

G(X)
of G-equivariant coherent sheaves on X. These t-structures depend on the choice of
a certain kind of filtration of the abelian category of equivariant coherent sheaves.
These filtrations, known as s-structures, bear an at least superficial resemblance to
the weight filtration of Db

m(Z).
The main goal of this paper is to try to make this resemblance into a precise

statement, and to thereby place these two kinds of structures in a unified setting.
We do this by introducing the notion of a baric structure on a triangulated category.
The usual weight filtration on Db

m(Z) is not a baric structure, but a modified version
of it due to S. Morel [M] is. (Indeed, the definition of a baric structure is largely
motivated by Morel’s results.) An s-structure is not a baric structure either: for
one thing, it is a filtration of an abelian category, not of a triangulated category.
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We show in this paper how to construct baric structures on Db
G(X) using an s-

structure on X. We also exhibit several other examples of baric structures that
have appeared in the literature.

The second goal of the paper is to recast the construction in [A] as an instance of
an abstract operation that can be done on any triangulated category. Specifically,
given a triangulated category with “compatible” t- and baric structures, we outline
a procedure, which we call staggering, for producing a new t-structure. Note that
in [A], “staggered” was simply a name assigned to certain specific t-structures by
definition, whereas in this paper, “to stagger” is a verb. We prove that these two
uses of the word are consistent: that is, that the t-structures of [A] arise by stagger-
ing the standard t-structure on Db

G(X) with respect to a suitable baric structure.
(The staggering operation can also be applied to the weight baric structure on
Db

m(Z), as well as to other baric structures. This yields a new t-structure that has
not previously been studied.)

An outline of the paper is as follows. We begin in Section 2 by giving the
definition of a baric structure and of the staggering operation. In Section 3, we
give examples of baric structures, including Morel’s version of the weight filtration.
Next, in Section 4, we begin the study of baric structures on derived categories of
equivariant coherent sheaves, especially those that behave well with respect to the
geometry of the underlying scheme.

The next three sections are devoted to the relationship between baric structures
and s-structures. First, in Section 5, we review relevant definitions and results
from [A]. Section 6 contains the main result of the paper, showing how s-structures
on the abelian category of coherent sheaves give rise to baric structures on the
derived category. In Section 7, we briefly consider the reverse problem, that of
producing s-structures from baric structures.

Finally, in Section 8, we study staggered t-structures associated to the baric
structures produced in Section 6. Specifically, we prove that their hearts are finite-
length categories, and we give a description of their simple objects. This was done
in some cases in [A], but remarkably, the machinery of baric structures allows us
to remove the assumptions that were imposed in loc. cit.

We conclude by mentioning an application of the machinery developed in this
paper. The language of baric structures allows one to define a notion of “pu-
rity,” similar to the one for `-adic mixed constructible sheaves. In a subsequent
paper [AT], the authors prove that every simple staggered sheaf is pure, and that
every pure object in the derived category is a direct sum of shifts of simple staggered
sheaves. These results are analogous to the well-known Purity and Decomposition
Theorems for `-adic mixed perverse sheaves.

2. Baric structures

In this section we introduce baric structures on triangulated categories (Defini-
tion 2.1), and the operation of staggering a t-structure with respect to a baric struc-
ture (Definition 2.8). Staggering produces, out of a t-structure (D≤0,D≥0) on a
triangulated category D, a new pair of orthogonal subcategories (sD≤0, sD≥0). Our
main result is a criterion which guarantees that (sD≤0, sD≥0) is itself a t-structure
(Theorem 2.11).

2.1. Baric structures.
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Definition 2.1. Let D be a triangulated category. A baric structure on D is a pair
of collections of thick subcategories ({D≤w}, {D≥w})w∈Z satisfying the following
axioms:

(1) D≤w ⊂ D≤w+1 and D≥w ⊃ D≥w+1 for all w.
(2) Hom(A,B) = 0 whenever A ∈ D≤w and B ∈ D≥w+1.
(3) For any object X ∈ D, there is a distinguished triangle A → X → B →

with A ∈ D≤w and B ∈ D≥w+1.

This definition is at least superficially very similar to that of t-structure, and in
fact arguments identical to those given in [BBD, §§1.3.3–1.3.5] yield the following
basic properties of baric structures.

Proposition 2.2. Let D be a triangulated category equipped with a baric structure
({D≤w}, {D≥w})w∈Z. The inclusion D≤w ↪→ D admits a right adjoint β≤w : D→
D≤w, and the inclusion D≥w → D admits a left adjoint β≥w : D→ D≥w. There is
a distinguished triangle

β≤wX → X → β≥w+1X →,
and any distinguished triangle as in Axiom (3) above is canonically isomorphic
to this one. Furthermore, if v ≤ w, then we have the following isomorphisms of
functors:

β≤v ◦ β≤w
∼= β≤v β≥v ◦ β≤w

∼= β≤w ◦ β≥v

β≥w ◦ β≥v
∼= β≥w β≤v ◦ β≥w

∼= β≥w ◦ β≤v = 0

Note that in a baric structure, unlike in a t-structure, the subcategories D≤w and
D≥w are required to be stable under shifts in both directions, and it is not assumed
that there is an autoequivalence D → D taking D≤w to, say, D≤w+1. Moreover,
baric truncation functors enjoy the following important property.

Proposition 2.3. The baric truncation functors β≤w and β≥w take distinguished
triangles to distinguished triangles.

Proof. Let X → Y → Z → be a distinguished triangle in D, and consider the
natural morphism β≤wX → X. The composition of this morphism with X → Y
factors through β≤wY → Y (since Hom(β≤wX,Y ) ∼= Hom(β≤wX,β≤wY )), so we
obtain a commutative diagram

β≤wX //

��

β≤wY

��
X // Y

Let us complete this diagram using the 9-lemma [BBD, Proposition 1.1.11]:

β≤wX //

��

β≤wY //

��

Z ′ //

��
X //

��
Y //

��
Z //

��
β≥w+1X //

��

β≥w+1Y //

��

Z ′′ //

��

Since D≤w and D≥w+1 are full triangulated subcategories of D, we see that Z ′ ∈
D≤w and Z ′′ ∈ D≥w+1. But then Proposition 2.2 tells us that Z ′ ∼= β≤wZ and
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Z ′′ ∼= β≥wZ, so we obtain distinguished triangles

β≤wX → β≤wY → β≤wZ → and β≥w+1X → β≥w+1Y → β≥w+1Z →,
as desired. �

Definition 2.4. Let D be a triangulated category equipped with a baric structure
({D≤w}, {D≥w})w∈Z. We will use the following terminology:

(1) The adjoints β≤w and β≥w to the inclusions D≤w ↪→ D and D≥w ↪→ D are
called baric truncation functors.

(2) The baric structure is bounded if for each object A ∈ D, there exist integers
v, w such that A ∈ D≥v ∩D≤w.

(3) It is nondegenerate if there is no nonzero object belonging to all D≤w or to
all D≥w. Note that a bounded baric structure is automatically nondegen-
erate.

(4) Let D′ be another triangulated category, and suppose it is equipped with
a baric structure ({D′≤w}, {D′≥w}). A functor of triangulated categories
F : D → D′ is said to be left baryexact if F (D≥w) ⊂ D′≥w for all w ∈ Z,
and right baryexact if F (D≤w) ⊂ D′≤w for all w ∈ Z.

Let us also record the following definitions, though we will not use them until
later in the paper.

Definition 2.5. Let D be a triangulated category equipped with a baric structure
({D≤w}, {D≥w})w∈Z.

(1) Suppose D is equipped with an involutive antiequivalence D : D→ D. The
baric structure is self-dual if D(D≤w) = D≥−w.

(2) Suppose D has the structure of a tensor category, with tensor product ⊗.
The baric structure is multiplicative with respect to ⊗ if if for any A ∈ D≤v

and B ∈ D≤w, we have A⊗B ∈ D≤v+w.
(3) Suppose D has an internal Hom functor Hom. The baric structure is

multiplicative with respect to Hom if for any A ∈ D≤v and B ∈ D≥w,
we have Hom(A,B) ∈ D≥w−v.

Note that whenever we have an adjunction between ⊗ and Hom, the multiplica-
tivity conditions are equivalent.

2.2. Staggering. Below, if D is equipped with a t-structure (D≤0,D≥0), we write
C = D≤0 ∩D≥0 for its heart, and we denote the associated truncation functors by
τ≤n and τ≥n. The nth cohomology functor associated to the t-structure is denoted
hn : D→ C.

Definition 2.6. Let D be a triangulated category equipped with both a t-structure
and a baric structure. These structures are said to be compatible if τ≤n and τ≥n

are right baryexact, and β≤w and β≥w are left t-exact.

Remark 2.7. Of course there is a dual notion of compatibility, but it does not seem
to arise as often.

Definition 2.8. Let D be a triangulated category equipped with compatible t- and
baric structures. Define two full subcategories of D as follows:

sD≤0 = {A ∈ D | hk(A) ∈ D≤−k for all k ∈ Z},
sD≥0 = {B ∈ D | β≤kB ∈ D≥−k for all k ∈ Z}.
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Assume that the pair (sD≤0, sD≥0) constitutes a t-structure. It is called the stag-
gered t-structure, or the t-structure obtained by staggering the original t-structure
with respect to the given baric structure.

As usual, we let sD≤n = sD≤0[−n] and sD≥n = sD≥0[−n].

Lemma 2.9. Let D be a triangulated category equipped with compatible t- and baric
structures. Assume the t-structure is nondegenerate.

(1) A ∈ D≤w if and only if hk(A) ∈ D≤w for all k.
(2) B ∈ D≥w if and only if β≤w−1τ

≤kB ∈ D≥k+2 for all k.
(3) We have

D≥w ∩ C = {B ∈ C | Homk(A,B) = 0 for all A ∈ D≤w ∩ C and all k ≥ 0}.

(4) D≤w∩C is a Serre subcategory of C, and D≥w∩C is stable under extensions.
(5) sD≤0 and sD≥0 are stable under extensions.
(6) D≤k ∩D≤w ⊂ sD≤k+w, and D≥k ∩D≥w ⊂ sD≥k+w.

Proof. (1) Since D≤w is stable under τ≤k and τ≥k, it is clear that A ∈ D≤w implies
that hk(A) ∈ D≤w. Conversely, suppose hk(A) ∈ D≤w for all k. Recall (e.g. [V,
Proposition 4.4.6]) that we have a spectral sequence

(2.1) Eab
2 = Hom(h−b(A), B[a]) =⇒ Hom(A,B[a+ b]).

Since Hom(h−b(A), B[a]) = 0 for all B ∈ D≥w+1 and all a, b ∈ Z, we see that
Hom(A,B) = 0 for all B ∈ D≥w+1, and hence that A ∈ D≤w.

(2) Consider the distinguished triangle

β≤w−1τ
≤kB → β≤w−1B → β≤w−1τ

≥k+1B → .

The last term is always in D≥k+1 by the left t-exactness of β≤w−1. If B ∈ D≥w, so
that β≤w−1B = 0, then β≤w−1τ

≤kB ∼= (β≤w−1τ
≥k+1B)[−1] ∈ D≥k+2. Conversely,

if the t-structure is nondegenerate, and if β≤w−1τ
≤kB ∈ D≥k+2 for all k, the

distinguished triangle above shows that β≤w−1B ∈ D≥k+1 for all k, and hence that
β≤w−1B = 0, so B ∈ D≥w, as desired.

(3) If B ∈ D≥w ∩C, then clearly Hom(A[−k], B) = 0 for all A ∈ D≤w−1 ∩C and
all k ≥ 0, since A[−k] ∈ D≤w−1 for all k. Conversely, if Hom(A,B[k]) = 0 for all
A ∈ D≤w−1∩C and all k ≥ 0, the spectral sequence (2.1) shows that Hom(A,B) = 0
for all A ∈ D≤w−1, and hence that B ∈ D≥w.

(4) Suppose we have a short exact sequence

0→ A→ B → C → 0

in C. If A and C are in D≤w, then B must be as well, since D≤w is stable under
extensions. Conversely, suppose B ∈ D≤w. Assume that C /∈ D≤w, and consider
the distinguished triangle

β≤wC → C → β≥w+1C → .

By left t-exactness of the baric truncation functors, we have an exact sequence

0→ h0(β≤wC)→ C → h0(β≥w+1C).

We must have h0(β≥w+1C) 6= 0: otherwise, we would have C ∼= h0(β≤wC) ∈ D≤w.
Next, from the distinguished triangle

β≥w+1A→ 0→ β≥w+1C →,
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we see that β≥w+1A ∼= β≥w+1C[−1]. In particular, h0(β≥w+1A) = 0. But then the
exact sequence

0→ h0(β≤wA)→ A→ h0(β≥w+1A) = 0
shows that A ∼= h0(β≤wA) ∈ D≤w, and hence that β≥w+1A = 0 and β≥w+1C = 0.
Thus, A and C are in D≤w, as desired.

That D≥w ∩ C is stable under extensions follows immediately from the fact that
D≥w is stable under extensions.

(5) Let A→ B → C → be a distinguished triangle with A ∈ sD≤0 and C ∈ sD≤0,
and consider the exact sequence

hk(A)
f→ hk(B)

g→ hk(C).

Since hk(A) ∈ D≤−k, its quotient im f is in D≤−k as well. Similarly, im g ∈ D≤−k

because it is a subobject of hk(C). Now, from the short exact sequence 0→ im f →
hk(B)→ im g → 0, we deduce that hk(B) ∈ D≤−k. Thus, B ∈ sD≤0.

On the other hand, if A → B → C → is a distinguished triangle with A,C ∈
sD≥0, consider the distinguished triangle

β≤kA→ β≤kB → β≤kC → .

Since β≤kA and β≤kC lie in D≥−k, β≤kB ∈ D≥−k as well, so B ∈ sD≥0.
(6) If A ∈ D≤k ∩ D≤w, then hi(A[k + w]) = hi+k+w(A) = 0 if i > −w, and

hi(A[k + w]) ∈ D≤w ⊂ D≤−i if i ≤ −w. Thus, A[k + w] ∈ sD≤0, or A ∈ sD≤k+w.
Next, suppose B ∈ D≥k ∩D≥w. Then β≤iB[k+w] = 0 if i < w, and β≤iB[k+w] ∈
D≥k[k+w] = D≥−w ⊂ D≥−i if i ≥ w. Hence, B[k+w] ∈ sD≥0, or B ∈ sD≥k+w. �

Proposition 2.10. Let D be a triangulated category equipped with compatible t-
and baric structures. Assume the t-structure is nondegenerate.

(1) Hom(A,B) = 0 for all A ∈ sD≤0 and B ∈ sD≥1.
(2) If Hom(A,B) = 0 for all B ∈ sD≥1, then A ∈ sD≤0. If Hom(A,B) = 0 for

all A ∈ sD≤0, then B ∈ sD≥1.
(3) sD≤0 ⊂ sD≤1 and sD≥0 ⊃ sD≥1.
(4) If the baric structures is also nondegenerate, there is no nonzero object

belonging to all sD≤n or to all sD≥n.
(5) If the t- and baric structures are bounded, then for any A ∈ D, there are

integers n,m such that A ∈ sD≥n ∩ sD≤m.

Proof. (1) For any k ∈ Z, h−k(A) ∈ D≤k, and therefore Hom(h−k(A), B[k]) ∼=
Hom(h−k(A), β≤kB[k]). But β≤kB ∈ D≥k+1, so Hom(h−k(A), β≤kB[k]) = 0 for all
k. It follows from the spectral sequence (2.1) that Hom(A,B) = 0.

(2) Suppose Hom(A,B) = 0 for all B ∈ sD≥1, and suppose for some k, hk(A) /∈
D≤−k. That implies that τ≥kA /∈ D≤−k, so β≥−k+1τ

≥kA 6= 0. In particu-
lar, the natural adjunction morphism A → β≥−k+1τ

≥kA is nonzero. However,
β≥−k+1τ

≥kA ∈ D≥k ∩ D≥−k+1 ⊂ sD≥1. This contradicts the assumption that
Hom(A,B) = 0 for all B ∈ sD≥1, so we must have hk(A) ∈ D≤−k for all k, and
hence A ∈ sD≤0.

On the other hand, if Hom(A,B) = 0 for all A ∈ sD≤0, a similar argument
involving the morphism τ≤−kβ≤kB → B shows that B ∈ sD≥1.

(3) If A ∈ sD≤0, then hk(A[1]) = hk+1(A) ∈ D≤−k−1 ⊂ D≤−k, so A[1] ∈ sD≤0,
and hence sD≤0 ⊂ sD≤1. Similarly, if B ∈ sD≥0, then β≤kB[−1] ∈ D≥−k+1 ⊂
D≥−k, so B[−1] ∈ sD≥0.
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(4) Suppose A ∈ sD≤n for all n. Then hk(A) ∈ D≤n−k for all n and all k.
The nondegeneracy of the baric structure implies that hk(A) = 0; then, the non-
degeneracy of the t-structure implies that A = 0. Next, suppose A ∈ sD≥n for
all n, and assume A 6= 0. Choose some w such that β≤wA 6= 0, and then choose
some k such that τ≤kβ≤wA 6= 0. By right baryexactness of τ≤k, we know that
τ≤kβ≤wA ∈ D≤w, so we obtain a sequence of isomorphisms

Hom(τ≤kβ≤wA, τ
≤kβ≤wA) ∼= Hom(τ≤kβ≤wA, β≤wA) ∼= Hom(τ≤kβ≤wA,A).

In particular, the natural map τ≤kβ≤wA→ A is nonzero. But clearly τ≤kβ≤wA ∈
sD≤k+w, so A /∈ sD≥k+w+1, a contradiction.

(5) This follows from Lemma 2.9(6). �

We will not prove in general that (sD≤0, sD≥0) is a t-structure.

Theorem 2.11. Let D be a triangulated category endowed with compatible bounded,
nondegenerate t- and baric structures. Suppose we have a function µ : D→ N with
the following properties:

(1) µ(X) = 0 if and only if X = 0.
(2) If X ∈ D≥n but X /∈ D≥n+1, then µ(τ≥n+1β≤−nX) < µ(X).

Then (sD≤0, sD≥0) is a bounded, nondegenerate t-structure on D.

Proof. It will be convenient to use “∗” operation on triangulated categories (cf.
[BBD, §1.3.9]): given two classes of objects A,B ⊂ D, we denote by A∗B the class
of all objects X ∈ D such that there exists a distinguished triangle A→ X → B →
with A ∈ A and B ∈ B. In view of the preceding proposition, the present theorem
will be proved once we show that every object of D belongs to sD≤0 ∗ sD≥1. We
proceed by induction on µ(X). If µ(X) = 0, then X = 0, and there is nothing
to prove. Otherwise, let n be the smallest integer such that hn(X) 6= 0. Let
A1 = τ≤nβ≤−nX, X ′ = τ≥n+1β≤−nX, and B1 = β≥−n+1X. It follows from the
right baryexactness of τ≤n that A1 ∈ sD≤0, and, similarly, it follows from the left
t-exactness of β≥−n+1 that B1 ∈ sD≥1. Recall [BBD, Proposition 1.3.10] that the
“∗” operation is associative. By construction, we have

X ∈ {A1} ∗ {X ′} ∗ {B1} ⊂ sD≤0 ∗ {X ′} ∗ sD≥1.

Since µ(X ′) < µ(X) by assumption, we know that X ′ ∈ sD≤0 ∗ sD≥1, and hence

X ∈ sD≤0 ∗ sD≤0 ∗ sD≥1 ∗ sD≥1.

Since sD≤0 and sD≥1 are stable under extensions, we have sD≤0 ∗ sD≤0 = sD≤0 and
sD≥1 ∗ sD≥1 = sD≥1, so X ∈ sD≤0 ∗ sD≥1, as desired. �

3. Examples

In this section, we exhibit several examples of baric structures occurring “in na-
ture.” In the first one, the staggering operation of Definition 2.8 is a new approach
to a known t-structure. In two others, this operation gives what appears to be a
previously unknown t-structure. The main example of this paper—baric structures
on derived categories of coherent sheaves—will be discussed in the next section.
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3.1. Perverse sheaves. Let X be a topologically stratified space (as in [GM]),
with all strata of even real dimension. (This example can be easily modified to relax
that condition, or to treat stratified varieties over a field instead.) Let D = Db

c(X)
be the bounded derived category of sheaves of complex vector spaces that are
constructible with respect to the given stratification. For any w ∈ Z, let Xw be the
union of all strata of dimension at most 2w. (Thus, Xw = ∅ if w < 0.) This is a
closed subspace of X. Let iw : Xw → X be the inclusion map. Let D≤w be the
full subcategory consisting of complexes whose support is contained in Xw, and let
D≥w+1 be the full subcategory of complexes F such that i!wF = 0.

If F ∈ D≤w and G ∈ D≥w+1, then F ∼= iw∗i
−1
w F , and

Hom(F ,G) ∼= Hom(iw∗i−1
w F ,G) ∼= Hom(i−1

w F , i!wG) = 0.

Next, let jw+1 : (X r Xw) → X be the open inclusion of the complement of Xw.
For any complex F , the distinguished triangle

iw∗i
!
wF → F → (jw+1)∗j−1

w+1F →
is one whose first term lies in D≤w and whose last term lies in D≥w+1. Thus, we
see that ({D≤w}, {D≥w})w∈Z is a baric structure on Db

c(X), with baric truncation
functors

β≤w = iw∗i
!
w and β≥w = jw∗j

−1
w .

It is easy to see that this baric structure is compatible with the standard t-
structure on D. If F is supported on Xw, it is obvious that any truncation of it is
as well, so D≤w is stable under τ≤n and τ≥n. On the other hand, it is clear from
the formulas above that β≤w and β≥w are both left t-exact.

In the associated staggered t-structure (sD≤0, sD≥0), we have F ∈ sD≤0 if and
only if hk(F) ∈ D≤−k, or, in other words,

dim supphk(F) ≤ −2k.

The staggered t-structure in this case is none other than the perverse t-structure
of middle perversity.

3.2. Quasi-exceptional sets. Let D be a triangulated category. A set of objects
{∇w}w∈N in D indexed by nonnegative integers is called a quasi-exceptional set if
the following conditions hold:

(1) If v < w, then Hom(∇v,∇w[k]) = 0 for all k ∈ Z.
(2) For any w ∈ N, Hom(∇w,∇w[k]) = 0 if k < 0, and End(∇w) is a division

ring.
For w ∈ N, let D≤w be the full triangulated subcategory of D generated by
∇0, . . . ,∇w, and for an integer w < 0, let D≤w be the full triangulated subcat-
egory containing only zero objects. (Here, we are following the notation of [B1],
but this will turn out to be consistent with our notation for baric structures as
well.) A quasi-exceptional set is dualizable if there is another collection of objects
{∆w}w∈N such that

(3) If v > w, Hom(∆v,∇w[k]) = 0 for all k ∈ Z.
(4) For any w ∈ N, we have ∆w

∼= ∇w mod D≤w−1.
The last condition means that ∆w and ∇w give rise to isomorphic objects in the
quotient category D≤w/D≤w−1.

Next, let D≥w be the full triangulated subcategory generated by the objects
{∇k | k ≥ w}. If A ∈ D≤w and B ∈ D≥w+1, then Axiom (1) above implies
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that Hom(A,B) = 0. In addition, by [B1, Lemma 4(e)], each inclusion D≤w →
D≤w+1 admits a right adjoint ιw. By a straightforward argument, these functors
can be used to construct distinguished triangles as in Definition 2.1(3). Thus,
({D≤w}, {D≥w})w∈Z is a baric structure on D. It is nondegenerate and bounded
by construction.

A key result of [B1] is the construction of a bounded, nondegenerate t-structure
(D≤0,D≥0) associated to a quasi-exceptional set. This t-structure is defined as
follows (see [B1, Proposition 1]):

D≤0 = 〈{∆w[n] | n ≥ 0}〉,
D≥0 = 〈{∇w[n] | n ≤ 0}〉.

Here, the notation 〈S〉 stands for the smallest strictly full subcategory of D that is
stable under extensions and contains all objects in the set S.

We claim that this t-structure and the baric structure defined above are com-
patible. It follows from Axiom (1) above that

β≤w∇v =

{
0 if w < v,
∇v if w ≥ v,

and β≥w∇v =

{
0 if w > v,
∇v if w ≤ v.

This calculation shows that the baric truncation functors preserve D≥0. On the
other hand, Axiom (3) implies that τ≤0∇w is contained in the subcategory gen-
erated by ∆0, . . . ,∆w, and that subcategory coincides with D≤w by Axiom (4).
Thus, τ≤0 preserves D≤w, so τ≥0 does as well.

Finally, given a nonzero object X ∈ D, let a(X) be the smallest integer n such
that X ∈ D≥−n, and let b(X) be the smallest integer w such that X ∈ D≤w. Note
that b(X) ≥ 0. Let

µ(X) =

{
max{a(X) + 1, b(X)}+ 1 if X 6= 0,
0 if X = 0.

Clearly, µ takes nonnegative integer values, and µ(X) = 0 if and only if X = 0.
Moreover, if a(X) = −n (which implies µ(X) ≥ −n+ 2), then a(τ≥n+1β≤−nX) ≤
−n−1 and b(τ≥n+1β≤−nX) ≤ −n, so µ(τ≥n+1β≤−nX) ≤ −n+1. Thus, the condi-
tions of Theorem 2.11 are satisfied, and there is a staggered t-structure (sD≤0, sD≥0)
on D.

3.3. Weight truncation for `-adic mixed constructible sheaves. Let X be a
scheme of finite type over a finite field Fq, and let ` be a fixed prime number distinct
from the characteristic of Fq. Let D = Db

m(X,Q`) be the bounded derived category
of mixed constructible Q`-sheaves on X. Let phn denote the nth cohomology functor
with respect to the perverse t-structure on D with respect to the middle perversity.
Let D≤w (resp. D≥w) be the full subcategory of Db

m(X,Q`) consisting of objects F
such that phn(F) is of weight ≤ w (resp. ≥ w) for all n ∈ Z. S. Morel has shown [M,
Proposition 4.1.1] that ({D≤w}, {D≥w})w∈Z is a baric structure on Db

m(X,Q`).
Since all objects in the heart of this t-structure have finite length, we may attach

a nonnegative integer µ(F) to each complex F by the formula

µ(F) =
∑
n∈Z

(length of phn(F)).
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Moreover, by [M, Proposition 4.1.3], the baric truncation functors are t-exact for
the perverse t-structure. This implies that µ satisfies the assumptions of Theo-
rem 2.11, so the perverse t-structure on Db

m(X,Q`) can be staggered with respect
to Morel’s baric structure to obtain a new t-structure. The authors are not aware
of any previous appearance of this “staggered-perverse” t-structure on `-adic mixed
constructible sheaves.

3.4. Diagonal complexes. We conclude with an example, due to T. Ekedahl [E],
of a t-structure that closely resembles a staggered t-structure, although it does not
in general arise by staggering with respect to a baric structure. (The authors thank
N. Ramachandran for pointing out this work to them.) Let D be a triangulated
category with a bounded, nondegenerate t-structure (D≤0,D≥0), and as usual, let
C = D≤0 ∩ D≥0. Suppose {C≤w}w∈Z is an increasing collection of Serre subcate-
gories of C, and let C≥w = {B ∈ C | Hom(A,B) = 0 for all A ∈ C≤w−1}. Following
Ekedahl, the collection {C≤w} is called a radical filtration of the pair (D,C) if the
following axioms hold:

(1) For each object A ∈ C, there exist integers v, w such that A ∈ C≥v ∩ C≤w.
(2) If A ∈ C≤w and B ∈ C≥v, then Homv−w−1(A,B) = 0 in D.

If (D,C) is equipped with a radical filtration, Ekedahl shows that the categories

D̃≤0 = {A ∈ D | hk(A) ∈ C≤−k for all k ∈ Z},

D̃≥0 = {B ∈ D | hk(B) ∈ C≥−k for all k ∈ Z}
constitute a bounded, nondegenerate t-structure on D. This is called the diagonal
t-structure, and the objects in its heart are called diagonal complexes.

These formulas are, of course, strongly reminiscent of those in Definition 2.8.
Let us comment briefly on the relationship between the two constructions. Given
a radical filtration, one could hope to define a baric structure by setting D≤w =
{A ∈ D | hk(A) ∈ C≤w for all k ∈ Z}. However, the construction of a baric
truncation functor turns out to require a stronger Hom-vanishing condition between
C≤w and C≥w+1 than that stated above: one needs something like Lemma 2.9(3).
Conversely, given a baric structure, one could hope to define a radical filtration by
setting C≤w = D≤w∩C. This also fails, because a baric structure imposes no higher
Hom-vanishing conditions on the right-orthogonal of C≤w.

4. Baric Structures on Coherent Sheaves, I

In this section, we will investigate baric structures on derived categories of co-
herent sheaves. Let X be a scheme of finite type over a noetherian base scheme,
and let G be an affine group scheme over the same base, acting on X. We adopt
the convention that all statements about subschemes are to be understood in the
G-invariant sense. Thus, “open subscheme” will always mean “G-stable open sub-
scheme,” and “irreducible” will mean “not a union of two proper G-stable closed
subschemes.” This convention will remain in effect for the remainder of the paper.

Let CG(X) and QG(X) denote the categories of G-equivariant coherent and qua-
sicoherent sheaves, respectively, on X. One of the headaches of the subject is the
need to work with three closely related triangulated categories, which we denote as
follows:

(1) Db
G(X) is the bounded derived category of CG(X).

(2) D−G(X) is the bounded-above derived category of CG(X).
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(3) D+
G(X) is the full subcategory of the bounded-below derived category of
QG(X) consisting of objects with coherent cohomology sheaves.

Db
G(X) will be the focus of our attention, but it will be necessary to work D−G(X)

and D+
G(X) as well, simply because most operations on sheaves take values in one

of those categories, even when acting on bounded complexes.

Definition 4.1. A baric structure on X is a baric structure on Db
G(X) which is

compatible with the standard t-structure.

Remark 4.2. Implicit in this definition are some finiteness conditions; e.g., it is
conceivable that there are interesting baric structures on D+

G(X) that take advan-
tage of the fact that the functors β≤w can take bounded complexes to unbounded
complexes. Nevertheless, this is the definition we will work with.

Inspired by parts (1) and (2) of Lemma 2.9, we define the following subcategories
of D−G(X) and D+

G(X):

D−G(X)≤w = {F ∈ D−G(X) | hk(F) ∈ Db
G(X)≤w for all k},

D+
G(X)≥w = {F ∈ D+

G(X) | β≤w−1τ
≤kF ∈ Db

G(X)≥k+2 for all k}.

It is unknown whether these categories constitute parts of baric structures on
D−G(X) or on D+

G(X). Nevertheless, they will be useful in the sequel, in part
because they admit the alternate characterization given in the lemma below. If Y
is another scheme endowed with a baric structure, we will, by a minor abuse of
terminology, call a functor D−G(X) → D−G(Y ) right baryexact if it takes objects of
D−G(X)≤w to objects of D−G(Y )≤w. Similarly, we call a functor D+

G(X) → D+
G(Y )

left baryexact if it takes objects of D+
G(X)≥w to D+

G(Y )≥w.

Lemma 4.3. (1) For F ∈ D−G(X), we have F ∈ D−G(X)≤w if and only if
Hom(F ,G) = 0 for all G ∈ Db

G(X)≥w+1.
(2) For F ∈ D+

G(X), we have F ∈ D+
G(X)≥w if and only if Hom(G,F) = 0 for

all G ∈ Db
G(X)≤w−1.

In particular, we see from this lemma that

(4.1)
D−G(X)≤w ∩ Db

G(X) = Db
G(X)≤w,

D+
G(X)≥w ∩ Db

G(X) = Db
G(X)≥w.

Proof. (1) Suppose F ∈ D−G(X)≤w. By Lemma 2.9(1), τ≥kF ∈ Db
G(X)≤w for

all k. In particular, given G ∈ Db
G(X)≥w+1, let k be such that G ∈ Db

G(X)≥k.
Then Hom(F ,G) ∼= Hom(τ≥kF ,G) = 0. Conversely, suppose F ∈ D−G(X) but
F /∈ D−G(X)≤w, so that for some k, hk(F) /∈ Db

G(X)≤w. Then τ≥kF /∈ Db
G(X)≤w.

Let G = β≥w+1τ
≥kF . We then have a nonzero morphism τ≥kF → G. Moreover,

since the baric structure on Db
G(X) is compatible with the standard t-structure,

we have that G ∈ Db
G(X)≥k, so there is a natural isomorphism Hom(τ≥kF ,G) ∼=

Hom(F ,G). Thus, Hom(F ,G) 6= 0.
(2) Suppose F ∈ D+

G(X)≥w. Given G ∈ Db
G(X)≤w−1, let k be such that G ∈

Db
G(X)≤k. Then Hom(G,F) ∼= Hom(G, τ≤kF) ∼= Hom(G, β≤w−1τ

≤kF) = 0. Con-
versely, if F ∈ D+

G(X) but F /∈ D+
G(X)≥w, then for some k, β≤w−1τ

≤kF /∈ D≥k+2.
Let G = τ≤k+1β≤w−1τ

≤kF . Then clearly G ∈ Db
G(X)≤k+1 and G ∈ Db

G(X)≤w−1,
and there is a nonzero morphism G → β≤w−1τ

≤kF . In particular, the group
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Hom(G, β≤w−1τ
≤kF) ∼= Hom(G, τ≤kF) is nonzero. Now, consider the exact se-

quence
Hom(G, (τ≥k+1F)[−1])→ Hom(G, τ≤kF)→ Hom(G,F).

The first term vanishes because (τ≥k+1F)[−1] ∈ D+
G(X)≥k+2, so the natural map

Hom(G, τ≤kF)→ Hom(G,F) is injective. It follows that Hom(G,F) 6= 0. �

4.1. HLR baric structures. We do not wish to work with arbitrary baric struc-
tures on Db

G(X); rather, we want them to be well-behaved in relation to the scheme
structure on X. We have already imposed the condition that the baric structure
be compatible with the standard t-structure. We may also ask that it give rise to
baric structures on subschemes, in the following sense.

Definition 4.4. Suppose X is equipped with a baric structure, and let κ : Y ↪→ X
be a locally closed subscheme. A baric structure on Y is said to be induced by the
one on X if Lκ∗ is right baryexact and Rκ! is left baryexact.

The class of “HLR (hereditary, local, and rigid) baric structures,” defined below,
is particularly well-behaved. For instance, every locally closed subscheme of a
scheme with an HLR baric structure admits a unique induced baric structure. (See
Theorem 4.10.) The remainder of Section 4 is devoted to establishing various
properties of HLR baric structures, and the main result of the paper, Theorem 6.4,
is a statement about a class of nontrivial HLR baric structures.

Definition 4.5. A baric structure on X is said to be hereditary if every closed
subscheme admits an induced baric structure. A hereditary baric structure on X
is said to be local if every open subscheme admits an induced baric structure that
is also hereditary.

Next, a hereditary baric structure on X is rigid if for every sequence of closed
subschemes Z

t
↪→ Z1 ↪→ X where Z1 is a nilpotent thickening of Z (i.e., Z1 has the

same underlying topological space as Z), the induced baric structures on Z and Z1

are related as follows:

(4.2)
Db

G(Z1)≤w = the thick closure of t∗(Db
G(Z)≤w),

Db
G(Z1)≥w = the thick closure of t∗(Db

G(Z)≥w).

Finally, a baric structure that is hereditary, local, and rigid is called an HLR
baric structure.

It turns out that the “local” and “rigid” conditions on an HLR baric structure
are redundant:

Theorem 4.6. Every hereditary baric structure is HLR.

This theorem will be proved in Section 4.3. We first require a couple of pre-
liminary lemmas about induced baric structures, proved below. Following that, in
Section 4.2, we will establish a number of useful properties of HLR baric structures.

Lemma 4.7. Let ({Db
G(X)≤w}, {Db

G(X)≥w})w∈Z be a baric structure on X, and
let i : Z ↪→ X be a closed subscheme. If Z admits an induced baric structure, it is
given by

(4.3)
Db

G(Z)≤w = {F ∈ Db
G(Z) | i∗F ∈ Db

G(X)≤w},

Db
G(Z)≥w = {F ∈ Db

G(Z) | i∗F ∈ Db
G(X)≥w}.
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Conversely, if the categories (4.3) constitute a baric structure on Z, then that baric
structure is induced from the one on X.

If an open subscheme j : U ↪→ X admits an induced baric structure, it is given
by

(4.4)
Db

G(U)≤w = {F ∈ Db
G(U) | F ∼= j∗F1 for some F1 ∈ Db

G(X)≤w},

Db
G(U)≥w = {F ∈ Db

G(U) | F ∼= j∗F1 for some F1 ∈ Db
G(X)≥w}.

Conversely, if the categories (4.4) constitute a baric structure on U , then that baric
structure is induced from the one on X.

Proof. Let ({Db
G(Z)≤w}, {Db

G(Z)≥w})w∈Z be an induced baric structure on a closed
subscheme i : Z ↪→ X. If F ∈ Db

G(Z)≤w, then for all G ∈ D+
G(X)≥w+1, we have (by

Lemma 4.3) that Hom(F , Ri!G) = 0, and therefore Hom(i∗F ,G) = 0. The latter
implies that i∗F ∈ Db

G(X)≤w. Similarly, if F ∈ Db
G(Z)≥w, then Hom(Li∗G,F) =

Hom(G, i∗F) = 0 for all G ∈ D−G(X)≤w−1, so i∗F ∈ Db
G(X)≥w. For the opposite

inclusion, given an object F ∈ Db
G(Z), form the distinguished triangle

i∗β≤wF → i∗F → i∗β≥w+1F →

in Db
G(X). By the reasoning above, we have i∗β≤wF ∈ Db

G(X)≤w and i∗β≥w+1 ∈
Db

G(X)≥w+1, so the first and last terms above must be the baric truncations of i∗F :

i∗β≤wF ∼= β≤wi∗F and i∗β≥w+1F ∼= β≥w+1i∗F .

Thus, if i∗F ∈ Db
G(X)≤w, then β≥w+1i∗F = i∗β≥w+1F = 0. Since i∗ is faithful,

this implies that β≥w+1F = 0, so that F ∈ Db
G(Z)≤w. The same argument shows

that i∗F ∈ Db
G(X)≥w implies that F ∈ Db

G(X)≤w.
Next, assume the categories (4.3) constitute a baric structure on Z. We will show

that this baric structure is induced from the one on X. If F ∈ D−G(X)≤w, then
Hom(F , i∗G) = 0 for all G ∈ Db

G(Z)≥w+1 by Lemma 4.3, so Hom(Li∗F ,G) = 0,
and hence Li∗F ∈ D−G(Z)≤w. Similarly, if F ∈ D+

G(X)≥w, then Hom(i∗G,F) =
Hom(G, Ri!F) = 0 for all G ∈ Db

G(Z)≤w−1, so Ri!F ∈ D+
G(Z)≥w. Thus, Li∗ is right

baryexact, and Ri! is left baryexact, as desired.
We turn now to open subschemes. Suppose ({Db

G(U)≤w}, {Db
G(U)≥w})w∈Z is

an induced baric structure on an open subscheme j : U ↪→ X. In view of the
equalities (4.1), the definition of “induced” implies that j∗ : Db

G(X) → Db
G(U)

is baryexact. In other words, if F1 ∈ Db
G(X)≤w, then j∗F1 ∈ Db

G(U)≤w, and
if F1 ∈ Db

G(X)≥w, then j∗F1 ∈ Db
G(U)≥w. Conversely, if F ∈ Db

G(U)≤w, then
there exists some object F ′ ∈ Db

G(X) such that j∗F ′ ∼= F . Form the distinguished
triangle β≤wF ′ → F ′ → β≥w+1F ′ →, and apply j∗ to it. We know that j∗β≤wF ′ ∈
Db

G(U)≤w and that j∗β≥w+1F ′ ∈ Db
G(U)≥w+1. Since j∗F ′ ∼= F , we see from the

triangle
j∗β≤wF ′ → F → j∗β≥w+1F ′ →

that j∗β≥w+1F ′ ∼= β≥w+1F = 0, and hence that F ∼= j∗β≤wF ′. Thus, setting
F1 = β≤wF ′, we have found an F1 ∈ Db

G(X)≤w such that j∗F1
∼= F . The argument

for Db
G(U)≥w is similar.

Finally, assume the categories (4.4) constitute a baric structure on U . We must
show that this baric structure is induced. Clearly, j∗ is baryexact as a functor of
bounded derived categories Db

G(X)→ Db
G(U). Since j∗ is also exact, it commutes

with truncation and cohomology functors, and it takes Db
G(X)≥w to Db

G(U)≥w. It
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follows from these observations that it takes D−G(X)≤w to D−G(U)≤w and D+
G(X)≥w

to D+
G(U)≥w. �

Lemma 4.8. Let j : U ↪→ X be the inclusion of an open subscheme, and let
i : Z ↪→ X be the inclusion of a closed subscheme. Assume that U and Z are
equipped with baric structures induced from one on X. Then:

(1) j∗ takes D−G(X)≤w to D−G(U)≤w and D+
G(X)≥w to D+

G(U)≥w.
(2) Li∗ takes D−G(X)≤w to D−G(Z)≤w.
(3) Ri! takes D+

G(X)≥w to D+
G(Z)≥w.

(4) i∗ takes D−G(Z)≤w to D−G(X)≤w and D+
G(Z)≥w to D+

G(X)≥w.

Proof. Parts (1), (2), and (3) hold by definition.
(4) We saw in the proof of Lemma 4.7 that as a functor of bounded derived

categories Db
G(Z) → Db

G(X), i∗ is baryexact. Since i∗ is also an exact functor,
we have hk(i∗F) ∼= i∗h

k(F) for any F ∈ D−G(Z). Thus, if F ∈ D−G(Z)≤w, we
have hk(i∗F) ∈ Db

G(X)≤w for all k; in other words, i∗F ∈ D−G(X)≤w. On the
other hand, suppose F ∈ D+

G(Z)≥w. Since i∗ is exact and baryexact on Db
G(Z),

we have i∗β≤w−1τ
≤kF ∼= β≤w−1τ

≤ki∗F . Moreover, the fact that β≤w−1τ
≤kF ∈

Db
G(Z)≥k+1 for all k implies that i∗β≤w−1τ

≤kF ∈ Db
G(X)≥k+1 for all k. Thus,

i∗F ∈ D+
G(X)≥w. �

Lemma 4.9. Let ({Db
G(X)≤w}, {Db

G(X)≥w})w∈Z be a hereditary baric structure
on X, and let i : Z ↪→ X be the inclusion of a closed subscheme. The induced baric
structure on Z is also hereditary.

Proof. Let κ : Y ↪→ Z be a closed subscheme of Z. We must show that Y admits
a baric structure induced from the one on Z. In fact, we claim that the baric
structure on Y induced from the on X (via i◦κ : Y ↪→ X) has the desired property.
Suppose F ∈ D−G(Z)≤w. If Lκ∗F /∈ D−G(Y )≤w, then there is some G ∈ Db

G(Y )≥w+1

such that Hom(Lκ∗F ,G) 6= 0. Then Hom(F , κ∗G) 6= 0 and, because i∗ is faithful,
Hom(i∗F , i∗κ∗G) 6= 0. But this is impossible, because according to Lemma 4.8,
i∗F ∈ D−G(X)≤w and (i◦κ)∗G ∈ Db

G(X)≥w+1. Thus, Lκ∗F ∈ D−G(Y )≤w. Similarly,
if F ∈ D+

G(Z)≥w, a consideration of Hom(G, Rκ!F) and Hom(i∗κ∗G, i∗F) for G ∈
Db

G(Y )≤w−1 shows that Rκ!F ∈ D+
G(Y )≥w. Thus, Lκ∗ is right baryexact and

Rκ! is left baryexact, so the baric structure on Y induced from the one on X is
also induced from the one on Z. The induced baric structure on Z is therefore
hereditary. �

4.2. Properties of HLR baric structures. In this section, we prove three use-
ful results about HLR baric structures. First, we prove that the HLR property
is inherited by induced baric structures on subschemes. Next, we prove an addi-
tional rigidity property for nilpotent thickenings of closed subschemes. Finally, we
prove a “gluing theorem” that states that an HLR baric structure is determined
by the baric structures it induces on a closed subscheme and the complementary
open subscheme. It should be noted that the proofs of these results depend on
Theorem 4.6.

Theorem 4.10. Suppose X is endowed with an HLR baric structure. Every locally
closed subscheme κ : Y ↪→ X admits a unique induced baric structure. Moreover,
this baric structure is also HLR.
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Proof. We have already seen the uniqueness of the induced baric structure in the
case of open or closed subschemes, in Lemma 4.7. For a general locally closed
subscheme, let us factor the inclusion map κ : Y → X as a closed imbedding
i : Y ↪→ U followed by an open imbedding j : U ↪→ X. Then U acquires a unique
induced hereditary baric structure from the baric structure on X, and it in turn
induces a unique baric structure on its closed subscheme Y . This baric structure
is also induced from the one on X: clearly, Lκ∗ = Li∗ ◦ j∗ is right baryexact, and
Rκ! = Ri! ◦ j∗ is left baryexact.

To show that this is the unique baric structure on Y induced from the one on X,
we must show that the baryexactness assumptions on Lκ∗ and Rκ! imply the same
conditions on Li∗ and Ri!. (It then follows that any baric structure induced from
the one on X is actually induced from the one on U .) Suppose F ∈ D−G(U)≤w, and
consider a distinguished triangle of the form

Li∗τ≤k−1F → Li∗F → Li∗τ≥kF → .

Since Li∗τ≤k−1F ∈ D−G(Y )≤k−1, we see that hk(Li∗F) ∼= hk(Li∗τ≥kF). Now,
τ≥kF is an object in Db

G(U)≤w, so there exists an object F1 ∈ Db
G(X)≤w such that

j∗F1
∼= τ≥kF . By assumption, Lκ∗F1 ∈ D−G(Y )≤w. But Lκ∗F ∼= Li∗τ≥kF , so we

conclude that hk(Li∗τ≥kF) ∼= hk(Li∗F) ∈ Db
G(Y )≤w. Thus, Li∗F ∈ D−G(Y )≤w.

On the other hand, suppose that F ∈ D+
G(U)≥w, and consider a distinguished

triangle of the form

Ri!τ≤kF → Ri!F → Ri!τ≥k+1F → .

Since Ri!τ≥k+1F ∈ D+
G(Y )≥k+1, we see that τ≤kRi!F ∼= τ≤kRi!τ≤kF . Next,

consider the distinguished triangle

Ri!β≤w−1τ
≤kF → Ri!τ≤kF → Ri!β≥wτ

≤kF → .

By assumption, β≤w−1τ
≤kF ∈ Db

G(U)≥k+2, so Ri!β≤w−1τ
≤kF ∈ D+

G(Y )≥k+2. It
follows that τ≤kRi!τ≤kF ∼= τ≤kRi!β≥wτ

≤kF . Now, β≥wτ
≤kF ∈ Db

G(U)≥w, so
there is some F1 ∈ Db

G(X)≥w such that j∗F1
∼= β≥wτ

≤kF . Since Rκ!F1 belongs
to D+

G(Y )≥w by assumption, we have β≤w−1τ
≤kRκ!F1 ∈ Db

G(Y )≥k+2. But we also
have Rκ!F1

∼= Ri!β≥wτ
≤kF , and from the chain of isomorphisms

τ≤kRi!F ∼= τ≤kRi!τ≤kF ∼= τ≤kRi!β≥wτ
≤kF ∼= τ≤kRκ!F1,

we see that β≤w−1τ
≤kRi!F ∈ Db

G(Y )≥k+2. Thus, Ri!F ∈ D+
G(Y )≥w. We now

conclude that any baric structure on Y induced from the one on X is also induced
from the one on U , and is therefore uniquely determined.

To show that the induced baric structure on a locally closed subscheme is HLR,
it suffices, by Theorem 4.6, to show that it is hereditary. In the case of a closed
subscheme, this was done in Lemma 4.9, and in the case of an open subscheme,
there is nothing to prove: this property is part of the definition of “local.” The
assertion then follows for a general locally closed subscheme, since, by construction,
the induced baric structure on such a subscheme is obtained by first passing to an
open subscheme, and then to a closed subscheme of that. �

Next, we turn to nilpotent thickenings of a closed subscheme.

Proposition 4.11. Suppose X is endowed with an HLR baric structure, and let
Z

t
↪→ Z1 ↪→ X be a sequence of closed subschemes of X with the same underlying

topological space. Then:
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(1) For F ∈ D−G(Z1), F ∈ D−G(Z1)≤w if and only if Lt∗F ∈ D−G(Z)≤w.
(2) For F ∈ D+

G(Z1), F ∈ D+
G(Z1)≥w if and only if Rt!F ∈ D+

G(Z)≥w.

Proof. If F ∈ D−G(Z1)≤w, it is obvious that Lt∗F ∈ D−G(Z)≤w, since the baric
structure on Z is induced from that on Z1. Conversely, suppose F ∈ D−G(Z1)
and Lt∗F ∈ D−G(Z)≤w. Then Hom(F , t∗G) ∼= Hom(Lt∗F ,G) = 0 for all G ∈
Db

G(Z)≥w+1. But by the definition of “rigid,” Db
G(Z1)≥w+1 is generated by objects

of the form t∗G with G ∈ Db
G(Z)≥w+1, so it follows that Hom(F ,G′) = 0 for all

G′ ∈ Db
G(Z1)≥w+1, and hence that F ∈ D−G(Z1)≤w. The proof of part (2) is entirely

analogous and will be omitted. �

Finally, we prove a “gluing theorem” for HLR baric structures.

Theorem 4.12. Suppose X is endowed with an HLR baric structure. Let i : Z ↪→
X be a closed subscheme of X, and let j : U ↪→ X be its open complement. Endow
U and Z with the baric structures induced from that on X. Then we have

Db
G(X)≤w = {F ∈ Db

G(X) | j∗F ∈ Db
G(U)≤w and Li∗F ∈ D−G(Z)≤w},

Db
G(X)≥w = {F ∈ Db

G(X) | j∗F ∈ Db
G(U)≥w and Ri!F ∈ D+

G(Z)≥w}.
In particular, there is a unique HLR baric structure on X which induces the baric
structures ({Db

G(U)≤w}, {Db
G(U)≥w})w∈Z and ({Db

G(Z)≤w}, {Db
G(Z)≥w})w∈Z on U

and Z.

Proof. If F ∈ Db
G(X)≤w, then j∗F ∈ Db

G(U)≤w and Li∗F ∈ D−G(Z)≤w by the
definition of the induced baric structure. For the other direction, suppose that
j∗F ∈ Db

G(U)≤w and Li∗F ∈ D−G(Z)≤w. We will prove that F ∈ Db
G(X)≤w by

showing Hom(F ,G) = 0 for all G ∈ Db
G(X)≥w+1.

Fix G ∈ Db
G(X)≥w+1. We have an exact sequence

lim→
Z1

Hom(iZ1∗Li
∗
Z1
F ,G)→ Hom(F ,G)→ Hom(j∗F , j∗G),

where the limit runs over nilpotent thickenings of Z. (See, for instance, [B2,
Proposition 2 and Lemma 3(a)] for an explanation of this exact sequence.) We
have j∗F ∈ Db

G(U)≤w and j∗G ∈ Db
G(U)≥w+1, and by Lemma 4.8, we have

iZ1∗Li
∗
Z1
F ∈ D−G(X)≤w so the first and third terms vanish. We conclude that

Hom(F ,G) also vanishes. The argument for Db
G(X)≥w is similar. �

4.3. Proof of Theorem 4.6. In this section, we will prove that hereditary baric
structures are automatically also local and rigid. We begin with a result about baric
truncation functors with respect to a hereditary baric structure. If X is endowed
with a hereditary baric structure, and F ∈ Db

G(X) is actually supported on some
closed subscheme i : Z ↪→ X, then the baric truncations of F are obtained by
taking baric truncations in the induced baric structure on Z, and then pushing
them forward by i∗. In other words, hereditary baric structures have the property
that baric truncation functors preserve support. More precisely:

Proposition 4.13. Let ({Db
G(X)≤w}, {Db

G(X)≥w})w∈Z be a hereditary baric struc-
ture on X. Then

(1) If F ∈ Db
G(X) has set-theoretic support on a closed set Z ⊂ X, then so do

β≤wF and β≥wF .
(2) If a morphism u : F → G in Db

G(X) has set-theoretic support on Z, in the
sense that u|XrZ = 0, then so do β≤w(u) and β≥w(u).
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Proof. If F is set-theoretically supported on Z then there is a subscheme i : Z1 ↪→ X
of X, whose underlying closed set is Z, such that F = i∗F ′ for some F ′ ∈ Db

G(Z1).
Form the distinguished triangle

β≤wF ′ → F ′ → β≥w+1F ′ → .

By Lemma 4.7, we have that i∗β≤wF ′ ∈ Db
G(X)≤w and i∗β≥w+1F ′ ∈ Db

G(X)≥w+1.
Since we have a distinguished triangle

i∗β≤wF ′ → F → i∗β≥w+1F ′ →,
we must have i∗β≤wF ′ ∼= β≤wF and i∗β≥w+1F ′ ∼= β≥w+1F . In particular these
objects are set-theoretically supported on Z, proving the first assertion.

To prove the second assertion, consider the exact sequence

lim→
Z′

Hom(F , iZ′∗Ri
!
Z′G)→ Hom(F ,G)→ Hom(F|XrZ ,G|XrZ),

where iZ′ : Z ′ ↪→ X ranges over all closed subscheme structures on Z. By as-
sumption, u ∈ Hom(F ,G) vanishes upon restriction to X r Z, so we see from the
exact sequence above that it must factor through iZ′∗Ri

!
Z′G → G for some closed

subscheme structure iZ′ : Z ′ ↪→ X on Z. Now, iZ′∗Ri
!
Z′G is in general an ob-

ject of D+
G(X), but since F lies in Db

G(X), any morphism F → iZ′∗Ri
!
Z′G factors

through τ≤niZ′∗Ri
!
Z′G for sufficiently large n. It follows that β≤w(u) and β≥w(u)

factor through β≤wτ
≤niZ′∗Ri

!
Z′G and β≥wτ

≤niZ′∗Ri
!
Z′G, respectively. These ob-

jects have set-theoretic support on Z by the first part of the proposition, so β≤w(u)
and β≥w(u) have set-theoretic support on Z as well, as desired. �

We may use this fact to prove the following:

Theorem 4.14. Every hereditary baric structure is local.

We will prove this theorem over the course of the following three propositions.
Recall from Lemma 4.7 that in a local baric structure, the induced baric structures
on open subschemes necessarily have the form given in the proposition below.

Proposition 4.15. Let ({Db
G(X)≤w}, {Db

G(X)≥w})w∈Z be a hereditary baric struc-
ture on X, and let U be an open subschme of X. For any w ∈ Z, define full
subcategories of Db

G(U) as follows:

Db
G(U)≤w = {F ∈ Db

G(U) | F ∼= j∗F1 for some F1 ∈ Db
G(X)≤w},

Db
G(U)≥w = {F ∈ Db

G(U) | F ∼= j∗F1 for some F1 ∈ Db
G(X)≥w}.

Then Db
G(U)≤w and Db

G(U)≥w are thick subcategories of Db
G(U).

Proof. Suppose that F and G belong to Db
G(U)≤w, so that there exist F1 and G1 in

Db
G(X)≤w with F1|U ∼= F and G1|U ∼= G. Since Db

G(U) is a localization of Db
G(X),

we may find for every morphism u : F → G an object G2 ∈ Db
G(X) and a diagram

F1 → G2 ← G1 such that (G2 ← G1)|U is an isomorphism, and the composition

F ∼= F1|U → G2|U ∼= G1|U ∼= G
coincides with u. We claim that the diagram

β≤wF1 → β≤wG2 ← β≤wG1

has the same property. In that case, the cone on the composition F1
∼= β≤wF1 →

β≤wG2 belongs to Db
G(X)≤w, which shows that the cone on u : F → G belongs
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to Db
G(U)≤w. To prove the claim, note that the cone on the map G1 → G2 is

set-theoretically supported on the closed set X r U , and since the baric structure
({Db

G(X)≤w}, {Db
G(X)≥w})w∈Z is hereditary, the same must be true for the cone

on β≤wG1 → β≤wG2; in particular the restriction of the latter map to U is an
isomorphism.

We have shown that the Db
G(U)≤w ⊂ Db

G(U) is a triangulated subcategory. To
show that it is thick we have to show that it is also closed under summands – i.e.
that if F ⊕ G ∈ Db

G(U)≤w then F and G also belong to Db
G(U)≤w. Thus suppose

that F ⊕G belongs to Db
G(U)≤w. Since Db

G(U) is a localization of Db
G(X), we may

find a triangle
F1 → H→ G1 →

whose restriction to U is isomorphic to the triangle

F → F ⊕ G → G →
In particular the map G1 → F1[1] is set-theoretically supported on X r U , so by
proposition 4.13 the same must be true of β≤wG1 → β≤wF1. From the diagram

β≤wF1
//

��

H //

��

β≤wG1
//

��
F1

//

��

H //

��

G1
//

��
β≥w+1F1

// 0 // β≥w+1G1
//

whose rows and columns are distinguished triangles, we see that β≥w+1G1 →
β≥w+1F1 is an isomorphism. But since this morphism has set-theoretic support
on X − U the objects β≥w+1F1 and β≥w+1G1 must have set-theoretic support on
X − U which implies there are isomorphisms β≤wF1|U ∼= F and β≤wG1|U ∼= G.
Thus F and G belong to Db

G(U)≤w.
A similar proof shows that the subcategories Db

G(U)≥w are thick. �

Proposition 4.16. Let ({Db
G(X)≤w}, {Db

G(X)≥w})w∈Z be a hereditary baric struc-
ture on X, let U be an open subscheme of X, and let ({Db

G(U)≤w}, {Db
G(U)≥w})w∈Z

be as in Proposition 4.15. Then ({Db
G(U)≤w}, {Db

G(U)≥w})w∈Z is a baric structure
on Db

G(U), compatible with the standard t-structure.

Proof. It is clear that Db
G(U)≤w ⊂ Db

G(U)≤w+1 and Db
G(U)≥w ⊃ Db

G(U)≥w+1 and
that Db

G(U) = Db
G(U)≤w ∗ Db

G(U)≥w+1. If F ∈ Db
G(U)≤w and G ∈ Db

G(U)≥w+1,
then we have an exact sequence

Hom(F1,G1)→ Hom(F ,G)→ lim−→
i:Z↪→X

Hom(i∗Li∗F1,G1[1])→

where F1 is an extension of F to Db
G(X)≤w, G1 is an extension of G to Db

G(X)≥w+1,
and i : Z ↪→ X runs over all subscheme structures on X r U . The first term
above vanishes automatically, and each of the terms Hom(i∗Li∗F1,G1[1]) van-
ishes because, by Lemma 4.8, i∗Li∗F1 ∈ D−G(X)≤w. Thus, Hom(F ,G) = 0 and
({Db

G(U)≤w}, {Db
G(U)≥w})w∈Z is a baric structure on Db

G(U).
By assumption the baric structure ({Db

G(X)≤w}, {Db
G(X)≥w})w∈Z is compatible

with the standard t-structure onDb
G(X). Thus if F1 belongs toDb

G(X)≤w then so do
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τ≤nF1 and τ≥nF1. The objects F1|U , (τ≤nF1)|U ∼= τ≤n(F1|U ) and (τ≥nF1)|U ∼=
τ≥n(F1|U ) therefore all belong to Db

G(U)≤w. Similarly, we have (β≤wF1)|U ∼=
β≤w(F1|U ) and (β≥wF1)|U ∼= β≥w(F1|U ) so that the baric truncation functors pre-
serve Db

G(U)≥0. Thus the baric structure ({Db
G(U)≤w}, {Db

G(U)≥w})w∈Z is com-
patible with the standard t-structure on Db

G(U). �

Proposition 4.17. Let ({Db
G(X)≤w}, {Db

G(X)≥w})w∈Z be a hereditary baric struc-
ture on X, and let U be an open subscheme of X. Then the collection of categories
({Db

G(U)≤w}, {Db
G(U)≥w})w∈Z defined in Proposition 4.15 constitute a hereditary

baric structure on U .

Proof. Using Lemma 4.7 and the previous proposition, we know that the baric
structure ({Db

G(U)≤w}, {Db
G(U)≥w})w∈Z is induced from the one on X. It remains

only to show that this baric structure is hereditary. Let i : Y ↪→ U be a closed
subscheme of U . By Lemma 4.7, we must prove that the following categories
constitute a baric structure on Y :

Db
G(Y )≤w = {F ∈ Db

G(Y ) | i∗F ∼= F1|U for some F1 ∈ Db
G(X)≤w},

Db
G(Y )≥w = {F ∈ Db

G(Y ) | i∗F ∼= F1|U for some F1 ∈ Db
G(X)≥w}.

Let Y be the closure of Y in X, and let i1 : Y ↪→ X be the inclusion map, so that
we have a commutative square of inclusions

Y
� � i //
� _

��

U� _

��
Y

� � i1 // X

By definition, the hereditary baric structure on X induces a baric structure on
Y . This baric structure is itself hereditary, by Lemma 4.9. Thus, by the previous
proposition, the baric structure on Y induces one on its open subscheme Y . This
is given by

(Db
G(Y )≤w)′ = {F | F ∼= F2|Y for some F2 ∈ Db

G(Y ) with i1∗F2 ∈ Db
G(X)≤w},

(Db
G(Y )≥w)′ = {F | F ∼= F2|Y for some F2 ∈ Db

G(Y ) with i1∗F2 ∈ Db
G(X)≥w}.

It suffices now to show thatDb
G(Y )≤w = (Db

G(Y )≤w)′ andDb
G(Y )≥w = (Db

G(Y )≥w)′.
If F ∈ Db

G(Y ) is such that we may find F2 ∈ Db
G(Y ) with F2|Y ∼= F and

i∗F2 ∈ Db
G(X)≤w then F1 := i1∗F2 has the property that F1|U ∼= i∗F . Thus,

(Db
G(Y )≤w)′ ⊂ Db

G(Y )≤w. To show the reverse inclusion, let F ∈ Db
G(Y ) and

F1 ∈ Db
G(X)≤w be such that F1|U ∼= i∗F , and let F ′2 ∈ Db

G(Y ) be such that there
exists a map i1∗F ′2 → F1 which is an isomorphism over U . Then i1∗β≤wF ′2 → F1 is
also an isomorphism over U , and F2 := β≤wF ′2 has the property that F2|Y ∼= F and
i1∗F2 ∈ Db

G(X)≤w. Thus, (Db
G(Y )≤w)′ = Db

G(Y )≤w. A similar argument shows
that (Db

G(Y )≥w)′ = Db
G(Y )≥w. �

Let us finally show that hereditary baric structures are rigid.

Proposition 4.18. Let ({Db
G(X)≤w}, {Db

G(X)≥w})w∈Z be a hereditary baric struc-
ture on X. Then ({Db

G(X)≤w}, {Db
G(X)≥w})w∈Z is rigid.

Proof. Let Z be a subscheme of X and let Z1 be a nilpotent thickening of Z in
X, and write t for inclusion of Z into Z1. If F is a bounded chain complex of
coherent sheaves on Z1, then we may find a filtration of F by subcomplexes Fk
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whose subquotients are scheme-theoretically supported on Z. Thus in Db
G(Z1) we

may find a sequence of objects and maps

0 = F0 → F1 → F2 → · · · → Fn = F
such that the cone on Fk−1 → Fk is of the form t∗Gk. Now suppose F belongs to
Db

G(Z1)≤w. Then we may apply β≤w to the sequence to obtain

0 = β≤wF0 → β≤wF1 → · · · → β≤wFn = F
and distinguished triangles

β≤wFk−1 → β≤wFk → β≤wt∗Gk → .

It follows from Lemma 4.7 that the object β≤wt∗Gk is isomorphic to t∗β≤wGk. Thus,
F is in the thick closure of the image of Db

G(Z)≤w under t∗. A similar proof gives
the same result for Db

G(Z1)≥w. �

This completes the proof of Theorem 4.6.

5. Background on s-structures and Staggered Sheaves

In this section, we review the t-structures on derived categories of equivariant
coherent sheaves that were introduced in [A]. (They were called “staggered t-
structures” in loc. cit.; in Section 8, we will prove that they usually arise by the
staggering construction of Definition 2.8.) These t-structures depend on two aux-
iliary data: an s-structure, and a perversity function. After fixing notation, we
briefly recall some facts about these objects, and we then describe the t-structures
themselves. We will also prove a few useful lemmas about these objects.

As before, let X be a scheme of finite type over a noetherian base scheme, acted
on by an affine group scheme G over the same base. We adopt the additional
assumptions that the base scheme admits a dualizing complex in the sense of [H,
Chap. V], and that the category CG(X) has enough locally free objects. It follows
(see [B2, Proposition 1]) that X admits an equivariant dualizing complex. Fix one,
and denote it ωX ∈ Db

G(X). Next, let D = RHom(·, ωX) denote the equivariant
Serre–Grothendieck duality functor. Let Xgen denote the set of generic points of
G-invariant subschemes of X, and for any x ∈ Xgen, we denote by Gx the smallest
G-stable closed subset of X. (We do not usually regard Gx as having a fixed
subscheme structure.)

For any point x ∈ Xgen and any closed subscheme structure i : Z ↪→ X on Gx,
there is an open subscheme V ⊂ Z such that Ri!ωX |V is concentrated in a single
degree in Db

G(V ). Let codGx be the unique integer such that hcod Gx(Ri!ωX |V ) 6= 0.
This number is independent of the choice of closed subscheme structure i : Z ↪→ X
and of open subscheme V ⊂ Z. If X is, say, an equidimensional scheme of finite
type over a field, ωX may be normalized so that codGx is the ordinary (Krull)
codimension of Gx.

An s-structure on the scheme X is a pair of collections of full subcategories
({CG(X)≤w}, {CG(X)≥w})w∈Z of CG(X) satisfying a list of ten axioms, called (S1)–
(S10) in [A]. We will not review all the axioms here, but we do recall some of the
key properties of s-structures:

• Each CG(X)≤w is a Serre subcategory, and each CG(X)≥w is closed under
extensions and subobjects.
• CG(X)≥w is the right orthogonal to CG(X)≤w−1.
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• Each sheaf F contains a unique maximal subsheaf in CG(X)≤w, denoted
σ≤wF . The quotient σ≥w+1F ∼= F/σ≤wF is the largest quotient of F in
CG(X)≥w+1.
• An s-structure on X induces s-structures on all locally closed subschemes

of X.
Assume henceforth that X is equipped with a fixed s-structure. Given a point
x ∈ Xgen and a closed subscheme structure i : Z ↪→ X on Gx, choose an open
subscheme V ⊂ Z such that Ri!ωX |V is concentrated in degree codGx. There is a
unique integer, called the altitude of Gx and denoted altGx, such that

Ri!ωX |V [codGx] ∈ CG(V )≤alt Gx ∩ CG(V )≥alt Gx.

Again, altGx is independent of the choice of i and V .
The staggered codimension of Gx is defined by

scodGx = altGx+ codGx.

A (staggered) perversity function is a function p : Xgen → Z such that

0 ≤ p(x)− p(y) ≤ scodGx− scodGy if x ∈ Gy.

Given a perversity p : Xgen → Z, the function p̄ : Xgen → Z given by

p̄(x) = scodGx− p(x)

is also a perversity function, known as the dual perversity. Given a staggered
perversity function p, we define a full subcategory of D−G(X) by

pD−G(X)≤0 =

F
∣∣∣∣∣

for any x ∈ Xgen, any closed subscheme structure
i : Z ↪→ X on Gx, and any k ∈ Z, there is a dense open

subscheme V ⊂ Z such that hk(Li∗F)|V ∈ CG(V )≤p(x)−k

 ,

and a full subcategory of D+
G(X) by
pD+

G(X)≥0 = D(p̄D−G(X)≤0).

The t-structure associated in [A] to the given s-structure and to a perversity p is
the pair (pDb

G(X)≤0, pDb
G(X)≥0), where

pDb
G(X)≤0 = pD−G(X)≤0 ∩ Db

G(X) and pDb
G(X)≥0 = pD+

G(X)≥0 ∩ Db
G(X).

The remainder of the section will be spent establishing a number of useful lemmas
about these objects. Let q : Xgen → Z be a function such that

(5.1) q(x) = q(y) whenever Gx = Gy.

Given such a function, let

qCG(X)≤w =

F ∈ CG(X)

∣∣∣∣∣ for any closed subscheme i : Gx ↪→ X with
x ∈ Xgen, there is a dense open subscheme
V ⊂ Gx such that i∗F|V ∈ CG(V )≤w+q(x)

 .

One may either regard this definition as a condition only on reduced closed sub-
schemes of the form Gx, or as a condition on all possible closed subscheme struc-
tures on the various closed sets Gx. These two interpretations are equivalent by [A,
Proposition 4.1], however, so there is no ambiguity in the definition. The first view-
point is more convenient for checking explicit examples, but the second is sometimes
more useful in proofs.
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Lemma 5.1. Let x ∈ Xgen, and let i : Z ↪→ X be a closed subscheme structure on
Gx. For any sheaf F ∈ qCG(X)≤w and any r ≥ 0, there is a dense open subscheme
V ⊂ Z such that h−r(Li∗F)|V ∈ CG(V )≤w+q(x).

Proof. The proof of this lemma follows that of [A, Lemma 8.2] nearly verbatim.
By the definition of qCG(X)≤w, we know that there is a dense open subset Z ′ ⊂ Z
such that i∗F|Z′ ∈ CG(Z ′)≤w+q(x). Let X ′ = X r (Z ′ r Z). Then X ′ is a dense
open subset of X, and i : Z ′ ↪→ X is a closed subscheme of X ′. It clearly suffices
to prove the lemma in the case where X and Z are replaced by X ′ and Z ′. We
therefore henceforth assume, without loss of generality, that i∗F ∈ CG(Z)≤w+q(x).

We now proceed by induction on r. For r = 0, the lemma is trivial: we
have i∗F ∈ CG(Z)≤w+q(x) by assumption. Now, suppose r > 0. According
to Axiom (S10) in the definition of an s-structure [A], there is an open sub-
scheme V ′ ⊂ Z such that for any open set U ⊂ X with U ∩ Z ⊂ V ′, we have
Extr(F|U , i∗G|U ) = 0 for all G ∈ CG(Z)≥w+q(x)+1. (In fact, Axiom (S10) guaran-
tees this vanishing for all G in a slightly larger category, denoted C̃G(Z)≥w+q(x)+1,
but we will not require that additional information.) Equivalently, for any open
V ⊂ V ′, we have Hom(Li∗F|V ,G[r]|V ) = 0 for all G ∈ CG(Z)≥w+q(x)+1. We also
have Hom(Li∗F|V ,G[r]|V ) ∼= Hom(τ≥−rLi∗F|V ,G[r]|V ), and then from the distin-
guished triangle

τ≤−rτ≥−rLi∗F → τ≥−rLi∗F → τ≥−r+1Li∗F →
we obtain the exact sequence

· · · → Hom(τ≥−rLi∗F|V ,G[r]|V )→ Hom(τ≤−rτ≥−rLi∗F|V ,G[r]|V )→
Hom(τ≥−r+1Li∗F [−1]|V ,G[r]|V )→ · · · .

Since τ≤−rτ≥−rLi∗F ∼= h−r(Li∗F)[r], the sequence above can be rewritten as

· · · → Hom(Li∗F|V ,G[r]|V )→ Hom(h−r(Li∗F)|V ,G|V )→

Hom(τ≥−(r−1)Li∗F|V ,G[r + 1]|V )→ · · · .
The first term above vanishes. Note that

hk(τ≥−(r−1)Li∗F) ∼=

{
hk(Li∗F) if −(r − 1) ≤ k ≤ 0,
0 otherwise.

Thus, by the inductive assumption, the cohomology sheaves of τ≥−(r−1)Li∗F have
the property that for each k, there is a dense open subscheme Vk ⊂ Z such that
hk(τ≥−(r−1)Li∗F)|Vk

∈ CG(Vk)≤w+q(x). This property is precisely the hypothesis
of [A, Lemma 8.1], which then tells us that there is a dense open subscheme V ′′ ⊂ Z
such that the last term in the exact sequence above vanishes whenever V ⊂ V ′′.
In particular, let us take V = V ′ ∩ V ′′. The middle term above then clearly
vanishes. Since Hom(h−r(Li∗F)|V ,G1) = 0 for all G1 ∈ CG(V )≤w+q(x)+1, we have
h−r(Li∗F)|V ∈ CG(V )≤w+q(x), as desired. �

Lemma 5.2. qCG(X)≤w is a Serre subcategory of CG(X).

Proof. Suppose we have a short exact sequence 0→ F ′ → F → F ′′ → 0 in CG(X).
Given x ∈ Xgen and a closed subscheme structure i : Z ↪→ X on Gx, consider the
exact sequence

h−1(Li∗F ′′)→ i∗F ′ → i∗F → i∗F ′′ → 0.
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Suppose F ′ and F ′′ are in qCG(X)≤w. Then there are dense open subschemes
V ′, V ′′ ⊂ Z such that i∗F ′|V ′ ∈ CG(V ′)≤w+q(x) and i∗F ′′|V ′′ ∈ CG(V ′′)≤w+q(x).
Let V = V ′ ∩ V ′′. Then, since CG(V )≤w+q(x) is a Serre subcategory of CG(V ), we
see that i∗F|V ∈ CG(V )≤w+q(x), so F ∈ qCG(X)≤w.

Conversely, if F ∈ qCG(X)≤w, then there is a dense open subscheme V ⊂ Z
such that i∗F|V ∈ CG(V )≤w+q(x). It follows that i∗F ′′|V ∈ CG(V )≤w+q(x) as well,
so F ′′ ∈ qCG(X)≤w. Next, by Lemma 5.1, there is some dense open subscheme
V ′ ⊂ Z such that h−1(Li∗F ′′)|V ′ ∈ CG(V ′)≤w+q(x), and it follows that i∗F ′|V ∩V ′ ∈
CG(V ∩ V ′)≤w+q(x). Thus, F ′ ∈ qCG(X)≤w as well. �

Next, let p be a staggered perversity function. The following alternate charac-
terization of pD−G(X)≤0 will be useful.

Lemma 5.3. We have
pD−G(X)≤0 = {F ∈ D−G(X) | hk(F) ∈ pCG(X)≤−k for all k ∈ Z}.

Remark 5.4. Note the similarity between the right-hand side of this equation and
the definition of sD≤0 of definition 2.8.

Proof. Throughout the proof, x will denote a point of Xgen, and i : Z ↪→ X will
denote a closed subscheme structure on Gx.

First, suppose F is concentrated in a single degree with respect to the standard
t-structure, say in degree n, and that hn(F) ∈ pCG(X)≤−n. If k > n, then of course
hk(Li∗F) = 0. If k ≤ n, then by Lemma 5.1, there is a dense open subscheme V ⊂ Z
such that hk(Li∗F)|V ∈ CG(X)≤p(x)−n ⊂ CG(X)≤p(x)−k, so F ∈ pD−G(X)≤0.

Next, if F ∈ Db
G(X) and hk(F) ∈ pCG(X)≤−k for all k, it follows that F ∈

pD−G(X)≤0 by the preceding paragraph and a standard induction argument on the
number of nonzero cohomology sheaves of F . Finally, suppose that F ∈ D−G(X)
and that hk(F) ∈ pCG(X)≤−k for all k. For any k ∈ Z, τ≥kF is in Db

G(X), so
we already know that τ≥kF ∈ pD−G(X)≤0. But consideration of the distinguished
triangle

Li∗τ≤k−1F → Li∗F → Li∗τ≥kF →
shows that hk(Li∗F) ∼= hk(Li∗τ≥kF), so in particular, there is a dense open sub-
scheme V ⊂ Z with hk(Li∗F)|V ∈ CG(V )≤p(x)−k, so F ∈ pD−G(X)≤0, as desired.

Conversely, suppose F ∈ pD−G(X)≤0. Let a be the largest integer such that
ha(F) 6= 0. Then of course ha(Li∗F) ∼= ha(Li∗τ≥aF) ∼= i∗ha(F), and we know
that there is a dense open subscheme V ⊂ Z such that i∗ha(F)|V ∈ CG(V )≤p(x)−a,
so ha(F) ∈ pCG(X)≤−a.

Now, we will prove by downward induction on k that hk(F) ∈ pCG(X)≤−k and
that τ≤k−1F ∈ pD−G(X)≤0 for all k. These statements hold trivially if k > a.
Suppose we know that hk+1(F) ∈ pCG(X)≤−k−1 and τ≤kF ∈ pD−G(X)≤0. By the
preceding paragraph, we know that hk(F) = hk(τ≤kF) ∈ pCG(X)≤−k. Next, from
the distinguished triangle τ≤k−1F → τ≤kF → τ [k,k]F →, we obtain the exact
sequence

hr−1(Li∗τ [k,k]F)→ hr(Li∗τ≤k−1F)→ hr(Li∗τ≤kF).

Assume r ≤ k − 1 (otherwise, the middle term above vanishes). By Lemma 5.1,
for some dense open V ⊂ Z, hr−1(Li∗τ [k,k]F)|V ∈ CG(V )≤p(x)−k ⊂ CG(V )≤p(x)−r.
Replacing V by a smaller open subscheme if necessary, we may also assume that
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hr(Li∗F)|V ∈ CG(V )≤p(x)−r. It follows that hr(Li∗τ≤k−1F)|V ∈ CG(V )≤p(x)−r, so
τ≤k−1F ∈ pD−G(X)≤0.

In particular, hk(F) ∈ pCG(X)≤−k for all k, as desired. �

In the course of the preceding proof, we have also established the following
statement.

Corollary 5.5. The category pD−G(X)≤0 is stable under all standard truncation
functions τ≤k and τ≥k. �

6. Baric Structures on Coherent Sheaves, II

In this section, we achieve the main goal of the paper: the construction of a class
of baric structures on derived categories of equivariant coherent sheaves. These
baric structures depend on a function on Xgen that plays a role analogous to that
played by a staggered perversity in Section 5.

Definition 6.1. Suppose G acts on X with finitely many orbits. For each orbit
C ⊂ X, let IC ⊂ OX denote the ideal sheaf corresponding to the reduced closed
subscheme structure on C ⊂ X. An s-structure on X is said to be recessed if for
each C, IC/I2

C ∈ CG(X)≤−1.

For the remainder of the paper, we assume that G acts on X with finitely many
orbits, and that X is endowed with a recessed s-structure. (See Remarks 6.10
and 8.3, however.) The assumption that the s-structure is recessed is a mild one:
“most” of the s-structures appearing in [T] are recessed, as is the one used in [AS].

Note that IC/I2
C is always at least in CG(X)≤0, since it is a subquotient of

OX ∈ CG(X)≤0. In addition, since the coherent pullback functor to a locally closed
subscheme is right s-exact, it follows that the restriction of a recessed s-structure
to any locally closed subscheme is also recessed.

Remark 6.2. It is certainly possible to define the notion of “recessed s-structure”
in a way that does not assume finiteness of the number of orbits. (One simply
imposes a condition on the ideal sheaf of Gx for every x ∈ Xgen, not just for every
orbit closure.) However, it seems likely that when there are infinitely many orbits,
there are no recessed s-structures.

Given a function q : Xgen → Z satisfying (5.1), define a a new function q̂ :
Xgen → Z given by

q̂(x) = altGx− q(x).
Note that when G acts on X with finitely many orbits, a function q : Xgen → Z
satisfying (5.1) may be regarded as a Z-valued function on the set of orbits. It will
sometimes be convenient to adopt this point of view, and, given an orbit C ⊂ X,
we sometimes write

q(C) = q(xC) where xC ∈ Xgen is any generic point of C.

Lemma 6.3. Let G ∈ CG(X), and let j : U ↪→ X be an open subscheme. Suppose
F1 ⊂ G|U is such that F1 ∈ qCG(U)≤w. Then there exists a subsheaf F ⊂ G such
that F|U ∼= F1 and F ∈ qCG(X)≤w.

Proof. If U is closed (i.e., if U is a connected component of X), then j∗F1 is
naturally a subsheaf of G, so we simply take F ∼= j∗F1. Otherwise, let C be an
open orbit in U rU , and let V be the open subscheme U ∪C. By induction on the
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number of orbits in U r U , it suffices to find F ⊂ G|V such that F ∈ qCG(V )≤w

and F|U ∼= F . Let κ : C ↪→ V be the inclusion map, and let IC be the ideal
sheaf of C in V . Finally, let F ′ be some subsheaf of G|V such that F ′|U ∼= F1.
Suppose κ∗F ′ ∈ CG(C)≤v. If v ≤ w + q(C), we may take F = F ′, and we are
finished. On the other hand, if v > w + q(C), let F = Iv−w−q(C)

C F ′. Since
IC |U ∼= OU , we clearly still have F|U ∼= F1. The fact that the s-structure is
recessed means that κ∗IC ∈ CG(C)≤−1, so κ∗I⊗v−w−q(C)

C ∈ CG(C)≤−v+w+q(C),
and therefore κ∗I⊗v−w−q(C)

C ⊗ κ∗F ′ ∈ CG(C)≤w+q(C). Now, κ∗F is a quotient of
κ∗I⊗v−w−q(C)

C ⊗ κ∗F ′, so κ∗F ∈ CG(C)≤w+q(C), as desired. �

Given a function q : Xgen → Z, we define a full subcategory of D−G(X) by

qD−G(X)≤w = {F ∈ D−G(X) | hk(F) ∈ qCG(X)≤w}.
We also define a full subcategory of D+

G(X) by

qD+
G(X)≥w = D(q̂D−G(X)≤−w).

Finally, we put

qDb
G(X)≤w = qD−G(X)≤w ∩ Db

G(X) and qDb
G(X)≥w = qD+

G(X)≥w ∩ Db
G(X).

The main result of the paper is the following.

Theorem 6.4. The collection of subcategories ({qDb
G(X)≤w}, {qDb

G(X)≥w})w∈Z is
a bounded, nondegenerate HLR baric structure on X.

The proof of this theorem will occupy the rest of this section. Note that the
definition of qD−G(X)≤w is consistent with the notation used in Section 4. We will
see in Corollary 6.9 that the same holds for qD+

G(X)≥w.

Lemma 6.5. qDb
G(X)≤w and qDb

G(X)≥w are thick subcategories of Db
G(X). More-

over, qDb
G(X)≤w ⊂ qDb

G(X)≤w+1, and qDb
G(X)≥w ⊃ qDb

G(X)≥w+1.

Proof. It is obvious that qDb
G(X)≤w is stable under shift. Since it is defined by the

requirement that cohomology sheaves belong to a Serre subcategory of CG(X) (see
Lemma 5.2), it is stable under extensions as well, so it is indeed a thick subcategory
of Db

G(X). It follows that qDb
G(X)≥w is as well. It is obvious that qDb

G(X)≤w ⊂
qDb

G(X)≤w+1, and hence that qDb
G(X)≥w ⊃ qDb

G(X)≥w+1. �

Lemma 6.6. Let j : U ↪→ X be the inclusion of an open subscheme, and i : Z ↪→ X
the inclusion of a closed subscheme. Then:

(1) j∗ takes qD−G(X)≤w to qD−G(U)≤w and qD+
G(X)≥w to qD+

G(U)≥w.
(2) Li∗ takes qD−G(X)≤w to qD−G(Z)≤w.
(3) Ri! takes qD+

G(X)≥w to qD+
G(Z)≥w.

(4) i∗ takes qD−G(Z)≤w to qD−G(X)≤w and qD+
G(Z)≥w to qD+

G(X)≥w.

This statement closely resembles Lemma 4.8; indeed, it would merely be an
instance of that lemma if Theorem 6.4 were already known. However, the proof of
Theorem 6.4 depends on this lemma, so we must give it an independent proof.

Proof. (1) It is immediate from the definition of qCG(X)≤w that j∗ takes qCG(X)≤w

to qCG(U)≤w. Since j∗ is an exact functor, it follows that it takes qD−G(X)≤w to
qD−G(U)≤w. Since j∗ commutes with D, we also see that it takes qD+

G(X)≥w to
qD+

G(U)≥w.
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(2) We proceed by noetherian induction: assume the statement is known if X
is replaced by a proper closed subscheme, or if X is retained and Z is replaced
by a proper closed subscheme. Suppose F ∈ qD−G(X)≤w. We show by downward
induction on k that hk(Li∗F) ∈ qCG(Z)≤w. For large k, hk(Li∗RF) = 0, so this
holds trivially. Now, assume that hr(Li∗F) ∈ qCG(Z)≤w for all r > k, and consider
the distinguished triangle τ≤kLi∗F → Li∗F → τ≥k+1Li∗F →. Then τ≥k+1Li∗F
is an object of qDb

G(Z)≤w, so for any x ∈ Zgen and any closed subscheme structure
κ : Y ↪→ Z on Gx, we know that Lκ∗τ≥k+1Li∗F ∈ qD−G(Y )≤w. Consider the exact
sequence

hk−1(Lκ∗τ≥k+1Li∗F)→ hk(Lκ∗τ≤kLi∗F)→ hk(Lκ∗Li∗F).

The first term above belongs to qCG(Y )≤w. Observe that hk(Lκ∗τ≤kLi∗F) ∼=
κ∗hk(Li∗F). Thus, to prove that hk(Li∗F) ∈ qCG(Z)≤w, we must show that there
is a dense open subscheme V ⊂ Y such that hk(Lκ∗τ≤kLi∗F)|V ∈ CG(V )≤w+q(x).

If Y is a proper closed subscheme of Z, then we have assumed inductively that
L(κ ◦ i)∗F ∈ qD−G(Y )≤w, and in that case, the last term in the sequence above
belongs to qCG(Y )≤w as well. By Lemma 5.2, the middle term as well, and the
existence of the desired open subscheme V ⊂ Y follows.

On the other hand, if Y = Z, and κ is the identity map, then Lemma 5.1 gives us
a dense open subscheme V ′ ⊂ Z such that hk(Li∗F)|V ′ ∈ CG(V ′)≤w+q(x). The fact
that hk−1(τ≥k+1Li∗F) ∈ qCG(Z)≤w implies that there a dense open subscheme
V ′′ ⊂ Z with hk−1(τ≥k+1Li∗F)|V ′′ ∈ qCG(V ′′)≤w+q(x). If we let V = V ′ ∩ V ′′,
then we see from the exact sequence above that hk(τ≤kLi∗F)|V ∈ CG(V )≤w+q(x),
as desired.

(3) If F ∈ qD+
G(X)≥w, let F ′ ∈ q̂D−G(X)≤−w be such that DF ′ ∼= F . Then

Ri!F ∼= D(Li∗F ′) ∈ qD+
G(Z)≥w since Li∗F ′ ∈ q̂D−G(Z)≤w.

(4) Since qD−G(Z)≤w and qD−G(X)≤w are defined by conditions on their coho-
mology sheaves, the first statement follows from the fact that i∗ is an exact functor
taking qCG(Z)≤w to qCG(X)≤w. The second statement follows by duality. �

Proposition 6.7. If F ∈ qD−G(X)≤w and G ∈ qD+
G(X)≥w+1, then Hom(F ,G) = 0.

Proof. We proceed by noetherian induction: assume the theorem is known for
all proper closed subschemes of X. Let a and b be such that G ∈ D+

G(X)≥a and
F ∈ D−G(X)≤b. Since Hom(F ,G) ∼= Hom(τ≥aF ,G), we may replace F by τ≥aF and
assume that F ∈ qDb

G(X)≤w. Next, let G′ ∈ D−G(X)≤−w−1 be such that DG′ ∼= G.
For a sufficiently small integer c, we will have D(τ≤cG′) ∈ D+

G(X)≥b+1. From this,
it follows that Hom(F ,G) ∼= Hom(F ,D(τ≥c+1G′)). Replacing G by D(τ≥c+1G′), we
may assume that G ∈ qDb

G(X)≥w.
With F and G both in Db

G(X), induction on the number of cohomology sheaves
allows us to reduce to the case where both F and G′ := DG are concentrated in
a single degree. By shifting both objects simultaneously, we may assume without
loss of generality that F ∈ CG(X). Let x be a generic point of X. There is an
open subscheme U ⊂ X containing x such that G′|U ∈ CG(U)≤alt Gx−q(x)−w−1.
By [A, Remark 3.2 and Lemmas 6.1–6.2], we may replace U by a smaller open
subscheme containing x such that G|U is concentrated in a single degree, say d, and
such that G[d]|U ∈ CG(U)≥q(x)+w+1. If d > 0, then clearly Hom(F|U ,G|U ) = 0.
Otherwise, we invoke [A, Axiom (S9)] to replace U by a smaller open subscheme
such that Hom(F|U ,G|U ) = 0. Let Z be the complementary closed subspace to U ,
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and consider the exact sequence

lim→
Z′

Hom(Li∗Z′F , Ri!Z′G)→ Hom(F ,G)→ Hom(F|U ,G|U ),

where iZ′ : Z ′ ↪→ X ranges over all closed subscheme structures on Z. We have
just seen that the last term vanishes. Since Li∗Z′F ∈ qD−G(Z ′)≤w and Ri!Z′G ∈
qD+

G(Z ′)≥w+1, the first term vanishes by induction. So Hom(F ,G) = 0, as desired.
�

Proposition 6.8. For any F ∈ Db
G(X), there is a distinguished triangle F ′ → F →

F ′′ → with F ′ ∈ qDb
G(X)≤w and F ′′ ∈ qDb

G(X)≥w+1. Moreover, if F ∈ Db
G(X)≥0,

then F ′ and F ′′ lie in Db
G(X)≥0 as well.

Proof. Once again, we proceed by noetherian induction, and assume the result is
known for all proper closed subschemes of X. Now, assume first that F is a sheaf.
Let C ⊂ X be an open (and possibly nonreduced) orbit, and let i : C ↪→ X be the
inclusion of its closure. By Lemma 6.3, there exists a subsheaf F1 ⊂ F such that
F1 ∈ qCG(X)≤w and F1|C ∼= σ≤w+q(C)(F|C). Next, form a short exact sequence

0→ F1 → F → G → 0.

Let b = codC. Then i∗Ri
!DG ∈ D+

G(X)≥b, and, by [A, Lemma 6.1], we know that
i∗Ri

!DG|C ∼= DG|C is concentrated in degree b. Furthermore, [A, Proposition 6.8]
tells us that DG[b]|C ∈ CG(C)≤alt C−q(C)−w−1. (If C is reduced, these assertions
about DG|C are immediate from the fact that D is an exact functor, but in general,
we must invoke [A, Lemma 6.1 and Proposition 6.8].) Now, we use Lemma 6.3
again to find a subsheaf G1 ⊂ hb(i∗Ri!DG) such that G1 ∈ q̂CG(X)≤−w−1 and
G1|C ∼= DG[b]|C . Form the composition

G1[−b]→ hb(i∗Ri!DG)[−b] ∼= τ≤bi∗Ri
!DG → i∗Ri

!DG → DG,

and then complete it to a distinguished triangle

G1[−b]→ DG → G′ → .

Here, G′ is necessarily supported on the complement of C. Let F2 = D(G1[−b]),
and let H = DG′, so we have a distinguished triangle

H → G → F2 → .

Since codC = b, we see that F2 ∈ Db
G(X)≥0. This distinguished triangle then

implies that H ∈ Db
G(X)≥0 as well. Note also that F2 ∈ qDb

G(X)≥w+1, and that

F ∈ {F1} ∗ {H} ∗ {F2}.

Since F1 ∈ qDb
G(X)≤w, F2 ∈ qDb

G(X)≥w+1, and H is supported on a proper closed
subscheme, we conclude that F ∈ qDb

G(X)≤w ∗ qDb
G(X)≥w+1, as desired. The last

statement of the proposition holds by noetherian induction as well, since F1, H,
and F2 all lie in Db

G(X)≥0 by construction.
The result also follows for any object of Db

G(X) that is concentrated in a single
degree. Finally, for general objects F ∈ Db

G(X), we proceed by induction on the
number of nonzero cohomology sheaves. Let a ∈ Z be such that τ≤aF and τ≥a+1F
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are both nonzero. Then, they both have fewer nonzero cohomology sheaves than
F , and we assume inductively that there exist distinguished triangles

F ′1 → τ≤aF → F ′′1 →,
F ′2 → τ≥a+1F → F ′′2 →

with F ′1,F ′2 ∈ qDb
G(X)≤w and F ′′1 ,F ′′2 ∈ qDb

G(X)≥w+1. Consider the composition

F ′2[−1]→ (τ≥a+1F)[−1]→ τ≤aF → F ′′1 .
By Proposition 6.7, this composition is 0, so we see from the exact sequence

Hom(F ′2[−1],F ′1)→ Hom(F ′2[−1], τ≤aF)→ Hom(F ′2[−1],F ′′1 )

that the morphism F ′2[−1]→ (τ≥a+1F)[−1]→ τ≤aF factors through F ′1. That is,
we have a commutative square

F ′2[−1] //

��

(τ≥a+1F)[−1]

��
F ′1 // τ≤aF

We define objects F ′,F ′′ ∈ Db
G(X) by completing this diagram as follows, using

the 9-lemma [BBD, Proposition 1.1.11]:

F ′2[−1] //

��

(τ≥a+1F)[−1] //

��

F ′′2 [−1] //

��
F ′1 //

��

τ≤aF //

��

F ′′1 //

��
F ′ //

��
F //

��
F ′′ //

��

Since qDb
G(X)≤w and qDb

G(X)≥w+1 are stable under shift and extensions, we see
that F ′ ∈ qDb

G(X)≤w and F ′′ ∈ qDb
G(X)≥w+1, as desired. Moreover, if F lies in

Db
G(X)≥0, then so do τ≤aF and τ≥a+1F , and hence, by induction, the objects F ′1,
F ′′1 , F ′2, and F ′′2 all lie in Db

G(X)≥0 as well. It then follows that F ′ are F ′′ are in
Db

G(X)≥0, as desired. �

Proof of Theorem 6.4. Lemma 6.5 and Propositions 6.7 and 6.8 together state that
all the axioms for a baric structure hold. Moreover, the last part of Proposi-
tion 6.8 tells us that the baric truncation functors are left t-exact (with respect to
the standard t-structure), and it is obvious from the definition of qDb

G(X)≤w that
it is preserved by the truncation functors τ≤n and τ≥n. Thus, the baric struc-
ture ({qDb

G(X)≤w}, {qDb
G(X)≥w})w∈Z is compatible with the standard t-structure.

Next, for any closed subscheme i : Z ↪→ X, Lemma 6.6 tells us that Li∗ is right
baryexact and that Ri! is left baryexact. Thus, this baric structure is hereditary,
and hence HLR by Theorem 4.6.

It remains to prove that the baric structure is bounded (and therefore nonde-
generate). Every sheaf in CG(X) belongs to some CG(X)≤n, and hence to some
qCG(X)≤w (simply take w to be the maximum value of n− q(x)). Since an object
F ∈ Db

G(X) has finitely many nonzero cohomology sheaves, we can clearly find a w
such that all its cohomology sheaves belong to qCG(X)≤w, so that F ∈ qDb

G(X)≤w.
The same reasoning yields an integer v such that DF ∈ q̂Db

G(X)≤−v, and hence
F ∈ qDb

G(X)≥v. Thus, the baric structure is bounded and nondegenerate. �
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We can now verify that the notation qD+
G(X)≥w is consistent with the notation

of Section 4.

Corollary 6.9. We have

qD+
G(X)≥w = {F ∈ D+

G(X) | qβ≤w−1τ
≤kF ∈ Db

G(X)≥k+2 for all k}.

Proof. We have already observed that the definition of q̂D−G(X)≤−w is consistent
with the notation of Section 4, so by Lemma 4.3, for F ∈ D−G(X), we have F ∈
q̂D−G(X)≤−w if and only if Hom(F ,G) = 0 for all G ∈ q̂Db

G(X)≥−w+1. Applying D,
we have F ∈ qD+

G(X)≥w if and only if Hom(DF ,DG) = 0 for all G ∈ qDb
G(X)≤w−1,

or, equivalently, if Hom(G,F) = 0 for all G ∈ qDb
G(X)≤w−1. The corollary follows

by another application of Lemma 4.3. �

Remark 6.10. The proof of Lemma 6.3 depends in an essential way on the assump-
tion of finitely many orbits and a recessed s-structure, but no other arguments given
in this section do. (The role of the orbit closure C in the proof of Proposition 6.8
could instead have been played by Gx for some generic point x.) By imposing
additional conditions that permit us to evade Lemma 6.3, we can find a version of
Theorem 6.4 that holds in much greater generality.

Specifically, assume that the function q : Xgen → Z is monotone: that is, if
x ∈ Gy, then q(x) ≥ q(y). Suppose we have a coherent sheaf G ∈ CG(X), an open
subscheme j : U ↪→ X, and a subsheaf F1 ⊂ G|U with F1 ∈ qCG(U)≤w. By replacing
U by a smaller open subscheme, we may assume that F1 ∈ CG(U)≤q(x)+w, where
x is a generic point of U . Then F1 is a subsheaf of σ≤q(x)+wG|U , and standard
arguments show that there is a subsheaf F ⊂ σ≤q(x)+wG supported on U such
that F|U ∼= F1. The monotonicity assumption then implies that F ∈ qCG(X)≤w.
This reasoning can be substituted for invocations of Lemma 6.3 for qCG(X)≤w.
Similarly, if q is comonotone, meaning that q̂ is monotone, then the reasoning
above can replace invocations of Lemma 6.3 for the category q̂CG(X)≤w. The proof
of Theorem 6.4 uses Lemma 6.3 in both these ways.

We thus obtain the following result: suppose X is a scheme satisfying the as-
sumptions of Section 5, equipped with an s-structure. In particular, we do not
assume that G acts with finitely orbits, or that the s-structure is recessed. If
q : Xgen → Z is both monotone and comonotone, then the collection of subcat-
egories ({qDb

G(X)≤w}, {qDb
G(X)≥w})w∈Z is a bounded, nondegenerate HLR baric

structure on X.

7. Multiplicative Baric Structures and s-structures

In this section we study the relationship between multiplicative baric struc-
tures on the triangulated category Db

G(X) and s-structures on the abelian category
CG(X). The authors had originally hoped that under appropriate conditions the
two notions would be equivalent, and that the developments in sections 5 and 6
could be simplified by replacing the latter concept with the former. In other words,
the hope was that there would be a one-to-one correspondence between multiplica-
tive HLR baric structures and s-structures on a G-scheme X.

This turns out to be not quite correct. Rather, we prove here that there is a one-
to-one correspondence between multiplicative baric structures and a certain class
of pre-s-structures, including all s-structures. (A pre-s-structure is a collection of
subcategories of CG(X) satisfying the first six of the ten axioms for an s-structure
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in [A].) It would be interesting to look for an additional axiom on multiplicative
baric structures that is satisfied precisely by those baric structures corresponding
to s-structures, but we have not pursued this here.

We say that a baric structure ({Db
G(X)≤w}, {Db

G(X)≥w})w∈Z is multiplicative if
either of the following two equivalent conditions holds:

(1) If F ∈ Db
G(X)≤w and G ∈ Db

G(X)≤v, then F ⊗L G ∈ D−G(X)≤w+v.
(2) If F ∈ Db

G(X)≤w and G ∈ Db
G(X)≥v, then RHom(F ,G) ∈ D+

G(X)≥v−w.

Theorem 7.1. Suppose ({Db
G(X)≤w}, {Db

G(X)≥w})w∈Z is a multiplicative baric
structure on X. Then the categories

CG(X)≤w = CG(X) ∩ Db
G(X)≤w,

CG(X)≥w = {F ∈ CG(X) | Hom(G,F) = 0 for all G ∈ CG(X)≤w−1}

constitute a pre-s-structure on X.
Conversely, given an s-structure ({CG(X)≤w}, {CG(X)≥w})w∈Z on a scheme X

with finitely many G-orbits, the categories

Db
G(X)≤w = {F ∈ Db

G(X) | hk(F) ∈ CG(X)≤w for all k ∈ Z},

Db
G(X)≥w = {F ∈ Db

G(X) | Hom(G,F) = 0 for all G ∈ Db
G(X)≤w−1}

constitute a multiplicative baric structure on X.

Proof. Suppose first that ({Db
G(X)≤w}, {Db

G(X)≥w})w∈Z is a multiplicative baric
structure on X. To show that the categories above constitute a pre-s-structure,
we must verify axioms (S1)–(S6) from [A]. (The reader is referred to [A] for the
statements of these axioms.)

Axioms (S2) and (S3) are clear from the definitions, and axiom (S1) follows
from the fact that ({Db

G(X)≤w}, {Db
G(X)≥w})w∈Z is compatible with the standard

t-structure.
Let us prove axiom (S4). Let F be an object of CG(X). Since F is noetherian,

and CG(X)≤w is a Serre subcategory, there is a largest subobject F ′ ⊂ F belonging
to CG(X)≤w. Then F/F ′ must belong to CG(X)≥w+1: otherwise, there is a nonzero
map G → F/F ′ whose image I 6= 0 belongs to CG(X)≤w, but the inverse image of
I in F contains the maximal F ′.

Axiom (S5) follows from the fact that the baric structure on Db
G(X) is bounded,

and Axiom (S6) follows from the multiplicativity of the baric structure and the fact
that for F ,G ∈ CG(X), we have F ⊗ G ∼= h0(F ⊗L G).

Now, suppose we are given an s-structure ({CG(X)≤w}, {CG(X)≥w})w∈Z. Let 0
denote the constant function Xgen → Z of value 0. We claim that 0CG(X)≤w =
CG(X)≤w. It is clear from the definition that CG(X)≤w ⊂ 0CG(X)≤w. Conversely,
if x ∈ Xgen is a generic point of the support of an object F /∈ CG(X)≤w, it fol-
lows from the gluing theorem for s-structures [A, Theorem 5.3] that there is no
open subscheme V ⊂ Gx such that the restriction of F to V lies in CG(V )≤w,
so F /∈ 0CG(X)≤w. Since 0CG(X)≤w = CG(X)≤w, we see that the categories
({Db

G(X)≤w}, {Db
G(X)≥w})w∈Z defined in the statement of the theorem coincide

with the baric structure constructed in Theorem 6.4 by taking q = 0. The fact that
this baric structure is multiplicative is a consequence of Proposition 7.2 below. �

Proposition 7.2. Let X be a scheme with finitely many G-orbits, and let p, q :
Xgen → Z be functions satisfying (5.1). Suppose F ∈ pD−G(X)≤w.
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(1) If G ∈ qD−G(X)≤v, then F ⊗L G ∈ p+qD−G(X)≤w+v.
(2) If G ∈ qD+

G(X)≥v, then RHom(F ,G) ∈ p̂+qD+
G(X)≥v−w.

Proof. (1) We will show by noetherian induction that Hom(F ⊗L G,H) = 0 for
all H ∈ p+qDb

G(X)≥w+v+1. Assume the result is known for all proper closed sub-
schemes of X, and let C ⊂ X be an open orbit. Let Z denote the closed subset
X r C, and consider the exact sequence

lim→
Z′

Hom(Li∗(F
L

⊗ G), Ri!H)→ Hom(F
L

⊗ G,H)→ Hom((F
L

⊗ G)|C ,H|C),

where i′ : Z ′ ↪→ X ranges over all closed subscheme structures on Z. Now, Li∗(F⊗L

G) ∼= Li∗F ⊗L Li∗G. We have Li∗F ∈ pD−G(Z ′)≤w and Li∗G ∈ qD−G(Z ′)≤v by
Lemma 6.6, and then Li∗F ⊗L Li∗G ∈ p+qD−G(Z ′)≤w+v by assumption. We also
have Ri!H ∈ p+qD+

G(Z ′)≥w+v+1, so the first term above clearly vanishes.
It now suffices to show that (F ⊗L G)|C ∈ p+qD−G(C)≤w+v: that implies the

vanishing of the last term in the exact sequence above, and hence of the middle
term as well. Recall that on a single G-orbit, the tensor product functor is exact
(because all objects of CG(C) are locally free), so there is a natural isomorphism

hr((F
L

⊗ G)|C) ∼=
⊕

i+j=r

hi(F|C)⊗ hj(G|C).

We know that hi(F|C) ∈ CG(C)≤w+p(C) for all i, and that hj(G|C) ∈ CG(C)≤v+q(C)

for all j. It follows that hr((F⊗LG)|C) ∈ CG(C)≤w+v+p(C)+q(C) for all r, and hence
that (F ⊗L G)|C ∈ p+qD−G(C)≤w+v, as desired.

(2) Consider DG ∈ q̂D−G(X)≤−v. By part (1), F ⊗L DG ∈ p+q̂D−G(X)≤w−v. Since
RHom(F ,G) ∼= D(F ⊗L DG), the result follows. �

8. Staggered Sheaves

In this section, we retain the assumptions that G acts on X with finitely many
orbits, and that X is equipped with a recessed s-structure.

Given a function q : Xgen → Z, let us define full subcategories of D−G(X) and
D+

G(X) as follows:
qD−G(X)≤0 = {F ∈ D−G(X) | hk(F) ∈ qDb

G(X)≤−k for all k ∈ Z},
qD+

G(X)≥0 = {G ∈ D+
G(X) | Hom(F [1],G) = 0 for all F ∈ qD−G(X)≤0}.

We also define bounded versions of these categories:
qDb

G(X)≤0 = qD−G(X)≤0 ∩ Db
G(X) and qDb

G(X)≥0 = qD+
G(X)≥0 ∩ Db

G(X).

Let G ∈ qD+
G(X)≥0. There is some integer n such that G ∈ D+

G(X)≥n, and
then for any F ∈ D−G(X), we have Hom(F [1],G) ∼= Hom(τ≥n(F [1]),G), with
τ≥n(F [1]) ∈ Db

G(X). Thus, the definition of qD+
G(X)≥0 could be changed to re-

quire Hom(F [1],G) to vanish only when F ∈ qDb
G(X)≤0. By Proposition 2.10(2),

it follows that
qDb

G(X)≥0 = {G ∈ Db
G(X) | qβ≤kG ∈ Db

G(X)≥−k for all k ∈ Z}.

The categories qDb
G(X)≤0 and qDb

G(X)≥0 are none other than the categories associ-
ated in Definition 2.8 to the standard t-structure on Db

G(X) with the baric structure
({qDb

G(X)≤w}, {qDb
G(X)≥w})w∈Z.
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Theorem 8.1. The categories (qDb
G(X)≤0, qDb

G(X)≥0) constitute a bounded, non-
degenerate t-structure on Db

G(X).

Definition 8.2. The t-structure (qDb
G(X)≤0, qDb

G(X)≥0) is called the staggered t-
structure of perversity q. Its heart, denoted qM(X), is the category of staggered
sheaves.

This terminology and notation is consistent with that of [A] by Lemma 5.3. That
is, if q happens to be a perversity function in the sense of [A], then the t-structure
constructed here coincides with the t-structure associated to q in [A]. However,
neither this theorem nor the main result of [A] encompasses the other: in [A],
no assumptions were made on the number of orbits or the s-structure; here, no
restrictions are imposed on the function q : Xgen → Z.

Note that if q happens to be a perversity function in the sense of [A], then
Theorem 8.1 follows immediately from Lemma 5.3, but it general, Theorem 8.1
produces t-structures that are not given by the construction of [A].

Proof of Theorem 8.1. We will prove this theorem by invoking Theorem 2.11. To
that end, we must define an invariant µ(F) for any object F ∈ Db

G(X) satisfying
the hypotheses of that theorem. For any nonzero object F ∈ Db

G(X), let

m(F) = min{k ∈ Z | hk(F) 6= 0}.

Let C be the maximum value of codZ as Z ranges over all closed subschemes
of X. (Of course, codZ takes only finitely many distinct values, since X has
finite Krull dimension.) Note that D(Db

G(X)≥0) ⊂ Db
G(X)≤C , and, more generally,

D(Db
G(X)≥n) ⊂ Db

G(X)≤C−n. Let

µ(F) =

{
C + 1−m(F)−m(DF) if F 6= 0,
0 if F = 0.

We first prove that µ(F) > 0 whenever F 6= 0. If m(F) = n, then F ∈ Db
G(X)≥n,

so DF ∈ Db
G(X)≤C−n, and in particular, m(DF) ≤ C − n. It follows that

µ(F) = C + 1−m(F)−m(DF) ≥ C + 1− n− (C − n) = 1,

as desired.
Next, the left t-exactness of qβ≤−n implies that if m(F) = n, then qβ≤−nF ∈

Db
G(X)≥n, so m(qβ≤−nF) ≥ n. Now, consider the distinguished triangle

Dqβ≥−n+1F → DF → Dqβ≤−nF → .

Since Dqβ≥−n+1F ∈ q̂Db
G(X)≤n−1 and Dqβ≤−nF ∈ q̂Db

G(X)≥n, we have canonical
isomorphisms

Dqβ≥−n+1F ∼= q̂β≤n−1DF and Dqβ≤−nF ∼= q̂β≥nDF .

Now, the left t-exactness of q̂β≥n shows that m(Dqβ≤−nF) ≥ m(DF).
Finally, consider τ≥n+1

qβ≤−nF . Clearly,

m(τ≥n+1
qβ≤−nF) ≥ n+ 1 > m(F).

Now, let k = m(Dqβ≤−nF). By definition, qβ≤−nF ∈ D(Db
G(X)≥k). The t-

structure (D(Db
G(X)≥k),D(Db

G(X)≤k)), which is dual to (a shift of) the standard
t-structure, is an example of a perverse coherent t-structure [B2], and therefore of a
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staggered t-structure in the sense of [A], so Corollary 5.5 tells us that D(Db
G(X)≥k)

is stable under τ≥n+1. In particular, τ≥n+1
qβ≤−nF ∈ D(Db

G(X)≥k), so

m(Dτ≥n+1
qβ≤−nF) ≥ k = m(Dqβ≤−nF) ≥ m(DF).

We conclude that if m(F) = n, then µ(τ≥n+1β≤−nF) < µ(F). Thus, the hypothe-
ses of Theorem 2.11 are satisfied. �

Remark 8.3. If G does not act with finitely many orbits, or if the s-structure is
not recessed, Remark 6.10 tells us that ({qDb

G(X)≤w}, {qDb
G(X)≥w})w∈Z still con-

stitutes a baric structure if we require q to be monotone and comonotone. The
proof of Theorem 8.1 goes through in this setting. However, the conditions im-
posed on q are more restrictive than the conditions imposed on perversity functions
in [A], so in this case, the theorem we obtain is actually just a special case of [A,
Theorem 7.4]. Similar remarks apply to Theorems 8.6 and 8.11 below; cf. [A,
Theorems 9.7 and 9.9].

Next, we study how the duality functor D interacts with the staggered t-structure.
Let j : U ↪→ X be an open subscheme. The following functions defined in terms of
q : Xgen → Z will be useful in the sequel.

(8.1) [q(x) =

{
q(x) if x ∈ Ugen,
q(x)− 1 if x /∈ Ugen,

]q(x) =

{
q(x) if x ∈ Ugen,
q(x) + 1 if x /∈ Ugen.

Lemma 8.4. Let j : U ↪→ X be the inclusion of an open subscheme, and i : Z ↪→ X
the inclusion of a closed subscheme. Then:

(1) j∗ takes qD−G(X)≤0 to qD−G(U)≤0 and qD+
G(X)≥0 to qD+

G(U)≥0.
(2) Li∗ takes qD−G(X)≤0 to qD−G(Z)≤0.
(3) Ri! takes qD+

G(X)≥0 to qD+
G(Z)≥0.

(4) i∗ takes qD−G(Z)≤0 to qD−G(X)≤0 and qD+
G(Z)≥0 to qD+

G(X)≥0.

Proof. We will prove the parts of this lemma in the order (2), (4), (3), (1).
(2) First, suppose F ∈ qDb

G(X)≤0 is concentrated in a single degree, say F ∼=
hk(F)[−k]. Then F ∈ qDb

G(X)≤−k, so by Lemma 6.6, Li∗F ∈ qD−G(Z)≤−k. We
also clearly have Li∗F ∈ D−G(Z)≤k, so it follows that Li∗F ∈ qD−G(Z)≤0. Next, for
general F ∈ qDb

G(X)≤0, induction on the number of nonzero cohomology sheaves
(together with the fact that qD−G(Z)≤0 is stable under extensions) allows us to
reduce to the case already considered, and we conclude that Li∗ takes qDb

G(X)≤0

to qD−G(Z)≤0. Finally, if F ∈ qD−G(X)≤0, consider the distinguished triangle

Li∗τ≤k−1F → Li∗F → Li∗τ≥kF → .

Since τ≥kF ∈ qDb
G(X)≤0, we know that Li∗τ≥kF ∈ qD−G(Z)≤0. Moreover, we see

from the long exact cohomology sequence associated to this distinguished triangle
hk(Li∗F) ∼= hk(Li∗τ≥kF) ∈ qDb

G(Z)≤−k. Thus, Li∗F ∈ qD−G(Z)≤0, as desired.
(4) Because i∗ is t-exact (with respect to the standard t-structure), and be-

cause qD−G(Z)≤0 and qD−G(X)≤0 are defined by conditions on cohomology sheaves,
it follows from Lemma 6.6 that i∗ takes qD−G(Z)≤0 to qD−G(X)≤0. (The same
argument shows that j∗ takes qD−G(X)≤0 to qD−G(U)≤0.) On the other hand, if
F ∈ qD+

G(Z)≥0, then for any G ∈ qD−G(X)≤0, we have

Hom(G[1], i∗F) ∼= Hom(Li∗G[1],F) = 0,
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where, in the last step, we have used the fact that Li∗G ∈ qD−G(Z)≤0. Thus,
i∗F ∈ qD+

G(X)≥0.
(3) Let F ∈ qD+

G(X)≥0. For any G ∈ qD−G(Z)≤0, we have

Hom(G[1], Ri!F) ∼= Hom(i∗G[1],F) = 0.

Here, we have used the fact that i∗G ∈ qD−G(X)≤0. Thus, Ri!F ∈ qD+
G(Z)≥0.

(1) It was observed in the proof of part (4) that j∗ takes qD−G(X)≤0 to qD−G(U)≤0.
Next, suppose F ∈ qD+

G(X)≥0. To show that j∗F ∈ qD+
G(U)≥0, it suffices, as

noted at the beginning of this section, to show that Hom(G[1],F) = 0 for all
G ∈ qDb

G(U)≤0. But since qDb
G(U)≤0 is stable under τ≥n and τ≤n, we can further

reduce to showing that Hom(G[1],F) = 0 whenever G is an object of qDb
G(U)≤0

that is concentrated in a single degree. Suppose G ∼= hk(G)[−k]. We then have
hk(G) ∼= G[k] ∈ qCG(U)≤−k. Let [q : Xgen → Z be as in (8.1). Then of course
qCG(U)≤−k = [qCG(U)≤−k, and by Lemma 6.3, G[k] may be extended to a sheaf
G′ ∈ [qCG(X)≤−k. Consider the exact sequence

Hom(G′[−k + 1],F)→ Hom(j∗G′[−k + 1], j∗F)→ lim→
Z′

Hom(Lκ∗Z′G′[−k], Rκ!
Z′F),

where κZ′ : Z ′ ↪→ X ranges over all closed subscheme structures on the complement
of U . We clearly have that G′[−k] ∈ [qDb

G(X)≤0 ⊂ qDb
G(X)≤0, so Hom(G′[−k +

1],F) = 0. We already know that Rκ!
Z′F ∈ qD+

G(Z ′)≥0, and that Lκ∗Z′G′[−k] ∈
[qD−G(Z ′)≤0 = qD−G(Z ′)≤−1, so the last term above vanishes as well. Therefore,
Hom(j∗G′[−k+1], j∗F) ∼= Hom(G[1], j∗F) = 0, so j∗F ∈ qD+

G(U)≥0, as desired. �

Proposition 8.5. We have D(qD−G(X)≤0) = q̄D+
G(X)≥0.

Proof. We proceed by noetherian induction, and assume the result is known for all
proper closed subschemes of X. To show that D(qD−G(X)≤0) ⊂ q̄D+

G(X)≥0, let us
begin by considering the special case where F ∈ qD−G(X)≤0 is concentrated in a
single degree, say F ∼= hk(F)[−k]. Then F ∈ qDb

G(X)≤−k, so DF ∈ q̂Db
G(X)≥k.

Choose an open orbit C ⊂ X. By [A, Lemma 6.6], DF|C is concentrated in a single
degree, viz., in degree codC − k. We claim that DF|C ∈ q̄D+

G(C)≥0. To prove this,
it suffices to show that if G ∈ q̄Db

G(C)≤0, then Hom(G[1],DF|C) = 0. Consider the
exact sequence

Hom((τ≥cod C−k+1G)[1],DF|C)→ Hom(G[1],DF|C)→

Hom((τ≤cod C−kG)[1],DF|C).

The last term clearly vanishes because DF|C ∈ Db
G(C)≥cod X−k. On the other

hand, note that τ≥cod C−k+1G ∈ q̄Db
G(C)≤k−cod C−1. Over the single orbit C, the

functions q̄ and q̂ differ simply by the constant codC, and thus q̄Db
G(C)≤k−cod C−1 =

q̂Db
G(C)≤k−1. Since DF|C ∈ q̂Db

G(C)≥k, the first term above vanishes, and hence
so does the middle term.

We have shown that DF|C ∈ q̄D+
G(C)≥0. Next, let G ∈ q̄Db

G(X)≤0, and consider
the exact sequence

lim→
Z′

Hom(Li∗Z′G[1], Ri!Z′DF)→ Hom(G[1],DF)→ Hom(G[1]|C ,DF|C),

where iZ′ : Z ′ ↪→ X ranges over all closed subscheme structures on the complement
of C. We have just seen that the last term vanishes. Also, Li∗Z′G ∈ q̄D−G(Z ′)≤0 and
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Ri!Z′DF ∼= D(Li∗Z′F) ∈ q̄D+
G(Z ′)≥0 by Lemma 8.4 and the inductive assumption,

so the first term vanishes as well. Therefore, the middle term vanishes, and we
conclude that for F ∈ qD−G(X)≤0 concentrated in a single degree, we haveDF ∈
q̄Db

G(X)≥0. It follows by induction on the number of nonzero cohomology sheaves
that D also takes all objects of the bounded category qDb

G(X)≤0 to q̄Db
G(X)≥0.

Finally, let us consider a general object F ∈ qD−G(X)≤0. We wish to show that
Hom(G[1],DF) = 0 for all G ∈ q̄Db

G(X)≤0. By the previous paragraph, DG ∈
qDb

G(X)≥0 ⊂ qD+
G(X)≥0, so

Hom(G[1],DF) ∼= Hom(F ,D(G[1])) ∼= Hom(F [1],DG) = 0.

Thus, D(qD−G(X)≤0) ⊂ q̄D+
G(X)≥0.

The argument for the opposite inclusion is similar, and we again use noetherian
induction, but we cannot begin with the case of an object concentrated in one
degree, since q̄D+

G(X)≥0 is not stable under the standard truncation functors. The
bounded category q̄Db

G(X)≥0 is, however, stable under the baric truncation functors
q̄β≤k and q̄β≥k. Suppose, then, that F ∈ q̄Db

G(X)≥0 is “baric-pure”: that is,
F ∈ q̄Db

G(X)≤k ∩ q̄Db
G(X)≥k for some k. If we prove that DF ∈ qDb

G(X)≤0, then
it will follow by induction on “baric length” that D takes all objects of q̄Db

G(X)≥0

to qDb
G(X)≤0.

The assumptions on F imply that F ∈ Db
G(X)≥−k. Once again, let C ⊂ X be

an open orbit. It follows from [A, Lemma 6.6] that DF|C ∈ Db
G(C)≤cod C+k. We

also know that DF ∈ ˆ̄qDb
G(X)≤−k, where

ˆ̄q(C) = altC − (altC + codC − q(C)) = q(C)− codC.

In particular, ˆ̄qDb
G(C)≤−k = qDb

G(C)≤− cod C−k. Since DF|C ∈ Db
G(C)≤cod C+k, we

see that DF|C ∈ qDb
G(C)≤0.

To show that DF ∈ qDb
G(X)≤0, it suffices, by Proposition 2.10, to show that

Hom(DF [1],G) = 0 for all G ∈ qDb
G(X)≥0. Consider the exact sequence

lim→
Z′

Hom(Li∗Z′DF [1], Ri!Z′G)→ Hom(DF [1],G)→ Hom(DF [1]|C ,G|C),

where iZ′ : Z ′ ↪→ X ranges over all closed subscheme structures on the complement
of C. The last term above vanishes because DF|C ∈ qDb

G(C)≤0. We also have
Li∗Z′DF ∼= D(Ri!Z′F) ∈ qD−G(Z ′)≤0 and Ri!Z′G ∈ qD+

G(Z ′)≥0 by Lemma 8.4 and
the inductive assumption. Hence, the first term in the sequence above vanishes, so
the middle term vanishes as well, and we conclude that DF ∈ qDb

G(X)≤0. Thus,
D(q̄Db

G(X)≥0) ⊂ qDb
G(X)≤0.

Finally, we must consider a general object F ∈ q̄D+
G(X)≥0. Showing that DF ∈

qD−G(X)≤0 is equivalent to showing that τ≥kDF ∈ qDb
G(X)≤0 for all k. If the

latter condition fails for some k, then there exists an object G ∈ qDb
G(X)≥1 such

that Hom(τ≥kDF ,G) 6= 0. By replacing k by a smaller integer if necessary, we may
assume that G ∈ Db

G(X)≥k. We then have

Hom(τ≥kDF ,G) ∼= Hom(DF ,G) ∼= Hom(DG,F) 6= 0.

By exchanging the roles of q and q̄ in the previous paragraph, we see that DG ∈
q̄Db

G(X)≤−1, but this contradicts the fact that F ∈ q̄D+
G(X)≥0. Therefore, DF ∈

qD−G(X)≤0, and D(q̄D+
G(X)≥0) = qD−G(X)≤0, as desired. �

The next theorem follows immediately from the last proposition.
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Theorem 8.6. The dual of the staggered t-structure (qDb
G(X)≤0, qDb

G(X)≥0) is the
staggered t-structure (q̄Db

G(X)≤0, q̄Db
G(X)≥0). In particular, in the case where every

orbit C ⊂ X has even staggered codimension, and q is the function q(C) = 1
2 scodC,

the t-structure (qDb
G(X)≤0, qDb

G(X)≥0) is self-dual. �

We conclude with a study of simple objects in qM(X). The statements below
and their proofs are very similar to those in [B2, Section 3.2] or [A, Section 9], and
most details of the proofs will be omitted. Instead, each statement is followed by
brief remarks clarifying the relationship to statements in [B2] or [A].

Proposition 8.7. Let j : U ↪→ X be a dense open subscheme. Given a function
q : Xgen → Z, define [q, ]q : Xgen → Z as in (8.1), and define a full subcategory
qM!∗(X) ⊂ qM(X) by qM!∗(X) = [qDb

G(X)≤0 ∩ ]qDb
G(X)≥0. The functor j∗

induces an equivalence of categories qM!∗(X) → qM(U). Moreover, objects of
qM!∗(X) have no subobjects or quotients in qM(X) that are supported on X r U .

Remarks on proof. This statement corresponds to [B2, Theorem 2] or [A, Proposi-
tion 9.2], but both those statements impose a condition on the function q (denoted
p in loc. cit.) that is not imposed here. The reason is that the proof requires that
the categories ([qDb

G(X)≤0, [qDb
G(X)≥0) and (]qDb

G(X)≤0, ]qDb
G(X)≥0) associated

to [q and ]q (denoted p+ and p− in loc. cit.) actually constitute t-structures. In
the present paper, Theorem 8.1 tells us that this is the case with no assumptions,
whereas in both [B2] and [A], the t-structure is constructed only for p obeying
certain inequalities. �

Definition 8.8. The inverse equivalence to that of the preceding proposition, de-
noted j!∗ : qM(U)→ qM!∗(X), is known as the intermediate-extension functor.

Definition 8.9. Let Y be a locally closed subscheme of X. Let h : Y ↪→ Y and
κ : Y ↪→ X denote the inclusion maps. For any F ∈ qM(Y ), we define an object
of qM(X) by

IC(Y ,F) = κ∗(h!∗F).
This is called the (staggered) intersection cohomology complex associated to F .

Recall that the step of a coherent sheaf is defined to be the unique integer w
(if such an integer exists) such that the sheaf belongs CG(X)≤w ∩ CG(X)≥w. An
irreducible vector bundle on an orbit always has a well-defined step.

Proposition 8.10. Let F ∈ qM(X). F is a simple object if and only if F ∼=
IC(C,L[−q(C)+stepL]) for some orbit C ⊂ X and some irreducible vector bundle
L ∈ CG(C).

Remarks on proof. This statement is analogous to [B2, Corollary 4] and to [A,
Theorem 9.7]. The main difference is that in [A], F is assumed at the outset to be
supported on (a possibly nonreduced subscheme structure on) the closure of one
orbit. (The statement of [A, Theorem 9.7] also imposes conditions on q, but those
are unnecessary here for reasons explained in the remarks following Proposition 8.7.)
In [B2], it is shown that a simple object must be supported on an orbit closure using
Rosenlicht’s Theorem, but that argument cannot be used here for the reasons given
in [A, Remark 9.8].

To reduce this statement to one where the proof of [A, Theorem 9.7] can be
repeated verbatim, we must show by other means that the support of a simple
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object is an (a priori possibly nonreduced) orbit closure. Since X is assumed to
consist of finitely many G-orbits, it suffices to show that the support of a simple
object is irreducible. Let κ : X ′ ↪→ X be the scheme-theoretic support of F ; that
is, F ∼= κ∗F ′, and the restriction of F ′ to any open subscheme of X ′ is nonzero.
Assume X ′ is reducible; let i : Z ↪→ X ′ and i′ : Z ′ → X ′ be proper closed
subschemes such that Z ∪Z ′ = X ′. Let U = Z r (Z ∩Z ′) and U ′ = Z ′ r (Z ∩Z ′).
Clearly, U and U ′ are disjoint open subschemes of X ′. Let V = U∪U ′. The natural
morphism

i∗Ri
!F ′|V → F ′|V

is the inclusion of the direct summand of F|V supported on U . In particular, the
above morphism is neither 0 nor an isomorphism. But it is also the restriction to
V of the natural morphism

qh0(i∗Ri!F ′)→ F ′,
so this latter is also neither 0 nor an isomorphism. Therefore, F ′ is not simple, and
hence neither is F . �

Theorem 8.11. qM(X) is a finite-length category.

Remarks on proof. This statement and its proof are identical to those of [B2, Corol-
lary 5] or of [A, Theorem 9.9], except that here, as in Propositions 8.7 and 8.10, we
impose no restrictions on q. �
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