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Abstract. Let G be a simple complex algebraic group. Lusztig and Vogan

have conjectured the existence of a natural bijection between the set of domi-
nant integral weights of G, and the set of pairs consisting of a nilpotent orbit

and a finite-dimensional irreducible representation of the isotropy group of the

orbit. This conjecture was established by the author for G = GL(n,C), and
by Bezrukavnikov for any G, in slightly different contexts. In this paper, we

show that these two bijections for GL(n,C) coincide.

1. Introduction

Let G be a connected complex reductive Lie group, g its Lie algebra, and T a
maximal torus. Let Λ+ be the set of dominant weights of G with respect to some
chosen Borel subgroup B containing T . Finally, let N be the nilpotent cone in g,
and let Ω be the set of pairs{

(C, E)
∣∣∣ C ⊂ N a nilpotent orbit,

and E an irreducible G-equivariant vector bundle on C

}
.

(If we fix an element e ∈ C, the vector bundles E correspond to irreducible represen-
tations of the centralizer Ge.) Lusztig and Vogan have independently conjectured
the existence of a natural bijection between Λ+ and Ω. In [1], this bijection was
established for G = GL(n,C) using combinatorial methods to carry out calcula-
tions in the Grothendieck group of equivariant coherent sheaves on N . A related
bijection appears in the work of Xi in the context of two-sided cells in the affine
Hecke algebra of type An [7].

Subsequently, the result was established for general G by Bezrukavnikov [3], by a
consideration of two different possible t-structures on the bounded derived category
of equivariant coherent sheaves on N . Let D denote this latter category. On the one
hand, Deligne’s theory of perverse coherent sheaves (see [2]) yields one t-structure
on D. The irreducible objects in the heart of this t-structure are certain intersection
cohomology complexes naturally indexed by Ω. These objects, denoted ICC,E , are
obtained as the “middle extension” j!∗(E [− 1

2 dimC]), where j : C ↪→ N is the
inclusion. On the other hand, given a weight λ ∈ Λ+, we obtain an object Aλ of D
as follows. Let Lλ be the line bundle over the flag manifold G/B corresponding to
λ, and let n be the nilradical of the Lie algebra of B. Consider the diagram

(1) G/B
p←− G×B n

π−→ N ,
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where p is the obvious projection, and π is the map (g, x) 7→ g · x. We set Aλ =
Rπ∗p

∗Lλ. Bezrukavnikov showed that D has the structure of a quasi-hereditary
category, and that the {Aλ} constitute a quasi-exceptional set for it, with respect
to any total order on Λ+ compatible with the standard partial order. (See [3] for
full details.) Now, this situation gives rise to a new t-structure on D with the
property that the irreducible objects of its heart are naturally in bijection with the
set of quasi-exceptional objects in D. Finally, Bezrukavnikov showed that these two
t-structures coincide, so one naturally obtains a bijection between Ω and Λ+.

In this paper, we will show that the combinatorially defined bijection of [1] co-
incides with that established by Bezrukavnikov. Primarily, this consists of showing
that certain preliminary calculations of [1] carried out in the category of equivariant
coherent sheaves can be duplicated in the derived category with formally similar
results. These calculations are performed in Section 2. The consequence of this is
that the same combinatorial methods can be used to obtain the bijection, whether
in the non-derived setting of [1], or in the category D, as in the present paper. The
main result is stated and proved at the end of Section 3. The remainder of the
paper is devoted to the development of the required combinatorial methods and
the construction of the algorithms.

The content of the paper is drawn in large part from the author’s Ph.D. thesis,
completed at the Massachusetts Institute of Technology under the supervision of
David Vogan. I would like to express my deep gratitude to him for the guidance he
provided for this project. I would also like to thank R. Bezrukavnikov for discussing
his results with me, and V. Ginzburg and R. Kottwitz for helpful conversations.

2. Resolutions of nilpotent orbits

We begin by introducing some notation and reviewing Bezrukavnikov’s result in
detail. Recall that D is the bounded derived category of G-equivariant coherent
sheaves on N . Let A denote the bounded derived category of algebraic G-modules,
and let K(D) and K(A), respectively, denote the Grothendieck groups of these two
categories. For any object X in either of these categories, we denote its class in the
Grothendieck group by [X]. With this terminology, we have the following.

Theorem 2.1 (Bezrukavikov [3]). K(D) is a free abelian group, and each of the
sets {[Aλ] | λ ∈ Λ+} and {[ICC,E ] | (C, E) ∈ Ω} form a basis for it. In addition,
there is a unique bijection η : Λ+ → Ω such that

[ICη(λ)] ∈ span{[Aµ] | µ ≤ λ}
for each λ. Moreover, when [ICη(λ)] is expressed as a linear combination of the
{[Aµ]}, [Aλ] occurs with coefficient ±1.

We will refer to the two bases described in this theorem as the “A-basis” and the
“IC-basis,” respectively. We also recall at this stage that the construction of Aλ in
Section 1 makes sense for any weight λ, not merely the dominant ones. Since we
will occasionally need to make use of such objectss, we take a moment now to recall
the relationship between such complexes and those coming from dominant weights.

Proposition 2.2. Let λ ∈ Λ+, and let w be an element of the Weyl group of G.
We have [Awλ]− [Aλ] ∈ span{[Aµ] | µ ∈ Λ+, µ < λ}.

Henceforth, G will always denote the group GL(n,C). In this section, we will
construct certain analogues of Aλ with B replaced by a parabolic subgroup, in the
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hope that these complexes may serve as an intermediary of sorts between the {[Aλ]}
and the {[ICC,E ]}. Recall that every nilpotent orbit for G is Richardson, so given
an orbit C ⊂ N , we can choose a parabolic subgroup P (with Levi decomposition
LU and Lie algebra p = l + u) such that C is the Richardson orbit associated to P .
This means, in particular, that C meets u in a dense open subset, and, in addition,
that P acts transitively on C ∩ u. We fix an element e ∈ C ∩ u, and let Ge denote
the centralizer of e in G. Recall that we have Ge ⊂ P .

Consider the following analogue of (1):

(2) G/P
p←− G×P u

π−→ C
i
↪→ N

Given a weight λ that is dominant for L, let Vλ (or V Lλ , if there is ambiguity) be the
irreducible L-representation of highest weight λ. We can regard Vλ as a P -module
by letting U act trivially; this, in turn, gives rise to a G-equivariant vector bundle
over G/P . Let Vλ (or VLλ ) be the sheaf of sections of this vector bundle. We define
ALλ to be the complex Ri∗Rπ∗p∗VLλ .

Lemma 2.3. The map π is proper and birational; in particular, it is an isomor-
phism when restricted to π−1(C).

Proof. Define a map m : G×P u ↪→ G/P ×N by m(g, x) = (gP, g · x). This map is
injective, and its image in G/P ×N is closed, so m is proper. The map π is simply
the composition of m with the projection G/P ×N → N , which is also proper, so
π is proper.

Define a map q : C → G×P u by q(x) = (g, e), where g ∈ G is any element such
that g · e = x. Of course, g is only well-defined up to right-multiplication by an
element of Ge, but since Ge ⊂ P , we obtain that (g, e) is a well-defined point of
G ×P u. It is clear that q is a right inverse to π|π−1(C). To show that it is also a
left inverse, we would need to establish that the image of q is exactly π−1(C). But
since C ∩ u is a single P -orbit, we know that for any (h, x) ∈ π−1(C), there is a
y ∈ P such that x = y · e, so (h, x) = (hy, e) = q(hy · e). We conclude that π|π−1(C)

is an isomorphism, so π itself is birational. �

Proposition 2.4. LetW be the sheaf of sections of the G-equivariant vector bundle
over C arising from Vλ regarded as a Ge-representation. Then ALλ |C ' W.

Proof. The pullback of the vector bundle G ×P Vλ → G/P via p is a new G-
equivariant vector bundle over G×P u whose fiber is Vλ. Since π is an isomorphism
over C, the restriction of Rπ∗p∗Vλ to C is again the sheaf of sections of a vector
bundle with fibre Vλ. Now, G-equivariant vector bundles over any space with a
transitive G-action correspond to representations of the isotropy group, so the vec-
tor bundle to which ALλ corresponds must coincide with that obtained by regarding
Vλ as a Ge-representation. �

Corollary 2.5. In the situation of Proposition 2.4, suppose that E is an irre-
ducible G-equivariant subbundle of W. Then, when [ALλ ] is expressed in the IC-
basis, [ICC,E ] occurs with nonzero coefficient.

Proof. It is clear that [ALλ ] can be expressed in the form

[ALλ ] =
∑
C′⊂C

nC′,E′ [ICC′,E′ ],
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since ALλ is supported on C. Let j : C ↪→ N denote the inclusion map. Now,
j∗ICC′,E′ vanishes for any C ′ ⊂ C with C ′ 6= C, so we obtain

[W] = [j∗ALλ ] =
∑

nC,E′ [j∗ICC,E′ ]

in the appropriate Grothendieck group. But now, all the complexes in the above
equation are just vector bundles, and those on appearing on the right-hand side are
irreducible and pairwise inequivalent. The hypothesis of the statement to be proved,
then, says exactly that for some particular E , we have nC,E 6= 0, as desired. �

Proposition 2.6. In the Grothendieck group K(A), we have

[RΓ(N , ALλ )] =
∑
w∈WL

(−1)l(w)[IndGT Cλ+ρL−wρL ],

where WL is the Weyl group of L, and ρL is half the sum of its positive roots.

Proof. Since the derived functor of global sections is unchanged by derived push-
forwards, we have

(3) RΓ(N , ALλ ) ' RΓ(G×P u, p∗Vλ) ' RΓ(G/P,Rp∗p∗Vλ).

Now, the projection from the total space of a vector bundle to its base is an affine
morphism. Since p is affine, p∗ is exact on quasicoherent sheaves, so we can replace
“Rp∗” above by simply “p∗.” Finally, we claim that p∗p∗Vλ is the sheaf associated
to the infinite-dimensional vector bundle

G×P (S(u∗)⊗ Vλ)→ G/P,

where S(u∗) denotes the symmetric algebra on u∗. Indeed, because Vλ is a locally
free sheaf of finite rank, we have the “projection formula”

p∗p
∗Vλ ' p∗OG×P u ⊗ Vλ,

where OG×P u is the structure sheaf of G×P u. Moreover, because p : G×P u→ G/P
is in fact a vector bundle, it is well-known that p∗OG×P u is the sheaf associated
to the vector bundle of regular functions on the fibres of p. (See, for example,
[5, Ex. II.5.18].) That is, p∗OG×P u is the sheaf arising from the vector bundle
G×P S(u∗)→ G/P . We conclude that

(4) RΓ(N , ALλ ) ' RΓ(G/P,G×P (S(u∗)⊗ Vλ)).

We now apply an analogue of [6, Lemma 2.1], which says that for any finite-
dimensional L-module F , we have the following equality of virtual G-modules:∑

(−1)i[Hi(G/P,G×P (S(u∗)⊗ F ))] = [IndGL F ].

Although that lemma is stated in a nonderived setting, it is readily seen that a
parallel argument establishes that

(5) [RΓ(G/P,G×P (S(u∗)⊗ F ))] = [IndGL F ]

in K(A).
It remains to calculate [IndGL Vλ] in terms of various [IndGT Cµ]’s. This turns out

to follow from an elementary computation of weight multiplicities. We can combine
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Steinberg’s formula for multiplicities in a tensor product with Kostant’s formula for
multiplicities of weights to obtain the first of the following equalities:

dim HomL(Vµ ⊗ Vν , Vλ) =
∑
w∈WL

(−1)l(w) dim HomT (Cλ+ρL−w(µ+ρL), Vν)

=
∑
w∈WL

(−1)l(w) dim HomL(Vν , IndGT Cλ+ρL−w(µ+ρL)).

The second equality comes from Frobenius reciprocity. Now, let us take µ = 0.
The first and last members of the above equation tell us that we have an equality
of virtual L-modules

Vλ '
∑
w∈WL

(−1)l(w) IndLT Cλ+ρL−wρL .

The proposition follows by combining this with (4) and (5). �

One special case of the preceding result is that in which L = T . Then, the Weyl
group is trivial, so we get

[RΓ(N , ATλ )] = [IndGT Cλ].

Since the [ATλ ] form a basis of K(D), and since the [IndGT Cλ] are linearly inde-
pendent elements of K(A), we see that the map K(D) → K(A) induced by RΓ is
injective. Therefore, Proposition 2.6 implies the following.

Corollary 2.7. In K(D), we have

[ALλ ] =
∑
w∈WL

(−1)w[ATλ+ρL−wρL ].

3. Computing with parabolic subgroups

This section is devoted primarily to loose, speculative discussion based on the
results of the preceding section. The idea is to lay an intuitive groundwork for the
work carried out in the remainder of the paper. At the end of the section, however,
we will make some precise statements about the bijection whose existence is to be
established, and we will prove that it coincides with Bezrukavnikov’s.

Our hope, in view of Corollaries 2.5 and 2.7, is to use the [ALλ ]’s as a sort of
intermediary between the [ICC,E ]’s and the [ATλ ]’s. In particular, given an ALλ ,
suppose we take E to be the vector bundle on C arising from the Ge-representation
whose highest weight is the restriction of λ. (Here we are using the fact that
all the groups Ge are connected in GL(n,C), so their irreducible representations
are parametrized by highest weights.) Corollary 2.5 says that [ICC,E ] occurs with
nonzero coefficient when [ALλ ] is expressed in the IC-basis.

Let Φ be the set of pairs {(L, λ)} up to G-conjugacy, where L is a Levi subgroup
of G containing T , and λ is a dominant weight for L. Let κ : Φ → Ω be the map
sending (L, λ) to the pair (C, E), where C is the Richardson class obtained from L,
and E is as in the previous paragraph.

Now, Theorem 2.1 tells us that for a given pair (C, E), η−1(C, E) is the largest
weight µ (with respect to the usual partial order) such that [Aµ] occurs with nonzero
coefficient in [ICC,E ]. An examination of the formula in Corollary 2.7 reveals that
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the largest weight µ such that [Aµ] occurs in [ALλ ] is given by µ = λ + 2ρL. We
therefore define a map τ : Φ→ Λ+ by

τ(L, λ) = the unique dominant weight in the WG-orbit of λ+ 2ρL.

The maps we have defined,

(6) Λ+ τ←−−−− Φ κ−−−−→ Ω,

are far from being bijections. Nevertheless, we will eventually see with relative ease
that they are at least both surjections. Given a pair (L, λ) ∈ Φ, we know that
[ICκ(L,λ)] occurs when [ALλ ] is written in the IC-basis, and [Aτ(L,λ)] occurs when it
is written in the A-basis.

The hope is to try to zoom in on a certain subset of Φ such that the restrictions
of both τ and κ to this subset turn out to be bijections. How might we characterize
this subset? Let µ ∈ Λ+ be such that η(µ) = κ(L, λ) = (C, E). Since [ALλ ] contains
a contribution from [ICC,E ], it ought to have a term [Aµ] as well, but this latter
term might get cancelled by a contribution from some other [ICC′,E′ ] corresponding
to a weight larger than µ. We can try to prevent such larger terms from occuring
by trying to choose λ in such a way as to make τ(L, λ) as small as possible to begin
with. Sections 4–8 are devoted to establishing, in slightly different language, the
following fact.

Claim 3.1. There exists a set Φ◦ ⊂ Φ with the property that the restricted maps
κ : Φ◦ → Ω and τ : Φ◦ → Ω are both bijections. Moreover, for a fixed pair
(C, E) ∈ Ω, and all (L, λ) ∈ κ−1(C, E), the function (L, λ) 7→ ‖τ(L, λ)‖2 takes its
minimal value on the unique pair (L, λ) ∈ κ−1(C, E) ∩ Φ◦.

The composition κ ◦ τ−1 then gives a bijection Λ+ → Ω. Let us denote this
bijection γ.

Theorem 3.2. Assume that Claim 3.1 holds. Then the bijection γ : Λ+ → Ω
coincides with Bezrukavikov’s bijection η : Λ+ → Ω.

Proof. Given λ ∈ Λ+, suppose that (L, µ) ∈ Φ◦ is the pair with the property that
τ(L, µ) = λ. Let Bλ denote the complex ALµ . We have

(1) [Bλ] ∈ span{[Aλ′ ] | λ′ ≤ λ}, and [Aλ] occurs in [Bλ] with coefficient ±1.
(2) [ICγ(λ)] occurs with nonzero coefficient in [Bλ].

We will prove by induction with respect to the standard partial order on Λ+ that
η(µ) = γ(µ) for all µ ∈ Λ+. When λ = 0, the above properties give us that

[ICη(0)] = ±[A0] = ±[B0] = n0[ICγ(0)] +
∑

nC′,E′ [ICC′,E′ ],

with n0 6= 0. But then, comparing the leftmost and rightmost parts of the equation
shows that in fact n0 = 1, and all other nC′,E′ are 0. We conclude that η(0) = γ(0).

For the inductive step, property (2) gives us that

[Bλ] = n0[ICγ(λ)] +
∑
i

ni[ICCi,Ei ],

with n0 6= 0. On the other hand, property (1), together with Theorem 2.1, gives us
that

(7) [Bλ] = ±[Aλ] +
∑
λ′<λ

mλ′ [Aλ′ ] = ±[ICη(λ)] +
∑
λ′<λ

kλ′ [ICη(λ′)].
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Comparing these two equations, we see that [ICγ(λ)] must occur somewhere among
the terms in the rightmost expression in (7). Now, we know by the inductive
hypothesis that η(λ′) = γ(λ′) for all λ′ < λ. Since γ is a bijection, this means in
particular that γ(λ) 6= η(λ′) for any λ′ < λ. The only remaining term in (7) is
[ICη(λ)], so we conclude that η(λ) = γ(λ), as desired. �

4. Weight diagrams

In this section, we introduce the computational machinery required to construct
the bijection γ. Partitions play a major role in this matter, so we begin with some
notations for them. We write partitions sometimes as α = [α1 ≥ · · · ≥ αl] and
sometimes as α = [ka1

1 , . . . , kall ], where k1 > · · · > kl, and ai is the multiplicity of
ki.

We now need to describe the sets Ω and Λ+ for G. Dominant weights of G
are given by decreasing n-tuples of integers. Nilpotent orbits in G are indexed by
partitions. We shall write Cα for the nilpotent orbit labelled by α, and Gα for its
isotropy group. If α = [ka1

1 , . . . , kall ], then Gα has a reductive quotient isomorphic
to

GL(a1,C)× · · · ×GL(al,C).
Therefore, we identify Ω with the set of pairs

{(α; (µ1, . . . , µl))},
where α = [ka1

1 , . . . , kall ] is a partition of n, and each µi is a decreasing ai-tuple of
integers (i.e., a dominant weight for GL(ai,C)).

The following definition introduces the combinatorial objects that will be our
principal tool for building the bijection γ. These objects play a role closely related
to that of Φ in Section 3, but they do not parametrize it per se.

Definition 4.1. Let a1, · · · , al be positive integers such that a1 + · · · + al = n,
and let α be the partition of n whose parts are a1, . . . , al. (We have not assumed
that a1 ≥ · · · ≥ al.) An ordered tuple X = (X1, . . . , Xl), where each Xi is an
ordered ai-tuple of integers, is called a weight diagram of shape-class α. The Xi’s
are called the rows of X, and the j-th entry in a given row Xi is referred to by the
double-subscript notation Xij . The set of all weight diagrams whose shape-class is
a partition of n is denoted Dn.

Example 4.2. The tuple X = ((8, 2), (2, 3, 1, 0), (5, 6), (1, 1, 1)) is an example of a
weight diagram of shape-class [4, 3, 22]. We typically draw weight diagrams in a
manner reminscent of Young tableaux: for instance, we may write

X =

8 2
2 3 1 0
5 6
1 1 1

We do not say that X is “of shape [4, 3, 22],” as one might when discussing Young
tableaux, because in this case the partition does not determine the shape of the
diagram.

There is an obvious map π : Dn → Λ+, given by taking all the entries of a weight
diagram X, writing them in decreasing order, and regarding the resulting n-tuple
as a weight of G. There is also a map h : Dn → Φ, defined as follows. Suppose X
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is a weight diagram of shape-class α, and let α∗ = [α∗1 ≥ · · · ≥ α∗l ] be the transpose
partition to α (i.e., α∗i is the number of parts of α that are greater than or equal
to i). Let L be a Levi subgroup isomorphic to

(8) GL(α∗1,C)× · · · ×GL(α∗l ,C).

Finally, let λ be the dominant weight for L whose restriction to GL(α∗i ,C) is the
α∗i -tuple obtained by arranging the entries of the ith column of X in decreasing
order. The map h is given by the construction X 7→ (L, λ) that we have just
described.

We will require an analogue of the map τ : Φ→ Λ+ from Section 3. By an abuse
of notation, we will generally write τ(X) for a weight diagram X when we really
mean τ(h(X)). In addition, it will be particularly useful to have a description of
τ entirely at the level of weight diagrams. To that end, we now introduce a map
E : Dn → Dn, defined as follows. EX is a diagram of the same shape as X, whose
entries are given by

(EX)ir = Xir + #{Xjr | Xjr < Xir, or Xjr = Xir with j > i}
−#{Xjr | Xjr > Xir, or Xjr = Xir with j < i}.

The key property of E, whose verification is routine, is that π(EX) = τ(X).
Similarly, we shall write κ(X) in place of κ(h(X)). A description of κ at the

level of weight diagrams is somewhat more difficult than that for τ . To begin with,
suppose that the diagram X is of shape-class α, and that h(X) = (L, λ). The
group L is as in (8). We need to understand how the Levi factor of Gα sits inside
L. Suppose the number k occurs in α with multiplicity a. Then the reductive
quotient of Gα contains a factor GL(a,C). According to [4, Theorem 6.1.3], this
GL(a,C) is imbedded diagonally across the first k factors of L:

GL(a,C) ↪→ GL(a,C)× · · · ×GL(a,C)︸ ︷︷ ︸
k factors

⊂ GL(α∗1,C)× · · · ×GL(α∗k,C).

Now, given a weight for some GL(α∗i ,C), we compute its restriction to the ith copy
of GL(a,C) by simply forgetting all but a of its coordinates, and thus obtaining
a certain a-tuple. Starting from a weight for L, then, we can in this way obtain
weights for each of the k copies of GL(a,C). Then, the restriction of the original
weight to the diagonal copy of GL(a,C) is simply the sum of the weights of the k
copies of GL(a,C).

Let us now translate this procedure into concise operation on weight diagrams.
Suppose that α = [ka1

1 , . . . , kall ]. We now produce an ai-tuple for each i as follows:
suppose Xi1 , . . . , Xiai

are the rows of X of length ki (note that X must have
exactly ai rows of length ki). Form the sums bji =

∑ki
m=1Xij ,m. Let βi be the

ai-tuple obtained by rearranging (b1i , . . . , b
ai
i ) in decreasing order. We have κ(X) =

(α, (β1, . . . , βl)).

Example 4.3. Let X be the weight diagram of Example 4.2. The following two facts
are easily read off from the diagram:

π(X) = (8, 6, 5, 3, 2, 2, 1, 1, 1, 1, 0)

h(X) =
(
GL(4)×GL(4)×GL(2)×GL(1), ((8, 5, 2, 1), (6, 3, 2, 1), (1, 1), (0))

)



EQUIVARIANT K -THEORY IN THE GENERAL LINEAR GROUP 9

Next, we compute that

EX =

6 9
1 4 2 0
11 1
−2−2 0

and therefore
τ(X) = (11, 9, 6, 4, 2, 1, 1, 0, 0,−2,−2).

Now, the reductive quotient of Gα is isomorphic to GL(1) × GL(1) × GL(2). We
obtain

κ(X) = ([4, 3, 22]; (6, 3, (11, 10))).

We conclude this section by proving that weight diagrams are indeed useful for
computing with the objects introduced in Section 2.

Proposition 4.4. Let X be a weight diagram, and suppse that we have

h(X) = (L, µ), κ(X) = (C, E), τ(X) = λ.

Then, when [ALµ ] is expressed in the IC-basis, [ICC,E ] occurs with nonzero coefficient,
and when it is expressed in the A-basis, [Aλ] occurs with coefficient ±1.

Proof. The second part of the statement follows immediately from Corollary 2.7.
The first part is almost as immediate a consequence of Corollaries 2.5: we only need
to check that the Gα-representation E corresponding to the bundle E does indeed
occur in the restriction of V Lµ to Gα. This is clear: the Gα-submodule generated by
the µ-weight space of V Lµ is a representation whose highest weight is the restriction
of µ, which is exactly what E is. �

5. Distinguished weight diagrams

Continuing in the spirit of Section 3, we need to isolate a certain subset of Dn

such that the restrictions of τ and κ to this subset turn out to be bijections. This
section is devoted to defining this subset explicitly and establishing some basic
properties of it. Before that, however, we need some terminology for describing the
relative positions and values of entries in a weight diagram.

Definition 5.1. Xir and Xjr are said to be column-consecutive if j > i and the
positions Xi+1,r, . . . , Xj−1,r are all empty. Xjr is then the column-successor of
Xir, and Xir is the column-predecessor of Xjr. An entry is column-last if it has no
column-successor, and it is column-first if it has no column-predecessor.

Definition 5.2. Xir is lowerable if either it is column-last, or it has column-
successor Xi′r with Xir > Xi′r. It is raisable if either it is column-first, or it
has column-predecessor Xi′r with Xir < Xi′r.

To lower (resp. raise) Xir, or X at position ir, is to construct a new diagram
of the same shape and entries as X, except that its entry in position ir is obtained
by subtracting 1 from (resp. adding 1 to) Xir.

We will very often need to work with pairs of diagrams related by the map E.
To avoid always having to give names to both these diagrams, we will make use of
the following supplementary terminology.

Definition 5.3. Assume that X ∈ Dn is in the image of E; say X = E(Y ). We
say that Xir is E-lowerable (resp. E-raisable) if Yir is lowerable (resp. raisable).
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Remark 5.4. Note that a diagram is in the image of E if and only if it has the
property that any two entries in the same column differ by at least 2. Moreover,
if X is in the image E, then an entry Xir is E-lowerable (resp. E-raisable) if and
only if Xir ≥ Xi′r + 2 (resp. Xir ≤ Xi′r − 2), where Xi′r is its column-successor
(resp. column-predecessor).

Let Y ∈ Dn, and assume that Y is in the image of E. We state four properties
that Y may have:

p1(r): (r > 1) For any s, 1 ≤ s < r, such that s ≡ r (mod 2), we have
(a) if r and s are odd and Yis < Yir, then Yis is not E-raisable.
(b) if r and s are even and Yis > Yir, then Yis is not E-lowerable.

p2(r): (r > 1) For any s, 1 ≤ s < r, we have
(a) if Yis ≤ Yir − 2, then Yis is not E-raisable.
(b) if Yis ≥ Yir + 2, then Yis is not E-lowerable.

p3(r): (r > 1) If r is odd, every difference Yir − Yi,r−1 is either 0 or +1. If r
is even, every such difference is either 0 or −1.

p4(r): Column r of Y has entries in decreasing order.
Every Y is said to have properties p1(1) and p3(1), for convenience.

We also define capital-letter versions of these properties: Y is said to have prop-
erty P1(r) if it has all of p1(1), . . . ,p1(r); the properties P3(r) and P4(r) are
defined similarly. We suppose that the properties P1(0), P3(0), and P4(0) always
hold, as do P1(1) and P3(1).

Definition 5.5. Given a weight diagram X, let Y = EX. The diagram X is said
to be distinguished, and Y is said to be E-distinguished, if Y has properties P1(r),
P2(r), P3(r), and P4(r) for all r. The set of distinguished weight diagrams is
denoted D◦n, and the set of E-distinguished diagrams is denoted E(D◦n).

Example 5.6. Consider the following weight diagrams:

R =

8
6 6 7 7
3 3 3 2
1 1 1 0

S =

8
6 6 7 7
3 3 3
1 0 1 1 2

T =

8
6 7 7 6
3 2 3 3
1 0 1 1

U =

7 6 7 6
8
3 2 3 3
1 0 1 1

R fails to have property p1(4) because R42 > R44, yet R42 is E-lowerable. S fails
to have p2(5) because S42 ≤ S45 − 2, yet S42 is E-raisable. T fails to have p3(2)
since T22 − T21 = 1 (it is only permitted to be 0 or −1). Finally, U is not even in
the image of E, since its first column contains a pair of entries that differ by less
than 2.

All the weight diagrams in the preceding example lay in the preimage under
π of the weight λ = (8, 7, 7, 6, 6, 3, 3, 3, 2, 1, 1, 1, 0). The following E-distinguished
weight diagram also lies in π−1(λ):

X =

8
6 6 7 7
3 2 3 3
1 0 1 1

As a matter of fact, this diagram turns out to be the unique E-distinguished weight
diagram in π−1(λ). Analogously, each fibre of κ contains a unique distinguished
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weight diagram X. The rest of the paper will be spent establishing these two
assertions. Indeed, these two facts give rise to the desired bijection γ via the
following diagram, an analogue of (6).

Λ+ τ=π◦E←−−−−− D◦n
κ−−−−→ Ω.

We can take one step towards establishing this bijection immediately from the above
definitions: we can show that κ is injective.

Lemma 5.7. Let X be a distinguished weight diagram, and suppose the ith row of
X has maximal length (among the rows of X). If X ′ is the diagram obtained from
X by deleting its ith row, then X ′ again distinguished.

Proof. Since the deleted row had maximal length, every column of X ′ has exactly
one fewer entry than the corresponding column of X. One then computes readily
that

(EX ′)jr =

{
(EX)jr − 1 if j ≤ i− 1,
(EX)j+1,r + 1 if j ≥ i.

It is clear that EX ′ satisfies P3(r) and P4(r) for all r. Now, since the notions
of raisability and lowerability depend only on neighboring rows, it is also clear
that the conditions of p1(r) and p2(r) hold on all rows of X ′ except possibly the
(i−1)th and ith ones. Furthermore, we only need to check case (b) of each of those
conditions on row i− 1, and case (a) on row i.

We will now check p1(r)(b) on row i− 1. Suppose that s < r, that s and r are
both even, and that EX ′i−1,s > EX ′i−1,r. This means EXi−1,s > EXi−1,r, and since
X is distinguished, EXi−1,s must not be E-lowerable. That is, EXis = EXi−1,s−2.
Now, p4(r) implies that EXir ≤ EXi−1,r − 2, so we conclude that EXis > EXir.
Appealing again to the fact that X is distinguished, we see that EXis is not E-
lowerable, and therefore that EXi+1,s = EXis − 2. Putting all this together, we
obtain EXi+1,s = EXi−1,s − 4. Then

EX ′is = EXi+1,s + 1 = EXi−1,s − 3 = EX ′i−1,s − 2.

That is, EXi−1,s is not E-lowerable, as desired.
The proofs of p2(r)(b) on row i − 1 and p1(r)(a) and p2(r)(a) on row i are

similar; we omit the details. �

In general, deleting a row of nonmaximal length from a distinguished diagram
need not yield a distinguished diagram.

Proposition 5.8. Given (C, E) ∈ Ω, there is at most one distinguished weight
diagram in κ−1(C, E).

Proof. Suppose that (C, E) corresponds to (α; (µ1, . . . , µl)). We proceed by induc-
tion on the number of parts of α. The base case, in which α is the empty partition,
is trivial. Henceforth, we assume that α is not empty.

Let k be the largest part of α, and suppose that µ1 is the weight for the part
of Gα corresponding to the rows of length k. Let α′ be the partition obtained by
reducing the multiplicity of r by 1. Suppose that X and Y are two weight diagrams,
with κ(X) = κ(Y ) = (C, E), such that X and Y are both distinguished. Let X ′ and
Y ′ be the diagrams obtained from X and Y , respectively, by omitting the topmost
row of length k. Since both X ′ and Y ′ have columns in decreasing order, it is clear
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that the omitted row corresponds to the largest coordinate of µ1 in both. In other
words,

κ(X ′) = κ(Y ′) = (α′; (µ′1, µ2, . . . , µl)),
where µ′1 is the weight obtained from µ1 by omitting its largest coordinate. By
the preceding lemma, X ′ and Y ′ are both distinguished. Then, by the induction
hypothesis, we must have that X ′ = Y ′.

Suppose that X ′ and Y ′ were obtained by omitting the ith row of X and the jth
row of Y , respectively. We will begin by showing that i = j. Suppose, without loss
of generality, that i < j. Choose t ∈ {i + 1, ..j} such that Xt is a row of maximal
length among Xi+1, . . . , Xj , and let k′ be its length. Note that Yt−1 = Xt, so k′

must be less than k (as Yj is the topmost row of length k in Y ). Now, for any
s ≤ k′, we have

(9) Yjs ≤ Yt−1,s = Xts ≤ Xis.

It follows that EXis ≥ EYjs + 4. By p3(k′ + 1), we have

(10) EYj,k′+1 ≤ EXi,k′+1 − 3.

This means EYj,k′+1 is E-raisable, since its column-predecessor is the same as that
of Xi,k′+1. Similarly, Xj,k′+1 is E-lowerable. Applying p2(r), we find that.

EYjr ≤ EYj,k′+1 + 1(11)

EXir ≥ EXi,k′+1 − 1(12)

Putting together (10) and (11) yields

(13) EYjr ≤ EXir − 1

for k′+ 1 < r ≤ k. Now, the fact that there are no entries beyond column k′ in any
of the rows Xi+1, . . . , Xj implies that

(14) EXir −Xir = EYjr − Yjr
for k′ < r ≤ k. Combining this with (10) and (10) implies that

(15) Yjr ≤

{
Xjr − 3 if r = k′ + 1,
xjr − 1 if k′ + 1 < r ≤ k.

This inequality, together with (9), implies that the sum of the entries of Yj is
strictly smaller than the corresponding sum for Xi, contradicting the fact that
κ(Y ) = κ(X). Therefore, i = j.

Finally, it remains to show that Xi = Yi. Since these two rows have the same
sum, if they differ at all, they must differ in at least two entries. Assume without
loss of generality that for some s and r, we have Xis < Yis and Xir > Yir. Note
that (14) applies here, so similar inequalities hold for EX and EY . Moreover, it
is clear that EXis is E-raisable and EYis is E-lowerable. If EXis ≥ EXir, then
EY violates p2(r), but if EXis ≤ EXir − 2, then EX violates p2(r). The only
remaining case is EXis = EXir − 1. Similar reasoning shows that we must also
have EYis = EYir + 1. Now, if s and r are both even, then Y violates p1(r); if
they are both odd, X does. So s and r must be of opposite parity. Assume s is
odd and r is even. Then Xi,r−1 must equal either Xir or Xir + 1, by p3(r). But
then, looking at columns s and r− 1, we see that p1(r− 1) is violated. Similarly, if
s is even and r is odd, then Y violates p1(r − 1). We conclude that Xi = Yi, and
thence that X = Y , as desired. �
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6. Building distinguished diagrams from weights

The goal of this section is to show that π induces a bijection between the set of
E-distinguished weight diagrams and the set of dominant weights.

We do this by giving an algorithm for computing the putative inverse of π: this
algorithm builds up a weight diagram column by column from the coordinates of
a weight λ. We begin with some terminology for dealing with multisets of integers
(i.e., sets whose elements may occur with multiplicity greater than 1).

Definition 6.1. The length of a multiset of integers is the number of distinct
elements it contains. This is to be distinguished from size, the total number of
elements.

Definition 6.2. A multiset of integers is called a clump if either of the following
conditions holds:

(i) The multiset has length 1.
(ii) The multiset has length greater than 1, and for each element of the multiset,

there is another element differing from it by exactly 1.

Lemma 6.3. Any multiset of integers can be written uniquely as a disjoint union
of clumps of maximal size. �

The algorithm, which we call WtD : Λ+ → Dn, is given below. We start with
some weight λ ∈ Λ+.

(1) Let r = 1, and let σ1 be the multiset whose elements are the coordinates
of λ. Write σr = A1,1 q · · · q A1,l1 , where the A1,i are clumps of maximal
size. We are about to start building the first column; below, “r” always
refers to the column on which we are currently working.

(2) Write down the distinct values of each clump in decreasing order. Form a
set Zr of (distinct) integers as follows: for each clump of odd length, we
include in Zr the 1st, 3rd, 5th, etc., distinct values of the clump. For each
clump of even length, similarly take the odd-index distinct values if r is odd,
but if r is even, take the 2nd, 4th, etc., values of each even-length clump.
(Another way to think of this is that we always take alternate values from
each clump; if r is odd, we must include the largest value in each clump,
but if r is even, we must include the smallest.)

(3) Write down the elements of Zr vertically and in decreasing order. If r = 1,
we are done—what we have just written down will be the first column of
the diagram. Otherwise, we need to worry about what row each entry in
the column belongs to. Place each element x of Zr such that it is adjacent
to a spot in column r− 1 containing either x or x+ (−1)r (this can always
be done uniquely).

(4) Let σr+1 denote the multiset obtained by removing the elements of Zr
from σr. If σr+1 is empty, we are finished drawing the diagram; otherwise,
partition σr+1 into disjoint maximal-size clumps Ar+1,1 q · · · q Ar+1,lr .
Advance the value of r by 1, and go to step 2.

There is something to be proved to ensure that Step 3 makes sense: namely, that
each element of Zr can be placed in a unique position next to some entry in column
r − 1 such that a certain adjacency condition is met. To that end, we make some
observations.
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First, note that when σr is divided into maximal clumps, any two entries differing
by only 0 or 1 must end up in the same clump. In other words, entries in different
clumps differ by at least 2. Since Zr is constructed by taking alternate entries in
every clump, it follows that any two elements of Zr must differ by at least 2.

Let x ∈ Zr, and suppose that we are working on Step 3. We are looking for an
entry in the preceding column whose value is either x or x+ (−1)r. Since distinct
entries in the preceding column differ from one another by at least 2, we know that
at most one of x and x+ (−1)r can occur in that column, and if one of them does
occur, it occurs only once. In other words, if there is an appropriate entry in the
column r − 1 that meets our adjacency condition, it is unique.

Now we establish that either x or x + (−1)r actually occurs in the preceding
column. Specifically, we assume that x does not occur, and show that x + (−1)r

must occur. Let us rewind the algorithm to the point where we were building
column r − 1. There was some clump Ar−1,i to which our element x belonged.
Column r−1 includes alternate entries from clump Ar−1,i, so if it does not contain
x, it must contain one or both of x + 1 and x − 1. If both of these occur, we are
finished: one of them is x+ (−1)r.

But what if only one of x± 1 occurs? Suppose that only x− 1 occurs. This can
only happen if Ar−1,i has no members equal to x + 1; since Ar−1,i is a clump, it
must be that x is the largest value occurring in Ar−1,i. In constructing Zr−1, we
had not taken the largest (i.e first) value in Ar−1,i, but we had taken the second
value. This is only done when the clump has even length and the column index is
even. That is, r−1 is even, so x+ (−1)r = x−1. Thus x+ (−1)r occurs in column
r − 1.

A similar argument shows that if x+1 occurs in the preceding column, but x−1
does not, then r − 1 is odd, and again x+ (−1)r = x+ 1 occurs in column r − 1.

We have established that Step 3 of the algorithm WtD makes sense.

Proposition 6.4. For any λ ∈ Λ+, WtD(λ) ∈ E(D◦n).

Proof. Let X = WtD(λ). In the course of arguing that Step 3 makes sense, we
observed that any two entries in a single column of the resulting diagram differ by
at least 2, so X is at least in the image of E. In addition, Step 3 also explicitly
decrees that the entries of a column be in decreasing order, and that the differences
of horizontally adjacent entries obey the condition of p3(r). Thus, P3(r) and P4(r)
automatically hold for all r.

Next, note that because adjacent entries in a given row of WtD(σ) differ by at
most 1, those entries must have belonged to the same clump when we first divided σ
into clumps. In other words, clumps of σ are unions of rows in WtD(σ). Moreover,
the rows that constitute a given clump of σ must be consecutive.

P1(r) and P2(r) are both consequences of this observation. Suppose, for in-
stance, that in violation of P1(r), we have s < r, s and r both odd, Xis < Xir,
and Xis E-raisable. If Xi′s is the column-predecessor of Xis, then Xi′s ≥ Xis + 3.
That large a difference between column-consecutive entries means that Xi′s and
Xis must have come from different clumps of λs. We finished taking values from,
say, clump As,j at row i′, and Xis contains the first value taken from As,j+1. Since
s is odd, EXis should be the largest value in As,j+1, but on the other hand, Xir is
a value from the same clump, but it is larger than Xis, so we have a contradiction.

A similar argument establishes that P1(r) holds if r is even. The same type
of argument proves that P2(r) holds as well, but the stronger inequality in that
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property means that we do not need to refer to the parity of s in the course of
proving it. �

Theorem 6.5. WtD : Λ+ → E(D◦n) is a bijection, and its inverse is given by π.

Proof. It is clear that π(WtD(λ)) = λ for any λ ∈ Λ+. What we must show now
is that for any X ∈ E(D◦n), we have WtD(π(X)) = X. We begin by showing that
WtD rebuilds at least the first column of X correctly.

Let λ = π(X). Since X has P3(r) for all r, adjacent entries of X must end up
in the same clump of λ. Indeed, as in the proof of Proposition 6.4, we again have
that that clumps of λ are unions of consecutive rows of X. We need to prove that
the first column of X contains the odd-index values from every clump—that will
establish that X and WtD(λ) have the same first column. To this end, we restrict
our attention to a sequence of consecutive rows i0, i0 + 1, . . . , i0 + l whose entries
constitute one clump of λ.

First, we show that Xi0+j,1 = Xi0+j+1,1 + 2 for each j. Of course, Xi0+j,1 −
Xi0+j+1,1 is at least 2, but if it were larger, that would mean Xi0+j,1 is E-lowerable,
and Xi0+j+1,1 is E-raisable. Property P2(r) implies that all successive entries in
row i0 +j of X must differ from Xi0+j+1,1 by at least 2, and all successive entries of
row i0 +j+1 must differ from Xi0+j,1 by at least 2. But if these conditions held, the
entries of rows i0 + j and i0 + j+ 1 could not belong to the same clump. Therefore
Xi0+j,1 = Xi0+j+1,1 + 2. It follows that the sequence Xi0,1, Xi0+1,1, . . . , Xi0+l,1 is,
in fact, a sequence of alternate values from the clump under examination.

Now, we show that the clump does not contain Xi0,1 +2 as a value. Suppose this
value occurs in row i0 + j. It is larger than Xi0+j,1, and since adjacent entries differ
by at most 1, the value Xi0,1 must occur somewhere in row i0 + j. Then Property
P2(r) tells us that Xi0,1 + 2 must occur in row i0 + j− 1. We iterate this argument
and find that Xi0,1 + 2 occurs in each of rows i0 + j, i0 + j − 1, . . . , i0, i0 − 1. But
that would imply that the entries of rows i0 − 1 and i0 belong to the same clump,
a contradiction.

A similar argument shows that Xi0+l,1 − 2 does not occur in the clump either.
Thus, the sequence of values Xi0,1, . . . , Xi0+l,1 is a maximal set of alternate values
from the clump. We just need to show that these are the odd-index values; or, that
Xi0,1 is the largest value in the clump. We know that Xi0,1 + 2 is not a value in
the clump, so we just need to check that Xi0,1 + 1 is not either. If it were, the
argument used in the preceeding paragraph would show that it would occur in row
i0. Let r be the leftmost column such that Xi0,r = Xi0,1 +1. Since adjacent entries
differ by at most 1, it must be that Xi0,r = Xi0,r−1 + 1. P3(r) then tells us that r
must be odd. Now we apply P1(r) to columns 1 and r and conclude that Xi0,1 is
not E-raisable. But if Xi0−1,1 = Xi0,1 + 2, and the value Xi0,1 + 1 occurs in row
i0, it would have to be that the entries of rows i0 − 1 and i0 belong to the same
clump. Therefore, Xi0,1 is actually the largest value in its clump, and the sequence
Xi0,1, . . . , Xi0+l,1 is the sequence of odd-index values from this clump.

We have shown that the first column constructed by WtD is the same as the
first column of X. The same argument (with appropriate modifications for even-
numbered columns) shows that, in general, Zr as constructed by WtD in Step 2 is
the set of entries in column r of X. The one remaining detail to check is that the
positioning of entries done in Step 3 is the same as the original positioning in X.
The algorithm for WtD does this positioning so as to satisfy P3(r); and following the
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A

a1 · · · as−1 as · · · ar
...

...
...

...
...

...
a′1 · · · a′s−1 a′s · · · a′r

7→
a1 · · · as−1 as − 1 · · · ar + 1
...

...
...

...
...

...
a′1 · · · a′s−1 a′s − 1 · · · a′r + 1

B
a1 · · · ar−1 ar
a1 · · · ar−1

7→ a1 · · · ar−1

a1 · · · ar−1 ar

C
a1 · · · ar−1 ar
a1 · · · ar−1 a′r

7→ a1 · · · ar−1 a′r
a1 · · · ar−1 ar

Table 1. Moves used in the algorithm Dist

definition of WtD, we argued that this positioning can be done uniquely. Since X
satisfies P3(r), the positioning found in X must be that produced by the algorithm.

Thus, WtD(π(X)) = X. �

7. Manipulating weight diagrams

The next task at hand is to associate a distinguished weight diagram to any given
element of Ω. We will not give a direct procedure for building such a diagram, in the
spirit of WtD. Rather, we will give an algorithm Dist which takes an arbitrary weight
diagram X, and outputs a new weight diagram X ′ such that κ(X) = κ(X ′) and
X ′ is distinguished. This algorithm will be given in terms of certain “moves” that
may be performed to modify a weight diagram. In this section, we will investigate
a number of technical properties of these moves. The actual definition of Dist will
be given in the next section.

The three moves that can be performed in the algorithm Dist are shown in
Table 1. The distinct rows shown in the diagram for each move in this table need
not actually be consecutive; however, any intermediary rows must be shorter than
r− 1 boxes (shorter than s− 1 boxes for move A). The rows that are shown in the
diagrams may or may not be longer than r boxes.

The algorithm will also make use of the inverse moves A−1 and B−1. (Of course,
C and C−1 are the same move.) In practice, B and C look like the same move—
they both involve exchanging two rows—but for the sake of proving various facts
about the behavior of these moves, it will be convenient to have separate names for
them.

In order to measure progress towards the goal of making X distinguished, we
will use a certain 6-tuple of integers. (This will be of particular use in showing
that the algorithm even terminates.) The integer-valued functions that make up
this 6-tuple are defined in Table 2. The intent is that these functions take smaller
values on diagrams that are closer to the goal. Their definitions are, unfortunately,
incredibly opaque. Here is a brief account of what these functions are intended to
do.
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q1(X) = ‖EX‖2

q2(X) =
∑
r even

∑
i

EXir

q3(X) =
∑
r odd

∑
i

r EXir −
∑
r even

∑
i

r EXir

q4(X) = −max{r | P3(r) and P4(r) both hold for EX}

q5(X) =
∑

{j|Xjr nonempty}

q̃5;jr(X) where r = q4(X) + 1

q6(X) =
∑

{j|Xjr nonempty}

q̃6;jr(X) where r = q4(X) + 1,

where

q̃5;ir(X) =

{
max{EXir − (EXi,r−1 + 1), EXi,r−1 − EXir} if r is odd
max{EXir − EXi,r−1, (EXi,r−1 − 1)− EXir} if r is even

q̃6;ir(X) =
∑
i′<i

Xi′r nonempty

max{0, Xir −Xi′r}+
∑
i′>i

Xi′r nonempty

max{0, Xi′r −Xir}

Table 2. Some integer-valued functions on Dn.

Following the idea of Claim 3.1, we hope that for a given pair (C, E), γ−1(C, E)
can be computed by choosing a weight diagram X in κ−1(C, E) such that ‖EX‖2
is minimized. (It turns out that distinguished weight diagrams do indeed have this
property.) This motivates the definition of q1 as our first measure of progress. Now,
one implication of p1(r) and p2(r) is, roughly, that even-numbered columns ought
to have smaller entries than odd-numbered columns; q2 is used to make sure that the
entries in even-numbered columns do not become too large. Another implication of
these first two properties is that the largest entries ought to appear in the leftmost
odd-numbered columns, and the smallest entries in the left-most even-numbered
columns. The function q3 tells us if we have too many excessively large or small
entries too far right in the diagram.

Next, q4 just tells us how many columns on the left-hand side of the diagram
satisfy p3(r) and p4(r). It is negative just because we want progress to be reflected
by a decrease in function values. For the leftmost column that does not satisfy
p3(r) and p4(r), q5 measures directly how far it is from having p3(r), and q6 does
the same for p4(r).

Remark 7.1. X has p3(r) for r = −q4(X) + 1 if and only if q5(X) = 0, and it has
p4(r) for r = −q4(X) + 1 if and only if q6(X) = 0.

For X ∈ Dn, we write AX, BX, and CX to indicate the diagram resulting from
performing moves A, B, and C respectively. (The values of the parameters s, r,
m, and i1, . . . , im will be clear from context.) Finally, the symbol M will be used
to stand for any of the moves A, B, C, or their inverses.
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The next lemma establishes a vital fact, without which all these moves would be
useless.

Lemma 7.2. For any diagram X and any move M, we have κ(MX) = κ(X).

Proof. Moves A and A−1 preserve the shape of the diagram, and on some rows they
add +1 to one entry and −1 to another. Hence the row-sums of X are preserved.
In the case of B, B−1, and C, no entries are changed; rather, we merely exchange
two rows. In all cases, we see that κ(MX) = κ(X). �

Now, we will want to restrict ourselves to making moves that actually result
in progress towards the goal of making X distinguished. The following definition
captures this notion.

Definition 7.3. MX is said to be well-behaved of order ≥ k, where 1 ≤ k ≤ 6, if
there is some k′, k ≤ k′ ≤ 6, such that

ql(MX) = ql(X) for l = 0, . . . , k′ − 1
and

qk′(MX) < qk′(X).

Lemma 7.4. Suppose that X has p4(r) and that Xir is raisable. If Y is a diagram
obtained from X by raising Xir, then EY is equal to EX raised at position ir.

If X has p4(r) and Xir is lowerable, and if Y is X lowered at ir, then EY is
EX lowered at ir.

Proof. We prove only the first part of the claim; the second part is proved similarly.
E acts on each column of a diagram individually, so EX and EY will certainly agree
in every column other than r. Now, in general, the amount E adds to the entries
of a column depend only on the order of those entries. In particular, if a column
is nonincreasing and of height h, then E adds h− 1 to the first entry, h− 3 to the
second, etc., down to −h + 1 to the last entry, irrespective of what those entries
actually are.

Because X has p4(r), column r is in fact nonincreasing. Moreover, to say Xir is
raisable is to say that it is strictly smaller than its column-predecessor, so it follows
that column r of Y is still nonincreasing. E acts on both X and Y by adding the
same numbers to corresponding entries, so EX and EY differ only where X and Y
differ, with EYir = EXir + 1. �

Proposition 7.5. Suppose X contains a sequence of rows i1, . . . , im on which A
might be performed, say at columns s and r, with s < r. Furthermore, suppose
that q4(X) ≤ −r, Xims is lowerable, Xi1r is raisable, and EXiks − EXikr ≥ 2 for
k = 1, . . . ,m. Then ‖AX‖2 < ‖X‖2. Stated differently, A is well-behaved on X of
order 1.

Proof. We begin by noting that in any column t of X such that p4(t) holds, if Xjt

is raisable and has column-successor Xj′t, then after raising Xjt, position j′t will
be raisable in the new diagram: if Y is the diagram obtained by raising Xjt, then
Xjt ≥ Xj′t implies Yjt > Yj′t.

Now, the performance of move A can be broken down into steps as follows:
1. Raise Xi1r; lower Xims.
2. Raise Xi2r; lower Xim−1s.
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...
m. Raise Ximr; lower Xi1s.

At each step, the entries being raised and lowered are raisable and lowerable re-
spectively (this is true in Step 1 by assumption, and in each successive step by
what we noted above). It follows by Lemma 7.4 that EAXikr = EXikr + 1 and
EAXiks = EXiks − 1 for each k. Therefore,

‖EAX‖2 =
∑
j,t

(EAXjt)2

=
∑
j,t

(EXjt)2 +
m∑
k=1

(
(EAXiks)

2 + (EAXikr)
2 − (EXiks)

2 − (EXikr)
2
)

= ‖EX‖2 +
m∑
k=1

((−2EXiks + 1) + (2EXikr + 1))

= ‖EX‖2 − 2
m∑
k=1

(EXiks − EXikr − 1)(16)

Since EXiks−EXikr ≥ 2, the summation in the last line is strictly positive. Thus
‖EAX‖2 < ‖EX‖2. �

Proposition 7.6. Assume the conditions of Proposition 7.5, but weaken the re-
quirement on entries in EX to EXiks − EXikr ≥ 1. If, in addition, r and s are
both even, then A is well-behaved on X of order ≥ 1.

Proof. We perform the same computation as in the proof of Proposition 7.5, and
we arrive at equation (16). With the weakened inequality in the present assertion,
some of the terms in the summation in (16) may be 0, but provided that at least
one of them is positive, we still get ‖EAX‖2 < ‖EX‖2.

If, however, EXiks − EXikr = 1 for every k, then that summation will be 0, so
we shall have q1(AX) = q1(X). We know by Lemma 7.4 (as argued in the proof of
Proposition 7.5) that after move A, m entries in column s of EX are changed by
−1, and m entries in column r are changed by +1. Thus, the total sum of elements
in even-numbered columns is unchanged: q2(AX) = q2(X). Furthermore, we easily
compute that q3 changes by s − r, so q3(AX) < q3(X). Hence A is well-behaved
on X, as claimed. �

Proposition 7.7. Suppose that move A might be performed on the single row i.
Suppose in addition that q4(X) = −(r − 1) and that q5(X) 6= 0; in particular,
suppose that q̃5;ir(X) > 0. Furthermore, suppose that EXi,r−1 > EXir, and that
Xjr = Xir implies j ≥ i. If s < r and EXis is lowerable, and

(a) if EXis − EXir ≥ 2, then q1(AX) < q1(X).
(b) if r is odd, s is even, and EXis − EXir = 1, then q1(AX) = q1(X), but

q2(AX) < q2(X).
(c) if r and s are both even, and EXis−EXir = 1, then q1(AX) = q1(X) and

q2(AX) = q2(AX), but q3(AX) < q3(X).

Proof. By the assumption that q4(X) = −(r − 1), we know that p4(s) holds, so
Lemma 7.4 applies to column s. We do not know enough about column r to say
how E acts on it precisely, but the complicated assumptions in the proposition are
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specifically designed to enable us to compute the difference in size of EAX and
EX regardless.

Let ‖EX∗r‖2 denote the size of the r-th column of EX. This quantity depends
on what the entries in the r-th column are, but it is independent of their order
within the column. If the column contains h entries, of which l are strictly greater
than Xir, it is easy to check that replacing Xir by Xir+1 results ‖EX∗r‖2 changing
by (Xir + 1 + (h− 1− 2l))2 − (Xir + (h− 1− 2l))2, or

(17) 2 (Xir + (h− 1− 2l)) + 1.

By Lemma 7.4, lowering Xis changes ‖EX∗s‖2 by (EXis − 1)2 − (EXis)2, or

(18) −2EXis + 1.

The net change in ‖EX‖2 brought about by performing move A on X would be
the sum of (17) and (18). Now, recalling the definition of E, we can compute EXir

explicitly, thanks to the assumption that Xjr = Xir implies j ≥ i:

EXir = Xir + #{Xjr | Xjr < Xir, or Xjr = Xir with j > i}
−#{Xjr | Xjr > Xir, or Xjr = Xir with j < i}

= Xir + (h− (l + 1))− l.

Thus, expression (17) is equal to 2EXir + 1. We obtain that the sum of (17) and
(18) is

(19) q1(AX)− q1(X) = 2− 2(EXis − EXir).

Part (a) of the proposition follows because if EXis − EXir ≥ 2, the quantity in
(19) is strictly negative. On the other hand, if EXis − EXir = 1, the quantity in
(19) is 0. If r is odd and s even, lowering Xis obviously decreases the sum q2 of
even-column entries, so part (b) is true as well. Finally, if r and s are both odd, q2

remains unchanged, but q3 changes by m(s− r): this establishes part (c). �

Proposition 7.8. Suppose rows i and i′ of X are such that B or C might be per-
formed on them: in particular, they agree in their first r−1 entries, and intervening
rows have length less than r − 1. Suppose furthermore that q4(X) = −(r − 1), and
that row i has length at least r.

(a) Suppose X has no entry at position i′r. If q̃5;ir > 0 and EXir < EXi,r−1,
BX is well-behaved of order ≥ 4.

(b) Suppose that X does have an entry at position i′r. If Xir < Xi′r, then CX
is well-behaved of order ≥ 4.

Proof. Both of these moves change the shape of the diagram without changing
any entries, so q1 is preserved. Moreover, this shape change is brought about by
exchanging rows; the entries in any given column remain the same, albeit possibly
rearranged. Hence q2 and q3 are preserved as well. Before proceeding, we define
two convenient functions:

w5;r(X) =
∑
j

q̃5;jr(X) and w6;r(X) =
∑
j

q̃6;jr(X)

Provided that q4(X) = −(r − 1), we will of course have w5;r = q5 and w6;r = q6.
Let us also note that EXi′,r−1 = EXi,r−1 − 2.
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For part (a) of the proposition, EXi,r−1 −EXir is greater than or equal to 1 (if
r is odd) or 2 (if r is even). Move B does not change the relative position of entry
Xir in column r, so EBXi′r = EXir. We have

EBXi′,r−1 − EBXi′r = EXi,r−1 − EXir − 2;

we can conclude that

q̃5;i′r(BX) = max{0, q̃5;ir(X)− 2}

and
w5;r(BX) = max{0, w5;r(X)− 2}.

In particular, w5;r(BX) < w5;r(X). This may mean that q4(BX) = q4(X) and
q5(BX) < q5(X), or, if w5;r(BX) = 0 (meaning that BX has p3(r), which X did
not), it may be that q4(BX) = −r and that q5(BX) is unpredictable. In either
case, we observe that BX is well-behaved of order ≥ 4.

For part (b), we break down the argument into three cases:
Case 1. q̃5;ir(X) > 0, and EXir > EXi,r−1. In this case, we must have EXi′r >

EXir > EXi,r−1; it is easy to check that

q̃5;ir(CX) = q̃5;i′r(X)− 2

q̃5;i′r(CX) = q̃5;ir(X) + 2.

This equations imply that the following holds (of course, we actually have equality,
but we write an inequality to accomodate the two cases considered below):

(20) q̃5;ir(CX) + q̃5;i′r(CX) ≤ q̃5;ir(X) + q̃5;i′r(X).

Case 2. q̃5;ir(X) = 0. This time we have

q̃5;ir(CX) = q̃5;i′r(X)− 2

q̃5;i′r(CX) = 1 or 2.

These facts imply that (20) holds here as well.
Case 3. q̃5;ir(X) > 0, and EXir < EXi,r−1. This is the most complicated of the

three cases; part of the computation has to be broken down into three sub-cases.
We obtain:

q̃5;ir(CX) =


max{0, q̃5;i′r(X)− 2} if q̃5;i′r > 0 and EXi′r > EXi′,r−1

1 or 2 if q̃5;i′r = 0
q̃5;i′r + 2 if q̃5;i′r > 0 and EXi′r < EXi′,r−1

q̃5;i′r(CX) = max{0, q̃5;ir(X)− 2}

Once again, (20) holds.
We finish up the argument almost as we did for part (a), but this time we have
only the weaker inequality w5;r(CX) ≤ w5;r(X) following from (20). This gives
rise to the possibility that q4(CX) = q4(X) and q5(CX) = q5(X), compelling us
to examine the behavior of q6. But it is clear that move C brings column r closer
to being nonincreasing, in the sense that w6;r(CX) < w6;r(X). If q4 and q5 do not
change under move C, then q6(CX) < q6(X). Hence CX is well-behaved of order
≥ 4. �

The facts in Propositions 7.5, 7.7, and 7.8 are collected and summarized in
Table 3.
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Conditions Move Well-Behavedness
q4(X) ≤ −r. Order ≥ 1.
Xims is lowerable, Xi1r is raisable, and

EXiks − EXikr ≥ 1 for k = 1, . . . ,m.
A

Xi1s is raisable, Ximr is lowerable, and
EXiks − EXikr ≤ −1 for k = 1, . . . ,m.

A−1

m = 1; q4(X) = −(r − 1). Xi1s is lower-
able. q̃3;i1r(X) 6= 0. If Xjr = Xir, then
j ≥ i (for A) or j ≤ i (for A−1).

Order = 1.

EXi1s − EXi1r ≥ 2.
EXi1s − EXi1r ≤ −2.

A
A−1

r odd, s even, and EXi1s −EXi1r = 1.
r even, s odd, and EXi1s−EXi1r = −1.

A
A−1

q4(X) = −(r − 1); q̃5;i1r(X) > 0
EXi1,r−1 > EXi1r.
EXi1,r−1 < EXi1r.

Xir < Xi′r.

B
B−1

C

Order ≥ 4.

Table 3. Well-behavedness of moves under various hypotheses

8. Producing distinguished diagrams via moves

At this stage, we are ready to put these moves to work for us. The algorithm
Dist : Dn → Dn, shown below, is extremely simple. To start with, X denotes the
input weight diagram.

(1) Look down the leftmost column in Table 3 and find a hypothesis satisfied
by X (for some choice of s, r, and i1, . . . , im). If no such hypothesis exists,
then X is already distinguished, and the algorithm is finished.

(2) Modify X by performing the move corresponding to the hypothesis found
in Step 1, and then return to Step 1.

There is some ambiguity if X satisfies more than one of the hypotheses, or if it
satisfies some hypothesis for more than one choice of s, r, and i1, . . . , im. Ultimately,
we shall see that the final output of the algorithm is independent of these choices,
but until we can prove it, we need to make some specific choice. Let us decide to
always choose the first satisfied hypothesis (in the order in which they are listed
in the table), together with the lowest choice of vector (s, r,m, i1, . . . , im) (where
these vectors are ordered lexicographically).

We begin with the following fundamental fact about Dist.

Proposition 8.1. The algorithm Dist terminates after a finite number of steps.

Proof. The assertion is a consequence of the fact that only well-behaved moves
are performed while computing Dist. Given a diagram X, let c be the number of
columns in X, and consider the map q : Dn → N

6 defined by

q(X) = (q1(X), q2(X), q3(X), c+ q4(X), q5(X), q6(X)).



EQUIVARIANT K -THEORY IN THE GENERAL LINEAR GROUP 23

(Here, the c in the fourth coordinate appears only to make that coordinate have a
nonnegative value.) Give N6 the lexicographical ordering; then, to say that MX is
well-behaved is to say that q(MX) < q(X). Furthermore, we evidently have

q(X) ≥ (0, 0, 0, 0, 0, 0).

Each move performed while computing Dist decreases q, and q is bounded below.
Since N6 is well-ordered, it follows that the algorithm must stop after a finite number
of steps. �

Lemma 8.2. Suppose EX has P1(r), P3(r), and P4(r). If a range of entries
Xis, . . . , Xir in a single row is such that none of them is lowerable (resp. raisable),
then all their column-successors (resp. column-predecessors) lie in a single row.
Moreover, if s > 1, then the column-successor (resp. column-predecessor) of Xi,s−1

lies in that same row as well.

Proof. We prove the statement in the case that none of the entries in the range
is lowerable; the other case is proved similarly. If s = r, the statement is trivial.
Assume s < r, and pick any t such that s ≤ t < t + 1 ≤ r. Suppose the column-
successor of Xit is on row j1, and that of Xi,t+1 on row j2. There are three cases
to consider:

Case 1. EXit = EXi,t+1. Hence EXj1t = EXj2,t+1. But if j1 6= j2, then
EXj2,t+1 differs from EXj2t by at most 1, and EXj2t in turn differs from EXj1t

by at least 2, so, EXj1t and EXj2,t+1 must differ by at least 1. Hence j1 = j2.
Case 2. The column index t is odd, and EXit = EXi,t+1 + 1. Hence EXj1t =

EXj2,t+1 + 1. Now, EXj2t must equal either EXj2,t+1 or EXj2,t+1 + 1, but neither
of these values differs from EXj1t by 2 or more, so it must be that j1 = j2.

Case 3. The column index t is even, and EXit = EXi,t+1 − 1. This case is
similar to the preceding one.
We see that any two neighboring entries in the range Xis, . . . , Xir must have
column-successors on the same row, so the lemma follows. �

Proposition 8.3. If EX has p3(r) and p4(r − 1), then it also has p4(r).

Proof. Let ir, i′r be column-consecutive positions in column r. Since i < i′ and
p4(r − 1) holds, Xi,r−1 ≥ Xi′,r−1. This in turn implies EXi,r−1 − EXi′,r−1 ≥ 2.
By p3(r), we know

|EXir − EXi,r−1| ≤ 1

|EXi′r − EXi′,r−1| ≤ 1.

It follows from these inequalities that EXir − EXi′r ≥ 0. But no two entries in a
single column of EX can be closer than 2: we conclude that EXir − EXi′r ≥ 2.
From this last inequality we conclude that Xir − Xi′r ≥ 0; hence, column r is
nonincreasing, and p4(r) holds. �

Corollary 8.4. Suppose EX has P1(r− 1), P2(r− 1), P3(r− 1), and P4(r− 1).
If it does not have P4(r), then it also does not have P3(r). �

Proposition 8.5. Suppose EX has P1(r−1), P2(r−1), P3(r−1), and P4(r−1).
If it does not have P3(r), then X satisfies some hypothesis in the left-hand column
of Table 3.
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Proof. We know that q5(X) > 0; find a row i such that q̃5;i0r(X) is maximal. We
assume henceforth that EXi0,r−1 > EXi0r; the argument would proceed similarly
if the inequality were reversed. Let i ≤ i0 be the index of the uppermost row
whose entry in column r equals Xi0r. In other words, row i has the property that
Xjr = Xir implies j ≥ i. It is easy to check that this setup implies

EXi,r−1 − EXir ≥ EXi0,r−1 − EXi0r,

and by maximality, the preceeding line must actually be an equality. The remainder
of the argument is a boring and complicated case-by-case analysis. To assist the
reader in staying awake while reading it, we give here a road map of the breakdown
into cases, although we do not yet define all the symbols contained herein.

(1) r is odd.
(a) Xi′,r−1 is lowerable.
(b) Xi′,r−1 is not lowerable.

(i) s = 0.
(ii) s > 0.

(A) s is even.
(B) s = r − 2.
(C) s is odd and less then r − 2.

(2) r is even.
First, we consider the case where r is odd. Let i′ ≥ i be the last row such that

the consecutive rows i, i+ 1, . . . , i′ all agree in the first r columns.
If Xi′,r−1 is lowerable, we are done: Proposition 7.7 applies to rows i, . . . , i′,

with s = r − 1. (In the event that EXi,r−1 − EXir = 1, we meet the additional
requirement that s be even.)

If Xi′,r−1 is not lowerable, let Xi′′,r−1 be its column-successor. Let s be such
that rows i′ and i′′ of X agree in columns s+ 1, s+ 2, . . . , r− 1. Using Lemma 7.4,
we see that either s = 0, or Xis (s > 0) is lowerable.

Suppose s = 0. If Xi′′r is empty, we can apply Proposition 7.8a and do move
B on rows i′ and i′′. If Xi′′r is not empty, we must have Xi′′r ≥ Xir in order
not to violate the maximality of q̃5;ir(X); but on the other hand, we cannot have
Xi′′r = Xir, since i′ is the last row to agree with row i in each of the first r columns.
Hence Xi′′r > Xi′r, and we can do move C by Proposition 7.8b.

On the other hand, if s > 0, we know by Lemma 7.4 that Xi′′s is still the column-
successor of Xi′s, and that EXi′s − EXi′′s = 3. Since Xi′′s is raisable, property
P2(r − 1) tells us the first of the following inequalities, from which we derive the
latter ones:

EXi′′s ≥ EXi′′,r−1 − 1
EXi′′s + 3 ≥ EXi′′,r−1 + 2

EXi′s ≥ EXi′,r−1(21)
EXi′s > EXi′r

Indeed, EXjs > EXjr for every j = i, . . . , i′. Now we can almost apply Proposition
7.7 to rows i, . . . , i′ with our specified s and r. If EXi,r−1 − EXir ≥ 2, then
EXis − EXir ≥ 2 as well, and the proposition applies. But if that difference is
only 1, we need to make sure that s is even. We shall show instead that if s is odd,
then EXis − EXir is necessarily at least 2. Observe that by property P3(r − 1),
we must have EXi′s = EXi′,s+1 + 1, and EXi′′s = EXi′′,s+1.
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If s = r − 2, then we are done: since EXi′,r−1 − EXi′r ≥ 1 and EXi′s =
EXi′,r−1 + 1, we conclude EXi′s − EXi′r ≥ 2, and hence EXis − EXir ≥ 2, as
desired.

If s < r − 2, then because Xi′′s is raisable, property P1(r − 1) tells us that
EXi′′s ≥ EXi′′,r−2. In turn, property P3(r − 1) tells us that EXi′′,r−2 is at least
as large as EXi′′,r−1 = EXi′,r−1 − 2. We compute:

EXi′′s ≥ EXi′,r−1 − 2
EXi′′s + 3 ≥ EXi′,r−1 + 1

EXi′s > EXi′,r−1

This last strict inequality implies that EXi′s − EXi′r ≥ 2, so once again, EXis −
EXir ≥ 2, as desired.

What happens if r is even? We can repeat the above arguments until the final
few steps, where we worried about the possibility that EXis−EXir = 1. But that
worry is irrelevant when r is even: now q̃5;ir > 0 means that EXi,r−1 − EXir ≥ 2,
so inequality (21) implies directly that EXis − EXir ≥ 2 as well. �

Proposition 8.6. Suppose EX has P1(r−1) and P2(r−1), as well as P3(r) and
P4(r). If it does not have P2(r), then X satisfies some hypothesis in the left-hand
column of Table 3.

Proof. We assume without loss of generality that there are some positions i′s, i′r in
X such that EXi′s −EXi′r ≥ 2, but such that EXi′s is lowerable. (The argument
is similar if the inequality is reversed and EXi′s is raisable.) Let i1, i2, . . . , im = i′

be a sequence of row indices that are column-consecutive in column r, and such
that Xi1r is raisable. Then Proposition 7.6 applies, and we can do move A. �

Proposition 8.7. Suppose EX has P1(r−1), as well as P2(r), P3(r), and P4(r).
If it does not have P1(r), then X satisfies some hypothesis in the left-hand column
of Table 3.

Proof. The argument is identical to that in the proof of Proposition 8.6, except
that in the first sentence, the inequality is replaced by “EXi′s − EXi′r ≥ 1,” and
in the last sentence, we apply Proposition 7.5. �

Theorem 8.8. The map κ : D◦n → Ω is a bijection. Given any X ∈ Dn, Dist(X)
is the unique weight diagram such that Dist(X) is distinguished and κ(Dist(X)) =
κ(X).

Proof. It is clear that Dist(X) is distinguished for any X, since Propositions 8.5,
8.6, and 8.7 together say that additional moves can be performed on any diagram
not lying in D◦n. It is also obvious that for any pair (α; (µ1, . . . , µl)) ∈ Ω, there
exists a weight diagram X with

κ(X) = (α; (µ1, . . . , µl)).

(For example, one could take X to be a diagram in which the coordinates of the
various µi’s are placed in the first column, and the remainder of the diagram con-
tains only 0’s.) By Lemma 7.2, Dist respects the fibres of κ, so we conclude that
each fibre of κ contains at least one element of D◦n. But Proposition 5.8 says each
fibre contains at most one element of D◦n, so in fact κ ◦ E−1 is a bijection. �
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Corollary 8.9 (cf. Claim 3.1). Given (C, E) ∈ Ω, let X0 be the unique distinguished
weight diagram in κ−1(C, E). Then, for any X ∈ κ−1(C, E), we have ‖τ(X0)‖2 ≤
‖τ(X)‖2.

Proof. From the preceding theorem, we know that Dist(X) = X0. The result then
follows from the fact that the value of q1 never increases during the operation of
Dist. �

We can now assemble everything we have done into the following result, obtained
by combining Theorems 3.2, 6.5, and 8.8.

Theorem 8.10. The map γ : Λ+ → Ω given by λ 7→ κ(E−1WtD(λ)) is a bijection;
its inverse is given by (C, E) 7→ π(EDist(X1)), where X1 is any weight diagram in
κ−1(C, E). Moreover, this bijection has the property that

[ICγ(λ)] ∈ span{[Aµ] | µ ≤ λ};
i.e., it coincides with the bijection established by Bezrukavnikov.
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