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Abstract. These lecture notes were written to accompany the author’s talk

at the workshop on “Mixed Hodge Modules and their Applications,” held at

the Clay Mathematics Institute, Oxford, in August 2013.

1. Introduction

1.1. Overview. Let X be a smooth complex algebraic variety, and let G be an
affine algebraic group acting on it. Each g ∈ G determines an automorphism
ag : X → X, and hence an autoequivalence a∗g of the category of sheaves (or perverse
sheaves, or D-modules, or mixed Hodge modules) on X. Roughly, an equivariant
sheaf is an object that is stable under all a∗g. It is reasonably straightforward to
make this into a precise definition. In the mixed Hodge module case, the resulting
abelian category is denoted MHMG(X). If G acts freely on X, it turns out that
this is equivalent to MHM(X/G).

But we would also like to work at the derived level, and have available the
formalism of (derived) sheaf functors. There are two obvious approaches that both
go wrong:

• If we simply copy the definition of MHMG(X) at the derived level, the
resulting category is not a triangulated category.
• The näıve derived category DbMHMG(X) does not, in general, admit well-

behaved pull-back and push-forward functors.

So a more sophisticated approach is needed.
Here is a more precise statement of our desiderata. We want a rule that assigns to

every smoothG-varietyX a certain triangulated categoryDb
G(X) with the following

properties:

(1) Db
G(X) should be equipped with a bounded t-structure whose heart is equiv-

alent to the abelian category MHMG(X).
(2) There should be a t-exact “forgetful functor” For : Db

G(X)→ DbMHM(X).
(3) If f : X → Y is a smooth morphism of smooth G-varieties, say of relative

dimension d, then there should be a t-exact triangulated functor f∗[d] :
Db
G(Y )→ Db

G(X) that “commutes with For” in the obvious sense.

Remarkably, it turns out that these three desiderata essentially force the definition
of Db

G(X) upon us! In fact, the third desideratum can be weakened to one involving
only smooth acyclic maps. After the fact, we will see how define all the usual sheaf
operations at the level of Db

G(X) so that they commute with For. For now, we
remark that if we restrict ourselves to varieties with a freeG-action, then the “näıve”
derived category DbMHMG(X) (or DbMHM(X/G)) does satisfy the desiderata.
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1.2. Stacks on the acyclic site. Before discussing the construction of Db
G(X)

in general, a word on the machinery of stacks is needed. Throughout this note,
the word “stack” should be understood in the sense of [13, Chap. 19] or [10]. A
stack is (roughly) just a sheaf of categories. (In particular, in this note, stacks are
not assumed to be fibered in groupoids, and they are certainly not algebraic or
Deligne–Mumford stacks.) The main point is that both objects and morphisms can
be glued from local data in some (Grothendieck) topology. It is a shown in [5] that
perverse sheaves form a stack in the étale and smooth topologies.

Unfortunately, derived categories of sheaves do not form a stack in most reason-
able topologies. The difficulty is that push-forward from an open set need not be
an exact functor, and that lack of exactness interferes with gluing objects from an
open covering. (See [5, §3.2.1].)

In this note, we will circumvent this problem by defining a new Grothendieck
topology on X, a very coarse topology called the acyclic topology. This topology is
certainly useless for understanding the geometry of X; it is specifically designed to
suppress geometric information, by enforcing some cohomology-vanishing on push-
forward functors. But that cohomology-vanishing will imply that derived categories
form a stack on the acyclic site.

1.3. Definition of the equivariant derived category. Here is the construction
of Db

G(X) in general.

(1) In the G-equivariant acyclic topology, any X admits a covering {ui : Ui →
X}i∈I where G acts on each Ui freely.

(2) As noted earlier, we already know how to define Db
G(U) when G acts freely

on U : we simply put Db
G(U) = DbMHMG(U). The assignment Ui 7→

DbMHMG(Ui) defines a prestack on XG,acyc.
(3) Let DG,X be the stackification of that prestack, and define Db

G(X) to be

the cateogry of “global sections” of DG,X , i.e., its fiber over X
id→ X.

Thus, an object of Db
G(X) is, by definition, a compatible collection of objects in

various DbMHM(Ui/G) as Ui ranges over a suitable covering family in the acyclic
topology. In the case where X is a point and G is a torus, we will give a very
concrete description of Db

G(X).

1.4. Comparison with Bernstein–Lunts. The foundations of equivariant de-
rived categories for constructible sheaves are developed in the monograph of Bern-
stein–Lunts [7]. (See also [12] for a self-contained treatment of the D-module case.)
The present note follows the ideas of [7] quite closely.

One minor difference in terminology between the present lecture and [7] concerns
the notion of “acyclic maps.” The precise definition will be given in Section 3; for
now, we just note that an acyclic map f : X → Y ought to have two properties:
(i) f∗ should have vanishing (t-)cohomology in some range, and (ii) f∗ should be
(t-)exact. But with respect to what t-structure? In [7], Bernstein and Lunts work
with the standard t-structure on the derived category of sheaves. Pullback along
any map is t-exact for that t-structure, so condition (ii) imposes no restrictions. In
this lecture, on the other hand, it makes more sense to impose (i) with respect to
the natural t-structure on DbMHM(X), which corresponds (via rat) to the perverse
t-structure on the derived category of sheaves. Since (ii) is no longer automatic, we
also require acyclic maps to be smooth. Despite the difference in definition, many
maps are acyclic in both our sense and that of [7]; see Exercise 3.4.
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A more prominent difference with [7] is the central role given to the acyclic
topology and stackification. In fact, the stackification perspective is implicit in [7];
indeed, they explicitly consider the assignment U 7→ Db

c (U) as a fibered cate-
gory. However, they focus exclusively on acyclic maps U → X where U has a free
G-action, and such maps by themselves do not form a Grothendieck topology. Nev-
ertheless, the discussion in [7, §2.4] amounts to describing Db

G(X) by stackification.

Part 1. Mixed Hodge modules and Grothendieck topologies

2. Preliminaries

2.1. Notation. Given a smooth complex variety X, let Xan denote the correspond-
ing analytic space. Let OX denote the structure sheaf of X, and let DX denote
the sheaf of differential operators. Let Mod(DX) (resp. Modhol(DX), Modrh(DX))
denote the category of all (resp. holonimic, regular holonomic) left DX -modules.

Fix a subfield A ⊂ R. Let Db
c (X,A), denote the derived category of algebraically

constructible complexes of sheaves of A-vector spaces on Xan, and let Perv(X,A) ⊂
Db

c (X,A) denote the full subcategory of perverse A-sheaves.
Let MHM(X,A) denote the abelian category of mixed Hodge A-modules. This

category comes equipped with the exact, faithful functor

rat : MHM(X,A)→ Perv(X,A).

Recall [4] that the “realization functor” DbPerv(X,A) → Db
c (X,A) is an equiva-

lence of categories. We will identify DbPerv(X,A) with Db
c (X,A), and regard the

derived version of the functor above as a functor

rat : DbMHM(X,A)→ Db
c (X,A).

In the sequel, we generally omit the field A from the notation for the categories
defined above, instead writing Db

c (X), Perv(X), MHM(X), etc.
Let AX ∈ MHM(X) denote the trivial mixed Hodge A-module on X. Its un-

derlying DX -module is OX , and rat(AX) is (a shift of) the constant sheaf on Xan

with value A. The object AX is pure of weight dimX.
Let aX : X → pt denote the constant map to a point. For F ,G ∈ MHM(X), let

Homi(F ,G) = Hi(aX∗RHom(F ,G)).

Thus, Homi(F ,G) is an object of MHM(pt) equipped with a natural isomorphism

rat Homi(F ,G) ∼= Homi
Db

c (X)(ratF , ratG).

For an object A ∈ DbMHM(pt), we define its Hodge cohomology as follows:

Hi
Hodge(A) := Homi

DbMHM(pt)(Apt, A).

When A ∈ MHM(pt), its Hodge cohomology Hi
Hodge(A) vanishes unless i ∈ {0, 1}.

For F ,G ∈ DbMHM(X), the main result of [15] implies that there is a natural
short exact sequence

(2.1) 0→ H1
Hodge(Homi−1(F ,G))→ Homi(F ,G)→ H0

Hodge(Homi(F ,G))→ 0.
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2.2. Smooth pullback. Let f : X → Y be a smooth morphism of smooth complex
varieties, say of relative dimension d. Then the functor f∗[d] : DbMHM(Y ) →
DbMHM(X) preserves the heart of the natural t-structure. (This follows from the
corresponding statement for perverse sheaves; cf. [5, §4.2.4].) It will be convenient
to introduce the notation

f† := f∗[d] : DbMHM(Y )→ DbMHM(X) or MHM(Y )→ MHM(X)

for this functor.

Proposition 2.1. Let X and Y be smooth varieties, and let f : X → Y be a
smooth surjective morphism with connected fibers. Then the natural maps

Hom(F ,G)
∼→ Hom(f†F , f†G),(2.2)

Hom(F ,G)
∼→ Hom(f†F , f†G)(2.3)

are both isomorphisms.

Proof Sketch. The analogous statement in the setting of Db
c (X) appears in [5,

Proposition 4.2.5]. The proof given there depends only on formal properties of
the functors f∗, f

∗, RHom, and aY ∗; the same argument also proves (2.2). Fur-
thermore, since f† is exact, we clearly have Hom−1(f†F , f†G) = 0, and so by (2.1),
Hom(f†F , f†G) ∼= H0

Hodge(Hom(f†F , f†G)). Thus, (2.2) implies (2.3). �

2.3. The stack of mixed Hodge modules. Let Xsm denote the small smooth
site of X. Consider the prestack M on Xsm which associates to each smooth map
u : U → X the category MHM(U), and which associates to a morphism

U
i //

u
��

V

v
��

X

the functor i† : MHM(V ) → MHM(U). In this subsection, we show that this
prestack is a stack.

Proposition 2.2. Let F ,G ∈ MHM(X), and let Hom(F ,G) denote the presehaf
on Xsm given by

Hom(F ,G)(U
u→ X) = Hom(u†F , u†G).

This presheaf is a sheaf. In other words, the prestack M is separated.

Proof. We begin with various analogues of Hom(F ,G). Let

HomD(F ,G), HomDF (F ,G), HomPerv(F ,G), HomPerv,W (F ,G)

be the presheaves that assign to u : U → X the space of morphisms between
the underlying D-modules (resp. filtered D-modules (with the Hodge filtration);
perverse sheaves; filtered perverse sheaves (with the weight filtration)) of u†F and
u†G. Now, HomD(F ,G) is just the usual “internal Hom” for D-modules; it is
an elementary observation that this presheaf is a sheaf. The same elementary
considerations show that HomDF (F ,G) is also a sheaf.

Next, according to [5, Corollaire 2.1.22], HomPerv(F ,G) is a sheaf. (To be pre-
cise, that result treats the analytic site. The analogous result for the étale site is dis-
cussed in [5, §2.1.24 and §2.2.19], and similar remarks apply to the smooth site.) It
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is straightforward to see that the subpresheaf HomPerv,W (F ,G) ⊂ HomPerv(F ,G)
is also a sheaf.

Now, both HomDF (F ,G) and HomPerv,W (F ,G) can be identified with sub-
sheaves of HomD(F ,G) (for the latter, this involves extending scalars to C and
the Riemann–Hilbert correspondence). Under these identifications, the presheaf
Hom(F ,G) is simply the intersection HomDF (F ,G)∩HomPerv,W (F ,G), and such
an intersection is automatically a sheaf. �

Theorem 2.3. The prestack M : U 7→ MHM(U) on Xsm is a stack.

The corresponding statement for D-modules is elementary (see, for instance, [13,
Proposition 19.4.7(b)]). For perverse sheaves, this is proved in [5, §2.2.19]. However,
in contrast with Proposition 2.2, we cannot simply deduce the result for mixed
Hodge modules from those for D-modules and perverse sheaves—that would just

yield the weaker statement that the categories MFrhW(U) (for U
u→ X smooth)

form a stack. (For the definition of MFrhW(U), see the discussion following [14,
Theorem 0.1].) Instead, we essentially copy the proof of [5, §2.2.19].

Proof. Proposition 2.2 already shows that one can glue morphisms of mixed Hodge
modules. As explained in [5, §2.1.23 and §2.2.19] or [13, Proposition 19.4.6(v)], it
remains to show that one can glue objects. Let {ui : Ui → X}i∈I be a covering of X
in the smooth topology. For brevity, let Uij = Ui×XUj and Uijk = Ui×XUj×XUk.
The natural projection maps are denoted

(2.4)
r1
ij : Uij → Ui,

r2
ij : Uij → Uj ,

r12
ijk : Uijk → Uij ,

r13
ijk : Uijk → Uik,

r23
ijk : Uijk → Ujk,

and suppose we are given the following data:

(1) for each i ∈ I, an object Fi ∈ MHM(Ui).

(2) for each pair (i, j) ∈ I × I, an isomorphism ϕij : r1∗
ij Fi

∼→ r2∗
ij Fj .

These data are required to satisfy the property that the following diagram commutes
(cf. [13, §19.3], and especially [13, Eq. (19.3.10)]):

(2.5)

r12∗
ijk r

1∗
ij Fi

r12∗ijkϕij//

o
��

r12∗
ijk r

2∗
ij Fj

∼ // r23∗
ijk r

1∗
jkFj

r23∗ijkϕjk

��
r13∗
ijk r

1∗
ikFi

r13∗ijkϕik

// r13∗
ijk r

2∗
ikFk ∼

// r23∗
ijk r

2∗
jkFk

We must show that there exists an object F ∈ MHM(X) together with isomor-

phisms ϕi : u†iF
∼→ Fi such that

(2.6)

r1†
ij u
†
iF

∼ //

r1†ij ϕi

��

r2†
ij u
†
jF

r2†ij ϕj

��
r1†
ij Fi ϕij

// r2†
ij Fj

commutes. As mentioned above, the construction is copied from [5, §2.2.19]. For

each (i, j) ∈ I × I, there are adjunction maps η1
ij : Fi → r1

ij†r
1†
ij Fi and η2

ij : Fj →
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r2
ij†r

2†
ij Fj . Let

U =
∏
i∈I

ui†Fi and V =
∏
i,j∈I

ui†r
1
ij†r

1†
ij Fi ∼=

∏
i,j∈I

uj†r
2
ij†r

2†
ij Fj .

Form the maps η̄1 = (ui†η
1
ij)i,j∈I : U → V and η̄2 = (uj†η

2
ij)i,j∈I : U → V, and

let f = η̄1 − η̄2. Finally, let K be the cocone of f , so that we have a distinguished
triangle

K → U f→ V →
in DbMHM(X). The exactness properties of the various sheaf operations used here
imply that Hi(U) and Hi(V) vanish for i < 0, so the same holds for Hi(K). In
particular, the sequence

0→ H0(K)→ H0(U)→ H0(V)

is exact. Let F = H0(K). The required isomorphisms ϕi come from the adjunction

(u†i , ui†). The details are explained in [5, §2.2.19]. �

This result has the following consequence, which is not obvious, at least to me.

Corollary 2.4. For an object of MFrhW(X), the property of being a mixed Hodge
module is local in the smooth topology.

3. Acyclic maps

For any n ∈ Z, we have the usual truncation functors

τ≤n, τ≥n : DbMHM(X)→ DbMHM(X).

The same notation will also be used for truncation with respect to the natural
t-structure on DbPerv(X), or the perverse t-structure on Db

c (X). (The natural
t-structure on Db

c (X) will not appear in this lecture, except in Exercise 3.4.) We
write Hi for cohomology with respect to the natural t-structure on DbMHM(X) or
the perverse t-structure on Db

c (X). Given integers a ≤ b, let D[a,b]MHM(X) denote
the full subcategory of DbMHM(X) consisting of objects F with Hi(F) = 0 unless
a ≤ i ≤ b.

Definition 3.1. A smooth morphism of smooth complex varieties f : X → Y is
said to be n-acyclic (resp. ∞-acyclic) if for every smooth morphism Y ′ → Y , the
base change f ′ : X ×Y Y ′ → Y ′ has the property that for all F ∈ MHM(Y ′), the
natural morphism

F → τ≤nf
′
†f
′†F resp. F → f ′†f

′†F

is an isomorphism. A 0-acyclic map is simply said to be acyclic.

Of course, if n ≤ m, then every m-acyclic map is also n-acyclic. The following
lemma is immediate from the definition.

Lemma 3.2. Let f : X → Y be an acyclic map. Then f is surjective, and for
F ∈ MHM(Y ), we have F = 0 if and only if f†F = 0. �

Exercise 3.3. Let X be a smooth, connected variety, and assume that Hi(X) = 0
for i = 1, . . . , n. Then the constant map X → pt is n-acyclic.



EQUIVARIANT MIXED HODGE MODULES 7

Exercise 3.4. As noted in the introduction, the definition above differs from that
in [7]. To distinguish the two, we rename the notion from [7] “n-standard-acyclic.”
Let us write stdτ≤n for truncation with respect to the standard t-structure on
Db

c (X). Recall that a map f : X → Y is n-standard acyclic if for every base
change f ′ : X ×Y Y ′ → Y ′ and every constructible sheaf F on Y ′, the morphism
F → stdτ≤nf

′
∗f
′∗F is an isomorphism. (Note that f is not assumed to be smooth.)

Prove that if f : X → Y is (n+ dimY )-standard-acyclic, then it is n-acyclic. Is
there an implication in the other direction?

Lemma 3.5. Suppose f : X → Y is n-acyclic, and let a ≤ b be integers with
b − a < n. For all F ∈ D[a,b]MHM(X), the morphism F → τ≤bf†f

†F is an
isomorphism.

Proof. We proceed by induction on b − a. If b = a, the result is immediate from
the definition. Otherwise, let F ′ = τ≤aF and F ′′ = τ≥a+1F , and consider the
distinguished triangle F ′ → F → F ′′ →. Applying f†f

† to this and then forming
the associated long exact sequences in cohomology, we obtain the commutative
diagram

Hi−1(F ′′) //

��

Hi(F ′) //

��

Hi(F) //

��

Hi(F ′′) //

��

Hi+1(F ′)

��
Hi−1(f†f

†F ′′) // Hi(f†f
†F ′) // Hi(f†f

†F) // Hi(f†f
†F ′′) // Hi+1(f†f

†F ′)

By induction, the first, second, and fourth vertical arrows are isomorphisms when-
ever a ≤ i ≤ b. The fifth vertical arrow is an isomorphism when a ≤ i ≤ b− 1, and
it is obviously injective when i = b. By the five lemma, Hi(F)→ Hi(f†f

†F) is an
isomorphism for a ≤ i ≤ b, so F → τ≤bf†f

†F is an isomorphism. �

Corollary 3.6. Suppose f : X → Y is n-acyclic, and let a ≤ b be integers with
b− a < n. Then f† : D[a,b]MHM(Y )→ D[a,b]MHM(X) is fully faithful.

Proof. For F ,G ∈ D[a,b]MHM(Y ), we have Hom(F ,G) ∼= Hom(F , τ≤bf†f†G) ∼=
Hom(F , f†f†G) ∼= Hom(f†F , f†G). �

Lemma 3.7. Let f : X → Y and g : Y → Z be morphisms of smooth complex
varieties.

(1) If f and g are both n-acyclic, then g ◦ f is n-acyclic.
(2) If g ◦ f is n-acyclic and g is acyclic, then g is in fact n-acyclic.

Proof. (1) Let F ∈ MHM(Z), and consider the object g†F ∈ MHM(Y ). Since f
is n-acyclic, we have g†F ∼= τ≤nf†f

†g†F . In other words, there is a distinguished
triangle g†F → f†f

†g†F → τ>nf†f
†g†F →, and hence also

g†g
†F → g†f†f

†g†G → g†τ>nf†f
†g†F → .

Since g† is left t-exact, we have that Hi(g†τ>nf†f
†g†F) = 0 for i ≤ n. Therefore,

we have isomorphisms Hi(g†g
†F)

∼→ Hi(g†f†f
†g†F) for i ≤ n. In other words, the

natural map τ≤ng†g
†F → τ≤ng†f†f

†g†F is an isomorphism. Since F → τ≤ng†g
†F

is also an isomorphism, the composition F → τ≤n(g ◦ f)†(g ◦ f)†F is as well, as
desired.
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(2) Consider the commutative diagram

F //

o
��

τ≤ng†g
†F

o
��uu

τ≤ng†f†f
†g†F // τ≤ng†f†f†g†τ≤ng†g†F

The vertical arrows are isomorphisms because g ◦ f is assumed to be n-acyclic.
(For the right-hand vertical arrow, use Lemma 3.5. This diagram shows that the
diagonal arrow τ≤ng†g

†F → τ≤ng†f†f
†g†F has both left and right inverses, so it is

an isomorphism. We then conclude that the top horizontal arrow is an isomorphism
as well, as desired. �

Definition 3.8. Let Acyc(X) be the category whose objects are acyclic maps

U → X, and in which the morphisms (U
u→ X) → (V

v→ X) are the acyclic maps
f : U → V such that v ◦ f = u. Such a morphism in Acyc(X) is said to be n-
acyclic if the underlying morphism of smooth varieties is n-acyclic in the sense of
Definition 3.1.

Let V be an object in Acyc(X), and let {fi : Ui → V}i∈I be a family of mor-
phisms. This family is said to be a covering family if for every integer n ≥ 0, there
exists an i ∈ I such that fi : Ui → V is n-acyclic. This defines a Grothendieck
topology on Acyc(X), called the acyclic topology.

The acyclic site of X, denoted Xacyc, is the site consisting of Acyc(X) together
with the acyclic topology.

Exercise 3.9. Check that this definition satisfies the axioms for a Grothendieck
topology. (Hint: Lemma 3.7(2) plays a key role at several points in the proof.)

The acyclic topology is useless for doing actual topology, as the following exercise
shows. But it will be useful to us as a way to organize certain desirable properties of
DbMHM(X), and to impose desired properties on the equivariant derived category.

Exercise 3.10. Let H•acyc(X,A) denote the “acyclic cohomology” of X, i.e., the
sheaf cohomology in the acyclic topology of the constant sheaf with value A. Prove
that H0

acyc(X,A) ∼= A, and that Hi
acyc(X,A) = 0 for all i > 0. (Hint: See [13,

§18.7] for a help converting this to a Čech cohomology question. I admit that I
have not worked through the details myself!)

Let DX be the prestack on Xacyc given by DX(U
u→ X) = DbMHM(U). The

next two results are analogues of those in Section 2.3.

Proposition 3.11. Let F ,G ∈ DbMHM(X), and let Hom(F ,G) denote the pre-
sehaf on Xacyc given by

Hom(F ,G)(U
u→ X) = Hom(u†F , u†G).

This presheaf is a sheaf. In other words, the prestack DX is separated.

Proof Sketch. Choose integers a ≤ b such that F and G both lie in D[a,b]MHM(X),
and let n > b − a. Consider a covering family {ui : Ui → X}i,I in Xacyc. For any
ui : Ui → X that is at least n-acyclic, Corollary 3.6 tells us that Hom(F ,G) →
Hom(u†iF , u

†
iG) is an isomorphism. It is easily deduced from this that Hom(F ,G)

is a sheaf. �
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Theorem 3.12. The prestack DX : U 7→ DbMHM(U) on Xacyc is a stack.

Proof. As in the proof of Theorem 2.3, it suffices to explain how to glue objects.
The task here is rather easier, simply because every acyclic map is surjective.

Let {ui : Ui → X}i∈I be a covering of X in the acyclic topology. We will
use the notation of (2.4) and the subsequent text. In particular, we have objects

Fi ∈ DbMHM(Ui) and isomorphisms ϕij : r1†
ij Fi

∼→ r2†
ij Fj satisfying (2.5).

Note that for any k ∈ Z and any i, j ∈ I, we have that Hk(Fi) = 0 if and only if

Hk(r1†
ij Fi) = 0, by Lemma 3.2. But Hk(r1†

ij Fi) ∼= Hk(r2†
ij Fj) vanishes if and only if

Hk(Fj) = 0. In other words, for each k ∈ Z, the object Hk(Fi) must either vanish
for all i or be nonzero for all i. Thus, we can choose an interval [a, b] ⊂ Z such that
Fi ∈ D[a,b]MHM(Ui) for some, and hence all, i ∈ I.

Now, let n = b − a + 1, and choose some i0 ∈ I such that ui0 : Ui0 → X is

n-acyclic. Let F = τ≤bui0†Fi0 . For each j ∈ I, define ϕj : u†jF
∼→ Fj to be the

composition of the maps

u†jF
base change−−−−−−−→ τ≤br

2
i0j†r

1†
i0j
Fi0

τ≤bϕi0j−−−−−→ τ≤br
2
i0j†r

2†
i0j
Fj

Lemma 3.5−−−−−−−→ Fj .

Each of the three maps here is an isomorphism. The first comes from the following
cartesian diagram:

Ui0j
r1i0j //

r2i0j

��

Ui0

ui0

��
Uj uj

// X

It is left to the reader to check that (2.6) holds. �

Part 2. Equivariant categories of mixed Hodge modules

4. Digression: Sheaves of sets

This short and very elementary section is based on my experiences trying to
convince graduate students that the usual definition of “equivariant sheaf” is the
correct one—in other words, that that definition does indeed encode the intuitive
notion that it ought to. This section is independent of the rest of the lecture; other
than some notation, it will not be referred to again. Readers who are happy with
the definition of equivariant sheaves should skip it.

In this section, X will be denote a topological space, and G will denote a topo-
logical group acting on it. Let

(4.1) a : G×X → X and p : G×X → X

denote the action map and the projection onto the second factor, respectively. We
will also make use the following maps:

(4.2)

s : X → G×X s(x) = (e, x),

m : G×G×X → G×X m(g, h, x) = (gh, x),

b : G×G×X → G×X m(g, h, x) = (g, a(h, x))

q : G×G×X → G×X q(g, h, x) = (h, x)
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These maps satisfy the following relations, which encode the fact that a is an action:

a ◦ s = id = p ◦ s, a ◦m = a ◦ b, p ◦ q = p ◦m, a ◦ q = p ◦ b

Definition 4.1. A G-equivariant sheaf of sets on X is a pair (A, β), where A is a

sheaf of sets on X, and β : p∗A
∼→ a∗A is an isomorphism satisfying the following

two axioms:

(1) s∗β = id.
(2) b∗β ◦ q∗β = m∗β.

To make sense of this definition, we will switch to the language of étalé spaces.
Recall that an étalé space over X is simply a local homeomorphism π : E → X.
There is an equivalence of categories between étalé spaces over X and sheaves of
sets on X.

Definition 4.2. A G-equivariant étalé space on X is an étalé space π : E → X
over X together with a G-action aE : G× E → E such that π is G-equivariant.

Note that id×π : G×E → G×X is an étalé space over G×X. Indeed, it is the
pullback p∗E. We can also describe a∗E: it is the étalé space ρ : G× E → G×X
with

ρ(g, y) = (g, g−1 · π(y)).

Given a G-equivariant étalé space over X, we can define a map β̂ : G×E → G×E
by β̂(g, x) = (g, g · x). This map makes the following diagram commute:

G× E
β̂ //

id×π !!

G× E

ρ
}}

G×X

That is, β̂ is an isomorphism of étalé spaces over G ×X. Conversely, given β̂, we

can recover aE = p ◦ β̂.

Exercise 4.3. Let β̂ : a∗E → p∗E be an isomorphism of étalé spaces over G×X.
Prove that the following conditions are equivalent:

(1) The map p ◦ β̂ : G × E → E defines an action of G on E. Moreover, this
action makes E into a G-equivariant étalé space over X.

(2) The map β̂ has the following two properties:

(a) s∗β̂ = id : E → E.

(b) b∗β̂ ◦ q∗β̂ = m∗β̂.

Then, prove that there is an equivalence of categories between G-equivariant étalé
spaces over X and G-equivariant sheaves of sets on X.

5. The abelian category MHMG(X)

From now on, X will denote a smooth complex algebraic variety, and G will
denote an affine algebraic group acting on X. Let a, p, s, m, b, and q be as in (4.1)
and (4.2).

Definition 5.1. A G-equivariant mixed Hodge module on X is a pair (F , β), where

F ∈ MHM(X), and β : p∗F ∼→ a∗F is an isomorphism satisfying the following two
axioms:
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(1) s∗β = id.
(2) b∗β ◦ q∗β = m∗β.

A morphism of G-equivariant mixed Hodge modules f : (F , β) → (G, γ) is a
morphism f : A→ A′ in MHM(X) such that the following diagram commutes:

(5.1)

p∗F
β //

p∗f

��

a∗F

a∗f

��
p∗G

γ
// a∗G

Let MHMG(X) denote the category of G-equivariant mixed Hodge modules on
X. It is easy to see this this is naturally an abelian category. We have an obvious
forgetful functor

For : MHMG(X)→ MHM(X).

A priori, a G-equivariant mixed Hodge module is a mixed Hodge module together
with additional data. However, the next theorem tells us that when G is connected,
there can be at most one choice for that additional data. In other words, when G
is connected, equivariance is a property, rather than additional data.

Theorem 5.2. If G is connected, then the forgetful functor For : MHMG(X) →
MHM(X) is fully faithful.

Proof. Let F ,G ∈ MHMG(X). For brevity, we will use the same notation to denote
the corresponding objects in MHM(X), rather than writing For(F) and For(G). We
write HomG(F ,G) and Hom(F ,G) for the morphism spaces in MHMG(X) and in
MHM(X), respectively. Consider the following diagram:

(5.2)

Hom(a∗F , a∗G)

γ−1◦(−)◦β

��

s∗ // Hom(s∗a∗F , s∗a∗G)

Hom(F ,G)

a∗

∼
44

p∗
∼
**

?

Hom(p∗F , p∗G)
s∗
// Hom(s∗p∗F , s∗p∗G)

The upper triangle (involving a∗, s∗, and an equality) commutes, as does the bottom
triangle. The square on the right-hand side of the diagram also commutes. Only the
triangle marked ? is not known a priori to commute. But Proposition 2.1 implies
that the maps a∗ and p∗ are isomorphisms, so the triangle ? must commute as
well.

By definition, HomG(F ,G) is the subset of Hom(F ,G) for which (5.1) commutes.
But the commutativity of ? above implies that every element of Hom(F ,G) has
that property, so HomG(F ,G) = Hom(F ,G). �

6. Free G-spaces

Definition 6.1. The action of G on X is said to be free if it admits a geometric
quotient φ : X → X/G that is locally trivial in the étale topology.
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For the notion of geometric quotient, see [11, Definition 0.6]. Note that the
definition of free in [11, Definition 0.8] is different (and weaker than this one):
there, an action is free if the map Ψ := (a, p) : G × X → X × X is a closed
immersion. As explained in [9, §3], the condition in Definition 6.1 above implies
the one in [11, Definition 0.8], but the converse fails in general. The stronger
condition in Definition 6.1 is better suited to our purposes (cf. [7, §0.3]).

Theorem 6.2. Assume that G acts freely on X, and let φ : X → X/G be the
quotient map. Then φ† induces an equivalence of categories

φ† : MHM(X/G)
∼→ MHMG(X).

Proof Sketch. This result essentially follows from the results of §2.3 and the obser-
vation that the smooth map {φ : X → X/G} constitutes a covering of X/G in the
smooth topology. To spell this out in a bit more detail, consider the commutative
diagram

G×X

p

��

a // X

φ

��
X

φ
// X/G

It is easy to see that this square is cartesian, so we can identify G×X ∼= X×X/GX.
Likewise, the diagram below gives us an identification G×G×X ∼= X×X/G×X/GX.

G×G×X b //
m
((

q

��

G×X
a

%%p

��

G×X a //

p

��

X

φ

��

G×X
a

//

p ((

X

φ %%
X

φ
// X/G

Under these identifications, the various projection maps in (2.4) correspond to the
maps in (4.1)–(4.2) as follows:

r1 = p,

r2 = a,

r12 = q,

r13 = m,

r23 = b.

Condition (2) of Definition 5.1 is just a restatement of the condition that the dia-
gram in (2.5) commutes.

With this perspective, it is clear that for any F ∈ MHM(X/G), the object

φ†F ∈ MHM(X) comes equipped with a natural isomorphism β : p∗φ†F ∼→ a∗φ†F
satisfying condition (2) of Definition 5.1. Condition (1) also holds: it is a conse-
quence of the fact that p ◦ s = a ◦ s = id, combined with general results about
pullback functors and compositions, explained, for instance, in [2, Lemmas B.4(c)
and B.6(c)]. Thus, it makes sense to regard φ† as taking values in MHMG(X)
rather than in MHM(X).

Now, Proposition 2.2 tells us that specifying a morphism in MHM(X/G) is equiv-
alent to specifying it locally with respect to some covering in the smooth topology.
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For the covering {φ : X → X/G}, “specifically a morphism locally” just means
giving a morphism in MHM(X) that satisfies (5.1). In other words, Proposition 2.2
implies that φ† : MHM(X/G)→ MHMG(X) is fully faithful. Similar considerations
with Theorem 2.3 show that φ† is also essentially surjective, so it is an equivalence
of categories. �

Exercise 6.3. Suppose G acts on X, and suppose that H E G is a closed normal
subgroup that acts freely on X. Let φ : X → X/H be the quotient map. Prove

that φ† induces an equivalence MHMG/H(X/H)
∼→ MHMG(X).

Exercise 6.4 (Induction equivalence). Let H ≤ G be a closed subgroup, and let
X be a variety with an H-action. Prove that there is an equivalence of categories

MHMH(X) ∼= MHMG(G×H X).

Here, G ×H X is the quotient of G ×X by the free H-action given by h · (g, x) =
(gh−1, hx).

Exercise 6.5. Let XG,sm be the site whose objects are G-equivariant smooth maps
U → X. Show that the prestack which assigns to U → X the category MHMG(U)
is a stack.

7. Definition of Db
G(X)

Let us define a G-equivariant analogue of the site Xacyc. We define AcycG(X)

to the be the category whose objects G-equivariant acyclic morphisms U
u→ X. A

morphism (U
u→ X) → (V

v→ X) is a G-equivariant acyclic map f : U → V such
that v ◦ f = u. We define covering families just as in Definition 3.8, obtaining a
Grothendieck topology on AcycG(X). The resulting site is denoted XG,acyc.

Definition 7.1. An n-acyclic resolution of X is a G-equivariant n-acyclic map
u : U → X such that the G-action on U is free.

Let ResG(X) ⊂ AcycG(X) denote the full subcategory consisting of acyclic res-
olutions.

Proposition 7.2. Let X be a smooth G-variety. There exists a covering family in
XG,acyc consisting entirely of objects in ResG(X).

Proof. Embed G in some GLk, and note that if U → X is an n-acyclic GLk-
equivariant resolution, then it is clearly also an n-acyclic G-equivariant resolution.
Thus, we may assume that G = GLk. We may also assume that X is a point, as
one can then obtain n-acyclic resolutions for arbitrary X by base change.

Thus, for each n ≥ k, we seek a smooth variety Un with a free action of GLk
such that Hj(Un) = 0 for 0 ≤ j ≤ n. The complex Stiefel manifold of k-frames in
Cn+k is known to have these properties [16, Theorem IV.4.7]. �

Note that ResG(X) enjoys the following “stability” property: if U → V is a
morphism in AcycG(X), and V ∈ ResG(X), then U lies in ResG(X) as well. This
property makes it possible to define a prestack preDG,X on XG,acyc as follows:

preDG,X(U
u→ X) =

{
DbMHM(U/G) if U

u→ X is a resolution of X,

0 otherwise.
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If (U
u→ X)

f→ (V
v→ X) is a morphism in ResG(X), the corresponding restriction

functor in preDG,X is defined to be

f̄† : DbMHM(V/G)→ DbMHM(U/G),

where f̄ : U/G→ V/G is the obvious map induced by f : U → V . We also consider

the prestack preD
[a,b]
G,X that is defined similarly, but with D[a,b]MHM(U/G) in place

of DbMHM(U/G).

Proposition 7.3. If G acts freely on X, then the prestacks preD
[a,b]
G,X and preDG,X

are both stacks.

Note that in this case, we actually have AcycG(X) = ResG(X). The proof,
which is quite similar to that of Theorem 3.12, is omitted.

Definition 7.4. Let DG,X (resp. D
[a,b]
G,X) denote the stackification of the prestack

preDG,X (resp. preD
[a,b]
G,X) on XG,acyc. The G-equivariant derived category of X,

denoted Db
G(X), is defined to be the category DG,X(X

id→ X).

It is easy to see from the definition that if f : U → X is any G-equivariant

acyclic map, then Db
G(U) is naturally equivalent to DG,X(U

f→ X). In particular,

if f : U → X is an acyclic resolution, then by Proposition 7.3, we have DG,X(U
f→

X) ∼= DbMHM(U/G).

Remark 7.5. Let X be a G-variety. For each positive integer n ≥ 1, fix an n-acyclic
resolution un : Un → X. Then {un : Un → X}n≥1 is a covering family in XG,acyc.
In view of the preceding remarks, one can specify an object F ∈ Db

G(X) by giving
the following data:

(1) for each integer n ≥ 1, an object Fn ∈ DbMHM(Un/G).

(2) for any two integers m,n, an isomorphism ϕnm : r1†
nmFn

∼→ r2†
nmFm.

Exercise 7.6. Here is an alternate approach to describing objects in Db
G(X), closer

in spirit to the descriptions in [7, 12] (see especially [12, Definition 4.2.3 or 4.5.1]).
First, fix a commutative diagram

(7.1) V1
i1 //

p1 //

V2
i2 //

p2
,,

V3
i3 //

p3

**

· · · · · ·

  
X

in which each pn : Vn → X is an n-acyclic resolution. However, the ik’s are not
required to be acyclic, or even smooth, so this is not a diagram in AcycG(X).
Let πk : Vk → Vk/G be the quotient map, and let ı̄k : Vk/G → Vk+1/G be the
map induced by ik. Following [12, Definition 4.2.3 or 4.5.1], let Db

G(X)′ denote the
category whose objects are tuples (F∞; (Fk, jk, ϕk)k≥1), where F∞ ∈ DbMHM(X),
Fk ∈ DbMHM(Vk/G), and jk and ϕk are isomorphisms

jk : ı̄†kFk+1
∼→ Fk, ϕk : p†kF∞

∼→ π†kFk,



EQUIVARIANT MIXED HODGE MODULES 15

where we write ı̄†k for the (not necessarily exact) functor ı̄∗k[dimVk/G−dimVk+1/G].
Furthermore, we require that the following diagram commute:

(7.2)

i†kp
†
k+1F∞

∼ //

ϕk+1

��

p†kF∞

ϕk

��
i†kπ
†
k+1Fk+1

jk
// π†kFk

Prove that Db
G(X)′ is equivalent to Db

G(X).
Hint: It is clear that the collection {pn : Vn → X} is a covering family in

XG,acyc. Given an object of Db
G(X)′, use the commutativity of (7.2) to construct

the isomorphisms ϕnm of objects on Vn ×X Vm as in Remark 7.5. In this way, we
obtain a functor Db

G(X)′ → Db
G(X). Going the other way is a bit subtler: one has

to make use of descent in the acyclic topology to construct the ϕk’s.

8. Basic properties of equivariant derived categories

The theme of this section is this: for almost any property of Db
G(X) we want to

prove or any construction we want to carry out, it is enough to do it on resolutions
of X, and then invoke general properties of stackification.

Lemma 8.1. Suppose f : U → X is an n-acyclic resolution, and let a ≤ b be

integers with b − a < n. Then the obvious functor D
[a,b]
G (X) → D[a,b]MHM(U/G)

is fully faithful.

Proof. Let us rename the given map f : U → X to u0 : U0 → X, and then include
it as a member of a covering family {ui : Ui → X}i∈I of acyclic resolutions, where
each ui : Ui → X is at least n-acyclic. By Corollary 3.6, both functors in the
diagram below are fully faithful:

(8.1) D[a,b]MHM(Ui/G)
r1†ij−−→ D[a,b]MHM(Uij/G)

r2†ij←−− D[a,b](Uj/G).

Now, let F ,G ∈ D[a,b]
G (X), and for each i ∈ I, let Fi,Gi ∈ D[a,b]MHM(Ui/G) be

the corresponding objects. In view of (8.1), we have isomorphisms

Hom(Fi,Gi)
∼→ Hom(r1†

ij Fi, r
1†
ij Gi) ∼= Hom(r2†

ij Fj , r
2†
ij Gj)

∼← Hom(Fj ,Gj).

Since Hom(F ,G) is a sheaf, specifying a global section, i.e., an element h ∈
Hom(F ,G), is equivalent to giving a compatible system {hi ∈ Hom(Fi,Gi)}i∈I .
But the above isomorphisms show that giving such a compatible system is equiv-
alent to giving h0 ∈ Hom(F0,G0) alone. Thus, Hom(F ,G) ∼= Hom(F0,G0), as
desired. �

Lemma 8.2. Each D
[a,b]
G (X) is naturally equivalent to a full subcategory of Db

G(X),
and Db

G(X) is the union of all such full subcategories.

Proof. This result follows from the fact that it holds when X is replaced by any
acyclic resolution U → X, in which it reduces to trivial assertions about the cate-
gories D[a,b]MHM(U/G) and DbMHM(U/G). �

Theorem 8.3. Db
G(X) is a triangulated category. It is equipped with a nondegen-

erate t-structure whose heart is equivalent to MHMG(X).
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Proof. The proof that Db
G(X) is a triangulated category is very similar to [7, Propo-

sition 2.5.2]. Briefly, the idea is that to check any of the axioms on specific objects,

one can work inside some subcategory D
[a,b]
G (X). Lemma 8.1 lets us transfer the

question to some D[a,b]MHM(U/G) ⊂ DbMHM(U/G), where the axioms are known
to hold. We omit further details.

Next, let Db
G(X)≤0 (resp. Db

G(X)≥0) be the union of all subcategories D
[−n,0]
G (X)

(resp. D
[0,n]
G (X)) for n ≥ 0. Similar methods to those above show that the pair

(Db
G(X)≤0, Db

G(X)≥0) constitutes a nondegenerate t-structure on Db
G(X). Its heart

is D
[0,0]
G (X). It remains to show that this heart is equivalent to MHMG(X). Recall

from Exercise 6.5 that the assignment U 7→ MHMG(U) defines a stack on XG,sm,
and hence also on XG,acyc. By Theorem 6.2, this stack agrees with the prestack

preD
[0,0]
G,X on acyclic resolutions, so it must be equivalent to the stack D

[0,0]
G,X . In

particular, we have D
[0,0]
G (X) ∼= MHMG(X), as desired. �

Proposition 8.4. There is a t-exact functor of triangulated categories

For : Db
G(X)→ DbMHM(X)

whose restriction to MHMG(X) is isomorphic to For : MHMG(X)→ MHM(X).

Proof. There is a morphism of prestacks For : preDG,X → DX which associates
to any acyclic resolution U → X the functor φ† : DbMHM(U/G) → DbMHM(U),
where φ : U → U/G is the quotient map. The induced morphism of stacks For :
DG,X → DX has the desired properties. �

Theorem 8.5. Let X and Y be smooth G-varieties, and let f : X → Y be a
G-equivariant morphism. There are six functors

f∗, f ! : Db
G(Y )→ Db

G(X), RHom(·, ·) : Db
G(X)op ×Db

G(X)→ Db
G(X),

f∗, f! : Db
G(X)→ Db

G(Y ), · ⊗L · : Db
G(X)×Db

G(X)→ Db
G(X),

all of which commute with For.

Proof for f∗. The map f : X → Y induces a morphism of sites f : XG,acyc →
YG,acyc. Consider the push-forward stack f#DG,X on YG,acyc. It is the stackification
of the prestack f#preDG,X . Consider the morphism of prestacks f∗ : preDG,Y →
f#preDG,X defined as follows: on an acyclic resolution u : U → Y , it gives the
functor

f̃∗ : DbMHM(U/G)→ DbMHM((U ×Y X)/G),

where f̃ : (U ×Y X)/G → U/G is the map obtained from f by first forming the
pullback f̄ : U ×Y X → U , and then passing to the quotient by the G-action. This

determines a morphism of stacks f∗ : DG,Y → f#DG,X . Evaluating at (Y
id→ Y ) ∈

YG,acyc gives us a functor f∗ : Db
G(Y )→ Db

G(X).
To prove that it commutes with For, it is enough to check at the level of prestacks.

Referring to the proof of Proposition 8.4 for the construction of For, we see that we
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must check that for an acyclic resolution u : U → Y as above, the diagram

DbMHM(U/G)
f̃∗ //

φ†

��

DbMHM((U ×Y X)/G)

ψ†

��
DbMHM(U)

f̄∗
// DbMHM(U ×Y X)

commutes. But this is clear. (Here, φ : U → U/G and ψ : U ×Y X → (U ×Y X)/G
are the quotient maps.) �

Exercise 8.6. Prove the rest of Theorem 8.5.

Exercise 8.7. Prove that (f∗, f∗) is an adjoint pair. Same for (f!, f
!) and (· ⊗L

F , RHom(F , ·))

The next two exercises are derived versions of Exercises 6.3 and 6.4.

Exercise 8.8. Suppose G acts on X, and suppose that H E G is a closed normal
subgroup that acts freely on X. Let φ : X → X/H be the quotient map. Prove

that there is a natural equivalence Db
G/H(X/H)

∼→ Db
G(X).

Exercise 8.9 (Induction equivalence). Let H ≤ G be a closed subgroup, and let
X be a variety with an H-action. Prove that there is an equivalence of categories
Db
H(X) ∼= Db

G(G×H X).

9. dgMH-rings and dgMH-modules

Definition 9.1. A graded mixed Hodge structure is a sequence V = (V n)n∈Z where
each Vn ∈ MHM(pt) and in which Vn = 0 for n� 0. A morphism of graded mixed
Hodge structures f : V → W is simply a collection of mormphisms (fn : V n →
Wn)n∈Z in MHM(pt). The category of graded mixed Hodge structures is denoted
grMHM(pt).

Note that a graded mixed Hodge structure may have infinitely many nonzero
components in positive degrees. It is easy to see that grMHM(pt) is an abelian
category. Moreover, it has an obvious tensor structure: for V,W ∈ grMHM(pt), we
define V ⊗W by

(V ⊗W )n =
⊕
j+k=n

V j ⊗W k.

This makes it possible to speak of ring objects in grMHM(pt), and of module objects
over those ring objects. Let [1] : grMHM(pt)→ grMHM(pt) be the shift-of-grading
functor, given by

(V [1])n = V n+1.

Definition 9.2. A differential-graded mixed Hodge ring, or dgMH-ring, is a ring
object A ∈ grMHM(pt) equipped with a map d : A → A[1] (called the differential
such that d[1] ◦ d = 0, and such that the following diagram commutes:

(9.1)

Ai ⊗Aj mult. //

(d⊗idAj ,(−1)iidAi⊗d)

��

Ai+j

d

��
(Ai+1 ⊗Aj)⊕ (Ai ⊗Aj+1)

mult.
// Ai+j+1
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Here, the arrows labelled “mult.” come from the multiplication map A ⊗ A → A.
(Of course, the diagram above simply encodes the graded Leibniz rule, usually
written as d(xy) = d(x)y + (−1)deg xxd(y).)

If A is a dgMH-ring, a differential-graded mixed Hodge A-module, or a dgMH-A-
module, or a dgMH-module over A, is a module object M over A in grMHM(pt)
equipped with a differential d : M → M [1] satisfying d[1] ◦ d = 0 and a suitable
analogue of (9.1).

The notions of homotopy and quasi-isomorphism for dgMH-modules are defined
as usual. We can form the homotopy category KMH(A) (whose objects of dgMH-
modules and whose morphisms are homotopy classes of maps of dgMH-modules)
as well as the derived category DMH(A) (obtained from KMH(A) by inverting the
quasi-isomorphisms). Both of these are, of course, triangulated categories.

Definition 9.3. The perfect derived category of a dgMH-ring A, which will be
denoted by DpfMH(A), is the full triangulated subcategory of DMH(A) generated
by Tate twists of direct summands of the free module A.

9.1. Affine even stratifications. In this section, which depends heavily on the
ideas in [3], we show how to describe the derived category of certain stratified spaces
in terms of dgMH-modules. Let X be a smooth variety equipped with an algebraic
stratification X =

⋃
s∈S Xs. For each s ∈ S, let Ls ∈ MHM(X) denote the simple

mixed Hodge module associated to the trivial mixed Hodge module on Xs. (Thus,
rat(Ls) is the intersection cohomology complex on Xs, and Ls is pure of weight
dimXs.) We call this an affine even stratification if the following conditions hold
(see [3, §3.4]:

(1) Each Xs is isomorphic to an affine space.
(2) Hi(Ls|Xt

) ∈ MHM(Xt) vanishes if i 6≡ dimXs − dimXt (mod 2), and
is isomorphic to a direct sum of copies of AXt

((dimXt − dimXs − i)/2)
otherwise.

The main example [3, Corollary 3.3] is that of a partial flag variety of a reductive
group, equipped with the Schubert stratification.

In this section, it will be convenient to formally introduce a “square-root of the
Tate twist.” See the discussion following [6, Definition 4.1.4] or [3, §6.1] for an
explanation of this. This operation involves replacing MHM(X) and DbMHM(X)
by new, larger categories, but in a minor abuse of notation, we will continue to write
MHM(X) and DbMHM(X) for the new categories in which “(1

2 )” makes sense.

Throughout this section, we write MHMS(X) ⊂ MHM(X) (resp. Db
SMHM(X) ⊂

DbMHM(X)) for the Serre (resp. triangulated) subcategory generated by the ob-
jects {Ls(

n
2 )}s∈S,n∈Z. Let L =

⊕
Ls(−dimXs

2 ). This is the direct sum of all simple
objects of weight 0. Finally, let E be the dgMH-ring given by

Ei = Homi(L,L),

with zero differential. Our goal is to describe Db
SMHM(X) in terms of dgMH-

modules over E. Let Ps be the dgMH-module given by

P is = Homi(L,Ls(−dimXs

2 )),

again with zero differential. Clearly, the direct sum
⊕

s∈S Ps is isomorphic to the

free module E. Moreover, each Ps is indecomposable. Thus, DpfMH(E) is the
subcategory of DMH(E) generated by Tate twists of the Ps’s.
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Theorem 9.4. Let X, {Xs}s∈S, L, E, and {Ps}s∈S be as above. There is an
equivalence of categories

α : Db
SMHM(X)

∼→ DpfMH(E)

such that α(Ls) ∼= Ps(
dimXs

2 ).

Proof Sketch. Recall [6, Theorem 3.3.1] that PervS(X) has enough projectives. We
will call an object of MHMS(X) “rat-projective” if its image under rat is a projective
object of PervS(X). Now, MHMS(X) does not have enough projectives, but it does
have enough rat-projectives. Indeed, as explained in [3, §6.2], it is possible to find a
finite rat-projective resolution P • → L which has the additional property of being
linear, meaning that every simple quotient of a given term P−i in the resolution is
pure of weight −i. Let A be the dgMH-ring given by

Ai =
⊕
j+k=i

Hom(P−j , P k),

and with differential induced by that of the complex P •.
It is easy to see that the cohomology of A is isomorphic to E. Moreover, as

explained in [3, Lemma 6.5], there is an equivalence of categories

(9.2) DpfMH(E)
∼→ DpfMH(A).

(To be precise, [3, Lemma 6.5] actually involves ordinary dg-rings and dg-modules
over a field, rather than for ring and module objects in grMHM(pt), but it is
straightforward to adapt its proof to our setting.)

Finally, one can define a functor Db
SMHM(X) → DpfMH(A) by the formula

F• 7→ Hom•(P •,F•). Moreover, this functor is an equivalence of categories, for the
reasons sketched, e.g., in [3, Lemma 6.2] and the preceding comments. Combining
this functor with (9.2) yields the desired equivalence. �

Remark 9.5. The functor in (9.2) is given by tensoring with a suitable bimodule,
and not by a dgMH-ring homomorphism. A natural question is whether

It is natural to ask whether A and E are quasi-isomorphic; in other words,
whether A is formal. It is shown in [3, Corollary 6.7] that the ordinary dg-ring
rat(A) is formal, but the argument there does not seem to lift to grMHM(pt).

Proposition 9.6. Let X be a smooth connected variety, and let Db
constMHM(X) ⊂

DbMHM(X) denote the full triangulated subcategory generated by {AX(n)}n∈Z.
Assume that X admits an affine even stratification. Then there is an equivalence
of categories

α : Db
constMHM(X)

∼→ DpfMH(H•(X)).

Here, H•(X) ∈ grMHM(pt) is the cohomology ring of X, regarded as a dgMH-ring
with zero differential.

Proof Sketch. Retain the notation of the Theorem 9.4. Because X is connected,
there must be a unique open stratum Xo in the given affine even stratification, and
then, because X is smooth, we have Lo

∼= AX . Thus, Db
constMHM(X) is the full

triangulated subcategory of Db
SMHM(X) generated by Lo, and so it is equivalent

to the full triangulated subcategory of DpfMH(E) generated by Po. Let us denote

the latter category by Dpf
Po

MH(E). Let H be the dgMH-ring Hom•(Po, Po) (with

zero differential). On the one hand, since H•(X) ∼= Hom•(Lo,Lo), Theorem 9.4
gives us a natural isomorphism H•(X) ∼= H. On the other hand, one can show
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that Po is a projective E-module, and then standard ring-theoretic arguments show

that Dpf
Po

MH(E) ∼= DpfMH(H), as desired. �

10. Equivariant derived category of a point

Theorem 10.1. Assume that G is a torus. There is an equivalence of categories
Db
G(pt) ∼= DpfMH(H•G(pt)).

Proof. For brevity, let A = H•G(pt). Observe first that DpfMH(A) admits a unique

t-structure containing all A(n) in its heart. Let D[a,b]MH(A) ⊂ DpfMH(A) be the
full subcategory consisting of objects M whose cohomology with respect to that
t-structure tHi(M) vanishes unless a ≤ i ≤ b.

Let us first show that D
[a,b]
G (pt) ∼= D[a,b]MH(A) for any interval [a, b]. Let

d = dimG, and fix an isomorphism G ∼= C× × · · · ×C×. Let Un = (Cn+1 r {0})×
· · · × (Cn+1 r {0}) (d copies). There is an obvious free action of G on Un, and the
quotient is given by

Un/G ∼= Pn × · · · × Pn.
It is clear that Un → pt is an 2n-acyclic resolution. By Lemma 8.1, if b− a < 2n,

then D
[a,b]
G (pt) is equivalent to a full subcategory of D[a,b]MHM((Pn)d). Indeed,

tracing through the definitions, one can check that D
[a,b]
G (pt) ∼= D

[a,b]
constMHM((Pn)d).

Now, (Pn)d admits an affine even stratification, so by Proposition 9.6, we have

D
[a,b]
G (pt) ∼= D[a,b]MH(H•((Pn)d). (The latter is defined in the same way as

D[a,b]MH(A) above.)
The underlying graded ring of H•((Pn)d) (i.e., forgetting the mixed Hodge struc-

ture) is A[x1, . . . , xd]/(x
n
1 , . . . , x

n
d ), where each xi has degree 2. As an object of

grMHM(pt), its component in degree 2k is isomorphic to a direct sum of copies of
A(−k). The cohomology H•G(pt) has a similar description, except that its under-
lying graded ring is simply A[x1, . . . , xd]. From these descriptions, it is clear that
D[a,b]MH(H•((Pn)d) ∼= D[a,b]MH(A) if b− a < 2n. We conclude that

(10.1) D
[a,b]
G (pt) ∼= D[a,b]MH(A).

Now, Db
G(pt) is the union of all D

[a,b]
G (pt), and likewise for the right-hand side.

Thus, to finish the proof, it suffices to check that the equivalence (10.1) is com-

patible with the inclusions D
[a,b]
G (pt) → D

[a′,b′]
G (pt), where [a, b] ⊂ [a′, b′]. This

compatibility is left to the reader. �

11. Appendix: Quasi-equivariant D-modules

As noted earlier, the development of Db
G(X) in this lecture is quite close to that

of the constructible equivariant derived category in [7], or of the equivariant derived
category of D-modules in [12].

But in the D-module setting, there is another possibility: one can consider the
category whose objects are D-modules together with an equivariant structure on
the underlying O-module. Such an object is called a quasi-equivariant O-module.
A precise definition and a number of basic results appear in [12, Chap. 3]. We
denote the category of quasi-G-equivariant D-modules by Mod(DX , G).

Remarkably, the näıve derived category DbMod(DX , G) is the “correct” setting
for derived functors of quasi-equivariant D-modules: as shown in [12, SS3.4–3.8],
it is possible to define all the usual sheaf operations on this category in such a way
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that they commute with the forgetful functor DbMod(DX , G) → DbMod(DX).
Quasi-equivariant D-modules essentially inherit this behavior from equivariant O-
modules.

A brief treatment of the category of equivariant (quasicoherent) O-modules,
denoted ModG(OX), appears, for instance, in [8] or [1]. Assume for simplicity that
G is connected. In that case, the reason that DbModG(OX) is the correct derived
category to work in can be summarized quite succinctly: the coherent cohomology
of G (like that of any affine variety) vanishes in positive degrees, so the action map
a : G × X → X is always a “coherently ∞-acyclic resolution.” Using the fact
that every smooth admits a coherently∞-acyclic resolution, one can show that the
assignment U 7→ DbModG(U) defines a stack on the O-module analogue of XG,acyc.

It is natural to ask whether these developments can be imitated in the mixed
Hodge module setting.

Definition 11.1. A quasi-G-equivariant mixed Hodge module consists of an object
F ∈ MHM(X) together with a quasi-equivariant structure on the underlying D-
module of F . The category of quasi-G-equivariant mixed Hodge modules is denoted
MHM(X,G).

Question 11.2. Let X be a smooth G-variety. On XG,acyc, does the assignment
U 7→ DbMHM(X,G) define a stack? If not, what is its stackification?

I do not know the answers to these questions. For the first question, it seems
unlikely that the D-module arguments of [12] can be adapted to the mixed Hodge
module setting, because those arguments require one to work in the category of
all D-modules, not just regular holonomic ones. On the other hand, I do not
understand the category MHM(X,G) well enough to exhibit a counterexample.
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