
Generalized Conjugacy Classes

Pramod N. Achar∗

February 9, 1997

Abstract

Generalized conjugation is the action of a group on its underlying set given by (g, x) 7→ φ(g)xg−1,

where φ : G → G is some fixed endomorphism. Here we study combinatorial properties of the sizes of the

orbits of the preceding action. In particular, we reduce the problem to a simpler case if φ has a nontrivial

kernel or if it is an inner automorphism, and we give a construction that allows a partial analysis in the

general case.

1 Introduction

1.1 Definition and Motivation

Let EndG denote the semigroup of endomorphisms, and let SG denote the group of permutations on the

underlying set of G. Generalized conjugation associates to each element φ ∈ EndG an action G → SG of

G on its own uderlying set. In particular, if φ is the identity endomorphism, the associated action G→ SG

takes g ∈ G to the permutation which is conjugation by g. The computation of the associated element of

SG for given (φ, g) is described below.

Why do we wish to study generalized conjugation? Suppose that G is the fundamental group of some

compact 2-manifold X , and that φ is induced by some continuous map f : X → X . Consider the orbits in

G under the action associated to φ (referred to in the literature as “Reidemeister classes”): it turns out that
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the structure of these orbits carries information about the number of fixed points that f has. The reader is

referred to [1] for further information on this topic.

Definition 1.1 To each φ ∈ EndG, we associate an action G→ SG by the formula

g ∗ x = φ(g)xg−1.

This action is called φ-conjugation; the element g ∗ x is called the φ-conjugate of x by g. The orbit of

x under this action is called the φ-conjugacy class of x and is denoted Cφx . The stabilizer of x under this

action is called the φ-centralizer of x and is denoted Zφx .

Note that if we take φ = id, we obtain ordinary conjguation. We now confirm the following crucial fact.

Lemma 1.2 φ-conjugation is an action of a group G on the underlying set of G.

Proof. Let us write g ∗ x = φ(g)xg−1. Then we have

(gh) ∗ x = φ(gh)x(gh)−1

= φ(g)φ(h)xh−1g−1

= g ∗ (φ(h)xh−1)

= g ∗ (h ∗ x)

Furthermore,

1 ∗ x = φ(1)x1−1 = x,

so φ-conjugation is in fact an action.

1.2 Examples

Let us take a look at a few well-known groups and how they split up into generalized conjugacy classes under

various endomorphisms.
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Group Endomorphism Generalized Conjugacy Class Sizes

A5 id [1, 12, 12, 15, 20]

A5 x 7→ x(1 5 2) [1, 12, 12, 15, 20]

A5 x 7→ x(1 2) [10, 20, 30]

D4 id [1, 1, 2, 2, 2]

D20 r 7→ r13, f 7→ fr10 [5, 5, 10, 10, 10]

D20 r 7→ r5, f 7→ f [5, 5, 10, 10, 10]

S6 id [1, 15, 15, 40, 40, 45, 90, 90, 120, 120, 144]

S6 τ∗ [36, 144, 180, 180, 180]

A6 id [1, 40, 40, 45, 72, 72, 90]

A6 x 7→ x(1 2) [15, 15, 90, 120, 120]

A6 τ∗ [36, 72, 72, 90, 90]

Z27 x 7→ x10 [3, 3, 3, 3, 3, 3, 3, 3, 3]

Z27 x 7→ x4 [9, 9, 9]

*See [2] for the construction of an outer automorphism τ of S6. τ

also restricts to give an outer automorphism of A6.

In the preceding table, notation such as “x → x(1 6 2)” denotes the endomorphism given by conjugation

by the element (1 6 2).

1.3 A Note on Notation

AutG is the standard notation for the automorphism group of a group G. Additionally, we shall use InnG

to denote the normal subgroup of inner automorphisms, and OutG to denote the quotient AutG/ InnG.

Each element α of InnG is given by conjugation by some element g ∈ G; to denote this, we shall write

α = Adg. If G< H , then conjugation by any element h ∈ H gives a well-defined (but not necessarily inner)

automorphism of G; the Adh notation will be used in such cases as well.

Earlier, the notations Zφx and Cφx were introduced for the φ-centralizer and the φ-conjugacy class of x,

respectively. In particular, Zidx and Cidx will denote the ordinary centralizer and conjugacy class of x. We
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now also introduce the following:

Definition 1.3 Let

Z(φ) =
⋂

x∈G

Zφx .

This group is called the φ-center of the group.

In particular, Z(id) is the center of the group.

2 Basic Results

2.1 Endomorphisms with Kernels

Consider the example of D20 given earlier, with φ : D20 → D20 given by φ : r 7→ r5, f 7→ f . This φ’s image is

isomorphic to D4, and the φ-conjugacy class structure looks like a constant multiple (in fact, | kerφ|) times

the id-conjugacy class structure of D4.

This example suggests that perhaps in general the conjugacy class structure produced by endomorphisms

with kernels is some multiple of the conjugacy class structure given by an induced automorphism on some

quotient of the original group. That turns out to be true, but the constant multiple is not simply | kerφ| in

general.

Definition 2.1 Given an endomorphism φ : G→ G, define

keri φ =















{1} if i = 0;

φ−1(keri−1 φ) if i > 0.

(Note that ker1 φ is the same as the ordinary kernel of φ.) Define

ker∞ φ =
∞
⋃

i=0

keri φ.

ker∞ φ will called the iterated kernel of φ.

Since ker0 φ is a subgroup, and the preimage of any subgroup is a subgroup, it follows that keri φ is a

subgroup of G for all nonnegative integers i. We now establish a few basic properties of the iterated kernel.
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Lemma 2.2 If 0 ≤ i < j, then keri φ ⊂ kerj φ.

Proof. We shall show by induction that keri φ ⊂ keri+1 φ. First, it is clear that ker1 φ = kerφ contains

ker0 φ = {1}. Now, suppose that keri−1 φ ⊂ keri φ. x ∈ keri φ implies φ(x) ∈ keri−1 φ, and hence φ(x) ∈

keri φ. But that latter condition means precisely that x ∈ keri+1 φ. Thus, keri φ ⊂ keri+1 φ.

Lemma 2.3 keri φ is a normal subgroup of G.

Proof. Again, we proceed by induction. ker0 φ is clearly normal. Now, suppose keri−1 φ is known to be

normal, and take x ∈ keri φ. For any g ∈ G, we wish to show that g−1xg ∈ keri φ. Now, φ(g−1xg) =

φ(g)−1φ(x)φ(g) ∈ keri−1 φ because it is a conjugate of φ(x) ∈ keri−1 φ, and keri−1 φ is normal. But

φ(g−1xg) ∈ keri−1 φ implies g−1xg ∈ keri φ, as desired.

Lemma 2.4 ker∞ φ is a normal subgroup of G.

Proof. Take x, y ∈ ker∞ φ. x is contained in some keri φ, and y is contained in some kerj φ. Take m =

max{i, j}; then, by Lemma 2.2, x, y ∈ kerm φ. Since kerm φ is a subgroup, xy ∈ kerm φ and x−1 ∈ kerm φ.

Therefore, xy ∈ ker∞ φ and x−1 ∈ ker∞ φ. Moreover, for any g ∈ G, g−1xg ∈ kerm φ, and hence g−1xg ∈

ker∞ φ. Thus ker∞ φ is a normal subgroup.

Proposition 2.5 Given an endomorphism φ : G → G, the induced map φker : G/ ker∞ φ → G/ ker∞ φ is

an automorphism.

Proof. We begin by checking that φ induces a well-defined map on G/ ker∞ φ. If x and y are in the same

coset of ker∞ φ, i.e., if x = yk where k ∈ ker∞ φ, then φ(x) = φ(y)φ(k). We know that φ(k) ∈ ker∞ φ also,

so φ(x) and φ(y) lie in the same coset of ker∞ φ. Thus φker is well-defined.

Next, we check that φker is injective. Suppose φ(x) = φ(y)z for z ∈ ker∞ φ; we wish to show that x and

y lie in the same coset of ker∞ φ. Now, φ(y−1x) = z, so y−1x ∈ φ−1({z}). By construction of ker∞ φ, this

implies that y−1x ∈ ker∞ φ, so in fact x and y are in the same coset.

Finally, we note that in a finite group, an injective endomorphism is necessarily an automorphism.

We are now well on our way to describing generalized conjugacy structure for endomorphisms with kernels.
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Lemma 2.6 Any two elements in the same coset of ker∞ φ are φ-conjugate. That is, φ-conjugacy classes

are unions of cosets of ker∞ φ.

Proof. Start with x = y0z0, where z0 ∈ ker∞ φ. We wish to show that x and y0 are φ-conjugate. Suppose,

in particular, that z0 ∈ keri φ. Define, iteratively,

yk+1 = φ(zk)
−1x

zk+1 = x−1φ(zk)x

Now, since z0 ∈ keri φ, it follows that x−1φ(z0)x ∈ keri−1 φ, i.e. that z1 ∈ keri−1 φ. More generally, we can

see inductively that

zk ∈ keri−k φ.

It is immediate from the definitions of yk and zk that

x = ykzk

for all k. Combining this last equation with the definition of yk+1, we obtain

yk+1 = φ(z−1
k )ykzk.

Thus, yk is always φ-conjugate to yk+1. By transitivity, yn and ym are φ-conjugate for any n,m. Now, take

k = i. We have zi ∈ ker0 φ, so zi = 1. Then x = yi, so in fact x is φ-conjugate to all yn. In particular, x is

φ-conjugate to y0.

The desired theorem follows easily.

Theorem 2.7 There is a one-to-one correspondence between φ-conjugacy classes of G and φker-conjugacy

classes of G/ ker∞ φ; furthermore, each φ-conjugacy class is precisely | ker∞ φ| times as large as the corre-

sponding φker-cnjugacy class.

Proof. We shall see that x and y are φ-conjugate if and only if the cosets x ker∞ φ and y ker∞ φ are

φker-conjugate. Suppose that x = φ(g)yg−1 holds for some g. Then the induced equation x ker∞ φ =
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φker(g ker∞ φ)(y ker∞ φ)(g−1 ker∞ φ) follows. Conversely, if x ker∞ φ = φker(g ker∞ φ)(y ker∞ φ)(g−1 ker∞ φ)

holds, then xz = φ(g)yg−1 holds for some z ∈ ker∞ φ. xz is φ-conjugate to y, and we know by the preceding

lemma that x is φ-conjugate to xz.

In general, then, a subset {x1 ker∞ φ, . . . , xk ker∞ φ} is a φker-conjugacy class if and only if the union

⋃k

i=1 xi ker∞ φ is a φ-conjugacy class. In addition, we note that the latter set is precisely | ker∞ φ| times as

large as the former.

In light of this theorem, we may restrict our attention to generalized conjugacy classes produced by

automorphisms for the remainder of this paper. If we understood only the automorphism-produced gen-

eralized conjugacy classes for a group G and its quotients G/ ker∞ φ, then we could derive all generalized

conjugacy class structures on G by the preceding theorem. But we would still first have to determine pre-

cisely what groups the quotients G/ ker∞ φ are. Is it possible to predict what quotients of G we would have

to look at, without spending interminable amounts of time computing iterated kernels?

Theorem 2.8 A normal subgroup K of G is the iterated kernel of some endomorphism of G if and only if

G is isomorphic to the semidirect product G/K⋉K.

Proof. Recall that G ≃ G/K⋉K is equivalent to the short exact sequence K
i
→ G

p
→ G/K splitting. Let

s : G/K → G denote such a splitting homomorphism. Suppose K = ker∞ φ for some endomorphism φ; we

shall construct the splitting. Since we are dealing with finite groups only, it cannot be the case that keri φ is

a proper subgroup of keri+1 φ for all i: there is some integer M such that keri φ = kerM φ for all i ≥M , and

hence ker∞ φ = kerM φ. Now, by construction, we have keri φ = kerφi, where φi is the i-fold composition of

φ with itself. Thus ker∞ φ = kerφM ; it follows that imφM ≃ G/ ker∞ φ. The only element of ker∞ φ that

lies in imφM is 1: otherwise we contradict the assumption that kerM φ = ker∞ φ. Moreover, each coset of

ker∞ φ contains at most one element of imφM : if x, y ∈ imφM were in the same coset, then x−1y would

be a nontrivial element of ker∞ φ that lies in imφM . But | imφM | must equal |G/ ker∞ φ|, so each coset

contains exactly one element of imφM . Define s by letting it take each coset to the unique member of imφM

contained in that coset. Then p ◦ s is the identity on G/ ker∞ φ.

Conversely, suppose that we have a splitting s. Let φ = s ◦ p. The only element of K lying in imφ is 1;
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it follows that K = ker∞ φ.

Henceforth, only generalized conjugacy classes associated with automorphisms will be discussed.

2.2 Equivalence by Inner Automorphisms

In the examples listed in Section 1.2, three different generalized conjugacy class structures were given for

A5: one by the identity endomorphism, one by Ad(1 5 2), and one by Ad(1 2). The first two of these are

inner automorphisms, and the last is an outer automorphism. Moreover, the table shows that the two

inner automorphisms produce combinatorially the same partition of the group into conjugacy classes. The

conjugacy classes themselves are not the same (under Ad(1 5 2), the identity element is generalized-conjugate

to other elements of the group), but there is some bijection of G onto itself which carries id-conjugacy classes

precisely onto Ad(1 5 2)-conjugacy classes. This observation is generalized in the following result:

Theorem 2.9 Let φ1, φ2 : G → G be endomorphisms such that φ1 = Adp ◦ φ2 for some p ∈ G. Then there

is a bijection t : G→ G such that the image under t of each φ1-conjugacy class is a φ2-conjugacy class.

Proof. Define t : G→ G by t(x) = px. Now, suppose that a, b ∈ G are φ1-conjugate: a = φ1(g)bg
−1. Writing

a = p−1t(a), b = p−1t(b), we compute:

p−1t(a) = φ1(g)p
−1t(b)g−1

t(a) = pφ1(g)p
−1t(b)g−1

t(a) = Adp−1(φ1(g))t(b)g
−1

t(a) = (Ad−1
p ◦ φ1)(g)t(b)g

−1

t(a) = φ2(g)t(b)g
−1

Thus, t carries φ1-conjugate elements to φ2-conjugate elements. The above computation can also be carried

out in reverse to show that if t takes any two elements to image points that are φ2-conjugate, then the

original elements were φ1-conjugate. That extablishes the desired property of t.
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Thus, generalized conjugacy class structure is constant on cosets of InnG. In later sections we shall

sometimes refer, say, to a φ1-conjugacy class as being “the same as” a certain φ2-conjugacy class, where of

course we actually mean that the two classes under discussion are related by the bijection t given above.

2.3 Other Quick Lemmas

In an abelian group, all the ordinary conjugacy classes are the same size (namely, size 1). It turns out that

all generalized conjugacy classes for fixed φ are the same size as well. We shall use additive notation.

Proposition 2.10 Given φ : G→ G, where G is abelian, there are | ker(φ− id)| φ-conjugacy classes, each

of size | im(φ− id)|.

Proof. x, y ∈ G are φ-conjugate if and only if the following hold:

x = φ(g) + y − g

x− y = φ(g) − g

x− y = (φ− id)(g)

x− y ∈ im(φ− id)

The proposition follows.

When G is a prime-power cyclic group, the preceding proposition is particularly easy to interpret.

Corollary 2.11 Let φ : Zpr → Zpr be the automorphism given by multiplication by k, where p does not

divide k. Take ps to be the largest power of p dividing k−1; if k = 1, take ps = pr. There are ps φ-conjugacy

classes each having size pr−s.

The preceding corollary applies to the two examples involving Z27 given in Section 1.2.

For ordinary conjugation, we are assured that the identity falls into a conjugacy class by itself. That fact

rarely holds for generalized conjugation, but for conjugation produced by an inner automorphism, we are

at least guaranteed that some element falls into a conjugacy class by itself. But even that is quite a special

property of inner automorphisms.

9



Proposition 2.12 Let φ : G → G. There is φ-conjugacy class of size 1 if and only if φ is an inner

automorphism.

Proof. If φ is an inner automorphism, say Adx, then x−1 falls into a φ-conjugacy class by itself: for all g,

we have

φ(g)x−1g−1 = (x−1gx)x−1g−1 = x−1.

Conversely, suppose x ∈ G is in a φ-conjugacy class by itself. For all g, φ(g)xg−1 = x; we rewrite this

equation as

φ(g) = xgx−1.

Thus φ = Adx−1 .

3 Maximal Generalized Conjugacy Classes

Let kφ denote the number of φ-conjugacy classes in a group G. We wish to study the ratio kφ/|G|; in

particular, we wish to find out when it is maximized. In the case that φ = id, that ratio is maximized when

G is abelian; indeed, that ratio is 1. It is known that for nonabelian groups, the ratio kid/|G| can be at most

5
8 . These facts about kid/|G| also apply to any kφ/|G| whenever φ is an inner automorphism.

What happens when φ is an outer automorphism? We have already seen that φ-conjugacy classes are

always of size at least 2 if φ is not inner, so kφ/|G| is bounded above by 1
2 . Moreover, an infinite family of

groups is known to achieve this bound.

Proposition 3.1 Let A be an abelian group containing a direct summand of order 4. Then there is an

automorphism φ of A such that kφ/|A| = 1
2 .

Proof. A is of one of the two forms Z2 ⊕ Z2 ⊕ B or Z4 ⊕ B. On Z2 ⊕ Z2, the automorphism which

exchanges the two direct summands produces two generalized conjugacy classes each of size 2; on Z4, the

inversion automorphism does the same. Let φ be the direct sum of the identity automorphism on B with the

appropriate preceding automorphism on the direct summand of order 4. To find the size of the φ-conjugacy

10



classes, we compute the image of φ− id: for z ∈ Z2 ⊕ Z2 or Z4, b ∈ B, we have

(φ − id)(z + b) = (φ(z) + b) − (z + b)

= φ(z) − z.

The image of φ− id is precisely the image of τ− id, where τ denotes the previously considered automorphism

on the direct summand of order 4. The τ -conjugacy classes were of size 2; hence, | im(τ − id)| = 2. It follows

that every φ-conjugacy class is of size 2, so the number of φ-conjugacy classes is precisely half the order of

the group.

Now, for ordinary conjugation, a group achieves kid/|G| = 1 if and only if G is abelian. The question

arises as to whether a similar result holds for generalized conjugation; that is, whether the groups in the

family given above are the only ones having kφ/|G| = 1
2 for some outer automorphism φ. The answer is not

known in general; however, a partial result has been established.

Suppose we are given an outer automorphism φ : G→ G such that all φ-conjugacy classes are of size 2.

Let α denote the non-identity element which is φ-conjugate to the identity. Note that Zφ1 has index 2 in G.

Also, we have

φ(g) =















g if g ∈ Zφ1 ;

αg if g /∈ Zφ1 .

Lemma 3.2 Conjugates of α behave as follows:

g−1αg =















α if g ∈ Zφ1 ;

α−1 if g /∈ Zφ1 .

Proof. First we consider the case g ∈ Zφ1 . Take any h /∈ Zφ1 . Then we have φ(g) = g and φ(h) = αh, so

φ(gh) = φ(g)φ(h) = gαh. But we also know that gh /∈ Zφ1 , so φ(gh) = α(gh). We equate gαh = αgh; it

follows that g−1αg = α.

Next, suppose g /∈ Zφ1 . Again, pick h /∈ Zφ1 . This time, φ(g)φ(h) = αgαh. But gh ∈ Zφ1 , so φ(gh) = gh.

We obtain αgαh = gh, which implies g−1αg = α−1.
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Proposition 3.3 Suppose φ : G→ G produces generalized conjugacy classes all of size 2. Zφ1 is a union of

φ-conjugacy classes, as is its nontrivial coset.

Proof. Note first that since φ fixes everything in Zφ1 , and since Zφ1 only has two cosets, φ(g) is always in the

same coset of Zφ1 as g itself. This means that for g /∈ Zφ1 , we have αg /∈ Zφ1 . Those two membership relations

imply that α ∈ Zφ1 . Relying again on the fact that there are only two cosets, we find that all elements of the

form yxy−1 or αyxy−1 must lie in the same coset of Zφ1 that x lies in. But the φ-conjugate of x by y always

looks like yxy−1 (for y ∈ Zφ1 ) or αyxy−1 (for y /∈ Zφ1 ). Thus every φ-conjugacy class is contained in a single

coset of Zφ1 .

Corollary 3.4 If φ : G→ G produces generalized conjugacy classes all of size 2, then |G| is divisible by 4.

Proof. By the preceding proposition, Zφ1 is a union of conjugacy classes, each of size 2, so |Zφ1 | is even. And

|G| = 2|Zφ1 |.

Earlier, it was mentioned that for nonabelian groups, kφ/|G| can be at most 5
8 .

Conjecture 3.5 If φ is an outer automorphism, and if kφ/|G| <
1
2 , then kφ/|G| ≤

3
8 .

Some justification for this conjecture will be given in the following sections.

4 Divisibility in Generalized Conjugacy Classes

4.1 Motivation

The goal of this and the remaining sections is to place some restrictions on the sizes of generalized conjugacy

classes. A purely empirical observation that might be made on the basis of the examples given in Section 1.2 is

that when φ is not an inner automorphism, φ-conjugacy classes tend to be larger in size and fewer in number

than ordinary conjugacy classes. Can we say something more formal along those lines? For instance, can we

place a lower bound on the GCD of the orders of the φ-conjugacy classes?

The work in the remaining sections will be motivated by the relatively easy solution to the question

under certain special assumptions. In Section 1.2, one of the examples used the automorphism φ on D20
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given by r 7→ r13, f 7→ fr10. This gave arithmetically the same conjugacy class breakdown as did the

other example with D20, which used an endomorphism having a nontrivial kernel. More strikingly, however,

this automorphism-produced generalized conjugacy class structure is “5 times” the ordinary conjugacy class

structure on Zφ1 , which happens to be isomorphic to D4.

Theorem 4.1 Suppose that Cφ1 ∩ Zφ1 = {1} and that Zφ1 is a normal subgroup of G. Then there is a

one-to-one correspondence between φ-conjugacy classes of G and ordinary conjugacy classes in Zφ1 : each

φ-conjugacy class is precisely |Cφ1 | times as large as the corresponding ordinary conjugacy class in Zφ1 .

Proof. Choose a transversal {g1, . . . , gk} of Zφ1 , where k = |Cφ1 |. (Thus, {φ(gi)g
−1
i }ki=1 = Cφ1 .) Define a

function ω : {gi} × Zφ1 → G by ω(gi, x) = φ(gi)xg
−1
i . We list the values of ω in a table with the elements of

Zφ1 as the column headings:

1 · · · x · · ·

1 φ(g1)g
−1
1 φ(g1)xg

−1
1

...
...

. . .
...

i φ(gi)g
−1
i ω(gi, x)

...
...

. . .

k φ(gk)g
−1
k · · · ω(gk, x) · · ·

Now, this table has precisely k · |Zφ1 | = |G| entries in it. We will show that every element of G is contained

in the table; we will then describe φ-conjugacy in G in terms of this table. The domain of ω has the same

size as G, so if we show that ω is injective, it would follow that every element of G occurs in the table.

First we observe that if g /∈ Zφ1 , then φ(g) is in a different coset of Zφ1 than g is: if they were in the same

coset, they would differ by an element of Zφ1 , but in fact they differ by φ(g)g−1 ∈ Cφ1 , and Cφ1 has trivial

intersection with Zφ1 by assumption. (φ(g)g−1 lands in that intersection only if g ∈ Zφ1 .) Now, suppose that

ω(gm, x) = ω(gn, y). Rearranging the equation gives

x(g−1
m gn) = φ(g−1

m gn)y. (1)

This equation tells us that g−1
m gn and φ(g−1

m gn) are contained in the same coset of Zφ1 , so it follows that

g−1
m gn ∈ Zφ1 . But since the set {gi} was chosen to be a transversal, g−1

m gn can be in Zφ1 only if m = n.
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Plugging gm = gn into Equation 1 gives x = y. Thus, ω is injective.

Now, when are ω(gm, x) and ω(gn, y) φ-conjugate? That is, when does there exist an h satisfying

φ(gm)xg−1
m = φ(h)φ(gn)yg−1

n h−1? (2)

Certainly this is satisfied if x = y; we merely take h = gmg
−1
n . It follows that each column of the above table

is contained within a single φ-conjugacy class. On the other hand, if x 6= y, Equation 2 can be rewritten as

xγ = φ(γ)y.

where γ = g−1
m hgn. As before, this implies that γ and φ(γ) lie in the same coset of Zφ1 , and hence that

γ ∈ Zφ1 and φ(γ) = γ. That last equation allows us to conclude that

y = γ−1xγ

for some γ ∈ Zφ1 . That is, elements in different columns of the table give earlier can be φ-conjugate only if

the members of Zφ1 heading those columns are conjugate in the ordinary sense within Zφ1 .

We conclude that φ-conjugacy classes in G are unions of columns of the table; two columns are in the

same φ-conjugacy class if and only if their headings are in the same conjugacy class in Zφ1 .

It is not to be hoped that a result of this sort holds in general; that is, the arithmetic of generalized

conjugacy classes is not typically some multiple of the arithmetic of the ordinary conjugacy classes of some

group. For instance, in Section 1.2, the structure induced on A6 by x 7→ x(1 2) is

15 × [1, 1, 6, 8, 8].

However, the expression in brackets is not the conjugacy class breakdown of any group of order 24! It cannot

even be a generalized conjugacy class structure on some group of order 24, since the presence of classes of

size 1 implies that it is produced by an inner automorphism.

4.2 Conjugation in the Action Group

In this section we shall actually describe generalized conjugation in terms of an ordinary conjugation action,

but the latter shall occur in a larger group containing G as a normal subgroup, rather than in G itself or

some subgroup thereof.
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Definition 4.2 Given an automorphism φ : G→ G, we define

ActφG = 〈φ〉⋉G,

called the extended action group of φ on G. Suppose φi is the smallest power of φ which is an inner

automorphism; in particular, suppose φi = Adp. Define

ActφG = ActφG/〈φ
ip−1〉,

called the action group of φ on G.

Note that ActφG is well defined because in ActφG, we have φ−ixφi = p−1xp for x, so 〈φip−1〉 is in the

center of ActφG. Furthermore, since in constructing ActφG, we are taking the quotient by a subgroup

having trivial intersection with G, G is still imbedded as a normal subgroup in ActφG.

Lemma 4.3 ActφG ≃ Actφ◦Adp
G for all p ∈ G.

Proof. Consider the map Actφ◦Adp
G→ ActφG which sends each element of G to itself and which sends the

generator φ ◦ Adp to pφ. This map clearly preserves the action of that generator on G; furthermore, it is

well defined since powers of those generators which are inner automorphisms have been identified with the

appropriate elements of G.

Now, recall that G is a normal subgroup of ActφG. Thus, if we let G act on ActφG by conjugation, it

respects the cosets of G. That is, g−1xg is always contained in the coset xG for any g ∈ G, x ∈ ActφG. In

particular, let us consider the action of G on the coset φG.

Proposition 4.4 Given x ∈ G, the stabilizer of the element φx ∈ ActφG is precisely the subgroup Zφx .

Proof. Consider the following derivation, where g ∈ G:

g−1φxg = φx

φx = gφxg−1

x = φ−1gφxg−1

x = φ(g)xg−1
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The first line of the previous is equivalent to the statement “g is in the stabilizer of φx under the conjugation

action of G”; the last line is equivalent to “g is in the φ-centralizer of x.”

Henceforth, the stabilizer of an element of ActφG under the conjugation action of G will be called simply the

G-stabilizer of that element. Since the above correspondence between stabilizers and φ-centralizers holds,

we have the following:

Corollary 4.5 The orbits in φG under the conjugation action of G are in one-to-one correspondence with

φ-conjugacy classes in G; each orbit is the same size as the corresponding φ-conjugacy class.

The preceding two propositions do not directly give new combinatorial information about generalized

conjugacy classes, but they offer a new framework in which to think about them. For yet another perspective,

we note that the derivation in the proof of Proposition 4.4 is valid even if we take the quotient to eliminate

powers of φ which are inner:

Proposition 4.6 Proposition 4.4 and Corollary 4.5 hold if ActφG is replaced by ActφG.

4.3 φ-Centralizer Containment

For ordinary conjugation in a group G, the following holds:

Fact 4.7 Every centralizer is contained in a particular centralizer (namely that of the identity element).

This fact and Lagrange’s Theorem together imply that

Fact 4.8 The order of a certain conjugacy class (namely that of the identity) divides the orders of all other

conjugacy classes.

Now, these are unquestionably somewhat trivial statements, since Zid1 = G and |Cid1 | = 1. At one time it

was conjectured, however, that the above facts (with the parenthetical references to the identity deleted)

held for generalized conjugacy classes. Indeed, to date the only known example violating them is that given

in Section 1.2 as A6 with automorphism τ .

Nevertheless, all the τ -conjugacy classes of A6 have orders divisible by 18. It was hoped that a weaker

reformulation of the above might hold:
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Statement 4.9 Consider the smallest subgroup of G containing isomorphic copies of all φ-centralizers. The

index of that subgroup is the GCD of the orders of the φ-conjugacy classes.

However, this idea was invalidated when it was found that A6 in fact contains no subgroup of index 18.

An important and enlightening result would be the discovery of some combinatorial property of auto-

morphisms that would allow one to predict the GCD of the orders of φ-conjugacy classes without actually

computing the members of the classes themselves. Ongoing work focuses on this goal.

4.4 Divisibility in Special Cases

We conclude with a result which achieves that goal under special assumptions, and only for some subset

of the generalized conjugacy classes produced by a given automorphism. Throughout this section, φ and ψ

denote automorphisms with the property that φψ−1 is an inner automorphism. The notation ActG will be

used to denote the isomorphic groups ActφG and Actψ G.

Now, any element which G-stabilizes ψ also G-stabilizes ψn. Futhermore, two automorphisms in the

same orbit of G’s action on ActG clearly have isomorphic G-stabilizers. These observations lead us to the

following lemma.

Lemma 4.10 Suppose that for some n, ψn is in the same G-orbit as φ. Then the G-stabilizer of φ contains

an isomorphic copy of the G-stabilizer of ψ.

Next, we know for general group actions that the stabilizer of a given element is contained in the stabilizer

of any power of that element. But that fact is relevant for our discussion only when a power of an element

in φG also lies in φG. The following lemma describes one case where that fact applies. Note that the order

of ActG divides the orders of ActφG and Actψ G.

Lemma 4.11 If |Actψ G|/|ActG| is relatively prime to |ActG|/|G|, then there is some power of ψ, say ψi,

such that ψi−1 is inner and such that |Actψi G|/|ActG| = 1.

Proof. Let us write n = |Actψ G|/|ActG|, m = |ActG|/|G|. Note that mn = |Actψ G|/|G| = |〈ψ〉|;

additionally, m is the smallest power of ψ which is inner. Now, consider the quotient ActG/G: this is a

cyclic group of order m; and since n is relatively prime to m, the coset containing ψn is a generator for that
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cyclic group. In particular, some power of ψn, say ψnk, is contained in the coset containing ψ itself. Take

i = nk. Now ψiψ−1 must be contained in the identity coset, i.e. in G itself, so ψi−1 is inner. Additionally,

ψi has order at most m (which is the order of ψn). Since the coset containing ψi generates ActG, it follows

that ψi is a generator for 〈ψn〉, so ψi has order m. Therefore, |Actψi G|/|ActG| = 1.

Corollary 4.12 If |Actψ G|/|ActG| is relatively prime to |ActG|/|G|, and i is as above, then the order

of the G-stabilizer of ψ divides the order of the G-stabilizer of ψi.

The above lemmas are straightforward and elementary, but they illustrate the utility of the ActG construc-

tion. In Section 1.1, when we defined φ-conjugation, we were dealing with a group acting on a set. Now we

have transformed the question into one of a group, G, acting on another group, ActG. The permutations on

ActG associated to given elements of G are in fact autmorphisms of ActG. The resultant extra algebraic

structure facilitates proving lemmas such as the preceding which do not even have easily-stated analogues

in the language of φ-conjugation alone. For instance, Lemma 4.10 might be restated as follows:

Proposition 4.13 Let x, y ∈ G; let x̃, ỹ be corresponding elements in φG ⊆ ActφG. If for some n, ỹn is

in the same G-orbit as x̃, then |Zφy | divides |Zφx |. Equivalently, |Cφx | divides |Cφy |.

This proposition is both powerful and widely applicable. It is hoped that similarly strong statements about

generalized conjugacy classes may be proven with the aid of the action group construction.
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