
INTRODUCTION TO STAGGERED SHEAVES

PRAMOD N. ACHAR

Abstract. This note is an expository account of the theory of staggered

sheaves, based on a series of lectures given by the author at RIMS (Kyoto) in
October 2008.

Perverse sheaves have become a tool of great importance in representation the-
ory, largely because of the remarkable way in which they provide a link between
geometry and algebra. A single perverse sheaf contains information reminiscent of
classical algebraic topology; indeed, the prototypical example of a perverse sheaf
comes from the Goresky–MacPherson theory of “intersection homology.” But the
category of perverse sheaves behaves like the module categories typically seen in
representation theory, and some of the most important theorems here are Ext-
vanishing and complete reducibility criteria.

Staggered sheaves, the subject of the present note, were introduced by the author
in [A1] and subsequently studied in a series of papers [AT1, AT2, A2] by the author
and D. Treumann. The category of staggered sheaves also enjoys a long list of re-
markable algebraic properties, resembling the most important properties of perverse
sheaves. Most notably, the category of staggered sheaves is quasi-hereditary and
exhibits “purity” and “decomposition” phenomena. But whereas perverse sheaves
are built out of local systems, staggered sheaves are built out of vector bundles,
and they live in the derived category of coherent sheaves.

This note is a self-contained exposition of the main results on staggered sheaves.
It is meant to be accessible to anyone familiar with the basic theory of algebraic
groups and a passing acquaintance with derived categories. Some familiarity with
perverse sheaves may be helpful for motivation, but the relevant facts will be re-
viewed in Section 2. Most proofs will be omitted. No new results appear here.

Notation and definitions occupy Section 3, and the main theorems are listed
in Sections 4–6. An example on P1 is worked out in Section 7, and some open
questions are posed in Section 8. Appendix A surveys the theory of baric structures,
required for the proofs of the main theorems, and Appendix B describes differences
in terminology, notation, and conventions among the various papers.
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1. Prologue: Staggered Representations

In this section, we carry out a construction that is parallel to, and exhibits the
main features of, that of staggered sheaves. Sheaves do not explicitly appear in this
section, but the ideas in this section will be revisited later.
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Let H be an algebraic group over an algebraically closed field k. Assume for
simplicity that either char k = 0, or else that H is solvable. In either case, H
admits a Levi decomposition H = LU , where L is reductive, and U is the unipotent
radical of H. Moreover, the rational representations of L are all semisimple. (If
H is solvable, L is a torus.) Let Rep(H) denote the category of finite-dimensional
rational representations of H, and let Irr(H) denote the set of (isomorphism classes
of) irreducible rational representations.

We now describe a recipe for attaching an integer, called the step, to each V ∈
Irr(H). Choose, once and for all, a cocharacter

ξ : Gm → Z◦(L),

where Z◦(L) denotes the identity component of the center of L, and assume that

(1.1) 〈ξ, λ〉 < 0 for all weights λ of Z◦(L) on Lie(U).

Next, recall that U acts trivially on any irreducible representation of H, so Irr(H)
can be identified with Irr(L). In any irreducible representation V of L, the subgroup
Z◦(L) acts by a character χV : Z◦(L) → Gm. We define the step of V by

step V = 〈ξ, χV 〉.

Next, let D = Db(Rep(H)) denote the bounded derived category of Rep(H). We
regard Rep(H) as a subcategory of D as usual, by thinking of objects of Rep(H)
as chain complexes concentrated in degree 0. Objects of the form V [n], where V ∈
Irr(H), may be plotted on a two-dimensional grid whose horizontal axis indicates
step, and whose vertical axis indicates cohomological degree in D:degree stepV2[−2]

V1[1]V−1

Of course, not all objects in D live on points on this grid, but D is generated by
such objects: all chain complexes are built up by extensions from complexes con-
centrated in a single degree, and all H-representations are built up from irreducible
representations. Indeed, the subcategory Rep(H) may be pictured thus:

step

degree

Let M(H) denote the subcategory generated by objects of the form

V [step V ], where V ∈ Irr(H).
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In our picture of D, M(H) is generated by objects lying along a line of slope −1:

step

degree

Theorem 1.1. M(H) is a semisimple abelian subcategory of D. The simple objects

are precisely the objects of the form V [step V ], with V ∈ Irr(H).

Proof sketch. The usual way to produce abelian subcategories of triangulated cat-
egories is to use the machinery of t-structures [BBD]. A t-structure on D is pair
of subcategories (D≤0,D≥0), satisfying a short list of axioms that will be recalled
below.

In our case, we define D≤0 (resp. D≥0) to be the subcategory generated by
objects V [n] with V ∈ Irr(H) and n ≥ step V (resp. n ≤ step V ). Thus:

D≤0 : step

degree

D≥0 : step

degree

The three axioms to be checked are as follows:
(1) D≤0[1] ⊂ D≤0 and D≥0 ⊂ D≥0[1]. This is obvious from the definition.
(2) Hom(A,B[−1]) = 0 for all A ∈ D≤0 and B ∈ D≥0. By a standard in-

duction argument, this can be reduced to showing for any V,W ∈ Irr(H), we
have Hom(V [n],W [m]) = 0 whenever n ≥ step V and m < step W . Equivalently,
we must show that Extm−n(V,W ) vanishes. If m − n < 0, this is trivial, but if
m − n ≥ 0, this must be proved using the assumption (1.1).

(3) For any object X ∈ D, there is a distinguished triangle A → X → B → with

A ∈ D≤0 and B[1] ∈ D≥0. The proof of this proceeds by induction on the number
of nonzero cohomology objects of X and a diagram-chasing argument using the
9-lemma [BBD, Proposition 1.1.11].

The proof of the semisimplicity of M(H) and the determination of simple objects
both come down to Hom-group calculations similar to those in part (2) above. ¤

2. Review of Perverse Sheaves and Weights

In this section, we briefly review the most important facts about perverse sheaves,
at least from the viewpoint of applications in representation theory. Subsequent
sections do not depend on any facts listed here; rather, the list is meant to serve as
motivation for later results on staggered sheaves.

Let X be a variety over the algebraic closure Fq of a finite field Fq. Suppose
X is endowed with a fixed stratification S into finitely many locally closed smooth
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strata, as well as a finite collection L of isomorphism classes of local systems on
those strata. We assume that the pair (S,L) satisfies the conditions of [BBD,
§2.2.10(a)–(c)], which are technical conditions meant to ensure that the usual sheaf
functors behave well.

Fix a prime number ℓ different from the characteristic of Fq, and let Db
m(X)

denote the “derived” category of bounded mixed constructible complexes of étale
Q̄ℓ-sheaves. (In the presence of a group action, one should instead take Db

m() to
denote the Bernstein–Lunts equivariant derived category [BL].) For each stratum
S ∈ S, let iS : S →֒ X denote the inclusion map. Next, we define two new full
subcategories of Db

m(X) as follows:

pD≤0 = {F | hk(i∗SF ) = 0 if k > −dim S for all S ∈ S},

pD≥0 = {F | hk(i!SF ) = 0 if k < −dim S for all S ∈ S}.

The category of perverse sheaves, denoted P(X), is defined as follows:

P(X) = pD≤0 ∩ pD≥0.

We begin with a few basic facts about P(X).

(2.1) The pair (D≤0,D≥0) is a nondegenerate, bounded t-structure on Db
m(X),

and therefore P(X) is an abelian category.

(2.2) Every perverse sheaf has finite length, and there is a bijection
{

simple objects
in P(X)

}

∼
←→

{

(C,L)
∣

∣

∣

C ∈ O(X), and L an irreducible
local system on C

}

The simple object corresponding to a pair (C,L), denoted IC(C,L), is supported
on C, and its restriction to C is L[dim C].

(2.3) Poincaré–Verdier Duality: The Verdier duality functor D : Db
m(X) →

Db
m(X) preserves P(X), and

DIC(C,L) ≃ IC(C,L∗),

where L∗ is the dual local system to L.

Next, we turn to the theory of weights. Recall that being mixed means, roughly,
that the Frobenius morphism acts on stalks at Fq-points of X with well-behaved
eigenvalues. Specifically: all eigenvalues of Frobenius are algebraic integers whose
complex absolute values (under any embedding Q →֒ C) are of the form qw/2 with
w ∈ Z. When F is actually a sheaf (and not a complex), the integers w that occur
are called the weights of F .

The definition of weights for general objects of Db
m(X) is slightly different. The

full subcategory of objects of weight ≤ w, denoted D≤w, is defined by

D≤w = {F ∈ Db
m(X) | for each k, hk(F ) has weights ≤ w + k}.

There is also a category D≥w of objects of weight ≥ w. When X is smooth, it can
be defined by simply reversing the inequalities above, but in general, that is not
the correct definition. Instead, it is defined by

(2.4) D≥w = D(D≤−w).
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By plotting sheaf weights along the horizontal axis, we may draw a picture of
D≤w as shown below, in the spirit of the pictures in Section 1. If X is smooth, we
may do likewise for D≥w.

D≤w :

degree

weight D≥w:
(X smooth)

degree

weight

However, the latter picture can be misleading for nonsmooth X.
Finally, an object F ∈ Db

m(X) is pure of weight w if

F ∈ D≤w ∩ D≥w.

Some important properties of the weight categories D≤w and D≥w are as follows.
If X is smooth, the constant sheaf Q̄ℓ on X is pure of weight 0, but that does not
hold for general X.

(2.5) D≤w[1] = D≤w+1 and D≥w[1] = D≥w+1.

(2.6) If F ∈ D≤w and G ∈ D≥w+1, then Homi(F,G) = 0 for all i > 0.

(2.7) (Deligne [D]) For a proper morphism f : X → Y , the functor f! = f∗ takes
pure objects to pure objects.

The last item is part of Deligne’s proof of the Weil conjectures. Specifically,
when X is a smooth projective variety, it follows from (2.7) (by taking Y to be a
point) that each ℓ-adic cohomology group Hk(X, Q̄ℓ) is pure of weight k.

(2.8) If F and G are perverse sheaves with F ∈ D≤w and G ∈ D≥w+1, then in

fact Homi(F,G) = 0 for all i ≥ 0.

(2.9) Purity: Every perverse sheaf F admits a canonical finite filtration

· · · ⊂ F−1 ⊂ F0 ⊂ F1 ⊂ · · ·

such that Fw/Fw−1 is pure of weight w. In particular, every simple perverse
sheaf is pure.

(2.10) Decomposition: Any pure object in Db
m(X) is a direct sum of shifts of

simple perverse sheaves.

For applications in representation theory, this Decomposition Theorem is usually
used in conjunction with (2.7).

Finally, we consider “standard” and “costandard” objects. Precise definitions
will be given in Section 6; for now, one may keep in mind that Verma modules
are standard objects in category O for a complex semisimple Lie algebra. Indeed,
Verma modules are perhaps the motivating example for the general notion.

(2.11) Assume that each stratum S is isomorphic to an affine space Ak. Then ev-
ery simple perverse sheaf has a standard cover and a costandard hull. Moreover,
P(X) has enough projectives and enough injectives.
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3. Preliminaries

3.1. Notation and assumptions. Let k be an algebraically closed field. We
temporarily assume that char k = 0 (this will soon be dropped). Let us put:

G a reductive algebraic group over k

X a variety over k on which G acts with finitely many orbits
O(X) the set of G-orbits in X
CG(X) the category of G-equivariant coherent sheaves on X
Db

G
(X) the bounded derived category of CG(X)

ωX the equivariant dualizing complex of X in Db

G
(X)

To be more precise, we normalize ωX in the following way: If X is smooth, then

ωX ≃ Ωtop
X [dim X],

where Ωtop
X denotes the canonical bundle of X. If X is not smooth, the Sumihiro

embedding theorem [S] tells us that we may find a closed G-equivariant embedding
ι : X →֒ Y into a smooth G-variety Y . We then set

ωX = Rι!ωY .

This object is independent of the choice of ι.
We will also require the bounded-above and bounded-below derived categories

D−

G
(X) and D+

G
(X). Recall [H] that the latter must be defined to consist of bounded-

below chain complexes of quasicoherent sheaves with coherent cohomology.
For each orbit C ∈ O(X), we define the following:

iC : C →֒ X the inclusion of C as a reduced locally closed subscheme
HC the G-stabilizer of some point of C
HC = LCUC a Levi decomposition of HC

Z◦(LC) the identity component of the center of the Levi factor of HC

uC the Lie algebra of the unipotent radical of HC

IC the ideal sheaf in OX for the closed subvariety C
N∗(C) conormal bundle of C ⊂ X

Above, the assumption that char k = 0 was used in two places: the invocation of the
Sumihiro embedding theorem for the definition of ωX , and the existence of a Levi
decomposition for HC . We would now like to drop the assumption that char k = 0,
so if char k 6= 0, we explicitly impose the following additional assumptions

(3.1) X admits a closed embedding ι : X →֒ Y into a smooth G-variety Y .

(3.2) Each HC is solvable.

Condition (3.1) is really not essential (see Section B.3), but in the absence of (3.2),
the Decomposition Theorem (Theorem 5.6) fails. Both hold in the important ex-
ample where G is a Borel subgroup of reductive group and X is a flag variety.

With these assumptions, we now have in any characteristic:

(3.3) All representations of the reductive groups LC are completely reducible.

Recall that on a single G-orbit C, every equivariant coherent sheaf is necessarily
locally free. In other words, CG(C) is in fact the category of G-equivariant vector
bundles on C, which in turn is equivalent to the category Rep(HC) of rational
representations of the isotropy group HC . We will freely make use of the equivalence

CG(C) ≃ Rep(HC)
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in the sequel. In particular, the Lie algebra uC equipped with the adjoint action of
HC may be regarded as a coherent sheaf on C, and the vector bundle N∗(C) may
be regarded as an HC representation.

3.2. Definition of staggered sheaves. The category of staggered sheaves de-
pends on the following choices:

(3.4) For each orbit C ∈ O(X), a cocharacter ξC : Gm → Z◦(LC) such that

〈ξC , λ〉 ≤ −1 for all weights λ of Z◦(LC) on uC and on N∗(C).

Such a collection {ξC | C ∈ O(X)} is called an s-structure on X.

(3.5) A function r : O(X) → Z. This will be known as the perversity function.

Fix an s-structure and a perversity once and for all.

Definition 3.1. Let F ∈ CG(C) be an irreducible vector bundle, and let χF :
Z◦(LC) → Gm be the character of Z◦(LC) on the corresponding HC-representation.
The step of F is defined by

stepF = 〈ξC , χF 〉.

The notion of step does not make sense for general objects of CG(C). Neverthe-
less, we can form filtrations of CG(C) in terms of steps of irreducible objects. For
w ∈ Z, we define full subcategories of CG(C) as follows:

CG(C)≤w = {F | for every irreducible subquotient G of F , stepG ≤ w},

CG(C)≥w = {F | for every irreducible subquotient G of F , stepG ≥ w}.

Using these, we define two full subcategories of Db

G
(X) as follows:

rDb

G
(X)≤0 = {F | hk(Li∗CF) ∈ CG(C)≤r(C)−k for all C ∈ O(X) and all k ∈ Z},

rDb

G
(X)≥0 = {F | hk(Ri!CF) ∈ CG(C)≥r(C)−k for all C ∈ O(X) and all k ∈ Z}.

(The unbounded versions rD−

G
(X)≤0 and rD+

G
(X)≥0 are defined similarly.)

Definition 3.2. The category of staggered sheaves on X, denoted rM(X), or
simply M(X), is the category rDb

G
(X)≤0 ∩ rDb

G
(X)≥0.

It is clear than when X consists of a single orbit C, the category M(C) is
equivalent (up to shift) to the category M(HC) of “staggered representations”
considered in Section 1, and we may draw the following pictures:

step

degree

step

degree

step

degree

rDb

G
(C)≤0 rDb

G
(C)≥0 M(C)

When X contains more than one orbit, the structure of these categories is not
so clear. This topic will be explored further in Section A.2.
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4. Basic Properties

Perhaps the biggest technical difficulty in getting the theory of staggered sheaves
off the ground is that the restriction functor j∗, where j : U →֒ X is an open
inclusion, does not have adjoints in the setting of coherent sheaves. (The direct
image functor j∗ gives quasicoherent sheaves in general, where the extension-by-
zero functor j! takes values in the category of inverse limits of coherent sheaves.)

Theorem 4.1. (rDb

G
(X)≤0, rDb

G
(X)≥0) is a nondegenerate, bounded t-structure on

Db

G
(X), so M(X) is an abelian category.

Remarks on proof. This theorem cannot be proved using the method of “gluing of
t-structures” [BBD, §1.4] that is typically used for perverse sheaves, because of the
lack of adjoints mentioned above. Instead, we use the machinery of baric structures,
discussed in Appendix A.

Theorem 4.2. Every staggered sheaf has finite length, and there is a bijection
{

simple objects

in M(X)

}

∼
←→

{

(C,L)
∣

∣

∣

C ∈ O(X), and L an irreducible

vector bundle on C

}

The simple object corresponding to a pair (C,L), denoted rIC(C,L), or simply

IC(C,L), is supported on C, and its restriction to C is L[stepL − r(C)].

Remarks on proof. Among all objects supported on C with the correct restriction
to C, the objects F in the image of the functor IC(C, ·) are characterized by the
property that for any C ′ ⊂ C r C, we have

Li∗C′F ∈ rD−

G
(C ′)≤−1 and Ri!C′F ∈ rD+

G
(C ′)≥1.

This criterion can be used in examples to verify that some object is IC(C,L)

Finally, we turn to duality. In the coherent setting, the appropriate analogue
of the Poincaré–Verdier duality functor is the Serre–Grothendieck duality functor
D : Db

G
(X) → Db

G
(X), developed in [H] and generalized to the equivariant case

in [B1]. To describe the behavior of M(X) under D, we require some auxiliary
definitions. Let us define a new function

r̄ : O(X) → Z,

known as the dual perversity to the given perversity r : O(X) → Z, by the formula

(4.1) r̄(C) = stepΩtop
C − dim C − r(C).

We may then define categories

r̄Db

G
(X)≤0, r̄Db

G
(X)≥0, r̄M(X)

in the same way was rDb

G
(X)≤0, rDb

G
(X)≥0, and rM(X), but using r̄ in place of r

(and using the same s-structure as before).

Theorem 4.3. D(rDb

G
(X)≤0) = r̄Db

G
(X)≥0 and D(rDb

G
(X)≥0) = r̄Db

G
(X)≤0. In

particular, D(rM(X)) = r̄M(X), and

D(rIC(C,L)) ≃ r̄IC(C,L∨),

where L∨ = Hom(L,Ωtop
C ) is the Serre dual vector bundle to L.
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This statement becomes much cleaner, and closer to (2.3), when it happens that
r = r̄. Clearly, such a self-dual perversity exists if and only if the integer

stepΩtop
C − dim C,

known as the staggered codimension of C, is even for all C ∈ O(X). It is not
known under what conditions this holds. (Similar considerations pertain to per-
verse sheaves as well, although in the algebraic setting, there is always a self-dual
perversity—we silently chose it in Section 2—because the ℓ-adic cohomological di-
mension of every variety is even.)

5. Purity and Decomposition

We now describe a family of subcategories of Db

G
(X) that are analogous to the

weight categories D≤w and D≥w in ℓ-adic sheaf theory. Given an integer w, define

rD−

G
(X)⊑w =

{

F
∣

∣

∣

hk(Li∗CF) ∈ CG(C)≤w+r(C)+dim C+k

for all C ∈ O(X) and all k ∈ Z

}

.

As usual, when there is no risk of ambiguity, this category will simply be de-
noted D−

G
(X)⊑w. Its definition clearly bears a great deal of resemblance to that of

rD−

G
(X)≤w; the most essential difference is that the step constraint involves a “+k”

rather than a “−k.” Next, we define

rD+

G
(X)⊒w =

{

F
∣

∣

∣

hk(Ri!CF) ∈ CG(C)≥w+r(C)+dim C+k

for all C ∈ O(X) and all k ∈ Z

}

.

We also have bounded versions Db

G
(X)⊑w and Db

G
(X)⊒w. Over a single orbit,

we may draw pictures of these categories resembling those for the ℓ-adic weight
categories:

Db

G
(X)⊑w :

degree

step Db

G
(X)⊒w :

degree

step

Of course, these categories are more complicated when X contains more than one
orbit. Like the ℓ-adic weight categories, these categories enjoy a duality property,
cf. (2.4) and Theorem 4.3:

Theorem 5.1. D(rDb

G
(X)⊑w) = r̄Db

G
(X)⊒−w and D(rDb

G
(X)⊒w) = r̄Db

G
(X)⊑−w.

Our first result about them is similar to, but stronger than, the results (2.5)
and (2.6) for ℓ-adic sheaves.

Theorem 5.2. The collection of subcategories ({Db

G
(X)⊑w}, {D

b

G
(X)⊒w}) forms a

co-t-structure on Db

G
(X). That is:

(1) Db

G
(X)⊑w ⊂ Db

G
(X)⊑w+1 and Db

G
(X)⊒w ⊃ Db

G
(X)⊒w+1.

(2) Db

G
(X)⊑w[1] = Db

G
(X)⊑w+1 and Db

G
(X)⊒w[1] = Db

G
(X)⊒w+1.

(3) If F ∈ Db

G
(X)⊑w and G ∈ Db

G
(X)⊒w+1, then Hom(F ,G) = 0.

(4) For any F ∈ Db

G
(X), there is a distinguished triangle F ′ → F → F ′′ →

with F ′ ∈ Db

G
(X)⊑w and F ′′ ∈ Db

G
(X)⊒w+1.
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Note that the inclusions Db

G
(X)⊑w ⊂ Db

G
(X)⊑w[1] and Db

G
(X)⊒w ⊃ Db

G
(X)⊒w[1]

are the opposite of what one would have in a t-structure. Also in contrast with
t-structures, the distinguished triangle in part (4) above is not functorial in general.

Definition 5.3. An object F ∈ Db

G
(X) is skew-pure of skew-degree w if it belongs

to Db

G
(X)⊑w ∩ Db

G
(X)⊒w.

Theorem 5.4 (Purity). Every staggered sheaf F admits a canonical finite filtration

· · · ⊂ Fw−1 ⊂ Fw ⊂ Fw+1 ⊂ · · ·

such that Fw/Fw+1 is skew-pure of skew degree w. In particular, every simple

staggered sheaf is skew-pure.

Remarks on proof. The hard part of this is showing that a simple object is skew-
pure, and the difficulty is that there is no general method to compute the restriction
of IC(C,L) to C r C. See Section A.3.

The skew degree of a simple staggered sheaf F is given by

sk deg IC(C,L) = 2(stepL − r(C)) − dim C.

The next result follows immediately from properties of co-t-structures.

Proposition 5.5. Let F and G be simple staggered sheaves, with sk degF = v and

sk deg G = w. Then Homk(F ,G) = 0 for k > v − w.

Here, Homk(F ,G) is a synonym for Hom(F ,G[k]). It can be identified with

Extk(F ,G) when k ≤ 1 (but not in general when k > 1). Thus, the proposition
above includes an Ext1-vanishing condition. A stronger statement about Ext1-
groups will appear in Corollary 6.5. See also Section 8.2.

Theorem 5.6 (Decomposition). Every skew-pure object in Db

G
(X) is a direct sum

of shifts of simple staggered sheaves.

6. Quasi-hereditary Abelian Categories

Let A be a finite-length k-linear abelian category, and let S be the set of iso-
morphism classes of simple objects. Assume S is endowed with a fixed total order
≤. For each s ∈ S, fix a representative object Ls. Assume also that End(Ls) ≃ k

for each s ∈ S.

Definition 6.1. An object Ms together with a surjective morphism φs : Ms → Ls

is called a standard cover if

(1) Every simple subquotient of kerφs is isomorphic to some Lt with t < s.
(2) Hom(Ms, Lt) = Ext1(Ms, Lt) = 0 for all t < s.

Dually, an object Ns together with an injective morphism ψs : Ls → Ns is called a
costandard hull if

(1) Every simple subquotient of cokψs is isomorphic to some Lt with t < s.
(2) Hom(Lt, Ns) = Ext1(Lt, Ns) = 0 for all t < s.

Standard arguments show that standard covers and costandard hulls, when they
exist, are unique up to canonical isomorphism. As noted at the end of Section 2,
the motivating example of a standard object is a Verma modules in category O for
a complex semisimple Lie algebra.
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Note that a standard cover of Ls is a projective cover within the smaller category
A≤s generated by objects {Lt | t ≤ s}. Similarly, a costandard hull is an injective
hull within A≤s.

Definition 6.2. The category A is said to be quasi-hereditary if

(6.1) Every simple object admits a standard cover and a costandard hull.

This definition, taken from [B1], is not the most common one. Many authors
impose additional conditions, cf. Section 8.1.

Theorem 6.3. (1) M(X) is quasi-hereditary.

(2) M(X) has enough projectives and enough injectives.

Remarks on proof. The proof of (2.11) for perverse sheaves makes use of the func-
tors j! and j∗, where j : U →֒ X is an open inclusion. These are unavailable in
the coherent setting. However, it turns out that the functor of abelian categories
j∗ : M(X) → M(U) has adjoints on both sides. These adjoints can be used in
place of j! and j∗.

For a simple staggered sheaf IC(C,L), let M(C,L) and N(C,L) denote its stan-
dard cover and costandard hull, respectively.

Theorem 6.4. Let w = skdeg IC(C,L).

(1) The kernel of M(C,L) → IC(C,L) is skew-pure of skew degree w − 1.
(2) The cokernel of IC(C,L) → N(C,L) is skew-pure of skew degree w + 1.

Note that by the Decomposition Theorem, the kernel and cokernel mentioned in
this theorem are both necessarily semisimple.

We conclude with two results whose statements do not involve standard or co-
standard objects, but whose proofs do.

Corollary 6.5. If Ext1(IC(C,L), IC(C ′,L′)) 6= 0, then

sk deg IC(C ′,L′) = sk deg IC(C,L) − 1.

Corollary 6.6. For any orbit C ∈ O(X), the functor IC(C, ·) : M(C) → M(X)
embeds M(C) as a semisimple Serre subcategory of M(X).

The semisimplicity of M(C) itself was essentially stated in Section 1. The addi-
tional content of this corollary is that even in the larger category M(X), there are
no nontrivial extensions about simple objects supported on the same orbit closure.

7. An Example

Let G denote the usual Borel subgroup of PGL(2, k):

G =

{[

∗ ∗
∗

]}

/

{

±

[

1
1

]}

Let X = P1, endowed with the obvious action of G. (Note that X is the flag
variety for PGL(2, k). G has two orbits on P1: a one-point orbit, denoted Z,
and its complement, an open orbit isomorphic to A1 and denoted U . The isotropy
groups are HZ = G and HU ≃ Gm. Irreducible representations of both these groups
are in bijection with Z. For n ∈ Z, let Vn ∈ CG(Z) and Ln ∈ CG(U) denote the
corresponding vector bundles on orbits.
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Note that the torus HU ⊂ G acts linearly on U with weight 1. It can be
deduced from this that N∗(Z) ≃ uZ ≃ V1. It also follows that for any two integers
n,m ∈ Z, there exists a line bundle F(n,m) ∈ CG(X) such that F(n,m)|U ≃

Ln and i∗ZF(n,m) ≃ Vm. The canonical bundle is Ωtop
X = F(−1, 1), and Serre–

Grothendieck duality is given by

D(F(n,m)) ≃ F(−1 − n, 1 − m)[1].

We impose an s-structure on X by requiring stepLn = n and step Vn = −n, and
we give it the self-dual perversity r : U 7→ −1, Z 7→ 0. Then, the simple staggered
sheaves are given by

IC(U,Ln) ≃ F(n,−n)[n + 1] and IC(Z, Vn) ≃ Vn[−n].

The only nontrivial extensions among simple objects are the following:

0 → IC(Z, V−n) → F(n,−n + 1)[n + 1] → IC(U,Ln) → 0

0 → IC(U,Ln) → F(n,−n − 1)[n + 1] → IC(Z, V−n−1) → 0

The middle term of each of those is both projective and injective. In fact, we have

M(U,Ln) ≃ P (U,Ln) ≃ F(n,−n + 1)[n + 1] ≃ I(Z, V−n)

N(U,Ln) ≃ I(U,Ln) ≃ F(n,−n − 1)[n + 1] ≃ P (Z, V−n−1)

Since Z is closed, the simple objects IC(Z, Vn) are also standard and costandard.
The structure of the category M(X) can be summarized in the following dia-

gram, in which an arrow F → G means that Ext1(G,F) 6= 0.

sk deg : −2 −1 0 1 2 3

U : IC(U,−1)

xxqq
qq

q

IC(U, 0)

yyssss

IC(U, 1)

xxqq
qq

q· · · · · ·

Z : IC(Z, 1) IC(Z, 0)

ffMMMMM

IC(Z,−1)

ffMMMMM

It can also be checked by direct calculation that derived tensor products

IC(Z, Vn)
L

⊗ IC(Z, Vm)

are skew-pure, of skew-degree −2n − 2m. The Decomposition Theorem tells us
these must be semisimple; we have

IC(Z, Vn)
L

⊗ IC(Z, Vm) ≃ IC(Z, Vn+m) ⊕ IC(Z, Vn+m+1)[2].

Further explicit examples appear in [A1, §11], [AT2, §12], and [A2, §9]. The ex-
ample in [AT2, §12] gives another illustration of the Decomposition Theorem. The
example in [A2, §9] involves a nonsmooth variety.

8. Further Questions

8.1. Reciprocity formulas. Let A and S be as in Section 6. The notion of quasi-
hereditarity often includes the following additional assumptions:

(8.1) The set S of isomorphism classes of simple objects is finite.

(8.2) For any standard object Ms and costandard object Nt, Ext2(Ms, Nt) = 0.
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(Both of these fail for M(X) in general.) These extra conditions always im-
ply the existence of enough projectives and injectives [BGS, Theorem 3.2.1] (see
also [CPS]). Moreover, every indecomposable projective admits a standard filtra-

tion, i.e., a filtration whose subquotients are standard objects. The multiplicities
in a standard filtration obey the celebrated Brauer–Humphreys reciprocity formula:

(8.3) (Ps : Mt) = [Nt : Ls].

Perhaps the most famous instance of this is the one known as BGG reciprocity in
category O for a complex semisimple Lie algebra.

The known examples of staggered sheaves include one in which projectives do
have standard filtrations (see [A2, §9]) and others (including the one in Section 7)
in which they do not. It would be nice to find a characterization of cases in which
this happens, and therefore in which the reciprocity formula (8.3) holds.

8.2. Higher Ext-groups. It can be seen in the smallest examples, including the
one in Section 7, that the bounded derived category of M(X) need not be equivalent
to Db

G
(X), so care must be taken in passing from higher Hom-groups in Db

G
(X) to

higher Ext-groups for the abelian category M(X). If F and G are simple staggered

sheaves with sk degF ≤ sk deg G, Proposition 5.5 tells us that Homk(F ,G) = 0 for
all k > 0, and then it follows from [BBD, Remarque 3.1.17] that

(8.4) Extk(F ,G) = 0 for all k > 0 if sk degF ≤ sk deg G.

It is natural to ask what can be said about higher Ext-groups when sk degF >
sk deg G. It follows from (8.4) that M(X) is a mixed category in the sense of [BGS,
§4]. In keeping with the themes of that paper, one may ask whether M(X) is, in
fact, a Koszul category. In other words, is it true that

Extk(F ,G) = 0 if sk degF − sk deg G 6= k?

Corollary 6.5 says this holds for k = 1; it seems reasonable to conjecture that it
holds in general.

8.3. Cohomological dimension of M(X). It is well-known that the cohomologi-
cal dimension of the category CG(X) is dim X if X is smooth and infinite otherwise.
For staggered sheaves, the situation is quite different: in the example considered
in Section 7, M(X) has infinite cohomological dimension, but in every known ex-
ample on an affine variety, including a nonsmooth one [A2, §9], M(X) has finite
cohomological dimension. It would be interesting to find necessary and sufficient
conditions for M(X) to have finite cohomological dimension, and to compute its
dimension in those cases.

Appendix A. Baric Structures

A.1. Overview. A vital role in the proofs of all the main results on staggered
sheaves is played by the notion of a baric structure, introduced by the author and
D. Treumann in [AT1]. The motivating example of a baric structure appeared
earlier, in work of S. Morel, in the ℓ-adic setting [M]. The definition is given as
part of Theorem A.2 below.

The paper [AT1] includes an extensive study of so-called HLR baric structures.
These baric structures are hereditary (well-behaved on closed subschemes), local
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(well-behaved on open subschemes), and rigid (well-behaved on nilpotent thicken-
ings). In additional to the general theory, that paper includes a construction of a
specific family of HLR baric structures, which we now describe.

Let q : O(X) → Z be a function, and define a collection of full subcategories of
D−

G
(X) and D+

G
(X), respectively, as follows:

qD
−

G
(X)≤w = {F | hk(Li∗CF) ∈ CG(C)≤q(C)+w for all C ∈ O(X) and all k ∈ Z},

qD
+

G
(X)≥w = {F | hk(Ri!CF) ∈ CG(C)≥q(C)+w for all C ∈ O(X) and all k ∈ Z}.

As usual, let qD
b

G
(X)≤w and qD

b

G
(X)≥w denote the bounded versions of these cat-

egories. These categories are stable under shift. Over a single orbit, they look like
this:

qD
b

G
(C)≤w :

degree

step qD
b

G
(C)≥w :

degree

step

These categories exhibit a duality property similar to those in Sections 4 and 5.

Theorem A.1. D(qD
b

G
(X)≤w) = q̂D

b

G
(X)≥−w and D(qD

b

G
(X)≥w) = q̂D

b

G
(X)≤−w,

where q̂(C) = stepΩtop
C − q(C).

Theorem A.2. The collection of subcategories ({qD
b

G
(X)≤w}, {qD

b

G
(X)≥w}) forms

a baric structure on Db

G
(X). That is:

(1) qD
b

G
(X)≤w ⊂ qD

b

G
(X)≤w+1 and qD

b

G
(X)≥w ⊃ qD

b

G
(X)≥w+1.

(2) If F ∈ qD
b

G
(X)≤w and G ∈ qD

b

G
(X)≥w+1, then Hom(F ,G) = 0.

(3) For any F ∈ Db

G
(X), there is a distinguished triangle F ′ → F → F ′′ →

with F ′ ∈ qD
b

G
(X)≤w and F ′′ ∈ qD

b

G
(X)≥w+1.

In a baric structure, as in a t-structure (but unlike in a co-t-structure), the
distinguished triangle in the last property above is functorial. Specifically, there
are baric truncation functors

qβ≤w : Db

G
(X) → qD

b

G
(X)≤w and qβ≥w : Db

G
(X) → qD

b

G
(X)≥w.

A.2. Staggering operation. The baric structure above, like the t-structure of
Section 3.2 and the co-t-structure of Section 5, is defined by “orbitwise” condi-
tions, but all three of these admit an alternate description by “cohomologywise”
conditions. Define a subcategory of CG(X) as follows:

qCG(X)≤w = {F | i∗CF ∈ CG(C)≤q(C)+w for all C ∈ O(X)}.

The descriptions appearing in the proposition below were actually taken as defini-
tions in [AT1, AT2] (and the orbitwise descriptions required proof).

Proposition A.3. Let F ∈ Db

G
(X).

(1) F ∈ qD
b

G
(X)≤w if and only if hk(F) ∈ qCG(X)≤w for all k ∈ Z.

(2) F ∈ rDb

G
(X)≤w if and only if hk(F) ∈ rCG(X)≤w−k for all k ∈ Z.
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(3) F ∈ rDb

G
(X)⊑w if and only if hk(F) ∈ xryCG(X)≤w+k for all k ∈ Z, where

xry(C) = r(C) + dimC.

This really is a one-sided statement: in general, membership in qD
b

G
(X)≥w,

rDb

G
(X)≥0, or rDb

G
(X)⊒w cannot directly be tested for on cohomology sheaves.

For qD
b

G
(X)≤w, rDb

G
(X)≤0, and rDb

G
(X)⊑w, however, it is now reasonable to draw

pictures even in the many-orbit case, with the horizontal axis now indicating mem-
bership in a qCG(X)≤w rather than step.

degree

degree

baric
degree

degree

baric
degree

degree

baric

qD
b

G
(X)≤w

rDb

G
(X)≤0 rDb

G
(X)⊑w

The advantage of the descriptions in Proposition A.3 is that the relationship be-
tween qD

b

G
(X)≤w and rDb

G
(X)≤0 can now be described in language that makes

sense in any triangulated category.
The staggering operation is a procedure that takes “compatible” baric and t-

structures on a triangulated category, and produces from them a new t-structure.
The latter is defined by cohomology conditions. Theorem 4.1 is proved by invoking
this general procedure.

A.3. Baric purity. The full subcategory qD
b

G
(X)[w] = qD

b

G
(X)≤w ∩ qD

b

G
(X)≥w,

shown below for a single orbit, is a triangulated category in its own right, and one
may ask whether it admits any interesting t-structures.

qD
b

G
(C)[w] :

degree

step

Two t-structures on qD
b

G
(X)[w] (known as the purified and the pure-perverse t-

structures) are defined and studied in [AT2]. Neither of these is induced by one on
Db

G
(X), but they nevertheless turn out to be useful for studying particular objects.

Specifically, the key to proving the Purity Theorem, Theorem 5.4, is showing that a
simple staggered sheaf IC(C,L) also lies in the heart of the pure-perverse t-structure
on qD

b

G
(X)[w] for a suitable choice of q and w.

Along the way, it is shown in [AT2] that when the perversity functions obey
certain inequalities, baric versions of the Purity and Decomposition Theorems hold.

Theorem A.4. Under certain assumptions on r and q, the following hold.

(1) Every staggered sheaf admits a canonical finite filtration with baric-pure

subquotients. In particular, every simple staggered sheaf is baric-pure.
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(2) Every baric-pure object in Db

G
(X) is a direct sum of shifts of simple stag-

gered sheaves.

A.4. Nonreduced schemes. Although X was assumed to be a (reduced) variety
throughout in the present note, it is in fact essential to allow nonreduced schemes
in general, since the scheme-theoretic support of a coherent sheaf on a variety
may be nonreduced. The “rigidity” property of HLR baric structures plays an
important role here: for nonreduced X, membership in (for instance) qD

b

G
(X)≤w

can be tested for after pulling back to qD
b

G
(Xred)≤w, where Xred is the associated

reduced scheme. (This was not known when [A1] was written, so definitions in
that paper are typically quantified over all closed subschemes, rather than just all
reduced closed subschemes.)

However, the following result from [A2] depends on the quasi-hereditary property
and does not seem to follow directly from rigidity.

Theorem A.5. Let X be a nonreduced scheme, and let t : Xred → X be the

inclusion of the associated reduced scheme. Then t∗ : M(Xred) → M(X) is an

equivalence of categories.

Appendix B. Changes in Conventions and Notation

Staggered sheaves were introduced in [A1] in a much more general setting than
we have considered here: G and X were schemes of finite type over a noetherian
base scheme admitting a dualizing complex, with no assumption on orbits. With
hindsight, this setting appears to have been too general: the key results really do
require X to be a variety with finitely many orbits. The latter setting permits great
simplifications of the basic definitions, and thus the definitions in the present note
may seem to bear little resemblance to their counterparts in [A1] and subsequent
papers. In this appendix, we briefly indicate how to connect the notions in this
note to those in the various papers.

B.1. s-structures. In [A1], an s-structure on X is a collection of full subcate-
gories ({CG(X)≤w}, {CG(X)≥w})w∈Z of CG(X), satisfying a rather lengthy list of
axioms. However, on a variety with finitely many orbits, the “gluing theorems” [A1,
Theorem 5.3] and [AS, Theorem 2.1] allow one to reduce the task of specifying an
s-structure to specifying one on each orbit, and by [AT2, §7], the latter is equivalent
to giving a certain central cocharacter of the isotropy group.

The definition in (3.4) actually corresponds to what have been called “recessed,
split s-structures” in [AT1, AT2, A2]. The main theorems all require recessed, split
s-structures, so in the present note, that terminology has been dropped, and those
conditions incorporated into the definition of “s-structure.”

B.2. Perversities. In [A1], a perversity function was required to obey certain
inequalities, known as the “monotone” and “comonotone” conditions, in order for
Theorem 4.1 to hold, and Theorem 4.2 was proved only for perversities obeying even
stronger inequalities (“strictly monotone and comonotone”). These restrictions
were removed in [AT1] by entirely new proofs using baric structures. (These new
proofs assume “recessed” s-structures, however.) Thus, a perversity function is now
an arbitrary function O(X) → Z.
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B.3. Duality and codimension. In this note, the Serre–Grothendieck duality
functor D has been defined in terms of “the” dualizing complex ωX , using the as-
sumption (3.1) to guarantee its existence in positive characteristic. Let us now
take dualizing complex to mean any object ω̃X with the property that the functor
RHom(·, ω̃X) is an antiautoequivalence of Db

G
(X). Such dualizing complexes exist

in very great generality (see [H, §V.10] and [B1, Proposition 1]), without any as-
sumption like (3.1). In the papers [A1, AT1, AT2], the set-up included the choice

of a dualizing complex. No results on staggered sheaves depend in a substantive
way on this choice, but various formulas such as (4.1) must be modified.

Specifically, for any orbit C, the object i!C ω̃X must be a shift of a line bundle;
say i!C ω̃ ≃ LC [nC ]. The altitude of C, denoted alt C, is defined to be stepLC . We

also put codC = −nC . The assumptions of the present note give alt C = stepΩtop
C

and codC = −dim C. The latter assumption was also made in [A2].

B.4. Baric and co-t-structures. The definition of qD
b

G
(X)≤w used in Appen-

dix A follows [AT1], but the definition used in [AT2] contains an extra factor of 2,
for reasons explained therein. Co-t-structures were introduced in [AT2] in a way
that depended on an additional function q : O(X) → Z, and the associated cate-
gories were denoted qD

b

G
(X)⊑w and qD

b

G
(X)⊒w. These coincide with the rDb

G
(X)⊑w

and rDb

G
(X)⊒w of the present note when q = xry, cf. Proposition A.3.
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