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1 Introduction

Let V be a finite-dimensional complex vector space,
and let W ⊂ GL(V ) be a complex reflection group.
Let q be an indeterminate. For an irreducible char-
acter χ ∈ Irr(W ), let R(χ) denote its fake degree,
a polynomial in q. We define R(χ) for reducible
characters as well, by extending linearly. Let N∗

be the number of reflections in W , and let Ω =
(ωχ,χ′)χ,χ′∈Irr(W ) be the square matrix with entries
in Z[q] given by

ωχ,χ′(q) = qN
∗
R(χ⊗ χ′ ⊗ detV ).

For χ ∈ Irr(W ), let b(χ) be the lowest power of q
occurring in R(χ).

A Lusztig–Shoji datum for W is an ordered col-
lection X of disjoint subsets of Irr(W ) such that for
each χ ∈ Irr(W ), χ and its complex conjugate χ̄ be-
long to the same member of X. (The last condition
is vacuous for Coxeter groups, of course.) The mem-
bers of X are called phyla. For any phylum C, we
define

a(C) = min{b(χ) | χ ∈ C}.

Given a Lusztig–Shoji datum, if χ ∈ Irr(W ) oc-
curs in some phylum, we denote that class by phyχ.
By an abuse of notation, we sometimes write a(χ)
for a(phyχ). Typically, we also assume that each
phylum C contains a unique member χ such that
a(C) = b(χ). This representation is called the lead-
ing term of C, and is denoted χC .

Let I(X) ⊂ Irr(W ) denote the union of all phyla.
(In other sources, it has been assumed that I(X) =
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Irr(W ), but we allow I(X) to be smaller here.) Let
ΩX be the submatrix (ωχ,χ′)χ,χ′∈I(X). Consider the
matrix equation

(1) PΛP t = ΩX ,

where P = (pχ,χ′)χ,χ′∈I(X) and Λ = (λχ,χ′)χ,χ′∈I(X)

are unknown square matrices over Q(q) satisfying

(2)

pχ,χ′ = 0 if phyχ < phyχ′,

pχ,χ′ = δχ,χ′q
a(χ) if phyχ = phyχ′,

λχ,χ′ = 0 if phyχ 6= phyχ′.

Theorem 1.1 (Lusztig, Shoji). There are unique
matrices P , Λ over Q(q) satisfying (1) and (2).

The proof of this theorem consists primarily of an
algorithm, the generalized Lusztig–Shoji algo-
rithm, for computing P and Λ. The software de-
scribed here is an implementation of this algorithm.

Various kinds of information can be extracted from
the output of the Lusztig–Shoji algorithm. First,
there is a natural partial order on X, denoted �, ob-
tained by taking the transitive closure of the preorder
defined by

C′ � C if pχ,χ′ 6= 0 for some χ ∈ C, χ′ ∈ C′.

(The given total order ≤ on a Lusztig–Shoji datum
is always compatible with �, but � is in general
weaker.)

Given a set of phyla Y ⊂ X, let us define its clo-
sure Ȳ to be the set {C′ | C′ � C for some C ∈ Y }.
Y is closed if Y = Ȳ , locally closed if Ȳ r Y is
closed, and irreducible if it contains a unique maxi-
mal member with respect to �. An irreducible locally
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closed set Y , with maximal member C, is said to be
rationally smooth if

pχC,χ′ =

{
qa(C) if χ′ = χC′ for some C′ ∈ Y ,

0 if phyχ′ ∈ Y .

(No condition is imposed if phyχ′ /∈ Y .)
Finally, a phylum C ∈ X is special if its leading

term χC is a special representation of W in the sense
of [10]. Given a special phylum C, let PC ⊂ X be the
irreducible locally closed subset obtained by deleting
from C̄ the closures of any other special phyla it con-
tains. A set obtained in this way is a special piece.
Every phylum belongs to a special piece; often (see
below), the special pieces are disjoint.

The most important (and, historically, the first) in-
stance of the Lusztig–Shoji algorithm is that in which
W is the Weyl group of a simple algebraic group
G, and X is the partitioning of Irr(W ) according to
the Springer correspondence, with phyla in bijection
with unipotent classes. In this case, all the concepts
discussed above have well-known interpretations in
geometric representation theory. The entries of P
describe the stalks of intersection cohomology com-
plexes on the unipotent variety, and the entries of Λ
describe a certain “inner product” of local systems
on unipotent classes. In particular, the polynomial
λχC,χC gives the number of Fq-points of the unipotent
class corresponding to C. The order � is simply the
usual closure partial order on unipotent classes, and
the topological terms “closed,” “locally closed,” and
“irreducible” have their usual meanings. A variety Y
is rationally smooth if IC(Y, Q̄`) ' Q̄`; this coincides
with the condition on P given above. The special
pieces are disjoint (see [16]), and the full unipotent
variety (i.e., all of X) is rationally smooth [4], as is
each special piece [11, 14, 8].

2 Basic Functions

This software requires GAP version 3.4.4 (not the
newer GAP 4) and the “development version” of the
CHEVIE package, available from the homepage of
Jean Michel:

http://www.institut.math.jussieu.fr/

~jmichel/chevie/chevie.html

Once lsalg.g has been downloaded, it can be
loaded into GAP with the command

> Read("lsalg.g");

This command will load the CHEVIE package by
itself; it is not necessary to enter the command
RequirePackage("chevie").

Henceforth, the word group will always mean an
irreducible complex reflection group, created by one
of the CHEVIE commands ComplexReflectionGroup
or CoxeterGroup. Each group W comes equipped
with a fixed ordered list of irreducible characters,
accessible via commands such as CharTable(W) and
ChevieCharInfo(W). Assigning each χ ∈ Irr(W) to its
position in this list gives us a fixed bijection

Irr(W)←→ {1, . . . , | Irr(W)|}.

If χ ∈ Irr(W ) corresponds to the number i under this
bijection, let σ(i) denote the number corresponding
to χ̄.

A Lusztig–Shoji datum for a group W is a list
of lists of integers in the range {1, . . . , | Irr(W)|}, such
that no integer occurs twice, and such if i occurs in
some sublist, then σ(i) occurs in the same sublist. To
identify this kind of Lusztig–Shoji datum with that
of the previous section, the list should be regarded as
a list of phyla in increasing order.

The Lusztig–Shoji algorithm is carried out by the
following commands:

LSAlg( group, LSdatum )

LSAlgRatl( group, LSdatum )

These commands differ in their behavior when there
is some entry of P or Λ that is not at least a Lau-
rent polynomial. LSAlg simply stops when it finds
such an entry, whereas LSAlgRatl is able to carry out
arithmetic with rational functions, and always com-
pletes the algorithm. LSAlgRatl is rather slow when
rational-function arithmetic is required; usually, it is
preferable to use LSAlg.

The output of these commands is a record contain-
ing the following fields:

• P, Pdenom, Lam, Ldenom: P and Lam are matrices
of Laurent polynomials, and Pdenom and Ldenom

are nonzero polynomials with nonzero constant
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term. Together, these fields give the solution
to (1), by the formulas

P =
P

Pdenom
, Λ =

Lam

Ldenom
.

The rows and columns of P and Lam are ordered
in a way compatible with the Lusztig–Shoji da-
tum, so that P is upper-triangular.

When LSAlg is used, Pdenom and Ldenom will al-
ways be equal to 1. If LSAlg fails to complete
the algorithm, the entries of P and Lam whose val-
ues were not determined will contain the boolean
value false rather than a Laurent polynomial.

• valid: this has the value true if LSAlg com-
pletes the algorithm, and false if it does not. It
is always true when LSAlgRatl is used.

• label: a list of names for characters, in the order
in which they should be used to label rows and
columns of P and Lam.

• phy: a copy of the input LSdatum.

Example 2.1. Let us compute the Green functions
for an algebraic group of type G2. We first create the
group:

> W := CoxeterGroup("G",2);

The command

> ChevieCharInfo(W).charnames;

shows the ordered list of characters using Carter’s
notation:

[ φ1,0, φ1,6, φ′1,3, φ′′1,3, φ2,1, φ2,2 ]

The relevant Lusztig–Shoji datum has one phylum
for each unipotent class in G2, and each phylum con-
sists of those characters attached to the correspond-
ing unipotent class by the Springer correspondence.
The Springer correspondence is given explicitly in
Carter’s book; we find that the desired Lusztig–Shoji
datum is

> LS := [ [2], [4], [6], [5,3], [1] ];

We run the algorithm with

> out := LSAlg( W, LS );;

The matrices P and Λ may be examined interactively
using the commands

> PrintArray(out.P);

> PrintArray(out.Lam);

We can also use the LATEX output command

> TeXLSP( "output.tex", W, out );

to generate the table

φ
1
,0

φ
2
,1

φ
′ 1,
3

φ
2
,2

φ
′′ 1,
3

φ
1
,6

φ1,0 1 1 1 1 1
φ2,1 q q q q5 + q
φ′′1,3 q q q3

φ2,2 q2 q2 q4 + q2

φ′1,3 q3 q3

φ1,6 q6

3 Lusztig–Shoji Data

Entering Lusztig–Shoji data by hand, as was done
in Example 2.1, is an arduous and error-prone task.
This section describes a number of functions that
automatically generate Lusztig–Shoji data of various
kinds. These functions come in pairs of the form

nameLS( group, parameters )

nameLSdatum( group, parameters )

The first version invokes LSAlg with the automat-
ically generated Lusztig–Shoji datum, and returns
its output. The second version simply returns the
Lusztig–Shoji datum without invoking LSAlg.

For each of the functions below, we describe the
assumptions imposed on the group, and we describe
how the phyla are determined. These functions fall
into two categories: they are full if I(W) = Irr(W),
and partial otherwise.

3.1 Full Lusztig–Shoji data

SymbolLS( group, r, s )

SymbolLSdatum( group, r, s )
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The group must be imprimitive, and r and s should be
integers with 0 ≤ s ≤ r. Phyla are similarity classes
of generalized symbols of type (r, s), as defined in [15,
§1.2].

RouquierLS( group )

RouquierLSdatum( group )

The group must be imprimitive or spetsial primitive.
Phyla are Rouquier blocks [13] associated to spetsial
cyclotomic Hecke algebras. For Coxeter groups, these
coincide with two-sided cells. For complex reflection
groups, Rouquier blocks have been determined in [5,
7, 12].

SpringerLS( group )

SpringerLSdatum( group )

Springer2LS( group )

Springer2LSdatum( group )

The group must be spetsial. For Weyl groups, phyla
are determined by the Springer correspondence: each
phylum is the set of characters attached to some
unipotent class in the corresponding algebraic group.
For imprimitive complex reflection groups, the phyla
are similarity classes of symbols of the type associ-
ated to Springer representations in [2]. For primi-
tive groups, the phyla are in bijection with the set of
Springer representations in the sense of [2]. Each phy-
lum contains a Springer representation and its com-
plex conjugate. Each phylum containing a special
Springer representation also contains all other repre-
sentations in the same Rouquier block that are not
Springer or conjugate-to-Springer.

For groups with two distinct root lattices—viz.,
G(d, 1, n) with d a prime power (including G(2, 1, n),
the Weyl group of type Bn), G6, and G26—there
are two distinct notions of “Springer representation.”
For these groups, the functions Springer2LS and
Springer2LSdatum behave just as described above,
but with respect to the “second” root lattice.

3.2 Partial Lusztig–Shoji data

Most of the functions in this section do not, in gen-
eral, lead to valid output from LSAlg even for Weyl
groups. Rather, they are useful (in the nameLSdatum

form) for obtaining lists of representations, and they
are used in this way internally by the software for
such tasks as determining the special pieces.

LeadingTermsLS( group, LSdatum )

LeadingTermsLSdatum( group, LSdatum )

This function takes an existing Lusztig–Shoji datum
and produces a new one from it by discarding from
each phylum all but the member with minimal b-value
and its complex conjugate. If there is more than one
such member, the behavior is unpredictable.

DistSymbolsLS( group, r, s )

DistSymbolsLSdatum( group, r, s )

The group must be imprimitive. Each phylum con-
sists of a character whose symbol of type (r, s) is
distinguished, together with its complex conjugate.
Equivalent to applying LeadingTermLS to the out-
put of SymbolLS.

SpecialLS( group )

SpecialLSdatum( group )

The group must be spetsial. Each phylum consists of
a special character and its complex conjugate. Equiv-
alent to applying LeadingTermsLS to the output of
RouquierLSdata.

UnipotentLS( group )

Unipotent2LS( group )

Equivalent to applying LeadingTermLS to the out-
put of SpringerLS or Springer2LS. Each phylum
consists of a Springer representation and its complex
conjugate. For spetsial complex reflection groups,

TrivialLS( group )

Each phylum consists of a character and its complex
conjugate.

4 Using the Output of LSAlg

This section describes a number of functions that are
useful for studying the output of LSAlg. The al-
grec argument to each of these functions should be
a record returned by LSAlg or LSAlgRatl.
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4.1 Boolean functions

The functions in this section test P and Lam for vari-
ous properties, and return true or false.

IsLSIntegral( group, algrec )

This function returns true if P and Λ have polyno-
mial entries; i.e., if Pdenom and Ldenom are both 1,
and if all entries of P and Lam are polynomials.

IsLSPerverse( group, algrec )

This function is very similar to IsLSIntegral, but it
imposes on P the stronger condition that all nonzero
terms in the row corresponding to character χ have
degree at least a(χ). This condition holds in the orig-
inal version of the Lusztig–Shoji algorithm, where the
entries of P describe stalks of simple perverse sheaves
on the unipotent variety.

IsLSPositive( group, algrec )

This function returns true if Pdenom = 1 and all co-
efficients in P are nonnegative.

IsLSRatlSmooth( group, algrec )

This function returns true if the full Lusztig–Shoji
datum and all special pieces are all rationally smooth,
and false otherwise.

4.2 Partial Order on Phyla

Recall that P determines a partial order on phyla.

PartialOrder( group, algrec )

computes this partial order, and returns a matrix
with a 1 in the [i][j] entry if the i-th character
is � the j-th character, and a 0 otherwise. Here,
the numbering of characters is given by algrec.label,
and not by the intrinsic numbering of characters used
in Section 2 for Lusztig–Shoji data. As a result, the
output matrix is always lower-triangular.

PrintPartialOrder( group, algrec )

This function displays the partial-order matrix on the
screen in a compact, aesthetically pleasing manner.

4.3 LATEX Output

TeXLSP( filename, group, algrec )

TeXLSLam( filename, group, algrec )

These functions produce LATEX code for tables show-
ing the P and Λ matrices, respectively. The output is
saved in the file filename, unless filename is the empty
string, in which case it is printed to the screen.

TeXPartialOrder( filename, group, algrec )

This function creates a Hasse diagram using XY-pic.
For this code to work properly in a LATEX file, the file
must contain the command \usepackage[all]{xy}
in the preamble. The algorithm for creating the di-
agram is not very sophisticated; manual editing is
often necessary to improve the layout and eliminate
overlapping features.

5 Global Options

Various aspects of the behavior of the software can
be controlled by setting certain global variables.

LS VERBOSE = false

If true, LSAlg will print information on the screen
about its progress.

LS SAVE OMEGA = ""

If this variable is nonempty, it will be interpreted as
the name of a directory in which LSAlg can save the
matrices Ω as it computes them. It will also look in
this directory for the results of past calculations. This
feature is useful for large groups, since the calculation
of Ω is time-consuming but completely independent
of Lusztig–Shoji data.

LS MATHEMATICA = 0

The slowest step in the Lusztig–Shoji algorithm is
the calculation of the inverses of certain submatri-
ces of Λ. If Mathematica is installed on the user’s
system, LSAlg can use it to calculate these inverses
much faster than can be done interally in GAP. Of
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course, there is a trade-off: simply launching Math-
ematica takes time. If LS MATHEMATICA is set to a
positive integer n, then LSAlg will invoke Mathemat-
ica to compute inverses of matrices of size at least
n × n, but will compute inverses of smaller matrices
internally. On the author’s system, LS MATHEMATICA

= 7 gives good results.

LS TEX SMALL = false

If true, the tables produced by the LATEX output will
be formatted with as little whitespace as possible.

LS TEX POLY INC = false

If true, polynomials in LATEX output will be written
with terms in order of increasing degree.

LS TEX POLY CYC = false

If true, polynomials in LATEX output will be written
as a product of cyclotomic factors, with the nth cyclo-
tomic polynomial denoted Φn. This is useful in cases
where the output includes very long polynomials.

6 Further Examples

Example 6.1. The example of Section 2 can be com-
puted by

W := CoxeterGroup("G",2);

out := SpringerLS(W);;

More generally, the local intersection cohomology of
the unipotent variety of any algebraic group in good
characteristic can be computed by similar means.

Example 6.2. The study of Green functions for im-
primitive complex reflection groups was initiated by
Shoji in [15]. Example 7.6 of that paper can be com-
puted by

W := ComplexReflectionGroup(3,1,3);

out := SymbolLS(W,2,1);;

Note that in this example, IsLSPerverse(W,out)

returns false, because p(12;∅;1),(1;∅;12) = q3, but

qa(1
2;∅;1) = q4.

(3;∅;∅)

(2; 1;∅)

(1; 2;∅)

(1; 1; 1) (21;∅;∅)

(12; 1;∅)

(1; 12;∅)

(∅; 12; 1)

(13;∅;∅)

(∅; 13;∅)

The figure shows the partial order on phyla. (The
output of TeXPartialOrder has been slightly modi-
fied to eliminate overlapping of edges and entries.)

Example 6.3. The various examples considered
in [6] can all be studied with commands of the form

out := RouquierLS(W);;

The polynomials that are associated to special pieces
in loc. cit. can then be found by examining out.Lam.

Example 6.4. According to the main theorem of [3],
the local intersection cohomology of the enhanced
nilpotent cone is given by

W := CoxeterGroup("B",n);
out := TrivialLS(W);;

Example 6.5. Finally, the commands

W := CoxeterGroup("H",3);

out := TrivialLS(W);;

yield a P matrix that is tantalizingly close—it dif-
fers in one column—from the matrix of graded W -
multiplicities in the irreducible tempered represen-
tations of the graded Hecke algebra of type H3, as
computed by Kriloff–Ram [9]. Such a coincidence
is surely a hint of a deeper, as-yet unknown phe-
nomenon.
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